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Abstract. We investigate spin transport in 2-dimensional insulators, with the
long-term goal of establishing whether any of the transport coefficients corresponds
to the Fu-Kane-Mele index which characterizes 2d time-reversal-symmetric topo-
logical insulators.

Inspired by the Kubo theory of charge transport, and by using a proper defi-
nition of the spin current operator [SZXN], we define the Kubo-like spin conduc-
tance GszK and spin conductivity σszK . We prove that for any gapped, periodic,
near-sighted discrete Hamiltonian, the above quantities are mathematically well-
defined and the equality GszK = σszK holds true. Moreover, we argue that the
physically relevant condition to obtain the equality above is the vanishing of the
mesoscopic average of the spin-torque response, which holds true under our hy-
potheses on the Hamiltonian operator. This vanishing condition might be relevant
in view of further extensions of the result, e. g. to ergodic random discrete Hamil-
tonians or to Schrödinger operators on the continuum. A central role in the proof
is played by the trace per unit volume and by two generalizations of the trace, the
principal value trace and it directional version.
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1. Introduction

The last few decades witnessed an increasing interest, among solid state physi-
cists, for physical phenomena having a topological origin. This interest traces back
to the milestone paper by Thouless, Kohmoto, Nightingale and den Nijs on the
Quantum Hall Effect (QHE) [TKNN], includes the pioneering work of Haldane on
Chern insulators [Hal] and the seminal papers by Fu, Kane and Mele concerning the
Quantum Spin Hall Effect (QSHE) [KM1, KM2, FK, FKM] up to the most recent
developments in the flourishing field of topological insulators [An, HK].

As it is well-known, in the QHE a topological invariant (Chern number) is related
to an observable quantity, the transverse charge conductance or Hall conductance.
By analogy, in the context of the QSHE for 2-dimensional time-reversal-symmetric
insulators, one would like to connect – if possible – the relevant topological invari-
ant (Fu-Kane-Mele index) to a macroscopically observable quantity. The natural
candidates are spin conductance and spin conductivity, whose proper definition has
been debated, and whose equivalence has not been yet established.

The first crucial point is to characterize the operator corresponding to the spin
current density. In the last few years, an intense debate about the correct expression
of the latter took place, but a general consensus was not reached [SZXN, ZWSXN,
Sch1, Mu, ALLL, BN, SXW]. Among the candidates, one may include: (1)

(i) the naive guess

Jnaive = i[H,X]Sz,

where H is the Hamiltonian operator of the system, X = (X1, X2) is the
position operator and Sz represents the z-component of the spin;

(ii) its symmetrized version, namely

Jsym = 1
2 (Jnaive + J∗naive) = 1

2 (i[H,X]Sz + iSz [H,X]) ,

which has the advantage of providing a self-adjoint operator;
(iii) last but not least, the alternative provided by the “proper” spin current

Jprop = i[H,XSz], (1.1)

proposed by [SZXN], which is also self-adjoint.

Whenever [H,Sz] = 0 (spin-commuting case), the three above definitions agree,
while they differ in general. Notice that spin conservation is often violated in topo-
logical insulators, as it happens e. g. in the paradigmatic model proposed by Kane
and Mele [KM1, KM2], reviewed in Appendix A. Hence, it is of prominent impor-
tance to understand which choice best models the physics.

(1) We use Hartree atomic units, so that the reduced Planck constant ~, the squared electron
charge e2 and the electron mass me are dimensionless and equal to 1. In particular, the quantum

of charge conductivity in the QHE is e2

h = 1
2π .



3

The choice (iii) has the advantage to provide an operator associated to a source-
less continuity equation for the associated density and to Onsager relations [SZXN,
ZWSXN]. On the other hand, Jsym provides a periodic (or covariant, when ergodic
randomness is added) operator, while - as early remarked by Schulz-Baldes - the
latter property fails to hold for Jprop, which “ leads to technical difficulties, but also
questions the physical relevance ” of the operator Jprop [Sch1].

In this paper, we are inspired by the following simple but new observation: even
if Jprop is not periodic, it satisfies a peculiar commutation relation with the lattice
translations {Tp}p∈Zd whenever the Hamiltonian operator is periodic. Namely,

Tp Jprop T
−1
p = Jprop − p Tp i[H,Sz]T

−1
p ∀p ∈ Zd. (1.2)

Hence, whenever the spin torque i[H,Sz] averages to zero on the mesoscopic scale,
e. g. because τ (i[H,Sz]ρ(t)) = 0 where τ( · ) is the trace per unit volume (see Def-
inition 2.6) and ρ(t) is the density matrix describing the state of the system, the
operator Jprop is “mesoscopically periodic”, in the sense that its commutator
with the lattice translations vanishes on the mesoscopic scale.

A second crucial question is whether the relevant observable quantity related to
the Fu-Kane-Mele (FKM) index is the spin conductance, or the spin conductivity, or
some other transport coefficient, if any. We recall that the transverse (resp. direct)
spin conductance is defined, experimentally, as the ratio between the spin current
intensity and the electric potential drop measured in orthogonal (resp. parallel) di-
rections, hence as the ratio of two extensive observable quantities. On the contrary,
the transverse (resp. direct) spin conductivity is the ratio between the spin current
and the strength of the electric field measured in orthogonal (resp. parallel) direc-
tions, and as such is the ratio of two intensive quantities. In the case of charge
transport in 2-dimensional systems, the equality of charge conductance and con-
ductivity holds true [AS2], under suitable technical hypotheses, at least within the
Linear Response Approximation (LRA) [AG, Gr, AW]. In the case of spin transport
the situation is instead radically different and, unless [H,Sz] = 0, it is not obvious a
priori whether the equality between spin conductance and spin conductivity holds
true or not.

Our analysis encompasses several steps. As a first step, we reconsider the spin
transport starting from the first principles of Quantum Mechanics. This analysis,
performed in two related papers [MMPTe, MPTa] by a space- and a time-adiabatic
approach, respectively, shows that spin conductivity and conductance, defined by
using the operator Jprop (whose lack of periodicity is harmless on the mesoscopic
scale, as remarked above), contain additional terms with respect to what suggested
by the analogy with the Kubo theory of charge transport. The physical relevance of
the additional terms is at the moment unclear, and deserves further investigations
by both numerical and analytical methods.
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As a second step, in this paper we investigate the Kubo-like terms. Explicitly,
they are the following:

(a) the Kubo-like spin conductivity is defined as

σszK := τ(Σsz
K ) with Σsz

K := iP
[
[P,X1Sz], [P,X2]

]
P (1.3)

where P is the Fermi projector up to energy µ ∈ R, which is supposed to be
in a spectral gap, and τ( · ) is the trace per unit volume (tuv). The fact that
τ(Σsz

K ) is well-defined and finite will be part of our results.

(b) the Kubo-like spin conductance is defined as

Gsz
K (Λ1,Λ2) :=1-pvTr

(
GszK (Λ1,Λ2)

)
(1.4)

with GszK (Λ1,Λ2) := iP
[
[P,Λ1Sz], [P,Λ2]

]
P

where Λj is a convenient switch function in direction j ∈ {1, 2}, as in Defini-
tion 2.3. The fact that the operator GszK (Λ1,Λ2) is not trace class, forces us to
introduce a suitable trace-like linear functional, denoted by 1-pvTr and bap-
tized directional principal value trace in direction j = 1 in Definition 2.5, which
generalizes the trace.

The first new result of our paper is that, when focusing on the Kubo-like terms
(1.3) and (1.4), spin conductance and conductivity are equal provided that τ(Tsz) =
0, where the spin torque-response operator is defined by

Tsz := iP
[
[P, Sz], [P,X2]

]
P. (1.5)

Physically, τ(Tsz) represents – within LRA – the response of the system, in terms
of spin torque i[H,Sz], to a uniform electric field in direction 2.

The second new result is that, for any periodic and near-sighted Hamiltonian
(compare Assumption 2.2), condition τ(Tsz) = 0 automatically holds true, so that
we conclude that Gsz

K = σszK . In particular, under these assumptions the spin conduc-
tance is independent of the switch functions involved in its definition. The precise
results, which for technical reasons are proved in the setting of discrete Hamilto-
nians, are stated in Theorem 2.8 and Theorem 2.9, while the crucial observation
mentioned after (1.2) reflects in equations (2.4), (3.4) and (5.24) in the proofs.

Notice that our results do not assume the smallness of [H,Sz], hence they go
beyond the regime of spin quasi-conservation considered in previous papers [Sch1,
Pr1].

To prove our results we need to set up a suitable mathematical machinery, in-
volving some trace-like linear functionals, as the principal value trace (Definition
1.5) and the j-directional principal value trace (Definition 1.6). We also prove some
relevant properties of the trace per unit volume (Definition 1.7).
As it is well-known, in an infinite dimensional Hilbert space one has in general
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Tr([A,B]) 6= 0, since the cyclicity of the trace holds true only under special condi-
tions, e. g. if AB and BA are trace class and both A and B are bounded operators
(see [Si] and references therein). Similar subtleties appear when considering the
trace-like functionals mentioned above. It is noteworthy that, many physically rel-
evant quantities appear as the trace or tuv of exact commutators. For example, as
noticed in [AS2] the Kubo charge conductance σeK for a Quantum Hall system can
be rewritten as

σeK = τ ([PX1P, PX2P ])

where P is the spectral projector up to the Fermi energy. Hence, the mentioned
mathematical subtleties are not an abstract academic issue, but are deeply inter-
twined with the physics of quantum transport. For this reason, we devote two
sections to the analysis of the properties of the mentioned trace-like functionals (Sec-
tions 3 and 4), also considering that part of this machinery might be of independent
interest. In this analysis, we greatly benefited by the previous work on charge trans-
port in Quantum Hall systems, including in particular [AG, AS2, BGKS, EGS, ES].
The mathematical setting and the main results are discussed in Section 2, while
Section 5 is devoted to the proofs.

