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Inflammation is strictly interconnected to anti-inflammatory mechanisms to maintain tissue
homeostasis. The disruption of immune homeostasis can lead to acute and chronic
inflammatory diseases, as cardiovascular, pulmonary, metabolic diseases and cancer.
The knowledge of the mechanisms involved in the development and progression of these
pathological conditions is important to find effective therapies. Granzyme B (GrB) is a
serine protease produced by a variety of immune, non-immune and tumor cells. Apoptotic
intracellular and multiple extracellular functions of GrB have been recently identified. Its
capability of cleaving extracellular matrix (ECM) components, cytokines, cell receptors and
clotting proteins, revealed GrB as a potential multifunctional pro-inflammatory molecule
with the capability of contributing to the pathogenesis of different inflammatory conditions,
including inflammaging, acute and chronic inflammatory diseases and cancer. Here we
give an overview of recent data concerning GrB activity on multiple targets, potentially
allowing this enzyme to regulate a wide range of crucial biological processes that play a
role in the development, progression and/or severity of inflammatory diseases. We focus
our attention on the promotion by GrB of perforin-dependent and perforin-independent
(anoikis) apoptosis, inflammation derived by the activation of some cytokines belonging to
the IL-1 cytokine family, ECM remodeling, epithelial-to-mesenchymal transition (EMT) and
fibrosis. A greater comprehension of the pathophysiological consequences of GrB-
mediated multiple activities may favor the design of new therapies aim to inhibit different
inflammatory pathological conditions such as inflammaging and age-related diseases,
EMT and organ fibrosis.
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INTRODUCTION

Inflammation is a physiological response to infections or tissue
injury and is essential for survival, having beneficial effects
towards the neutralization of dangerous or harmful agents.
Inflammation is strictly interconnected with anti-inflammatory
mechanisms, which control and resolve the inflammatory
process to maintain immune homeostasis (1). Under some
circumstances, this immune homeostasis is disrupted and
inflammation becomes excessive and/or persistent, leading to
the development of inflammatory diseases (1). In this context,
aging can be characterized by an uncontrolled and unresolved
chronic, low-grade inflammation, the so-called ‘‘inflamm-aging”,
which can lead to inflammatory age-related diseases, as
cardiovascular, pulmonary, metabolic diseases (as type 2 diabetes,
T2D) and cancer (2). Multiple factors underlie the pathogenesis of
inflammatory diseases and can lead to tissue fibrosis and organ
dysfunction, associated with high morbidity and mortality (3).
Therefore, the knowledge of mechanisms involved in the
development and/or progression of these pathological conditions
is important to find specific and effective therapies.

Granzyme B (GrB) is a serine protease traditionally known
for its perforin-dependent pro-apoptotic function underlying the
capability of cytotoxic immune cells, as cytotoxic T lymphocytes
(CTLs) and natural killer (NK) cells, to kill tumor and virus-
infected target cells (4–7). GrB expression has been recently
demonstrated also in non-tumor or tumor immune and non-
immune cells (8). Indeed, GrB is produced and secreted by
immune cells, like T and B cell subpopulations, monocyte/
macrophages, mast cells, and basophils (8–13), by non-
immune cells, like vascular smooth muscle cells (V-SMCs),
pneumocytes, keratinocytes, and chondrocytes (12, 14–16), as
well as by tumor cells, like leukemia cells and breast, urothelial,
prostate, pancreatic and colorectal cancer cells (17–21) (Table 1).
GrB not only exerts a perforin-dependent intracellular activity,
but also an extracellular perforin-independent function,
consisting in the cleavage of multiple extracellular substrates,
as extracellular matrix (ECM) components, cytokines, cell
receptors, angiogenic and clotting proteins (28, 49, 50). Hence,
the pathophysiological function of GrB has been redefined and a
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putative role for GrB in the pathogenesis of inflammatory and
age-related diseases has emerged (8, 29) (Table 1).

In this review, we discuss data concerning GrB activity on
multiple targets involved in inflammation, potentially allowing
this enzyme to regulate a wide range of crucial processes that play
a role in inflammatory disease development, progression and
severity. We focus our attention on the possible impact of GrB on
inflammatory events leading to tissue fibrosis in both acute and
age-related inflammatory diseases.
GRANZYME B AS A MULTI-TARGETED
PRO-INFLAMMATORY MOLECULE IN
INFLAMMATORY DISEASES

The recent discovery of multiple intracellular and extracellular
substrates for GrB has revealed this protease as a potential
multifunctional pro-inflammatory molecule, contributing to the
pathogenesis of multiple pathological inflammatory conditions.

