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Abstract. Gapped periodic quantum systems exhibit an interesting Local-

ization Dichotomy, which emerges when one looks at the localization of the

optimally localized Wannier functions associated to the Bloch bands below
the gap. As recently proved, either these Wannier functions are exponentially

localized, as it happens whenever the Hamiltonian operator is time-reversal
symmetric, or they are delocalized in the sense that the expectation value of

|x|2 diverges. Intermediate regimes are forbidden.

Following the lesson of our Maestro, to whom this contribution is gratefully
dedicated, we find useful to explain this subtle mathematical phenomenon in

the simplest possible model, namely the discrete model proposed by Haldane

[15]. We include a pedagogical introduction to the model and we explain its
Localization Dichotomy by explicit analytical arguments. We then introduce

the reader to the more general, model-independent version of the dichotomy

proved in [25], and finally we announce further generalizations to non-periodic
models.

1. Introduction

Gianfausto Dell’Antonio has been always transmitting to younger collaborators
the attitude to understand – and explain – a mathematical phenomenon in the sim-
plest possible model which still captures its essential features. Remembering his rec-
ommendation, we devote this contribution to explain a recent, model-independent
result – namely the Localization Dicothomy for gapped periodic quantum systems,
proved in [25] – by illustrating its essential features in a simple, but yet physically
relevant, discrete model.

We consider the model proposed by Haldane in [15], which has become one of
the paradigmatic models to describe Chern insulators, a subclass of topological
insulators [1, 17, 11]. Haldane argued that the essential ingredient in the Quantum
Hall Effect (QHE) is the breaking of time-reversal symmetry, an effect that can be
obtained either by an external magnetic field (as in a QHE setup) or, alternatively,
by some mechanism internal to the sample, as e. g. the presence of strong magnetic
dipole moments of the ionic cores. In Haldane’s words [15]:

“While the particular model presented here is unlikely to be directly
physically realizable, it indicates that, at least in principle, the
QHE can be placed in the wider context of phenomena associated

Date: September 6, 2019. Extended version of the paper published in Rend. Mat. Appl. 39,

307-327 (2018). In comparison with the published version, we added some details and the whole
Chapter 5.

2010 Mathematics Subject Classification. 81Q70, 81V70, 47A56, 47A10.
Key words and phrases. Periodic Schrödinger operators, Chern insulators, Haldane model,

Quantum Anomalous Hall Effect, Bloch frames, Wannier functions.

1

ar
X

iv
:1

90
9.

03
29

8v
1 

 [
m

at
h-

ph
] 

 7
 S

ep
 2

01
9



2 G. MARCELLI, D. MONACO, M. MOSCOLARI, AND G. PANATI

with broken time-reversal invariance, and does not necessarily re-
quire external magnetic fields, but could occur as a consequence
of magnetic ordering in a quasi-two-dimensional system.”

Remarkably, the first sentence turned out to be too pessimistic: after three decades,
Chern insulators predicted in [15] have been experimentally synthesized as crys-
talline solids [9, 5, 10] and the Haldane model can also be physically simulated by
Bose-Einstein condensates in suitably arranged optical lattices.

In this paper, we first provide a pedagogical introduction to the Haldane model,
which is here presented in the first-quantization formalism, as opposed to most
of the physics literature, which uses instead a second-quantization language. In
Section 3, we recall the definition of Bloch functions and of the Chern number
associated to an isolated Bloch band, and we exhibit, in the Haldane model, a
Bloch function producing a non-zero Chern number and having a singular deriv-
ative: more precisely, its H1-norm diverges. This quantitative relation between
non-trivial topology and the allowed singularities of Bloch functions in the Haldane
model was investigated numerically in [33]. This situation exemplifies a recent
model-independent mathematical result [25], which shows that a non-zero Chern
number indeed forces a divergence of the H1-norm of the corresponding Bloch
functions in any Bloch gauge. We explain in Section 4 how the latter divergence
reflects into the delocalization of the corresponding Wannier functions, and we il-
lustrate to the reader the more general Localization Dichotomy mentioned above.
A natural question is whether the previous result – whose formulation heavily re-
lies on periodicity – can be recast in the broader context of non-periodic models.
Some preliminary results in this direction, still unpublished [21], are announced in
Section 5.

We hope that the introductory style of this contribution will be useful to fill the
linguistic gap between mathematics and physics, as they represent a unity in the
scientific vision of the person to whom the paper is dedicated.

Dedication. The senior author of this paper moved his first steps into the scientific
world under the precious guidance of Gianfausto Dell’Antonio. From his example,
as a scientist and as a human being, he learned not only how to do mathematics,
but how to be a Mathematical Physicist. We all – authors of different generations –
consider Gianfausto as our Maestro, and we gratefully acknowledge the unvaluable
contribution he gave to the development of Quantum Mathematics in Italy over
more than half a century.

Acknowledgements. We are grateful to Clément Tauber for many useful discus-
sions on the related Kane-Mele model, and for his precious help with some Figures.

2. The Haldane model and its symmetries

The tight-binding model proposed by Haldane [15] has become a paradigm in
solid-state physics, as it is presumably the simplest physically-reasonable model
which is invariant by lattice-translations (a unitary Z2-symmetry) and simultane-
ously breaks, for some values of the parameters (φ,M) labeling the model, time-
reversal symmetry (an antiunitary Z2-symmetry). In view of that, it has become
one of the most popular models to study materials in the Altland-Zirnbauer symme-
try class A, which includes Quantum Hall systems and Chern insulators [1, 17, 11].
The Haldane model is usually presented by using a second-quantization formalism
[11, 32, 13], which makes it difficult to readers unfamiliar with the latter to appre-
ciate the simplicity and elegance of the essential ideas. Since second quantization is
not needed at all to describe non-interacting electrons, we review in this Section the
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essential features of the Haldane model, in a pedagogical style, by using the usual
language of discrete Schrödinger operators (i. e. a first-quantization formalism).

2.1. The honeycomb structure. The Haldane model describes independent elec-
trons on a honeycomb structure (1) C ⊂ R2, illustrated in Figure 1. The structure
is characterized by the displacement vectors

d1 = d
(

1
2 −

√
3

2

)
, d2 = d

(
1
2

√
3

2

)
, d3 = d

(
−1 0

)
= −d1 − d2,

where d is the smallest distance between two points of C. The periodicity of the
structure is expressed by the periodicity vectors

(2.1) a1 = d2 − d3, a2 = d3 − d1, a3 = d1 − d2 = −a1 − a2.

a1

a2

a3

d3

d2

d1

A

d

B

Figure 1. The honeycomb structure, with the displacement vectors

{d1,d2,d3} and the periodicity vectors {a1,a2,a3} (color online).

a1a2

d

d3

a3

a2

d

d1

a3
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d

d2

Figure 2. Three possible dimerizations of the honeycomb structure, corre-

sponding to three different periodicity cells (color online).