Our work provides a mathematical consistent expression for the Kubo-like terms
of spin conductivity and conductance, and some sufficient conditions which imply
their equality. Moreover, our work puts on solid mathematical grounds the proposal
to use Jprop as the self-adjoint operator corresponding to spin current density, cir-
cumventing the criticism related to its failure to be periodic. These results pave the
way to further developments in the mathematical theory of time-reversal-symmetric
topological insulators, a very active field of research in Solid State Physics and,
more recently, in Mathematical Physics [Pr1, Pr3, FW, ASV, Sch1, Sch2, GP, FMP,
MP, CDFG, CDFGT, DG, KK, CMT, MT, Ga]. In particular, our results might
contribute to solve one of the most challenging problem in the field, namely to find
a quantitative relation between an observable quantity and the relevant topological
invariant, the Fu-Kane-Mele index.

Although our results are restricted to periodic discrete models for technical rea-
sons, the general strategy of the proof might presumably be applied also to er-
godic random models for spin transport, i. e. to the natural generalization of the
models considered in the context of charge transport in Quantum Hall systems
[AG, AW, EGS, BGKS].

Acknowledgements. We are indebted to Gian Michele Graf for sharing with us
his insight into the mathematics of the QHE on the occasion of the Winter School
“The Mathematics of Topological Insulators in Naples ”, organized in the framework
of the Cond-Math project (http://www.cond-math.it/), and for pointing out to
us some relevant references. We are grateful to Domenico Monaco and Stefan Teufel
for many useful discussions, and to Massimo Moscolari for a careful reading of the
manuscript.

http://www.cond-math.it/
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2. Setting and main results

We consider independent electrons moving in a discrete set C ⊂ R2, which is
supposed to be a periodic crystal, i. e. it is equipped with a free action of a
Bravais lattice Γ ' Z2. In view of the latter action, after a choice of a periodicity
cell, one decomposes C ' Z2×{ν1, . . . , νN}, where the second factor corresponds to
the “points inside the chosen periodicity cell” (see Appendix A for the specific case
of the honeycomb structure and the Kane-Mele model).

Taking spin into account, the Hilbert space of the system is Hphys = `2(C) ⊗ C2

which, in view of the above procedure, is identified with

Hdisc = `2(Z2)⊗ CN ⊗ C2. (2.1)

Any bounded operator A acting on Hdisc is identified with a collection of ma-
trices {An,m}n,m∈Z2 ⊂ End(CN ⊗ C2). Indeed, by choosing any orthonormal basis

{ej}j∈{1,...,N} for CN and any orthonormal basis {φs}s∈{↑,↓} for spin, a bounded op-
erator A is characterized by the matrices

An,m := {〈δn ⊗ ej ⊗ φs, A(δm ⊗ ek ⊗ φr)〉}{j,k∈{1,...,N}, s,r∈{↑,↓}} ∈ End(CN ⊗ C2)

for all n,m ∈ Z2, where δn is defined as usual by (δn)m = δn,m. We denote by |Am,n|
the corresponding matrix norm, while the operator norm on the full Hilbert space
Hdisc is denoted by ‖A‖.
Definition 2.1. A bounded operator A acting on Hdisc is called near-sighted (2) if
and only if there exist constants C, ζ > 0 such that

|Am,n| ≤ Ce−
1
ζ
‖m−n‖1 ∀m,n ∈ Z2,

where ‖n‖1 :=
∑2

j=1 |nj|. The constant ζ is called the range of A.

Assumption 2.2. The Hamiltonian operator H is a bounded self-adjoint operator
acting on Hdisc. Further, we assume that the operator H

(H1) is near-sighted with range ζH ;
(H2) is periodic, namely Hm,n = Hm−p,n−p for all m,n,p ∈ Z2;
(H3) admits a spectral gap, namely there exist non-empty sets I1, I2 ⊆ R and a, b ∈

R, such that

Spectrum(H) = I1 ∪ I2 and sup I1 < a < b < inf I2.

The interval ∆ = (a, b) is called spectral gap.

(2) The term near-sighted was proposed by the Nobel Laureate Walter Kohn [Ko, PK], in a
slightly different context. For electrons in crystals, “it describes the fact that [...] local electronic
properties [...] depend significantly on the effective external potential only at nearby points.” The
term short range operator is often equivalently used in the literature, as well as local operator.
The latter use, however overlaps with the standard meaning of the word “local” in the theory of
operators, so we avoid it.
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For µ ∈ ∆, we denote the Fermi projection by

P := χ(−∞,µ)(H), (2.2)

where χΩ is the characteristic function of the set Ω. In Appendix A, we show
that the Hamiltonian HKM of the Kane-Mele model, which is often considered the
paradigmatic model of time-reversal-symmetric topological insulators, enjoys all the
above assumptions, whenever the values of the parameters guarantee the existence
of the spectral gap. Moreover, one easily sees that [HKM, Sz] 6= 0.

The aim of this paper is to analyze the Kubo-like terms in the spin conductivity
and spin conductance, defined as in (1.3) and (1.4), respectively. In our context, the
position operator X = (X1, X2) acts in Hdisc as

(Xjϕ)n := njϕn, j ∈ {1, 2}, ∀ϕ ∈ D(Xj).

The spin operator Sz acts on Hdisc as 1 ⊗ 1 ⊗ 1
2sz, where sz is the third Pauli

matrix. In order to keep a light notation, in the following we identify any operator
A which acts only in one sector of Hdisc, with the one acting in Hdisc with extra
identity factors, and we keep the same notation A (e. g. X1 ≡ X1 ⊗ 1CN ⊗ 1C2 , and
so on).

The operator GszK involves the notion of switch function, which we now define.

Definition 2.3. Fix j ∈ {1, 2}. A switch function in the jth-direction is a
function Λj : Z2 → [0, 1] that depends only on the variable nj and satisfies

Λj(nj) =

{
0 if nj < n−
1 if nj ≥ n+

for arbitrary n− < n+.

As anticipated in the introduction, many subtleties of the quantum theory of
transport arise since some relevant operators appearing in the theory are not trace
class. The operators Σsz

K and GszK , defined in (1.3) and (1.4), are not exceptional.
To overcome this problem, one needs to define suitable trace-like linear functionals
corresponding to the relevant physical quantities. The transverse spin conductivity is
defined through the well-known trace per unit volume. However, for the conductance
the situation is quite different and we have to introduce the notions of principal
value trace and its directional version.

We make use of the norm

‖n‖∞ := max
j∈{1,2}

|nj| ∀n ∈ Z2,

which conveniently respect the square structure of Z2. For any L ∈ 2N + 1 and
n0 ∈ Z2, we set

QL(n0) :=
{
n ∈ Z2 : ‖n− n0‖∞ ≤ L/2

}
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to denote the square of side L centered at n0. Following [BGKS], we restrict to odd
integers (L ∈ 2N + 1) in order to use the convenient decomposition (3)

QL(n0) =
⊔

n∈QL(n0)

Q1(n). (2.3)

For the sake of better readability, we write QL for QL(0).
We denote by χL := χQL , for L ∈ 2N + 1, the characteristic function of the square
QL, and by χj,L, for j ∈ {1, 2} and L ∈ 2N + 1, the characteristic function of the
stripe {m ∈ Z2 : |mj| ≤ L/2}.
Definition 2.4 (Principal value trace). Let A be an operator acting in Hdisc such
that (4) χLAχL is trace class for every L ∈ 2N + 1. The principal value trace of A,
is defined, whenever the limit exists, as

pvTr(A) := lim
L→∞
L∈2N+1

Tr(χLAχL).

As we deal with a two-dimensional system, we can also define the notion of direc-
tional principal value trace depending on the jth-direction, where j ∈ {1, 2} indicates
the direction around which we localize.

Definition 2.5 (Directional principal value trace). Fix an index j ∈ {1, 2}.
Let A be an operator acting in Hdisc such that χj,LAχj,L is trace class for every
L ∈ 2N + 1. The j-directional principal value trace of A, is defined, whenever the
limit exists, as

j-pvTr(A) := lim
L→∞
L∈2N+1

Tr(χj,LAχj,L).

We will show in Section 3 that both the principal value trace and its directional
version coincide with the usual trace whenever A is a trace class operator. However,
the new functionals work also for operators which are not trace class, in analogy
with generalized integrals. Finally, we recall the definition of trace per unit volume
(see [AW, BGKS] and references therein).

Definition 2.6 (Trace per unit volume). Let A be an operator acting in Hdisc

such that (4) χLAχL is trace class for every L ∈ 2N + 1. The trace per unit volume
of A, is defined, whenever the limit exists, as

τ(A) := lim
L→∞
L∈2N+1

1

L2
Tr(χLAχL).

(3) The symbol
⊔

corresponds to the disjoint union.
(4) The condition that “ χLAχL is trace class for every L ∈ 2N+1 ” is automatically satisfied in

every discrete model, as those considered in this paper, since the range of χL is finite-dimensional.
We decided to state this redundant condition anyhow, since we prefer to consider the same definition
for discrete and continuum models (Schrödinger operators), as we plan to adapt the proof to the
latter models in the future.
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The fundamental properties of these three trace-like linear functionals are discussed
in Section 3.

We are finally in the position to discuss the main results of the paper. We first
state an auxiliary lemma.

Lemma 2.7. Let H be as in Assumption 2.2 and P be the corresponding Fermi pro-
jection, as in (2.2). Then the spin torque-response operator Tsz = iP

[
[P, Sz], [P,X2]

]
P

is periodic and bounded. Moreover, Tsz has finite trace per unit volume and it holds

τ(Tsz) = Tr(χ1Tszχ1).

τ(Tsz) is called the mesoscopic average of spin torque-response.

Theorem 2.8 (Vanishing of spin-torque response). Let H be as in Assump-
tion 2.2 and P be the corresponding Fermi projection, as in (2.2). Then

τ(Tsz) = 0.

The physical interpretation of this result is that a uniform electric field does not
induce any particular spin torque excess in the sample, at least within LRA [SZXN].
The proof of it relies on the conditional cyclicity of tuv which, while false in general,
holds true for a specific class of operators, as proved in Proposition 3.8.