Elevated extracellular GrB levels were found in biological
fluids, as in plasma from patients with acute myocardial
infarction (36), atherosclerosis (37), obesity and T2D (51, 52),
in broncho-alveolar lavage (BAL) in chronic obstructive
pulmonary disease (COPD), pneumonia, and asthma (8), and
in the synovial fluid in rheumatoid arthritis (53).

Elevated GrB levels were also found in inflamed tissues,
including V-SMCs and atherosclerotic plaque in cardiovascular
diseases (14), CTLs, pneumocytes and alveolar macrophages in
pulmonary diseases (12, 27), adipose tissue-T cells in obesity (33)
and in skin diseases (49). Moreover, according to a putative
contribution of GrB in inflammaging, increased GrB expression
levels were found in the elderly affected by obesity,
cardiovascular and skin diseases (29, 49, 54, 55).

GrB extracellular substrates include cytokines and ECM
components (29, 31, 50). The potential pathophysiological
consequences of their cleavage constitute the basis to envisage
a crucial pro-inflammatory role for GrB in the pathogenesis of
inflammatory diseases (29).

GrB has the ability to process and activate pro-inflammatory,
pro-fibrotic and aging mediators belonging to the IL-1 cytokine
TABLE 1 | GrB in Inflammatory Diseases: GrB producing cells, GrB cellular and molecular targets, GrB-associated organ-specific diseases.

GrB producing cells GrB targets GrB-associated organ-specific diseases

♦ Cytotoxic lymphocytes (4, 7)
(CTL, NK cells)
♦ Non-cytotoxic immune cells (8–13)
(monocytes/macrophages, B, T,
granulocytes, mast cells,
dendritic cells)

♦Non-immune cells (12, 14–16)
(V-SMC, pneumocytes,
keratinocytes, chondrocytes)
♦Tumor cells (17–21)
(breast, urothelial, pancreatic,
colorectal, prostate, leukemia)

♦ Normal Cells:
-smooth muscle cells (14)
-endothelial cells (14)

♦ Lung (22–27): COPD, RSV
infection, pneumonia, IPF

♦ Extracellular Molecules:
-ECM proteins (28, 29)
(fibrinogen, fibronectin, laminin,
smooth muscle cell matrix, VE-
cadherin, vitronectin, ZO-1)
-ECM proteoglycans (30)
(decorin, biglycan, soluble b-glycan)
-IL-1 family cytokines (29, 31)
(IL-1a, IL-18)

♦ Heart (32): cardiac fibrosis
♦ Adipose Tissue (33–35): adipose
tissue fibrosis in metabolic diseases
♦ Blood vessels (8, 14, 36–48):

atherosclerosis
♦ Skin (29, 49): skin fibrosis
♦ Breast, urothelial, pancreatic,
colorectal carcinomas (18–21):
invasion and EMT
No
CTL, cytotoxic T lymphocytes; NK, natural killer; V-SMC, vascular smooth muscle cells; ECM, extracellular matrix; VE, vascular endothelial; ZO-1, zonula occludens protein-1;
IL, interleukin; COPD, chronic obstructive pulmonary disease; RSV, respiratory syncytial virus; IPF, idiopathic pulmonary fibrosis; EMT, epithelial-to-mesenchymal transition.
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family (31, 56). Indeed, GrB processes IL-18 from its inactive to its
active form and IL-1a into a significantly more potent pro-
inflammatory fragment. IL-1a enhances persistent inflammation
and stimulates fibroblasts to produce more interstitial collagenase
and ECM remodeling, regulating normal and aberrant tissue
repair (56, 57). IL-1a fragments, similar to those produced by
GrB, were found in BAL in human airway inflammatory diseases,
as COPD, cystic fibrosis and bronchiectasis (8), while GrB activity
on IL-1a was demonstrated in vivo in GrB knockout mice (29),
strongly suggesting that this activity also exists in vivo.