The vectors ai generate a Bravais lattice Γ := SpanZ{a1,a2,a3} ∼= Z2 where one
ai is redundant as it is an integer linear combination of the other two. Any point
x ∈ C can be written by using a Bravais lattice vector and one of the di vectors. It is
then sufficient to pick two ai-vectors and one di-vector to generate the whole crystal.
This choice, which is often called a dimerization of C, is not unique, as illustrated
in Figure 2. The above procedure is equivalent to the choice of a periodicity cell
that contains two non-equivalent sites A and B (black and white dots in Figure 1,
respectively), and is a fundamental cell w.r.t. the action of Γ. Hence, each choice
of a periodicity cell provides an identification C ∼= Γ× {0, ν}, where ν is one of the

(1) The physics literature usually refers to the latter as a “honeycomb lattice”. We prefer
to avoid here this ambiguous use of the word “lattice”, since this word has a precise meaning
in mathematics: a lattice is a discrete subgroup of (Rd,+) with maximal rank. The ambiguity
does not arise when speaking about the Bravais lattice, which is a lattice for both physicists and
mathematicians.
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displacement vectors, yielding an isomorphism (2) `2(C) ∼= `2(Γ) ⊗ C2 ∼= `2(Γ,C2).
We will often use this “dimerization isomorphism” and the following typographic
convention:

• a small letter for a function ψ ∈ `2(C), with complex values ψx for x ∈ C;
• capital letter for a function Ψ ∈ `2(Γ,C2); we make use of a pseudo-spin

notation, namely

Ψγ =

(
ψγ,A
ψγ,B

)
for γ ∈ Γ,

where the labels A and B refer respectively to the sublattices ΓA and ΓB ,
so that C = ΓA∪ΓB . For example, in the three dimerizations appearing in
Figure 2, one has ΓA = Γ and ΓB = Γ+ν, where ν ∈ {d1,d2,d3} depends
on the chosen dimerization.

Finally, notice that the honeycomb structure has an interesting inversion sym-
metry, namely a reflection w.r.t. a specific line, which exchanges the role of the
sublattices ΓA and ΓB . Thus, it yields a Z2-symmetry which can be easily broken
by adding an on-site Γ-periodic potential which distinguishes between ΓA and ΓB .
The latter procedure corresponds to a variation of the parameter M in the Hal-
dane Hamiltonian, to be introduced shortly, and to the transition from graphene
to boron-nitride sheets in physical reality.

2.2. The Hamiltonian. The Haldane model is defined, in a first quantization
formalism, through a Hamiltonian operator acting on `2(C) ∼= `2(Γ,C2), and de-
pending on two real parameters (φ,M), with φ ∈ (−π, π] representing a magnetic
flux and M ∈ R corresponding to an on-site energy which distinguishes among the
two sublattices ΓA and ΓB .
The translation operator Tu, corresponding to a translation by u ∈ R2, is defined
by

(2.2) (Tuψ)x =

{
ψx−u if x− u ∈ C
0 otherwise

for all ψ ∈ `2(C).

Moreover, we denote by χA (resp. χB) the charachteristic function of the sublattice
ΓA (resp. ΓB).

Equipped with this notation, one defines the Haldane operator H ≡ H(φ,M)

acting in `2(C) (i. e. without reference to a specific dimerization) as a sum of three
terms

(2.3) H = HNN +HNNN + V.

The nearest neighbor (NN) term is defined – by using the displacement vectors –
by

(2.4) HNN = t1

3∑
j=1

(Tdj
+ T−dj

) with t1 ∈ R.

The next nearest neighbor (NNN) term uses instead the periodicity vectors and
reads

(2.5) HNNN = t2(cosφ)

3∑
j=1

(Taj + T−aj ) + t2(i sinφ)(χA − χB)

3∑
j=1

(Taj − T−aj )

(2) From an abstract viewpoint, we are just using the fact that the L2-functor, from measure
spaces to Hilbert spaces, preserves the product structure, mapping the cartesian product into the
tensor product.
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with t2 ∈ R. The last term is a potential that distinguishes sites in sublattices ΓA
and ΓB , namely

(2.6) Vx = M(χA − χB)x =

{
+M if x ∈ ΓA

−M if x ∈ ΓB .

Remark 2.1 (Comparison with the honeycomb Hofstadter model). By analogy
with the Hofstadter model [18], one might be tempted to replace the NNN term by
the more symmetric expression

H̃NNN = t2

3∑
j=1

(eiφTaj + e−iφT−aj )(2.7)

= t2(cosφ)

3∑
j=1

(Taj
+ T−aj

) + t2(i sinφ)

3∑
j=1

(Taj
− T−aj

).

Notice, however, that the latter operator does not distinguish between the sublat-
tices ΓA and ΓB , yielding an operator which acts diagonally on the C2-factor in
`2(Γ) ⊗ C2. The operator (2.5) acts instead in a non-diagonal way, and offers the
opportunity to model subtler physical effects. �

One can easily check that the Haldane model enjoys some relevant symmetries:

(i) Γ-periodicity: indeed, one checks that [Tγ , H] = 0 for every γ ∈ Γ;
(ii) 2π

3 -rotation symmetry: indeed [UR, H] = 0 where UR is defined as usual by

(URψ)x = ψR−1x, with R ∈ SO(2) a rotation by a 2π
3 angle in the plane;

(iii) broken time-reversal symmetry (TRS): for φ ∈ {0, π} the Hamiltonian
commutes with the time-reversal operator, given by complex conjugation
in `2(C). As far as sinφ 6= 0, TRS is broken, as it clearly appears from
(2.5).

2.3. The Fourier decomposition. The Γ-periodicity of the model allows to use
Fourier transform or, more intrinsically, the Bloch-Floquet decomposition.

Since the Fourier transform unitarily maps `2(Zd) into L2(Td), after a choice of
dimerization one obtains an isomorphism `2(C) ∼= `2(Γ,C2) ∼= L2(T2

∗,C2) where the
torus T2

∗ = R2/Γ∗, called Brillouin torus by physicists, is defined as a quotient by
the reciprocal or dual lattice

(2.8) Γ∗ =
{
k ∈ R2 : k · γ ∈ 2πZ for all γ ∈ Γ

}
.

We choose any dimerization such that the sublattices are identified with Γ and
Γ + ν, respectively, for a suitable ν ∈ {d1,d2,d3} (compare Figure 2). With this
convention, an isomorphism is exhibited by

(2.9) (Fνψ)(k) =
∑
γ∈Γ

e−ik·γΨ−γ =
∑
γ∈Γ

e−ik·γ
(

ψ−γ
ψ−γ+ν

)
.