Theorem 2.9. Let H be as in Assumption 2.2 and P the corresponding Fermi
projection. Then:

(1) Let Λ2 be a fixed switch function in the 2nd-direction. Assume that Gsz
K (Λ1,Λ2),

defined by (1.4), is finite for at least a switch function Λ1.
Then Gsz

K (Λ′1,Λ2) is finite for any of switch function Λ′1, and it is independent
of the choice of Λ′1.

(2) The operator Σsz
K satisfies

(Σsz
K )m,n = (Σsz

K )m−p,n−p − p1 (Tsz)m−p,n−p for all m,n,p ∈ Z2, (2.4)

where Tsz is the spin torque-response defined in (1.5). Moreover, the Kubo-like
term in the transverse spin conductivity, defined as σszK := τ(Σsz

K ), is well-defined
and satisfies

σszK = Tr(χ1Σsz
Kχ1).

(3) Finally, the equality

σszK = Gsz
K (Λ1,Λ2) (2.5)

holds true. In particular, Gsz
K is finite and independent of the choice of the switch

functions Λ1,Λ2 in both directions.
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Remark 2.10. Before proving the above statements, a few comments are in order.

(i) Notice that the operator Σsz
K is, in general, not periodic, hence the fact that

its trace per unit volume is well-defined and finite, as proved in the Theo-
rem 2.9 (2), is not trivial.

(ii) The simplicity of the formula (2.5) might obscure the physics of the problem.
Indeed, during the proof, one shows that it holds true (see equation (5.24))

Gsz
K (Λ1,Λ2) = σszK +

1

2
lim
L→∞
L∈2N+1

∑
m1∈Z
|m1|≤L/2

τ(Tsz). (2.6)

The second summand is a series of constant terms, which is either zero if
τ(Tsz) = 0, or ±∞ otherwise. As stated in Theorem 2.8, for a gapped periodic
near-sighted Hamiltonian, one has always τ(Tsz) = 0. On the other hand, we
suspect that equation (2.6) is valid in a broader context.

(iii) Whenever
[H,Sz] = 0, (2.7)

the spin torque-response operator vanishes, see (1.5). In this particular case, it
is straightforward to prove that Gsz

K (Λ1,Λ2) = σszK , since the proof boils down
to the analogous proof for charge transport (see [AS2] for the continuum case,
and [Ma] for a recent overview of the literature).

In view of (2.7), P admits the decomposition induced by the Sz-eigenspaces,
namely

P = P↑ ⊕ P↓.
In the above, P↑ and P↓ are both projections on `2(Z2) ⊗ CN . In this spe-
cific case, if H enjoys Assumption 2.2 and is time-reversal symmetric, namely
ΘHΘ−1 = H for Θ = eiπsy/2K, where sy is the second Pauli matrix and K is
the natural complex conjugation on Hdisc, one has that

σszK = iτ(P
[
[P,X1], [P,X2]

]
SzP ) =

1

2

(
C1(P↑)− C1(P↓)

)
= C1(P↑), (2.8)

with

C1(Ps) :=
i

2π

∫
B

dk tr (Ps(k)[∂1Ps(k), ∂2Ps(k)]) for s ∈ {↑, ↓},

where Ps(k) refers to the fiber operator at fixed crystal momentum, with
respect to the modified Bloch-Floquet transform (see e. g. [Pa, MP]).

Hence, in the spin-commuting case our result agrees with previous contri-
butions, e. g. [Sch1, Sch2, Pr1], yielding that the Kubo-like spin conductivity,
given by (2.8), agrees with the Spin-Chern number. Moreover, formula (2.8)
agrees with the Fu-Kane-Mele index modulo 2 [FK, KM1, Sch2].
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3. Machinery: (directional) principal value trace and trace per
unit volume

In this Section we state and prove some fundamental properties of the trace-like
functionals introduced before. First, we recall some facts about the trace and its
conditional cyclicity.

Proposition 3.1 (Conditional cyclicity of the trace [Si, Corollary 3.8]). Let H
be a separable Hilbert space. If A,B ∈ B(H) have the property that both AB and BA
are in the trace class ideal (5) B1(H) (in particular, if A ∈ B(H) and B ∈ B1(H), or
A ∈ Bp(H) and B ∈ Bq(H) where 1 < p, q <∞ are such that 1/p+ 1/q = 1), then

Tr(AB) = Tr(BA).

Hereafter, the trace on the Hilbert space Hdisc will be denoted by TrA, for any
trace class operator A, while the (matrix) trace on CN ⊗ C2 ' C2N by tr( · ). The
following elementary inequality will be useful.

Lemma 3.2. Let H be a separable Hilbert space. If A is a bounded self-adjoint
operator acting on H, then

|〈ψ,Aψ〉| ≤ 〈ψ, |A|ψ〉 for all ψ ∈ H. (3.1)

Proof. By the Spectral Theorem, any self-adjoint A can be written as A = A+−A−,
so that both A+ and A− are positive operators, A+A− = 0 and |A| = A+ + A−.
Hence, for every ψ ∈ H, one has

|〈ψ,Aψ〉| = |〈ψ,A+ − A−ψ〉| ≤ |〈ψ,A+ψ〉|+ |〈ψ,A−ψ〉| =
= 〈ψ,A+ψ〉+ 〈ψ,A−ψ〉 = 〈ψ, |A|ψ〉 .

�

Notice that the inequality (3.1) may be false for a bounded operator which is not
self-adjoint.

Chosen an orthonormal basis {ek}k∈{1,...,2N} of CN ⊗ C2 ' C2N , we set

δ(k)
n := δn ⊗ ek ∈ Hdisc (3.2)

where δn is defined as usual by (δn)m = δn,m. If A is a trace class operator, its trace
can be computed by using the basis above, yielding

Tr(A) =
∑
n∈Z2

tr(An,n). (3.3)

In this case, one says that Tr(A) is computed “through the diagonal kernel”. The
relevant point, recalled in the next Lemma, is that whenever A is self-adjoint the

(5) For 1 ≤ r <∞ one defines the Schatten ideals as Br(H) :=
{
A ∈ B(H)

∣∣ |A|r ∈ B1(H)
}
.
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series (3.3) is absolutely convergent, hence the sum of the series can be obtain as
the limit of the sums over sets Ωn, for any exhaustion Ωn ↗ Z2.

Lemma 3.3. If A ∈ B1(Hdisc) is self-adjoint, then the function

Z2 3 n 7→ tr(An,n) is in `1(Z2).

Proof. By the inequality (3.1) and the hypothesis that A is trace class, one obtains∑
n∈Z2

|tr(An,n)| ≤
∑
n∈Z2

k∈{1,...,2N}

∣∣〈δ(k)
n , A δ(k)

n

〉∣∣ ≤ ∑
n∈Z2

k∈{1,...,2N}

〈
δ(k)
n , |A| δ(k)

n

〉
=

=
∑
n∈Z2

tr(|A|n,n) = Tr(|A|) <∞.

This completes the proof. �

The construction of the trace is somehow analogous to the construction of the
Lebesgue integral [RS1, Section VI.6]. As well-known, whenever a function is
Lebesgue integrable, then its principal value integral exists and it is equal to the
Lebesgue integral. Similarly, the principal value trace is a natural extension of the
trace, as stated in the following Proposition.

Proposition 3.4. If A ∈ B1(Hdisc) then pvTr(A) is well-defined and

pvTr(A) = Tr(A).

Proof. It is sufficient to prove the claim for a self-adjoint operator A, since any
operator A can be decomposed as A = ReA + i ImA, and B1(H) is closed under
the adjoint operation A 7→ A∗.

So, let A be a self-adjoint operator. Notice that the operator χLAχL is trace class.
Both the trace of χLAχL and of A can be computed through the diagonal kernel,
yielding

Tr(A) =
∑
n∈Z2

tr(An,n) = lim
L→∞
L∈2N+1

∑
n∈Z2

‖n‖∞≤L/2

tr(An,n) = lim
L→∞
L∈2N+1

Tr(χLAχL) = pvTr(A).

In the second equality in the last equation we have used that the function Z2 3
n 7→ tr(An,n) is in `1(Z2) by Lemma 3.3, hence the series over Z2 can be computed
through a particular exhaustion of Z2. �

Similarly to the last Proposition, we have

Proposition 3.5. If A ∈ B1(Hdisc) then j-pvTr(A) is well-defined and

j-pvTr(A) = Tr(A).
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Proof. Without loss of generality, set j = 1 (the other case is obtained by exchanging
the roles of the indices). As in the proof of the last Proposition, it is sufficient to
prove the claim for A self-adjoint. Thus, let A be a self-adjoint operator. Notice
that the operator χ1,LAχ1,L is trace class because χ1,L is a bounded operator and
A is trace class by hypothesis. Thus, both the trace of χ1,LAχ1,L and of A can be
computed through the diagonal kernel and so one obtains

Tr(A) =
∑
n∈Z2

tr(An,n) =
∑
n2∈Z

∑
n1∈Z

tr(An,n) =
∑
n2∈Z

lim
L→∞
L∈2N+1

∑
n1∈Z
|n1|≤L/2

tr(An,n)

= lim
L→∞
L∈2N+1

∑
n2∈Z

∑
n1∈Z
|n1|≤L/2

tr(An,n) = lim
L→∞
L∈2N+1

Tr(χ1,LAχ1,L) = 1-pvTr(A).

In the last chain of equalities we have used in the order:

(i) the function Z2 3 n 7→ tr(An,n) is in `1(Z2) by Lemma 3.3, therefore by
Fubini’s Theorem the series over Z2 does not depend on the order of summation
over n1, n2 ∈ Z;

(ii) for every n2 ∈ Z the function Z 3 n1 7→ tr(An,n) is in `1(Z) by Lemma 3.3
and Chebyshev’s inequality, thus the series over Z can be computed through
a particular exhaustion of Z;

(iii) in view of the general Lebesgue’s dominated convergence Theorem the limit
over L→∞ and the series in n2 ∈ Z can be exchanged.