GrB has also the ability to degrade several ECM components,
including proteins, as fibronectin, vitronectin, laminin, SMC
matrix, VE-cadherin, and fibrillin-1, as well as proteoglycan, as
biglycan and decorin, indicating GrB as a crucial player in ECM
remodeling (28–30). Indeed, ECM undergoes remodeling, that is
degradation by proteases and renewal and repair by fibroblasts,
thus regulating tissue homeostasis and acting on tissue healing.
ECM components assist cell attachment, ligate receptors and store
growth factors, regulating cell survival, proliferation, differentiation,
and migration. Therefore, abnormal ECM remodeling can result in
cell detachment-dependent apoptosis and alterations in cell
proliferation, differentiation and migration, as observed in several
inflammatory conditions, such as cardiovascular, pulmonary and
Frontiers in Immunology | www.frontiersin.org 3
metabolic diseases, obesity, and cancer progression and metastasis
(58, 59). Hence, GrB capability of targeting multiple ECM
components, might allow this enzyme to regulate several
fundamental biological processes involved in the development
and/or progression of inflammatory diseases.

Thus, considering the extracellular and intracellular GrB
function and the context in which GrB is produced, this
molecule has the potential to contribute to the pathogenesis of
non-neoplastic and neoplastic inflammatory diseases through a
multitude of mechanisms ranging from the induction of
perforin-dependent and/or –independent apoptosis and the
promotion of epithelial-to-mesenchymal transition (EMT) and/
or fibrosis, as illustrated below (Figure 1).
GRANZYME B AND PERFORIN-
DEPENDENT AND/OR PERFORIN-
INDEPENDENT APOPTOSIS IN
INFLAMMATORY DISEASES

Apoptosis promotes tissue injury during inflammation and is
involved in the pathogenesis of acute and chronic inflammatory
FIGURE 1 | The potential contribution of extracellular and intracellular GrB functions to the development and/or the progression of acute and chronic inflammatory
diseases (left panel) and to cancer invasion and metastasis (right panel). GrB is a multifunctional pro-inflammatory molecule regulating a wide range of inflammatory
events. GrB produced by perforin-expressing immune cells (CTL and NK cells) can induce perforin-dependent cell apoptosis, while GrB produced by perforin-
deficient immune (e.g. non-cytotoxic T and B cell subpopulations, monocyte/macrophages/myeloid-derived suppressor cells, mast cells, basophils, neutrophils), non-
immune (e.g. vascular smooth muscle cells, pneumocytes) and tumor (e.g. breast, urothelial, prostate, pancreatic, colorectal) cells can induce anoikis (anchorage-
dependent cell death). Extracellular GrB can promote activation of pro-inflammatory cytokines (IL-18 and IL-1a), ECM degradation/remodeling, pathologic EMT and
tissue fibrosis. GrB, granzyme B; CTL, cytotoxic T lymphocytes; NK, natural killer; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; IL, interleukin;
TGF-b, transforming growth factor-b.
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diseases, as cardiovascular and pulmonary diseases and
metabolic syndrome (60–62). The capability of immune and
non-immune cell-derived GrB of inducing apoptosis makes GrB
a potential important player of apoptosis-mediated tissue
damage in inflammation. GrB can induce two kinds of
apoptotic cell death, the intracellular perforin-dependent
apoptosis (7) and the extracellular perforin-independent
apoptosis, named anoikis (63). Anoikis is due to the
detachment of cells from ECM and from neighboring cells,
playing a role in preventing inappropriate cell translocation
and attachment, and assisting appropriate tissue renewal (62).
In cancer, anoikis resistance characterizes cancer cell anchorage-
independent growth and EMT, contributing to cancer cell
invasion and metastasis (62, 64, 65). In inflammatory diseases,
as cardiovascular (66), pulmonary (67) and skin (49) diseases,
and diabetes-related cardiovascular complications and
retinopathy (62), aberrant anoikis is involved in excessive cell
death and tissue injury.