The operator Fν establishes a unitary transformation

(2.10) Fν : `2(C)→ H := L2(T2
∗,C2),

where H is equipped with the inner product (notice the normalization)

〈ϕ1, ϕ2〉H :=
1

|T2
∗|

∫
T2
∗

dk 〈ϕ1(k), ϕ2(k)〉C2 .

Every operator A acting in `2(C) which is Γ-periodic, in the sense that

(2.11) [A, Tγ ] = 0 for every γ ∈ Γ,



6 G. MARCELLI, D. MONACO, M. MOSCOLARI, AND G. PANATI

is conjugated to an operator Fν AF−1
ν =: Aν acting in H. Notice that Aν is

decomposable (3) in the sense that

(Aνϕ)(k) = A(k)ϕ(k) for all k ∈ T2
∗ ,

where T2
∗ 3 k 7→ A(k) ∈ B(C2) due to (2.10). Moreover, the Γ-periodicity of A

reflects in the following property:

(2.12) A(k + λ) = A(k) for all λ ∈ Γ∗,k ∈ T2
∗.

The latter is understood as an equality of matrices. The matrix A(k) is called the
fiber of the operator A at the point k, and we use the notation A ←→ A(k) to
indicate the correspondence between the Γ-periodic operator A and the operator
Fν AF−1

ν , acting in L2(T2
∗,C2), given fiberwise by the multiplication operator times

the (matrix-valued) function A(k). Notice that everything above depends – in
general – on the choice of a dimerization, as the subscript in Fν suggests.

The Haldane Hamiltonian (2.3) is Γ-periodic, and its fibers H(k) over the Bril-
louin torus can be conveniently decomposed on the Pauli basis {σ0 = I, σ1, σ2, σ3}
as

H(k) =

3∑
j=0

Rj(k)σj .

It is easy to show that

R0(k) = 2t2(cosφ)

3∑
j=1

cos(k · aj),(2.13)

R3(k) = M − 2t2(sinφ)

3∑
j=1

sin(k · aj).(2.14)

Indeed, one exploits the fact that the Fourier transform intertwines the translation
operator Tγ , for γ ∈ Γ, with the multiplication times eik·γ I. Since Taj ←→ eik·aj I,
one concludes that

Taj
+ T−aj

←→ 2 cos(k · aj) I
which immediately gives (2.13). Analogously, since (χA−χB)Taj

←→ eik·aj σ3, one
concludes that

(χA − χB)
(
Taj
− T−aj

)
←→ 2i sin(k · aj)σ3

which gives (2.14). Notice that the previous terms do not depend on a specific
choice of the dimerization, provided one of the sublattices agrees with Γ.

As for the off-diagonal terms, one has however to be more careful, since the
computation does depend on the choice of “the” periodicity cell, as pointed
out for example in [4, 12]. We make here the specific choice

(2.15) Y =
{
x ∈ R2 : x = α1a1 + α2a2 with αj ∈ [− 1

2
,+ 1

2
]
}

so that Y ∩ C = {0,d3}, as illustrated in the first panel in Figure 2. One has that
C ∼= Γ×{0,d3} as a measure space, and the dimerization isomorphism is exhibited
by

(2.16) Ψγ =

(
ψγ,A
ψγ,B

)
=

(
ψγ+0

ψγ+d3

)
.

With this specific choice, the remaining terms are

R1(k) = t1 (1 + cos(k · a1) + cos(k · a2)) ,(2.17)

R2(k) = t1 (sin(k · a1)− sin(k · a2)) .(2.18)

(3) For the sake of brevity we omit the dependence of the operator Aν on the dimerization

procedure, i. e. we remove the subscript ν.
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These expressions are easily derived. By using (2.2), one computes

(T+d3ψ)γ =

(
ψγ−d3

ψ(γ+d3)−d3

)
=

(
0

ψγ,A

)
,

(T−d3
Ψ)γ =

(
ψγ+d3

ψ(γ+d3)+d3

)
=

(
ψγ,B

0

)
.

Thus Td3
+ T−d3

= 1⊗ σ1, so that the Fourier transform Fd3
yields

(2.19) Td3
+ T−d3

←→ 1⊗ σ1.

The coordinate j = 3 is privileged in view of our choice of the periodicity cell.
As for the next term, one uses that a1 = d2 − d3 so that

(T+d2
ψ)γ =

(
ψγ−d3−a1

ψ(γ+d3)−d3−a1

)
=

(
0

ψγ−a1,A

)
,

(T−d2ψ)γ =

(
ψγ+d3+a1

ψ(γ+d3)+d3+a1

)
=

(
ψγ+a1,B

0

)
.

After Fourier transform one obtains

(Fd3
(Td2

+ T−d2
)ψ) (k) =

(
0 e−ik·a1

e+ik·a1 0

)
(Fd3

ψ) (k).

Analogously, in view of a2 = d3 − d1 one has

(T+d1ψ)γ =

(
ψγ−d3+a2

ψ(γ+d3)−d3+a2

)
=

(
0

ψγ+a2,A

)
,

(T−d1
ψ)γ =

(
ψγ+d3−a2

ψ(γ+d3)+d3−a2

)
=

(
ψγ−a2,B

0

)
,

which gives

(Fd3(Td1 + T−d1)ψ) (k) =

(
0 e+ik·a2

e−ik·a2 0

)
(Fd3ψ) (k).

Summarizing the information above, one concludes that

(2.20)

3∑
j=1

(Tdj
+T−dj

) ←→
(

0 1 + e−ik·a1 + e+ik·a2

1 + e+ik·a1 + e−ik·a2 0

)
which immediately gives (2.17) and (2.18).

Remark 2.2. Our definition of the Haldane model agrees with the ones in the
cited references [11, 13, 32], up to the translation to first-quantization formalism
and some trivial relabelling.

�

3. Bloch functions and their singularities

In this Section, we will be interested in studying the spectral properties of the
Haldane Hamiltonian, which we rewrite as

H(k) =

3∑
j=0

Rj(k)σj =

(
R0(k) +R3(k) R(k)

R(k) R0(k)−R3(k)

)
,

where we have abbreviated

R(k) := R1(k) + iR2(k) = t1
(
1 + eik·a1 + e−ik·a2

)



8 G. MARCELLI, D. MONACO, M. MOSCOLARI, AND G. PANATI

(compare (2.20)). It is then immediate to see that the eigenvalues of H(k) are given
by

E±(k) := R0(k)±

√√√√ 3∑
j=1

Rj(k)2 = R0(k)±
√
R3(k)2 + |R(k)|2.