�

In the following, we give two sufficient conditions for the existence of the trace
per unit volume of an operator: the first one (periodicity) is well-known [BGKS],
while the second one is, to our knowledge, new.

Proposition 3.6 (Existence of TUV, condition I). Let A be a periodic operator
acting in Hdisc. Then τ(A) is well-defined and

τ(A) = Tr(χ1Aχ1).

Proof. The operator χLAχL is trace class for every L ∈ 2N+ 1, and its trace can be
computed through the diagonal kernel. In view of periodicity, one has An,n = A0,0

for all n ∈ Z2. Therefore, by using the decomposition (2.3), one obtains

Tr(χLAχL) =
∑
n∈Z2

‖n‖∞≤L/2

tr(An,n) = L2 tr(A0,0).

Hence limL→∞
1
L2 Tr(χLAχL) = tr(A0,0) = Tr(χ1Aχ1), which concludes the proof.

�
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Proposition 3.7 (Existence of TUV, condition II). Let A,B be operators act-
ing in Hdisc satisfying the following equation

Am,n = Am−p,n−p + g(p)Bm−p,n−p for all m,n,p ∈ Z2, (3.4)

where g : Z2 → R is an odd function in at least one variable (6). Then τ(A) is
well-defined and

τ(A) = Tr(χ1Aχ1).

Proof. The operator χLAχL is trace class, and we compute its trace through the
diagonal kernel. In view of the equation (3.4), one has An,n = A0,0 + g(n)B0,0.
Therefore, using the decomposition (2.3), we obtain

Tr(χLAχL) =
∑
n∈Z2

‖n‖∞≤L/2

tr(An,n) = L2 tr(A0,0) + tr(B0,0)
∑
n∈Z2

‖n‖∞≤L/2

g(n). (3.5)

Since the function g is odd in at least one variable, there exists an index j ∈ {1, 2}
such that g(n) = −(Rjg)(n), where Rj is the corresponding reflection (6). Denoting
by k the index different from j, we have∑

n∈Z2

‖n‖∞≤L/2

g(n) =
∑
nk∈Z
|nk|≤L/2

∑
nj∈Z
|nj |≤L/2

g(n) = 0.

As tr(B0,0) = Tr(χ1Bχ1) is finite (since Ranχ1 is finite-dimensional), the second
summand on the right-hand side of (3.5) vanishes. This concludes the proof. �

Proposition 3.8 (Conditional cyclicity of the trace per unit volume). Let
A,B be periodic operators acting in Hdisc. Then

τ(AB) = τ(BA).

Proof. Applying Proposition 3.6 and computing the trace of χ1ABχ1 through the
diagonal kernel, we have

τ(AB) = Tr(χ1ABχ1) =
∑
n∈Z2

tr(A0,nBn,0). (3.6)

We rewrite the term on right-hand side of the last equation. Using the periodicity
of the operators A and B, and the invariance of Z2 under the reflection n 7→ −n,

(6) Namely, setting (R1g)(n1, n2) := g(−n1, n2) and (R2g)(n1, n2) := g(n1,−n2) for all n ∈ Z2,
one says that g : Z2 → R is an odd function in at least one variable if and only if there exists an
index j ∈ {1, 2} such that g(n) = −(Rjg)(n) for all n ∈ Z2.
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we obtain ∑
n∈Z2

tr(A0,nBn,0) =
∑
n∈Z2

tr(A−n,0B0,−n)

=
∑
n∈Z2

tr(An,0B0,n). (3.7)

As tr( · ) acts on a finite-dimensional Hilbert space, one has tr(An,0B0,n) = tr(B0,nAn,0)
for every n ∈ Z2. Therefore, in view of Proposition 3.6, we have∑

n∈Z2

tr(An,0B0,n) =
∑
n∈Z2

tr(B0,nAn,0) = Tr(χ1BAχ1) = τ(BA). (3.8)

Plugging equation (3.8) into (3.6), the proof is concluded. �

4. Localization properties of near-sighted operators

In this Section, we consider the peculiar localization properties of operators which
are near-sighted, see Definition 2.1, and their relation with the trace class condition.

Remark 4.1. For the later purposes, it is convenient to recall some elementary but
useful tools to establish the boundedness of an operator A acting on Hdisc:

(i) the Hölmgren’s estimate

‖A‖ ≤ max

(
sup
m∈Z2

∑
n∈Z2

|Am,n| , sup
n∈Z2

∑
m∈Z2

|Am,n|

)
;

(ii) the convergence of the following series: for every λ > 0 and j ∈ {1, 2}, we
have ∑

nj∈Z

e−λ|nj | =
1 + e−λ

1− e−λ
<∞.

Preliminary, we recall some results which are useful to establish the trace class
property in the discrete case [EGS].

Definition 4.2. A function f : Z2 → R is called 1-Lipschitz if and only if it
satisfies

|f(m)− f(n)| ≤ ‖m− n‖1 for all m,n ∈ Z2.

Lemma 4.3. If A is a near-sighted operator acting in Hdisc with range ζ, then

e±λfAe∓λf is bounded with
∥∥e±λfAe∓λf

∥∥ ≤ (1 + e−( 1
ζ
−λ)

1− e−( 1
ζ
−λ)

)2

,

for every 0 ≤ λ < 1/ζ and every 1-Lipshitz function f .
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Proof. For every m ∈ Z2 we compute∑
n∈Z2

∣∣∣(e±λfAe∓λf
)
m,n

∣∣∣ =
∑
n∈Z2

∣∣e±λf(m)Am,ne∓λf(n)
∣∣

=
∑
n∈Z2

∣∣Am,ne±λ(f(m)−f(n))
∣∣

≤ C
∑
n∈Z2

e−
1
ζ
‖m−n‖1eλ|f(m)−f(n)|

≤ C
∑
n∈Z2

e−
1
ζ
‖m−n‖1eλ‖m−n‖1

= C
∑
n∈Z2

e−( 1
ζ
−λ)‖n‖1 ,

where we have used the near-sightedness of A, the inequality |ea| ≤ e|a| for all a ∈ R,
the fact that f is a 1-Lipschitz function and Z2 is invariant under Z2-translation.
On the right-hand side of the last inequality, the series is finite as long as λ < 1

ζ
.

After an analogous computation which considers the sum over m ∈ Z2, in view of
Remark 4.1, we obtain that for every 0 ≤ λ < 1

ζ

∥∥e±λfA e∓λf
∥∥ ≤ (1 + e−( 1

ζ
−λ)

1− e−( 1
ζ
−λ)

)2

.

�

Definition 4.4. Let A ∈ B(Hdisc). For j ∈ {1, 2} and α > 0 we say that A is
α-confined in jth-direction (7) if and only if

A eα|Xj | is bounded.

Clearly, if A is α-confined in jth-direction for some α > 0 and j ∈ {1, 2}, then A is
λ-confined in jth-direction for every 0 < λ ≤ α.

Remark 4.5. Here, we notice a simple algebraic identity which will be useful to
recall in different proofs. For any A,B ∈ B(H) we have

[B,A] = BA−BAB − AB +BAB = BA(1−B)− (1−B)AB.

Lemma 4.6. Let A be a near-sighted operator acting in Hdisc, with range ζ, and let
Λj be a switch function in jth-direction. Then

[Λj, A] is α-confined in jth-direction,

for some 0 < α < 1/ζ.

(7) In the terminology of [EGS].
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Proof. Using Remark 4.5, we have for 0 < α ≤ 1
ζ

[Λj, A] eα|Xj | = ΛjA(1− Λj) eα|Xj | − (1− Λj)AΛj eα|Xj |. (4.1)

We analyse the first summand on the right-hand side of the last equation. We have

ΛjA(1−Λj)e
α|Xj | = ΛjA(1−Λj)χ{nj<n−}e

α|Xj |+ΛjA(1−Λj)χ{n−≤nj<n+}e
α|Xj |. (4.2)

The second summand on the right-hand side of the last equation is bounded since
χ{n−≤nj<n+} is compactly supported in direction j and A is bounded. On the other
hand, for the first summand on the right-hand side of (4.2), we have to split the
case either n− ≤ 0 or n− > 0.

For n− ≤ 0, we obtain

ΛjA(1− Λj)χ{nj<n−}e
−αXj = Λje

−αXj · eαXjAe−αXj · (1− Λj)χ{nj<n−},

which is bounded because
∥∥Λje

−αXj
∥∥ =

∥∥Λjχ{nj≥n−}e
−αXj

∥∥ ≤ e−αn− and eαXjAe−αXj

is bounded by Lemma 4.3.

For n− > 0, we obtain

ΛjA(1−Λj)χ{nj<n−}e
α|Xj | = ΛjA(1−Λj)χ{nj≤0}e

−αXj +ΛjA(1−Λj)χ{0<nj<n−}e
α|Xj |,

which is bounded because on the right-hand side the first-summand is bounded
by analogy to the previous case, and the second summand is bounded because
χ{0<nj<n−} is compactly supported in direction j and A is bounded.

Therefore, ΛjA(1 − Λj)e
α|Xj | is bounded. Proceeding similarly for the second

term on the right-hand side of the equality (4.1), we deduce that [Λj, A]eα|Xj | is
bounded. �

Proposition 4.7. Let j 6= k ∈ {1, 2}. If A is α-confined in the jth-direction, B
is a bounded operator such that B∗ is β-confined in the kth-direction and C is an
operator such that

e−α|X1|Ceα|X1| is bounded or eβ|X2|Ce−β|X2|is bounded,

then ACB is trace class.

Proof. Without loss of generality, we suppose that j = 1 and k = 2.

Assume that e−α|X1|Ceα|X1| is bounded. We have

ACB = Aeα|X1| · e−α|X1|Ceα|X1| · e−α|X1|e−β|X2| · eβ|X2|B,

which is trace class. Indeed, on the right-hand side of the last equality the first
factor is bounded by hypothesis and the second one is bounded by assumption.