These two energy bands will not overlap (that is, E−(k) ≤ E+(k) for all k ∈ R2)
provided that t1 6= 0. For simplicity, in the following we will assume t1, t2 > 0. The
bands can still touch at the points in the Brillouin torus which are determined by
the equation

3∑
j=1

Rj(k)2 = 0 ⇐⇒ R(k) = 0 and R3(k) = 0.

We see then that there are (at most) two such points in the Brillouin torus, usually
labeled K and K′, determined by the zeroes of R: these are obtained from the
conditions

eiK′·a1 = ei2π/3 and e−iK′·a2 = e−i2π/3, eiK·a1 = e−i2π/3 and e−iK·a2 = ei2π/3,

which in particular imply K′ = −K mod Γ∗. Since locally around these points the
dispersion of the energy bands is linear when they produce band intersections, i. e.
E±(k) = E±(K])± vF|k−K]|+O

(
|k−K]|2

)
for K] ∈ {K,K′}, the points K and

K′ are usually called Dirac points. The equation R3(k) = 0 then determines the
locus in the space of parameters (φ,M) where either K or K′ (or both) are points

of degeneracy for the eigenvalues of the Haldane Hamiltonian, namely (4)

R3(K) = M + 3
√

3 t2 sinφ, R3(K′) = M − 3
√

3 t2 sinφ.

-π -
π

2
0 π

2
π

-3 3

0

3 3

ϕ

M
/t
2

Figure 3. The topological phase diagram of the Haldane model. In cyan,
the region {R3(K) > 0, R3(K′) < 0}, characterized by a Chern number c1 =

−1; in orange, the region {R3(K) < 0, R3(K′) > 0}, characterized by a Chern
number c1 = +1 (color online). In the rest of the phase diagram, c1 = 0.

(4) Notice that when R(k) = 0, that is, when R1(k) = t1
(
1 + cos(k · a1) + cos(k · a2)

)
= 0

and R2(k) = t1
(

sin(k · a1)− sin(k · a2)
)

= 0, then using a3 = −a1 − a2

sin(k · a3) = − sin(k · a1 + k · a2) = −
(

sin(k · a1) cos(k · a2) + sin(k · a2) cos(k · a1)
)

= −
(

sin(k · a1) (−1− cos(k · a1)) + sin(k · a1) cos(k · a1)
)

= sin(k · a1),

so that
∑3
j=1 sin(k·aj) = 3 sin(k·a1). Now sin(K·a1) = sin(−2π/3) = −

√
3/2, while sin(K′·a1) =

sin(2π/3) =
√

3/2.
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We see that the parameter space (φ,M) gets divided into four regions where
the Hamiltonian is gapped (see Figure 3), characterized by the signs of R3(K)
and R3(K′). We will show now how it is possible to assign a topological label to
each of the four gapped phases, determining also the “quantum anomalous Hall
conductivity” of the Haldane model for all parameters in the region. To this end,
it is convenient to introduce the eigenvector u−(k), that is, the Bloch function,
associated to the lower band E−(k) of the Haldane Hamiltonian. This reads

u−(k) = N(k)−1

(√
R3(k)2 + |R(k)|2 −R3(k)

−R(k)

)
,

where N(k) :=
[
2
√
R3(k)2 + |R(k)|2

(√
R3(k)2 + |R(k)|2 −R3(k)

)]1/2
is a nor-

malizing factor ensuring ‖u−(k)‖C2 = 1 for all k ∈ R2 (compare [13, Appendix B]).
The Bloch gauge (that is, the phase within the complex one-dimensional eigenspace
associated to the lower energy band) is chosen so that the first component u−,1(k)
is real.

If K] denotes either of the Dirac points, then R(K]) vanishes, as K and K′ are
precisely the zeroes of R, while R3(K]) 6= 0 due to the gap condition. Consequently,√

R3(k)2 + |R(k)|2 −R3(k)
∣∣∣
k=K]

=
∣∣R3(K])

∣∣−R3(K]),

and similarly

N(K]) =
[
2
∣∣R3(K])

∣∣ (∣∣R3(K])
∣∣−R3(K])

)]1/2
.

We see that u−(k) may have singularities at the Dirac points, depending on the
signs of R3(K) and R3(K′). In particular, it holds that u−(k) is singular at K
in the region {R3(K) > 0, R3(K′) < 0} of the parameter space (φ,M) (depicted in
cyan in Figure 3), while it is analytic on the whole Brillouin torus in the region
{R3(K) < 0, R3(K′) < 0} (the lower white region in Figure 3). The qualitative
features of this singularity (or lack thereof) are illustrated in Figures 4 and 5.

To investigate further the singularity of u−(k), we restrict our attention to pa-
rameters (φ,M) so that R3(K) > 0 and R3(K′) < 0. As discussed, in this region
K is the only singular point of u−(k). By rewriting, after a few simple algebraic
manipulations,

u−(k) =
1√
2


|R(k)|

(R3(k)2 + |R(k)|2)
1/4
(√

R3(k)2 + |R(k)|2 +R3(k)
)1/2

− R(k)

|R(k)|

(
1 +

R3(k)√
R3(k)2 + |R(k)|2

)1/2

 ,

we see that in this region the first component of u−(k) is smooth, while it is the
second component that has a singularity, due to the explicit dependence on the
phase of R(k). This implies in particular that, locally around k = K, u−,2(k)
is homogeneous of degree zero in the radial coordinate r = |k − K|, so that the
derivatives of u−,2(k) have a (1/r)-singularity, making the H1-norm of u−

‖u−‖H1 :=
(
‖u−‖2L2 + ‖∂k1u−‖

2
L2 + ‖∂k2u−‖

2
L2

)1/2

=

[∫
T2
∗

(
‖u−(k)‖2C2 + ‖∂k1u−(k)‖2C2 + ‖∂k2u−(k)‖2C2

)
dk

]1/2

divergent. From the same type of homogeneity argument, one can also deduce that
all the fractional Sobolev norms ‖u−‖Hs for s ∈ [0, 1) are instead finite.
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Figure 4. Density plots for the components of u−(k)

(color online). The parameters chosen to pro-
duce these plots are as follows: d = 1 for the

lattice constant, t1 = 1, t2 = 1/4, M = 0,

φ = π/2. The rhomboidal region is the Brillouin
zone {k1 b1 + k2 b2 : k1, k2 ∈ [0, 1]}, where the vec-

tors b1,b2 spanning the dual lattice Γ∗ are deter-
mined by the conditions ai · bj = 2πδij . The circle

points to the position of the Dirac point K. The rapid

change of both Reu−,2(k) and Imu−,2(k) around
k = K are evident from (4b) and (4c), respectively,

signalling a discontinuity. Instead, u−,1(k) is seen to

be regular (and actually vanishing) at k = K from
(4a). In the last plot (4d), contour lines for the abso-

lute value |u−,2(k)| are plotted, while the color code

indicates the value of the argument of the phase of
u−,2(k) as in the legend. In agreement with the pre-

vious comments, it is possible to see a phase singu-

larity of u−,2(k) around k = K, while the absolute

value |u−,2(k)| =
√

1− u−,1(k)2 remains smooth.