For the fourth factor, in view of T ∗S∗ ⊆ (ST )∗ for any S and T closed, densely
defined operators in Hdisc, we have

∥∥eβ|X2|B
∥∥ ≤ ∥∥(B∗eβ|X2|

)∗∥∥ =
∥∥B∗eβ|X2|

∥∥ < ∞
by hypothesis.
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The third factor is trace class. Indeed,

Tr(e−α|X1|e−β|X2|) =
∑
n∈Z2

e−α|n1|e−β|n2| =

(
1 + e−α

1− e−α

)(
1 + e−β

1− e−β

)
<∞.

On the other hand, assume that eβ|X2|Ce−β|X2| is bounded. Writing

ACB = Aeα|X1| · e−α|X1|e−β|X2| · eβ|X2|Ce−β|X2| · eβ|X2|B,

we can reason similarly to the previous case. This concludes the proof. �

Remark 4.8 (Discrete vs continuum models). This strategy to establish trace
class property is based on the fact that e−α|X1|e−β|X2| is trace class for some α, β > 0,
a property which holds true for the discrete models considered in this paper, but
not for continuum models. In other words, this property is rooted in the underlying
ultraviolet cutoff of the discrete models. The generalization to continuum models
would require further assumptions on the operators such as localization in energy.

Remark 4.9. One might naively think that [P,Λ1Sz] is α-confined in the 1st-
direction for some α > 0, since P is near-sighted and Sz acts non-trivially only
on the C2 sector. This is not true in general. Indeed, we have

[P,Λ1Sz] = [P, Sz]Λ1 + Sz[P,Λ1].

On the right-hand side, the second summand is confined by Lemma 4.6, while the
first summand has no reason to be confined, since [P, Sz] is a priori only a bounded
operator which does not have decreasing properties in space. Consequently GszK is
not trace class in general, since it is not confined in the 1st-direction. This is why
we had to introduce the directional principal value trace in the definition of Gsz

K .

5. Proof of the main results

Recall that the Hamiltonian operator H satisfies Assumption 2.2. Namely, H is
near-sighted, periodic and with a spectral gap ∆. For µ ∈ ∆, P = χ(−∞,µ)(H) is
the corresponding Fermi projection. Under these hypotheses, it is well-known that

Lemma 5.1 ([AW, AG, Kir]). The Fermi projection P is near-sighted.

We denote the range of P by ζP . Note also that P⊥ = 1− P is near-sighted.

Proposition 5.2. If A is a near-sighted operator acting in Hdisc, then we have that

[A,Xj] is bounded for j ∈ {1, 2}.
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Proof. Fix j = 1 (the other case is obtained by replacing the index 1 with 2). For
every m ∈ Z2 we compute∑

n∈Z2

∣∣∣([A,X1])m,n

∣∣∣ =
∑
n∈Z2

|m1 − n1| |Am,n| ≤ C
∑
n∈Z2

e−
1
ζ
‖m−n‖1 |m1 − n1|

= C
∑
n∈Z2

e−
1
ζ
|m2−n2|e−

1
ζ
|m1−n1| |m1 − n1|

= C
1 + e−ζ

1− e−ζ

∑
n1∈Z

e−
1
ζ
|n1| |n1| , (5.1)

where we used in the last step Remark 4.1 (ii) and the invariance of Z under Z-
translations. Clearly, the series on the right-hand side of (5.1) is convergent. A
similar computation involving the sum over m ∈ Z2 and Remark 4.1 (i) imply the
thesis. �

Lemma 5.3. If A is a periodic operator acting in Hdisc and S is an operator acting
non-trivially on CN ⊗ C2 only, then for j ∈ {1, 2} we have the following

(i) the operator [A,Xj] is periodic, namely

([A,Xj])m,n = ([A,Xj])m−p,n−p for all m,n,p ∈ Z2;

(ii) the operator [A,XjS] satisfies

([A,XjS])m,n = ([A,XjS])m−p,n−p − pj([A, S])m−p,n−p for all m,n,p ∈ Z2.

Proof. Recall that we denote by Tp the translation operator by the vector p ∈ Z2,
acting on `2(Z2), or similarly on Hdisc, as

(Tpϕ)n := ϕn−p for all ϕ ∈ `2(Z2).

(i) By Jacobi identity, we have

[[A,Xj], Tp] = −[[Tp, A], Xj]− [[Xj, Tp], A] = −[[Xj, Tp], A] = −pj[Tp, A] = 0,
(5.2)

where we have used the periodicity of A and the identity

[Xj, Tp] = pjTp for all p ∈ Z2. (5.3)

Recalling the definition (3.2), by the commutation relation (5.2) for every m,n,p ∈
Z2 we obtain

([A,Xj])
(i),(j)
m,n =

〈
δ(i)
m , [A,Xj] δ

(j)
n

〉
=
〈
δ(i)
m , T

∗
p[A,Xj]Tpδ

(j)
n

〉
=
〈
δ

(i)
m−p, [A,Xj]δ

(j)
n−p

〉
= ([A,Xj])

(i),(j)
m−p,n−p.

(ii) By Leibniz rule, we have

[A,XjS] = [A,Xj]S +Xj[A, S]. (5.4)
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On the right-hand side of the last equation the first summand is periodic, as it is
the product of an operator which is periodic by the previous claim (i) and S, which
acts non-trivially only in the sector CN ⊗C2. Instead, the second summand is such
that, in view of the identity (5.3) and the periodicity of [A, S],

[Xj[A, S], Tp] = [Xj, Tp][A, S] = pjTp[A, S].

Therefore, using the decomposition (5.4), the claim (i), the previous relation and
the periodicity of [A, S], for every m,n,p ∈ Z2 we have

([A,XjS])(i),(j)
m,n = ([A,Xj]S)(i),(j)

m−p,n−p +
〈
δ(i)
m , T

∗
pXj[A, S]Tp δ

(j)
n

〉
− pj

〈
δ(i)
m , [A, S] δ(j)

n

〉
= ([A,Xj]S)(i),(j)

m−p,n−p +
〈
δ

(i)
m−p, Xj[A, S] δ

(j)
n−p

〉
− pj

〈
δ

(i)
m−p, [A, S] δ

(j)
n−p

〉
= ([A,XjS])(i),(j)

m−p,n−p − pj([A, S])(i),(j)
m−p,n−p.

�

5.1. Proof of Lemma 2.7. The operator Tsz is periodic, since [P,X2] is so by
Lemma 5.3 (i) and the other operators involved in its definition are periodic. It
is also bounded as [P,X2] is so by Proposition 5.2 and Lemma 5.1, and the other
operators are bounded.

As Tsz is periodic and bounded, one concludes the proof by invoking Proposi-
tion 3.6. �

5.2. Proof of Theorem 2.8. In view of Lemma 2.7, one has that τ(Tsz) is well-
defined. By algebraic manipulations and Proposition 3.8, one obtains

τ(Tsz) = iτ(PSzP
⊥[P,X2]) + iτ(P [P,X2]P⊥SzP )

= iτ(SzP
⊥[P,X2]P + SzP [P,X2]P⊥) = iτ(Sz[P,X2]) = iτ([SzP,X2]).

As mentioned above, Sz[P,X2] = [SzP,X2] is a periodic bounded operator. Hence,
in view of Propositions 3.6 and 3.1, the commutation relation [X2, χ1] = 0 and the
identity χ2

1 = χ1, we rewrite the term on the right-hand side of the last equality as

iτ([SzP,X2]) = i Tr(χ1SzPχ1X2χ1)− i Tr(χ1X2χ1SzPχ1) =

= i Tr(χ1SzPχ1X2χ1)− i Tr(χ1SzPχ1X2χ1) = 0.

�

5.3. Proof of Theorem 2.9.

Part (1): Assume that Gs
K(Λ1,Λ2) (exists and) is finite for a particular switch function

Λ1. Given another switch functions Λ′1, we set ∆Λ1 = Λ1 − Λ′1. By algebraic
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manipulations, using P 2 = P and P⊥ = 1− P , we have

Gs
K(∆Λ1,Λ2) = 1-p.v.Tr (iP [[P,∆Λ1Sz], [P,Λ2]]P )

= 1-p.v.Tr
(
i[P,∆Λ1Sz]P

⊥[P,Λ2]− i[P,Λ2]P⊥[P,∆Λ1Sz]
)

= 1-p.v.Tr
(
iP∆Λ1SzP

⊥[P,Λ2] + adj
)
, (5.5)

where ±adj means that the adjoint of the sum of all operators to the left is added,
respectively subtracted. Notice that iP∆Λ1SzP

⊥[P,Λ2] = iP∆Λ1Sz[P,Λ2]P is
trace class. Indeed, Proposition 4.7 applies to A = ∆Λ1, which is α-confined in
the 1st-direction for some α > 0, B∗ = [Λ2, P ], which is β-confined in the 2nd-
direction for some 0 < β < 1/ζP by Lemma 4.6 and Lemma 5.1, and C = Sz, and
thus we deduce that ∆Λ1Sz[P,Λ2] is trace class and therefore iP∆Λ1Sz[P,Λ2]P
is so, as P is bounded. As B1(H) is closed under adjointness, we have that the
argument of the directional principal value trace on the right-hand side of (5.5)
is trace class, with the two summands separately trace class.

Therefore, in view of Proposition 3.5 we obtain

1-p.v.Tr
(
iP∆Λ1SzP

⊥[P,Λ2] + adj
)

= Tr
(
iP∆Λ1SzP

⊥[P,Λ2] + adj
)
. (5.6)

Using in the order the linearity and the cyclicity of the trace (apply Proposition 3.1
under the hypothesis A ∈ B1(H) and B ∈ B(H)), we obtain

Tr
(
iP∆Λ1SzP

⊥[P,Λ2] + adj
)

= Tr
(
−iP∆Λ1SzP

⊥Λ2P + adj
)

= −i Tr
(
P∆Λ1SzP

⊥Λ2P
)

+ i Tr
(
PΛ2P

⊥∆Λ1SzP
)

= −i Tr
(
∆Λ1SzP

⊥Λ2P
)

+ i Tr
(
PΛ2P

⊥∆Λ1Sz
)
,

(5.7)

as ∆Λ1SzP
⊥Λ2P = −∆Λ1Sz[P,Λ2]P ∈ B1(Hdisc) for the previous analysis and

P ∈ B(H), and a similar reasoning shows that the operator PΛ2P
⊥∆Λ1Sz is also

trace class.
In view of Proposition 3.1 (in the hypothesis A,B ∈ B(H) such that AB and

BA are both in B1(H)), we rewrite the second summand on the right-hand side
of the last equation as

i Tr
(
PΛ2P

⊥∆Λ1Sz
)

= i Tr
(
∆Λ1SzPΛ2P

⊥) , (5.8)

since ∆Λ1SzPΛ2P
⊥ = ∆Λ1Sz[P,Λ2]P⊥ is in B1(Hdisc) by Proposition 4.7 applied

to A = ∆Λ1, B∗ = [Λ2, P ], and C = Sz. Plugging the equations (5.6), (5.7), (5.8)
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in (5.5) and finally using Remark 4.5, we have

Gsz
K (∆Λ1,Λ2) = i Tr

(
∆Λ1Sz

(
PΛ2P

⊥ − P⊥Λ2P
) )

= i Tr
(
∆Λ1Sz[P,Λ2]

)
= i

∑
m∈Z2

tr
(
∆Λ1(m1)SzΛ2(m2)Pm,m −∆Λ1(m1)SzPm,mΛ2(m2)

)
= 0.

This shows that whenever Gs
K(Λ1,Λ2) is finite, also Gs

K(Λ′1,Λ2) is finite and equals
the former one. This concludes the proof of Part (1).

Part (2): The equation (2.4) is implied by Lemma 5.3 (ii). Once established (2.4), Propo-
sition 3.7 concludes the proof of Part (2).

Part (3): We introduce the function

Ξ(n1) =


0 if n1 < −1/2,

n1 + 1/2 if −1/2 ≤ n1 < 1/2

1 if n1 ≥ 1/2,

(5.9)

which interpolates linearly in the interval |n1| ≤ 1/2 and, for l > 0 we define the
functions Ξ(l)(n1) := Ξ(n1

l
) which have slope 1/l in the interval |n1| ≤ l/2. Now,

we define the approximate position functions in the 1st-direction as

X
(l)
1 := l

(
Ξ(l) − 1

2

)
such that X

(l)
1 (n1) =


−l/2 if n1 < −l/2,

n1 if −l/2 ≤ n1 < l/2

l/2 if n1 ≥ l/2.

(5.10)

Notice that for every l > 0 the functions Ξ(l) are particular switch functions in
the 1st-direction.

We now compute Gsz
K (Ξ(l),Λ2) and show that it is finite. In view of Part (1),

this fact will imply that Gsz
K (Λ1,Λ2) is finite for every switch function Λ1, and

independent of the choice of the latter. Notice that

Gsz
K

(
Ξ(l),Λ2

)
= Gsz

K

(
Ξ(l) − 1

2 ,Λ2

)
+Gsz

K

(
1
2 ,Λ2

)
=

1

l
Gsz
K

(
X

(l)
1 ,Λ2

)
+

1

2
Gsz
K

(
1,Λ2

)
, (5.11)

provided the two summands separately exist and are finite (which is what we are
going to prove).

We focus attention on the first summand on the right-hand side of the last
equation. Recall that, by definition (1.4), one has

Gsz
K

(
X

(l)
1 ,Λ2

)
= 1-pvTr

(
GszK
(
X

(l)
1 ,Λ2

))
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where

GszK
(
X

(l)
1 ,Λ2

)
= iP [[P,X

(l)
1 Sz], [P,Λ2]]P.

We analyse GszK
(
X

(l)
1 ,Λ2

)
. By algebraic manipulations, using P 2 = P and P⊥ =

1−P , in view of Leibniz rule for the product X
(l)
1 Sz and [X

(l)
1 , Sz] = 0, we obtain

GszK
(
X

(l)
1 ,Λ2

)
= i[P,X

(l)
1 Sz]P

⊥[P,Λ2]− i[P,Λ2]P⊥[P,X
(l)
1 Sz]

= i[P,X
(l)
1 ]SzP

⊥[P,Λ2]︸ ︷︷ ︸
=:GszK,a

+−i[P,Λ2]P⊥Sz[P,X
(l)
1 ]︸ ︷︷ ︸

=(GszK,a)
∗

+X
(l)
1 i[P, Sz]P

⊥[P,Λ2]︸ ︷︷ ︸
=:GszK,b

+−i[P,Λ2]P⊥[P, Sz]X
(l)
1︸ ︷︷ ︸

=(GszK,b)
∗

. (5.12)

Notice that GszK,a
(
X

(l)
1 ,Λ2

)
= i[P,X

(l)
1 ]Sz[P,Λ2]P is trace class. As P is bounded,

it is enough to prove that [P,X
(l)
1 ]Sz[P,Λ2] is trace class. By Proposition 4.7

applied to A = [P,X
(l)
1 ] = l[P,Ξ(l)], which is α-confined in the 1st-direction for

some α < 1/ζP by Lemma 4.6 and Lemma 5.1, B∗ = [Λ2, P ] is β-confined in the
2nd-direction for some β < 1/ζP by Lemma 4.6 and Lemma 5.1, and C = Sz, we

have the trace class property for GszK,a
(
X

(l)
1 ,Λ2

)
. Therefore, as B1(H) is closed

under adjointness, we also have GszK,a
∗(X(l)

1 ,Λ2

)
∈ B1(H).

Therefore, in view of Proposition 3.5, we have

1-pvTr
(
GszK,a

(
X

(l)
1 ,Λ2

)
+ adj

)
= Tr

(
GszK,a

(
X

(l)
1 ,Λ2

)
+ adj

)
(5.13)

which is finite. As explained in Appendix B, for periodic operators the trace of an
expression involving switch functions may become a trace on the unit cell where
position operators replace commutators with switch functions. In particular, by
Lemma B.3 we deduce

1

l
Tr
(
GszK,a

(
X

(l)
1 ,Λ2

)
+ adj

)
=

1

l
Tr
(
i[P,X

(l)
1 ]SzP

⊥[P,Λ2] + adj
)

= Tr
(
i[P,Ξ(l) − 1

2 ]SzP
⊥[P,Λ2] + adj

)
= Tr

(
i[P,Ξ(l)]SzP

⊥[P,Λ2] + adj
)

= Tr(−χ1iPX1SzP
⊥X2Pχ1 + adj)

= Tr(χ1i[P,X1Sz]P
⊥[P,X2]χ1 + adj)

= Tr(χ1i[P,X1Sz]P
⊥[P,X2]χ1 − χ1i[P,X2]P⊥[P,X1Sz]χ1)

= Tr(χ1iP [[P,X1Sz], [P,X2]]Pχ1).

Finally, by Part (2) and by the last equation we obtain that (8)

(8) Notice that we do not need to consider the limit l→ +∞, as one might expect.
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1

l
Tr
(
GszK,a

(
X

(l)
1 ,Λ2

)
+ adj

)
= τ(iP [[P,X1Sz], [P,X2]]P ) = σszK . (5.14)

Now, we compute 1-pvTr
(
GszK,b + adj

)
, whose argument is defined in the equa-

tion (5.12).

Notice that χ1,LG
sz
K,bχ1,L = χ1,LX

(l)
1 i[P, Sz]P

⊥[P,Λ2]χ1,L is trace class, as it fol-

lows from Proposition 4.7 with A = [P,Λ2], which is α-confined in the 2nd-direction
for some α < 1/ζP by Lemma 4.6 and Lemma 5.1, B = χ1,L, which is β-confined
in the 1st-direction for some β > 0, and C = 1. As B1(H) is closed under ad-
jointness, we have that

(
χ1,LG

sz
K,bχ1,L

)∗
is also trace class. By Lemma B.2, we

obtain

Tr
(
χ1,LG

sz
K,bχ1,L + adj

)
= Tr

(
χ1,LX

(l)
1 i[P, Sz]P

⊥[P,Λ2]χ1,L + adj
)

= Tr
(
− χ1,LX

(l)
1 i[P, Sz]P

⊥X2Pχ2,1χ1,L + adj
)

= −Tr
(
χ1,LX

(l)
1 i[P, Sz]P

⊥X2Pχ2,1χ1,L

)
+

− Tr
(
χ1,Lχ2,1PX2P

⊥i[P, Sz]X
(l)
1 χ1,L

)
= Tr

(
χ1,LX

(l)
1 i[P, Sz]P

⊥[P,X2]χ2,1χ1,L

)
+

− Tr
(
χ1,Lχ2,1[P,X2]P⊥i[P, Sz]X

(l)
1 χ1,L

)
. (5.15)

Notice that the operator χ1,LX
(l)
1 i[P, Sz]P

⊥[P,X2]χ2,1χ1,L is trace class, because
χ2,1χ1,L is trace class applying Proposition 4.7 where A = χ2,1, which is α-confined
in the 2nd-direction for some α > 0, B = χ1,L, which is β-confined in the 1st-
direction for some β > 0, and C = 1, and [P,X2] is bounded by Proposition 5.2

and Lemma 5.1, χ1,LX
(l)
1 and i[P, Sz]P

⊥ are also bounded. Thus, as χ2,1 squares
to itself, by using Proposition 3.1 we obtain

Tr
(
χ1,LX

(l)
1 i[P, Sz]P

⊥[P,X2]χ2,1χ1,L

)
= Tr

(
χ1,Lχ2,1X

(l)
1 i[P, Sz]P

⊥[P,X2]χ2,1χ1,L

)
.