The singularity of u−(k) at k = K carries also a topological information. This
can be accessed by means of the Berry connection, defined as the differential 1-form

A := Im 〈u−(k),du−(k)〉C2 =

2∑
j=1

Im
〈
u−(k), ∂kju−(k)

〉
C2 dkj .

We argue as above: the (1/r)-singularity of the derivatives of u−,2(k) around k = K
is integrable (even though not square-integrable), so that the integral of A around
a small loop `ε (say, of diameter ε � 1) encircling the singularity of u−(k) stays
bounded even in the limit ε→ 0. Denoting by Dε the region bounded by the loop
`ε (which then bounds also T2

∗ \Dε, as the Brillouin torus is closed), in the limit of
a very small loop one obtains from Stokes’ theorem

(3.1) lim
ε→0

∮
`ε

A = − lim
ε→0

∮
∂(T2
∗\Dε)

A = − lim
ε→0

∫
T2
∗\Dε

dA = −
∫
T2
∗

F .

In the last step, we introduced the Berry curvature 2-form

(3.2)
F := dA = 2 Im 〈∂k1u−(k), ∂k2u−(k)〉dk1 ∧ dk2

= −i TrC2

(
P−(k) [∂k1P−(k), ∂k2P−(k)]

)
dk.
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Figure 5. Similar plots to those of Figure 4 (color

online), this time corresponding to the parameters

M = −3
√

3 and φ = 0. All other parameters where

left as specified in Figure 4. In this case, u−(k) is

analytic over the whole Brillouin zone.

The last equality (see e. g. [25, Lemma 7.2]) shows that F can be expressed directly
in terms of the family of projections

P−(k) := |u−(k)〉 〈u−(k)| =

1

2
√
R3(k)2 + |R(k)|2

(√
R3(k)2 + |R(k)|2 −R3(k) −R(k)

−R(k)
√
R3(k)2 + |R(k)|2 +R3(k)

)
on the eigenspace corresponding to the lower energy band. Contrary to the Bloch
function, these projections depend analytically on k over the whole Brillouin torus,
making it possible to compute the last limit in (3.1).

The Berry curvature is a geometric object. In fact, its integral over the Brillouin
torus is an integer multiple of 2π:

(3.3) c1 :=
1

2π

∫
T2
∗

F ∈ Z.

This integer, called the Chern number, is the topological invariant which underlies
the quantization of the (anomalous) Hall conductivity in Chern insulators [15, 9,
5, 10] and quantum Hall insulators [34, 14]. In the specific case under investigation
of the Haldane Hamiltonian, the four regions of parameters (φ,M) in which H(k)
is gapped can be labelled by the Chern number [15]: with reference to the colors
of Figure 3, the Chern number can be computed, e. g. starting from (3.1), to be
c1 = −1 for the cyan region, c1 = +1 for the orange region, and c1 = 0 for
the two white regions. In analogy with the thermodynamical phases of statistical
mechanics, one then speaks of topological phases of matter distinguished by different
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topological invariants, and refers to Figure 3 as the topological phase diagram for
the Haldane Hamiltonian.

Remark 3.1. It is interesting to notice that the topological content associated to
singularities of the Bloch function at the Dirac points persists, in an appropriate
sense, also in the gapless regime. If for example the parameters (φ,M) are threaded
from the cyan region to the lower white region of Figure 3, passing through a point
in parameter space (φ∗,M∗) where R3(K) = 0, then at (φ∗,M∗) not only the
Bloch function u− but also the projection P− becomes singular at K. Nonetheless,
the topological charge exchanged through the gapless phase can be quantified by
means of a local topological invariant, the eigenspace vorticity, associated to family
of projections P− around the singular point K [23]. In the situation described
above, this eigenspace vorticity equals ∆c1 = 0− (−1) = 1. �

4. The localization dichotomy for periodic insulators

It is astounding to discover the predictive power of the Haldane model. In
fact, it turns out that the features discussed in the previous Section are completely
generic in two and three dimensions: indeed, the close connection between the struc-
ture of the singularities of the Bloch functions and the topology of the associated
eigenspaces persists in a much wider context and for more general models.

This was recently proved and quantified in a precise way in [25]. To formulate
the main result, we need to set up the more general framework. Let d ≤ 3. The
configuration space of a crystalline system is modeled by the space X, which can
be either Rd or a d-dimensional crystalline structure (e. g. the honeycomb structure
presented in Section 2): X carries an action of the lattice Γ ' Zd by translations,
which is assumed to lift to translation operators Tγ ∈ U(L2(X)), γ ∈ Γ.

Associated to these translation operators, there is a Bloch–Floquet–Zak transform

U : L2(X)→ L2
τ (B;L2

per(Y )) '
∫ ⊕
B L2

per(Y )dk, defined by

(4.1) (Uψ) (k,y) :=
∑
γ∈Γ

e−ik·(y−γ) (Tγψ)(y), k ∈ B, y ∈ Y,

on suitable ψ ∈ L2(X). Here B stands for the fundamental cell of the dual lattice
Γ∗ (the Brillouin zone in the physics literature), Y stands for the fundamental cell
of the lattice Γ (compare (2.15)), and L2

τ (B;L2
per(Y )) is the Hilbert space

L2
τ (B;L2

per(Y )) :=


u ∈ L2

loc(Rd;L2
loc(Rd)) :

u(k + λ,y) = (τλu)(k,y) := e−iλ·y u(k,y)

and Tγu(k, ·) = u(k, ·)

∀k ∈ Rd, y ∈ Rd, λ ∈ Γ∗, γ ∈ Γ


of functions of the Bloch momentum k and of the degrees of freedom in the unit cell
y which are quasi-periodic (τ -covariant) in k and periodic in y (see [24] for details).
For crystalline structures of the type described in Section 2, U coincides with the
Fourier transform (2.9) up to the extra phase factor e−ik·y in (4.1), which turns
periodic functions of k into quasi-periodic, but makes the boundary conditions on
the unit cell Y in direct space k-independent (namely, exactly periodic). A Bloch–
Floquet–Zak transform is defined by (4.1) also in the continuum caseX = Rd, where
Tγ can be the standard translation (Tγψ)(y) := ψ(y − γ) or, more interestingly,
a magnetic translation generated by a uniform magnetic field with flux per unit
cell which is commensurate to the flux quantum (equal to 2π in Hartree units),
see [35] and the discussion in [25, Sec. 3]. Also in this case we will denote by
A←→ A(k) the correspondence between a periodic operator A on L2(X) such that
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[A, Tγ ] = 0 for all γ ∈ Γ and its decomposition into fibers in the Bloch–Floquet–Zak

representation: U AU−1 =
∫ ⊕
B A(k) dk.

Now that the framework of crystalline systems is clear, we can formulate the
main hypothesis of the central result from [25], which abstracts the predominant
features of the Haldane Hamiltonian described in the previous Sections.

Assumption. Let H be a periodic self-adjoint operator on L2(X) with H ←→
H(k) where H(k) defines a family of operators on L2

per(Y ) such that

(i) {H(κ)}κ∈Cd defines an entire analytic family in the sense of Kato with
compact resolvent [31];

(ii) the family is τ -covariant, that is, H(k + λ) = τλH(k) τ−1
λ for all k ∈ Rd

and λ ∈ Γ∗;
(iii) the family is gapped, namely there exists a set I ⊂ N with |I| = m < ∞

such that

inf
k∈Rd

inf
n∈I

m∈N\I

∣∣En(k)− Em(k)
∣∣ ≥ g > 0

where σ(H(k)) = {En(k)}n∈N denotes the spectrum of H(k) (consisting
of discrete eigenvalues, the Bloch bands, by the compact resolvent assump-
tion).

In the discrete case (e. g. for the Haldane Hamiltonian), the regularity assumption
is easy to verify, as it is equivalent in position space to having sufficiently fast
decaying hoppings between different sites of the crystal (say, exponential in the
distance between the sites), and thus is in particular satisfied whenever the hopping
Hamiltonian has finite range, as often happens in applications. For (magnetic,
periodic) Schrödinger operators, there are standard Lp-regularity assumptions on
the electro-magnetic potentials that guarantee analyticity of the corresponding fiber
Hamiltonians [31].

Notice moreover that the gap assumption allows to define the family of spectral
projections P (k) onto the spectral island σ0(k) := {En(k) : n ∈ I}, for example
through the Riesz formula

P (k) =
i

2π

∮
C(k)

(H(k)− z)−1dz,

where C(k) is a positively oriented contour in the complex energy plane, locally con-
stant in k, which lies in the resolvent set of H(k) and encircles only the eigenvalues
in σ0(k). This family of projections is then τ -covariant and depends analytically
on κ ∈ Ωα, where Ωα ⊂ Cd is a complex strip of half-width α > 0 around the “real
axis” Rd ⊂ Cd [30, Prop. 2.1].

As in (3.3), we can define the Chern numbers associated to {P (k)}k∈Rd as
(4.2)

c1(P )ij :=
1

2π

∫
Bij

TrL2
per(Y )

(
P (k)

[
∂kiP (k), ∂kjP (k)

])
dki ∧ dkj , 1 ≤ i < j ≤ d,

where Bij ⊂ B is the 2-dimensional sub-torus of B where the coordinate different
from the i-th and j-th is fixed (e. g. to zero).

We are finally able to state the main result from [25], generalizing the analysis
on the Haldane Hamiltonian from the previous Section.

Theorem 4.1 ([25]). Let H ←→ H(k) be as in the above Assumption, and P (k) be
the spectral projection onto the gapped spectral island of H(k). Then for all s ∈ [0, 1)
there exists a Bloch frame {u1, . . . , um} ⊂ Hs

τ (B;L2
per(Y )) for {P (k)}k∈Rd , namely
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a set of functions ua ∈ Hs
loc(Rd;L2

per(Y )) such that

ua(k + λ) = τλua(k), 〈ua, ub〉L2 = δab, and P (k) =

m∑
a=1

|ua(k)〉 〈ua(k)| .

Moreover, the following statements are equivalent:

(i) there exists a Bloch frame in H1
τ (B;L2

per(Y ));

(ii) there exists a Bloch frame in Cωτ (Ωα;L2
per(Y )), the space of τ -covariant

analytic functions on Ωα with values in L2
per(Y );

(iii) the Chern numbers c1(P )ij, 1 ≤ i < j ≤ d, defined in (4.2), vanish.

The above result can be interpreted as a Localization–Topology Correspondence,
having implications also for the transport properties of the model under scrutiny
for a crystalline insulator. To better clarify this point, we need to introduce one
further notion. Given a periodic Hamiltonian H ←→ H(k) as in the Assumption

above, denote by P = U−1
(∫ ⊕

B P (k)dk
)
U the periodic projection on L2(X) onto

the subspace corresponding to the isolated spectral island in momentum space.
The Hamiltonian H has generically absolutely continuous spectrum (which is given
by σ(H) =

{
λ ∈ R : λ = En(k) for some n ∈ N, k ∈ Rd

}
), so it is not possible in

general to find a basis of the range of P given by eigenstates of the Hamiltonian.
Nonetheless, if {ua(k)}1≤a≤m is an orthonormal basis for RanP (k) — a Bloch

frame, in the terminology introduced above — then it is possible to define (com-
posite) Wannier functions [22] by

wa(y − γ) := (U−1ua)(y − γ) =
1

|B|

∫
B

eik·(y−γ)ua(k,y) dk, 1 ≤ a ≤ m,

where y ∈ Y and γ ∈ Γ. The functions wa will automatically be in RanP ⊂ L2(X),
and so will the translates Tγwa by periodicity of P . One can then check [20] that
{Tγwa}γ∈Γ, 1≤a≤m constitutes an orthonormal basis for RanP if the Bloch frame

is τ -covariant. Localized Wannier functions are found to describe accurately the
orbitals of the crystalline insulator [22], and it is hence important to understand
their decay properties at infinity. Since the Bloch–Floquet–Zak transform shares
with the standard Fourier transform the property of intertwining the multiplication
operator by x on L2(X) and the gradient∇k with respect to the crystal momentum,
one can read off these decay properties of Wannier functions by looking at the
smoothness with respect to k of the corresponding Bloch frame. More precisely, it
holds that

〈x〉swa ∈ L2(X) ⇐⇒ ua ∈ Hs(B;L2
per(Y )), s ≥ 0,

eβ|x|wa ∈ L2(X) ,∀β ∈ [0, α) ⇐⇒ ua ∈ Cω(Ωα;L2
per(Y )),

where we have denoted 〈x〉 := (1 + |x|2)1/2.
The existence of a basis of well-localized (say, exponentially) Wannier functions

signals the absence of charge transport in the crystal; on the contrary, a power-law
decay of the Wannier functions is an indication of topological transport. If the
Hall conductivity is non-zero, one then expects Wannier functions to be poorly
localized. This is exactly the content of the above Theorem, which can be recast in
terms of Wannier functions as a Localization Dichotomy : either Wannier functions
are exponentially localized (and this happens exactly when the Hall conductivity
vanishes), or they are delocalized in the sense that they yield an infinite expectation
of the squared position operator |x|2; no intermediate regimes of decay are allowed.
The precise result is as follows.
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Theorem 4.2 (Localization Dichotomy [25]). Let H be as in the above Assump-
tion, and P be the spectral projection onto the gapped spectral island. Then for all
s ∈ [0, 1) there exists a Wannier basis for RanP , that is, an orthonormal basis
{Tγwa}γ∈Γ,1≤a≤m of RanP , such that

sup
γ∈Γ

∫
X

〈x− γ〉2s |(Tγwa)(x)|2 dx ≤ Cs <∞ for all s ∈ [0, 1).