(5.16)
Similarly, using also that multiplicative operators by position functions commute,
we obtain

Tr
(
χ1,Lχ2,1[P,X2]P⊥i[P, Sz]X

(l)
1 χ1,L

)
= Tr

(
χ1,Lχ2,1X

(l)
1 [P,X2]P⊥i[P, Sz]χ2,1χ1,L

)
.

(5.17)
Therefore, plugging (5.16) and (5.17) into the equation (5.15), we have

Tr
(
χ1,LG

sz
K,bχ1,L + adj

)
= Tr

(
χ1,Lχ2,1X

(l)
1

(
i[P, Sz]P

⊥[P,X2]− [P,X2]P⊥i[P, Sz]
)
χ2,1χ1,L

)
= Tr

(
χ1,Lχ2,1X

(l)
1 iP [[P, Sz], [P,X2]]Pχ2,1χ1,L

)
= Tr

(
χ1,Lχ2,1X

(l)
1 Tszχ2,1χ1,L

)
.
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Observe that for every fixed L ∈ 2N + 1, the operator χ1,Lχ2,1X
(l)
1 Tszχ2,1χ1,L is

trace class, as χ1,Lχ2,1 is trace class for the previous analysis and Tsz is bounded by
Lemma 2.7. We compute its trace through the diagonal kernel, using Lemma 2.7,

Tr
(
χ1,Lχ2,1X

(l)
1 Tszχ2,1χ1,L

)
=

∑
m1∈Z
|m1|≤L/2

X
(l)
1 (m1) tr

(
(Tsz)(m1,0),(m1,0)

)
=

∑
m1∈Z
|m1|≤L/2

X
(l)
1 (m1) tr

(
(Tsz)0,0

)
= Tr(χ1Tszχ1)

∑
m1∈Z
|m1|≤L/2

X
(l)
1 (m1)

= τ(Tsz)
∑
m1∈Z
|m1|≤L/2

X
(l)
1 (m1) ≡ 0, (5.18)

as the function X
(l)
1 (m1) is odd and the interval |m1| ≤ L/2 is symmetric with

respect to 0. (We could also invoke the fact that τ(Tsz) = 0 by Theorem 2.8).
Thus,

1-pvTr
(
GszK,b + adj

)
= 0. (5.19)

Using equations (5.14) and (5.19), we obtain

1

l
1-pvTr

(
GszK
(
X

(l)
1 ,Λ2

))
= σszK + 0 = σszK . (5.20)

Now, we focus attention on the second summand on the right-hand side of
(5.11). We have

1

2
Gsz
K

(
1,Λ2

)
=

1

2
1-pvTr

(
GszK
(
1,Λ2

))
=

1

2
lim
L→∞
L∈2N+1

Tr(χ1,LiP [[P, Sz], [P,Λ2]]Pχ1,L). (5.21)

Notice that χ1,LiP [[P, Sz], [P,Λ2]]Pχ1,L is trace class, as one proves by applying
Proposition 4.7 and reasoning as in the previous cases.
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By Lemma B.2, the identity χ2
2,1 = χ2,1 and Proposition 3.1, we obtain

Tr(χ1,LiP [[P, Sz], [P,Λ2]]Pχ1,L) = Tr(χ1,Li[P, Sz]P
⊥[P,Λ2]χ1,L + adj)

= Tr(−χ1,Li[P, Sz]P
⊥X2Pχ2,1χ1,L + adj)

= −Tr(χ1,Li[P, Sz]P
⊥X2Pχ2,1χ1,L)+

− Tr(χ1,Lχ2,1PX2P
⊥i[P, Sz]χ1,L)

= Tr(χ1,Li[P, Sz]P
⊥[P,X2]χ2,1χ1,L)+

− Tr(χ1,Lχ2,1[P,X2]P⊥i[P, Sz]χ1,L)

= Tr(χ1,Lχ2,1Tszχ2,1χ1,L). (5.22)

As χ1,Lχ2,1Tszχ2,1χ1,L is trace class, computing its trace via diagonal kernel and
using Lemma 2.7, we get

Tr(χ1,Lχ2,1Tszχ2,1χ1,L) =
∑
m1∈Z
|m1|≤L/2

tr((Tsz)(m1,0),(m1,0))

=
∑
m1∈Z
|m1|≤L/2

tr((Tsz)0,0) =
∑
m1∈Z
|m1|≤L/2

τ(Tsz).

Thus, plugging the last equality and equation (5.22) in (5.21), we obtain

1

2
Gsz
K

(
1,Λ2

)
=

1

2
lim
L→∞
L∈2N+1

∑
m1∈Z
|m1|≤L/2

τ(Tsz) = 0 (5.23)

in view of Theorem 2.8. This concludes the proof of Theorem 2.9. �

It is worthwhile to notice that, without using Theorem 2.8, by plugging equal-
ities (5.20) and (5.23) into (5.11), one would obtain

Gsz
K (Λ1,Λ2) =

1

l
Gsz
K

(
X

(l)
1 ,Λ2

)
+

1

2
Gsz
K

(
1,Λ2

)
= σszK +

1

2
lim
L→∞
L∈2N+1

∑
m1∈Z
|m1|≤L/2

τ(Tsz). (5.24)

As remarked in Section 2, the second summand on the right hand side is either
zero, if τ(Tsz) = 0, or diverging to ±∞. Hence, the equality of (the Kubo-like
terms of) the spin conductance and spin conductivity is rooted in the fact that
the spin-torque response τ(Tsz) vanishes on the mesoscopic scale. We expect that
such a physically relevant condition will play a role also in other models, as e. g.
ergodic random Schrödinger operators.
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Appendix A. The Kane-Mele model in first quantization formalism

In this appendix we review an explicit model that satisfies Assumption 2.2 and
where spin is not conserved. This model was first introduced by Kane and Mele
in [KM1, KM2]. Here we propose a first quantized formulation of it, but first we
discuss the dimerization method mentioned at the beginning of Section 2.

A.1. The honeycomb structure. The model describes independent electrons on
a honeycomb structure C, illustrated in Figure 1. The structure is characterized by
the displacement vectors

d1 = d
(

1
2
−
√

3
2

)
, d2 = d

(
1
2

√
3

2

)
, d3 = d

(
−1 0

)
= −d1 − d2,

where d is the smallest distance between two points of C, which generate the peri-
odicity vectors

a1 = d2 − d3, a2 = d3 − d1, a3 = d1 − d2 = −a1 − a2. (A.1)

a1

a2

a3

d3

d2

d1

A

d

B

Figure 1. The honeycomb structure.

a1a2

d

d3

a3

a2

d

d1

a3

a1

d

d2

Figure 2. Three possible dimerizations of the honeycomb structure.

The vectors ai generate a Bravais lattice Γ := SpanZ{a1, a2, a3} ∼= Z2 where one
ai is redundant as it is integer linear combination of the two others. Then any site
of the crystal can be reached by a Bravais lattice vector and the use of one of the di
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vectors. It is then sufficient to pick two ai-vectors and one di-vector to generate the
whole crystal. This choice, which is often called a dimerization of C, is not unique,
as illustrated in Figure 2.

The above procedure is equivalent to the choice of a periodicity cell that contains
two-non equivalent sites A and B (white and black dots in Figure 1), described as
internal degrees of freedom besides the Bravais lattice. Hence, each choice of unit
cell provides an isomorphism `2(C) ∼= `2(Z2)⊗C2, leading to the Hilbert space Hdisc

(for N = 2) discussed in Section 2, when the spin is taken into account.

A.2. The Hamiltonian. The Kane-Mele model is defined, in a first quantization
formalism, by the Hamiltonian HKM, acting on `2(C)⊗ C2 as

HKM = tHNN + λvHv + λSOHSO + λRHR

where t, λv, λSO and λR are real parameters corresponding to various physical effects.
The first term is a nearest neighbor hopping term:

HNN =
3∑
i=1

(Tdi + T−di)⊗ 1C2

where Tu is a translation operator along vector u, namely

(Tuψ)m =

{
ψm−u if m− u ∈ C;

0 otherwise.

The second term is a sublattice potential that distinguishes sites A and B, namely

Hv = (χA − χB)⊗ 1C2

for χA (resp. χB) the characteristic function on the sublattice A (resp. sublattice
B) of C. The third term is a spin-orbit term, corresponding to an effective and spin-
dependent magnetic field due to an electric field inside the two-dimensional crystal.
This is a next-to-nearest-neighbor term given by

HSO = −i (χA − χB)
3∑
i=1

(Tai − T−ai)⊗ sz.

Finally the last term is called a Rashba term. This is also a spin-orbit effect but
due to an electric field orthogonal to the sample (for example in a heterostructure).
This is a nearest-neighbor term given by

HR = i
(
Td1−T−d1

)
⊗
(
−
√

3sx + sy
2

)
+i
(
Td2−T−d2

)
⊗
(√3sx − sy

2

)
+i
(
Td3−T−d3

)
⊗sy

Notice that this last term satisfies [HR, Sz] 6= 0 so that Sz and HKM do not
commute whenever λR 6= 0. Moreover, note thatHKM is periodic, since [Tu1 , Tu2 ] = 0
for any vectors u1 and u2. In particular HKM commutes with all the translation of
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the Bravais lattice Tγ for γ ∈ Γ. It was also shown in [KM1] that HKM has a spectral
gap for a wide region in parameter space, including λR 6= 0 (Figure 1 in [KM1]).

In summary, HKM is made of on-site (Hv), nearest-neighbor (HNN and HR) and
next to nearest-neighbor (HSO) terms. Note that after the dimerization procedure a
nearest-neighbor term acts on internal degree of freedom, whereas next-to-nearest-
neighbor exchange becomes simply nearest-neighbor. Thus, whatever the dimeriza-
tion, one has

(HKM)m,n = 0 for ‖m− n‖1 > 1

so that HKM is trivially near-sighted. Indeed by adapting C the inequality of Defi-
nition 2.1, HKM is near-sighted for any range ζ > 0.