Moreover, the following statements are equivalent:

(i) there exists a Wannier basis such that

sup
γ∈Γ

∫
X

〈x− γ〉2 |(Tγwa)(x)|2 dx ≤ C1 <∞;

(ii) there exists a Wannier basis such that

sup
γ∈Γ

∫
X

e2β|x−γ| |(Tγwa)(x)|2 dx ≤ Cω <∞ for all β ∈ [0, α);

(iii) the Chern numbers c1(P )ij, 1 ≤ i < j ≤ d, defined in (4.2), vanish.

We sketch here the main ideas from the proof of Theorem 4.1: for the detailed
argument, the reader is referred to [25].

The first part consists in exhibiting a Bloch frame which is in Hs
τ for all s ∈ [0, 1).

In 2d, this is obtained via parallel transport, a procedure which allows to construct
a smooth (C∞) and τ -covariant Bloch frame on the 1-dimensional boundary of the
Brillouin zone B, and to extend this to the interior. The end result is a Bloch frame
which is τ -covariant and smooth except at one point in the Brillouin zone. The
technique of parallel transport gives a precise control also on the type of singularity
of the constructed Bloch frame, which is seen to be consistent with the claimed
Hs-regularity (the derivatives of the Bloch functions have a (1/r)-divergence at the
singular point). This situation should be compared with the Bloch function for the
Haldane Hamiltonian exhibited in the previous Section. In 3d, one needs to further
extend an already singular datum at the 2-dimensional boundary of the Brillouin
zone to the 3-dimensional “bulk”: this can be done again by parallel transport, and
produces this time lines of singularities, which dictate in turn the Hs-regularity in
the statement of the Theorem.

The next part of the proof requires to show that if a Bloch frame in H1
τ exists,

then the Chern numbers of the family of projections vanish. The proof relies on
a very subtle approximation of H1

τ frames by C∞τ frames. The subtlety lies in
the fact that the space of frames in an Hilbert space is a non-linear manifold; the
approximation of Sobolev maps with values in a manifold by regular maps becomes
more involved, and requires in general certain topological conditions to be satisfied
(see [16] and [25, App. B]). Nonetheless, in our setting H1 maps can indeed be
approximated by C∞ ones; when calculating an “approximate” Berry curvature
(3.2) with the regular frames, its integrals over the tori Bij are zero, so that in the
limit the Chern numbers for the family of projections P (k) must also vanish. It is
then well-known [29, 30] how to modify the H1-regular Bloch frame to an analytic
one, provided the Chern numbers vanish.

As a side remark, note how in 2d the “threshold” Sobolev regularity H1 coincides
also with the “threshold” of the Sobolev embedding Hs ↪→ C0, which holds for
s > 1. Geometric arguments, based on the theory of vector bundles, yield that
a non-zero Chern number forbids the existence of τ -covariant continuous Bloch
frames [29]: Theorem 4.1 improves this result, claiming that also Bloch frames in
H1
τ cannot exist when the Chern numbers are non-vanishing. In 3d, the result
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is even more stringent, as the threshold for the Sobolev embedding of Hs into
continuous functions is at s = 3/2.

5. The localization dichotomy for non-periodic insulators

The results presented so far on the interplay between the localization properties
and the topological features of crystalline systems exhibit a clear “logical order”:
even though the Wannier functions are position-space objects, they are defined in
terms of the Bloch functions, which are intrinsically k-space objects. In the same
way, the topological marker, namely the Chern number(s), is defined in terms of
the k-space fibering of the projection on the gapped part of the spectrum by means
of the Bloch–Floquet–Zak transform. However, there is no physical reasons for the
dichotomic behaviour illustrated by Theorem 4.2 to hold only in systems for which
a k-space description is possible. Indeed, perfect crystalline systems do not exist
in nature and an extension of the localization dichotomy to non-periodic gapped
quantum systems is very tempting and desired.

As a starting point for this ambitious goal, it is necessary to extend the notions of
Wannier functions and Chern number to non-periodic systems. Distilling the true
essence of Wannier functions, we get that they are a set of localized functions that,
together with their copies obtained by lattice translation, form an orthonormal basis
of a given spectral subspace, and encode the topological and transport information
about the latter. Following this direction, we can extend the concept of Wannier
basis to non-periodic systems.

In order to proceed further, we need the notion of localization function. For the
sake of the presentation, we restrict to 2-dimensional continuum systems, namely
we consider the Hilbert space L2(R2).

Definition 5.1 (Localization function). We say that a continuous function G :
[0,+∞)→ (0,+∞) is a localization function if lim|x|→+∞G(|x|) = +∞ and there
exists a constant CG > 0 such that

G(|x− y|) ≤ CG G(|x− z|) G(|z− y|) , ∀x,y, z ∈ R2 .

Following the seminal ideas in [27, 28], we give a definition of generalized Wannier
basis [21, 26].

Definition 5.2 (Generalized Wannier Basis). Let P ∈ B(L2(R2)) be an orthogonal
projection. Assume that there exist:

(i) a Delone set D ⊆ R2, i. e. a discrete set such that for some 0 < r < R <∞
it holds true that:
(a) for all x ∈ R2 there is at most one element of D in the ball of radius

r centered at x (in particular, the set has no accumulation points);
(b) for all x ∈ R2 there is at least one element of D in the ball of radius

R centered at x (the set is “not sparse”);
(ii) a localization function G, constants M > 0 and m∗ ∈ N independent of

γ ∈ D, and an orthonormal basis of RanP , denoted by {ψγ,a}γ∈D,1≤a≤m(γ)

with m(γ) ≤ m∗ ∀γ ∈ D, satisfying∫
R2

|ψγ,a(x)|2G(|x− γ|) dx ≤M

for all γ ∈ D, a ∈ {1, . . . ,m(γ)}.
Then we call ψγ,a a generalized Wannier function (GWF) with centre γ, and we
say that P admits a generalized Wannier basis (GWB) {ψγ,a}γ∈D,1≤a≤m(γ).

When the localization function G is an exponential function, that is G(|x|) =
e2β|x| for some β > 0, we say that the GWB is exponentially localized. If the
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localization function G is of polynomial type, that is, G(|x|) = 〈x〉2s =
(
1 + |x|2

)s
for some s > 0, we say that the GWB is s-localized.

Notice that an orthonormal basis made of composite Wannier functions, as de-
fined in Section 4, is an example of GWB. Moreover, from the results in [8], one
concludes that for generic gapped 1-dimensional systems there always exists an
orthonormal basis for the range of the gapped spectral projection satisfying the
requirements of Definition 5.2 with the exception of some properties of the set D
(in particular D is only proven to be a discrete set).

As already mentioned, the Chern number has been historically related to the
quantized conductivity in the QHE [14]. Since the experiments revealing the QHE
have been realized with real materials, a generalization of the Chern number in
presence of impurities and disorder has been considered long ago. Indeed, Bellissard,
van Elst and Schulz-Baldes (see [3] and references therein), inspired by ideas in
Non Commutative Geometry, extended the concept of Chern number to ergodic
systems and connected it to the transverse conductivity in the QHE. Moreover,
more recently, in the physics community there has been a growing interest in the
analysis of topological materials by means of topological marker defined directly in
position space [2, 6, 19]. Inspired by these ideas, we give the following definition of
Chern marker (which is called Chern character in [7], where the setting is slightly
different).

Definition 5.3 (Chern marker). Let P be a projection on L2(R2) and χL be the
indicator function of the set (−L,L]2. The Chern marker of P is defined by

C(P ) := lim
L→∞

2π

4L2
Tr
(

iχLP
[

[X1, P ] , [X2, P ]
]
PχL

)
whenever the limit on the right hand side exists.

Notice that, in case P is an integral operator then the integral kernel of the
operator P [[X1, P ] , [X2, P ]]P coincides with the definition of local Chern number
given in [2] and with the definition of local Chern marker given in [6].

Whenever the projection is periodic and hence can be fibered by the Bloch–
Floquet–Zak transform, the Chern marker coincides with the Chern number, ap-
pearing in (3.3), and hence it is an integer. Furthermore, one can show that the
Chern marker is stable against regular perturbations and against the addition of a
constant magnetic field, provided that these perturbations do not close the gap [7].

Hence, guided by the results in the periodic case, in [21] the authors conjecture
the existence of a relation between the localization properties of a GWB for a pro-
jection and the Chern marker of the projection itself. To formulate this conjecture
properly, we focus on physical systems that can be described by a Hamiltonian
operator H, acting in the Hilbert space L2(R2), and of the form

(5.1) H = −1

2
∆A + V ,

where V is a scalar potential such that V is in L2
u−loc(R2), and −∆A := (−i∇−A)

2

is the magnetic Laplacian. The magnetic potential A is such that A ∈ L4
loc(R2,R2)

and the distributional derivative ∇ ·A is in L2
loc(R2). The assumptions on the po-

tentials are the usual assumptions which allow to apply the diamagnetic inequality.
Under these hypotheses, the Hamiltonian is essentially selfadjoint on the dense core
C∞0 (R2). Moreover, we assume that the spectrum of the Hamiltonian has a spectral
island σ0(H) isolated from the rest of the spectrum of H, that is ,

dist(σ0(H), σ(H) \ σ0(H)) = g > 0 .

We can now formulate the
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Localization Dichotomy Conjecture. Under the above assumptions, let P be
the spectral projection onto the spectral island σ0(H) of a Hamiltonian operator of
the form (5.1). Then the following statements are equivalent:

(a) P admits a generalized Wannier basis that is exponentially localized.
(b) P admits a generalized Wannier basis that is s∗-localized for s∗ = 1.
(c) P is topologically trivial in the sense that its Chern marker C(P ) exists

and is equal to zero.

Notice that (a) easily implies (b) by a simple inequality, while the opposite
implication is not trivial. The Localization Dichotomy Conjecture generalizes the
results proved in the periodic setting in Theorem 4.2 [25].

A new result, still unpublished, covering the non-periodic setting is the following
[26, 21]. While we expect the Conjecture to be true for s∗ = 1, the theorem is
restricted to s∗ > 5 for technical reasons.

Theorem 5.4 (Localization implies topological triviality). Under the above as-
sumptions, let P be the spectral projection onto the spectral island σ0(H) of a
Hamiltonian operator of the form (5.1). Suppose that P admits a s∗-localized gen-
eralized Wannier basis {ψγ,a}γ∈D,1≤a≤m(γ) for s∗ > 5, that is: there exists M > 0
and m∗ ∈ N such that∫

R2

|ψγ,a(x)|2(1 + ‖x− γ‖2)s∗ dx ≤M , ∀ γ ∈ D ,∀a ∈ {1, . . . ,m(γ)}

with m(γ) ≤ m∗ for all γ ∈ D. Then the Chern marker of P is zero, namely the
following limit exists and

lim
L→∞

2π

4L2
Tr (iχLP [[X1, P ] , [X2, P ]]PχL) = 0.

The proof of Theorem 5.4 is obtained in two steps: first one proves exponential
localization estimates for the integral kernel of the projection and for some aux-
iliary operators by using Combes-Thomas-type estimates. Then, by using those
estimates, one can gain an explicit control on the asymptotic behaviour of the
trace of iχLP [[X1, P ] , [X2, P ]]PχL as L→∞ and therefore can prove the desired
limit. Notice that the threshold s∗ > 5 is only due to technical reasons and, as
we mentioned before, a full generalization of the localization dichotomy proved in
[25] would require s∗ = 1, as well as a proof of the opposite implication. Further
investigations are planned for the future in order to move the threshold to s∗ = 1.

Remark 5.5. As a by-product of Theorem 5.4, it follows that the dichotomic
behaviour of the Wannier basis in Theorem 4.2 is “stable” with respect to regular
perturbations. Indeed, consider a periodic system such that its Chern number is dif-
ferent from zero and suppose that we perturb the system with a small non-periodic
term, for example by adding some impurities modelled by Coulomb potentials. By
contradiction, suppose that the perturbed system has an exponentially localized
GWB in the sense of Definition 5.2. By a result proved by A. Nenciu and G. Nen-
ciu [27], it is possible to unitarily transport the GWB back to the original system.
Then, Theorem 5.4 implies that the Chern marker is zero. As we have mentioned
before, for periodic systems the Chern marker equals the Chern number. Therefore,
this implies that the original periodic system has a vanishing Chern number and
yields a contradiction. �

Despite a proof of the implication (c) ⇒ (a) is still missing in the non-periodic
setting, Theorem 5.4 provides a clear relation between the GWB and the Chern
marker. Whenever a sufficiently localized GWB for a given gapped quantum system
exists, one can be sure that such physical system does not exhibit Hall transport.
This relation is completely independent of the periodicity of the system.
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