Appendix B. From switch functions to position operators

In this Appendix, we re-elaborate some ideas and techniques which originally
appeared in [AS2] in the continuum case (R2-covariant Schrödinger operators on the
plane). We adapt their proof to the discrete case considered in this paper.

The crucial property of any switch function is the following one.

Lemma B.1. Let Λj be a switch function in the jth-direction for j ∈ {1, 2}. Then,
for every n ∈ Z one has ∑

m∈Z

(Λj(m+ n)− Λj(m)) = n.

Proof. For n = 0 the claim is trivial. Consider n ≥ 1. Notice that the summand
Λj(m+ n)− Λj(m) is non-zero only for finitely many m ∈ Z. Hence,∑

m∈Z

(Λj(m+ n)− Λj(m)) =
∑
m∈Z

n−1∑
p=0

(
Λj(m+ (n− p))− Λj(m+ (n− p− 1))

)
=

n−1∑
p=0

∑
m∈Z

(
Λj(m)− Λj(m− 1)

)
.

(B.1)

Notice that
∑

m∈Z
(
Λj(m)− Λj(m− 1)

)
= 1, since there is one and only one point

m ∈ Z where the summand is not zero. This proves the statement for n ≥ 1. The
proof for n ≤ −1 is analogous. �

For the sake of clarity, we recall that χ2,1 and χ1 are characteristic functions,
respectively of the line {m ∈ Z2 : m2 = 0} and of the point {0}.

Lemma B.2. Let A, B and C be operators in B(Hdisc) which are periodic in the
2nd-direction and let Λ2 be a switch function in the 2nd-direction. If A[B,Λ2]C is
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trace class, A is α-confined in the 1st-direction, C∗ is β-confined in the 1st-direction
and B satisfies

MB := max

(
sup
m∈Z2

∑
n1∈Z

∣∣Bm,(n1,0)m2

∣∣ , sup
n1∈Z

∑
m∈Z2

∣∣Bm,(n1,0)m2

∣∣) <∞, (B.2)

then

Tr(A[B,Λ2]C) = −Tr(AX2Bχ2,1C).

Proof. Since A[B,Λ2]C is trace class, its trace can be computed through the diagonal
kernel, and in view of the boundedness of A, [B,Λ2] and C, one has

Tr(A[B,Λ2]C) =
∑
m∈Z2

∑
n∈Z2

∑
p∈Z2

tr
(
Am,nBn,p(Λ2(p2)− Λ2(n2))Cp,m

)
. (B.3)

Now, notice that the function(
Z2
)3 3 (m,n,p) 7→ tr

(
Am,nBn,p(Λ2(p2)− Λ2(n2))Cp,m

)
is in `1

((
Z2
)3)

. (B.4)

Indeed, in view of the equivalence of norms on finite-dimensional vector spaces and
the periodicity in the 2nd-direction, first one notices that∑

m∈Z2

∑
n∈Z2

∑
p∈Z2

∣∣tr (Am,nBn,p(Λ2(p2)− Λ2(n2))Cp,m

)∣∣
≤ D1

∑
m∈Z2

∑
n∈Z2

∑
p∈Z2

|Am,nBn,p(Λ2(p2)− Λ2(n2))Cp,m|

≤ D1

2

∑
m∈Z2

∑
n∈Z2

∑
p∈Z2

|Bn,p| |(Λ2(p2)− Λ2(n2))|
(
|Am,n|2 + |Cp,m|2

)
≤ D1

2

∑
n∈Z2

∑
m′∈Z2

∑
p′∈Z2

∣∣Bn,p′+(0,n2)

∣∣ |(Λ2(p′2 + n2)− Λ2(n2))|
∣∣Am′+(0,n2),n

∣∣2 +

+
D1

2

∑
p∈Z2

∑
m′∈Z2

∑
n′∈Z2

∣∣Bn′+(0,p2),p

∣∣ |(Λ2(p2)− Λ2(n′2 + p2))|
∣∣Cp,m′+(0,p2)

∣∣2
≤ D1

2

∑
n∈Z2

∑
m′∈Z2

∑
p′∈Z2

∣∣B(n1,0),p′
∣∣ |(Λ2(p′2 + n2)− Λ2(n2))|

∣∣Am′,(n1,0)

∣∣2 +

+
D1

2

∑
p∈Z2

∑
m′∈Z2

∑
n′∈Z2

∣∣Bn′,(p1,0)

∣∣ |(Λ2(p2)− Λ2(n′2 + p2))|
∣∣C(p1,0),m′

∣∣2 ,
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where D1 is a constant. Then, one can estimates the right-hand side term of the
last equation from above with

D1D2(Λ2)
(∑
n1∈Z

∑
m′∈Z2

∑
p′∈Z2

∣∣B(n1,0),p′
∣∣ |p′2| ∣∣Am′,(n1,0)

∣∣2 +

+
∑
p1∈Z

∑
m′∈Z2

∑
n′∈Z2

∣∣Bn′,(p1,0)

∣∣ |n′2| ∣∣C(p1,0),m′
∣∣2 )

≤ D1D2(Λ2)MB

∑
n1∈Z,j∈{1,...,N},s∈{↑,↓}

(
‖A |(n1, 0), j, s〉‖2 + ‖C∗ |(n1, 0), j, s〉‖2 )

≤ D1D2(Λ2)MB

∑
n1∈Z,j∈{1,...,N},s∈{↑,↓}

( ∥∥Aeα|X1|
∥∥2

e−2α|n1| +
∥∥C∗eβ|X1|

∥∥2
e−2β|n1|

)
<∞,

where D2(Λ2) is a constant depending on Λ2, we have used the hypotheses (B.2),
and the fact that A is α-confined in the 1st-direction and C∗ is β-confined in the
1st-direction.

In view of (B.4) we can apply Fubini’s Theorem and, by Lemma B.1, we get that
the right-hand side term of (B.3) reads∑

p1∈Z

∑
m′∈Z2

∑
n′∈Z2

tr
(
Am′,n′Bn′,(p1,0)(−n′2)C(p1,0),m′

)
= −

∑
m′∈Z2

tr
(
(AX2Bχ2,1C)m′,m′

)
.

Observe that by hypothesis (B.2) and Remark 4.1 (i), X2Bχ2,1 is bounded and thus
AX2Bχ2,1C is trace class, as χ2,1C ∈ B1(Hdisc) by Proposition 4.7. Therefore, one
concludes that

Tr(A[B,Λ2]C) = −
∑

m′∈Z2

tr
(
(AX2Bχ2,1C)m′,m′

)
= −Tr(AX2Bχ2,1C).

�

Lemma B.3. Let A, B and C be periodic operators in B(Hdisc). Let Λ1, Λ2 be two
switch functions, respectively in the 1st and 2nd-direction. If [A,Λ1]B[C,Λ2] is trace
class and A and C satisfy∑

n∈Z2

|A0,nn1| <∞,
∑
n∈Z2

|Cm,0m2| <∞, (B.5)

then

Tr([A,Λ1]B[C,Λ2]) = −Tr(χ1AX1BX2Cχ1).
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Proof. Since [A,Λ1]B[C,Λ2] is trace class, its trace can be computed through the
diagonal kernel, and in view of boundedness of [A,Λ1], B and [C,Λ2], one has

Tr
(

[A,Λ1]B[C,Λ2]
)

=
∑
m∈Z2

∑
n∈Z2

∑
p∈Z2

tr
(
Am,n(Λ1(n1)− Λ1(m1))Bn,pCp,m(Λ2(m2)− Λ1(p2))

)
.

Performing the change of variables n′ = n−m, p′ = p−m and using the period-
icity, one can rewrite the right-hand side term of the last equation as∑

m∈Z2

∑
n′∈Z2

∑
p′∈Z2

tr
(
Am,n′+m(Λ1(n′1 +m1)− Λ1(m1))·

·Bn′+m,p′+mCp′+m,m(Λ2(m2)− Λ1(p′2 +m2))
)

=

=
∑
m∈Z2

∑
n′∈Z2

∑
p′∈Z2

tr
(
A0,n′(Λ1(n′1 +m1)− Λ1(m1))·

·Bn′,p′Cp′,0(Λ2(m2)− Λ1(p′2 +m2))
)
. (B.6)

In view of the equivalence of norms on finite-dimensional vector spaces and hypoth-
esis (B.5), one has∑
m∈Z2

∑
n′∈Z2

∑
p′∈Z2

∣∣tr (A0,n′(Λ1(n′1 +m1)− Λ1(m1))Bn′,p′Cp′,0(Λ2(m2)− Λ1(p′2 +m2))
)∣∣

≤ D1

∑
n′∈Z2

∑
p′∈Z2

|A0,n′|
∑
m1∈Z

|Λ1(n′1 +m1)− Λ1(m1)| ·

· |Bn′,p′Cp′,0|
∑
m2∈Z

|Λ2(m2)− Λ1(p′2 +m2)|

≤ D1 ‖B‖D2(Λ1)D3(Λ2)
∑
n′∈Z2

|A0,n′ | |n′1|
∑
p′∈Z2

|Cp′,0| |p′2| <∞,

where D1 ∈ R, D2(Λ1), D3(Λ2) are constants depending respectively on Λ1,Λ2.
Therefore, applying Fubini’s Theorem and Lemma B.1, one can rewrite the right-
hand side term of (B.6) as∑

n′∈Z2

∑
p′∈Z2

tr
(
A0,n′n

′
1Bn′,p′(−p′2)Cp′,0

)
= −

∑
m∈Z2

tr
(
(χ1AX1BX2Cχ1)m,m

)
Observe that by hypothesis (B.5) and Remark 4.1 (i), χ1AX1 and X2Cχ1 are
bounded and thus χ1AX1BX2Cχ1 is trace class. Therefore, one concludes that

Tr
(

[A,Λ1]B[C,Λ2]
)

= −
∑
m∈Z2

tr
(
(χ1AX1BX2Cχ1)m,m

)
= −Tr(χ1AX1BX2Cχ1).

�
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Wolfgang-Pauli-Str. 27, CH-8093 Zürich, Switzerland
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