A role for GrB-mediated apoptosis -either perforin-dependent
apoptosis or anoikis- has been reported in inflammatory
pulmonary diseases, including age-related diseases, as COPD
(23, 38), and acute severe lung inflammatory diseases, as
respiratory syncytial virus (RSV) pulmonary infections (24, 25).
In COPD patients, GrB was identified in type II pneumocytes,
alveolar macrophages and in bronchial and alveolar wall-
infiltrating CTLs, suggesting a role for GrB in bronchial and
alveolar cell apoptosis (8, 12, 22, 38). Of note, in COPD,
increased GrB- and perforin-expressing CTLs were found in
BAL and blood, and GrB-expressing T cells in BAL positively
correlated with bronchial epithelial cell apoptosis (22, 23, 38). In
spite of these findings, the evidence of a causative role for GrB-
mediated apoptosis in the pathogenesis of COPD is lacking. In
vivo animal studies are made difficult, because of the lack of
appropriate mouse COPD models. A role for GrB has been
proposed also in acute pulmonary pathologies. There is evidence
of high GrB expression by CD8+T, CD4+T, and NK cells in
human RSV-induced acute severe lung injury (24), suggesting a
role for GrB in amplifying pro-apoptotic and pro-inflammatory
activities. Supporting this hypothesis, Bem et al. (25) showed GrB
contribution to acute lung injury in pneumovirus-infected mice;
GrB deficiency in pneumovirus-infected mice significantly
delayed clinical response to fatal pneumovirus infection and this
effect was associated with delayed neutrophil recruitment,
decreased caspase-3 activation and reduced lung permeability,
suggesting a role for GrB in acute disease progression due to
alveolar injury.

In the last years, a putative role for GrB-mediated apoptosis in
atherosclerosis is also emerged in both the elderly and insulin
resistant young individuals (8, 26, 39–41). Elevated plasma GrB
levels were found in patients with myocardial infarction (36, 42)
and unstable carotid plaques associated with increased
cerebrovascular events (37). GrB was absent in normal vessels
and its expression appeared during atherosclerosis; studies on
mild and advanced atherosclerotic human coronary arteries
showed higher GrB expression in V-SMCs, CTLs and
macrophages in advanced lesions (11, 14). GrB expression co-
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localized with V-SMCs and macrophages undergoing apoptosis,
suggesting that GrB may mediate apoptosis in these cells (11, 14).
Furthermore, peripheral blood mononuclear cells (PBMCs) from
patients with unstable angina produced higher GrB levels than
PBMCs from patients with stable angina, and PBMC-derived
conditioned media induced apoptosis in cultured endothelial
cells, supporting a possible role for GrB in atherosclerosis
severity, possibly inducing vascular apoptosis in unstable angina
(43). Finally, the proteinase inhibitor-9, the GrB endogenous
inhibitor, was reduced in unstable atherosclerotic lesions
compared to stable lesions (44), according to the hypothesis of a
role for GrB in plaque instability and suggesting that GrB activity
in atherosclerosis may be regulated by an imbalance between GrB
and its inhibitor. Although these findings do not allow to
definitively establish an in vivo role for GrB in the induction of
apoptosis in atherosclerotic plaque instability and rupture, in vitro
and animal studies support this hypothesis (14, 26, 45, 46). Indeed,
GrB mediates anoikis of cultured human coronary artery SMCs
and endothelial cells (14). Moreover, in angiotensin II-treated
apolipoprotein E (ApoE), GrB deficiency was associated with
decreased abdominal aortic aneurysms and increased survival
(because of rare aneurism rupture) compared to perforin-
deficient or control mice (26, 45). Finally, a role for NK and
NKT cells in the promotion of atherosclerosis has also been
proposed (47, 48). Increased atherosclerosis was observed when
NK cells were transferred into ApoE(-/-)Rag2(-/-)IL2rg(-/-) mice,
whereas decreased atherosclerotic lesions were found in NK cell
depleted ApoE(-/-) or when GrB/perforin-deficient NK cells were
transferred (47). Transfer of CD4+NKT cells into T-, B- and NK-
cell-deficient ApoE mice augmented aortic root atherosclerosis;
this effect reversed when GrB/perforin-deficient NKT cells were
transferred (48).
GRANZYME B: EPITHELIAL-TO-
MESENCHYMAL TRANSITION AND
FIBROSIS IN INFLAMMATORY DISEASES

Inflammation, characterized by excessive apoptosis and
abnormal ECM remodeling, can lead to tissue fibrosis, which
impairs the affected organ’s function (3). Fibrosis is triggered by
inflammatory cytokines and growth factors signaling abnormal
ECM regulation; this leads to an imbalance between ECM
degradation by proteases and excessive ECM deposition by
different cells, mainly myofibroblast (3) derived by
mesenchymal cells and by epithelial cells undergoing EMT
(EMT-derived myofibroblasts) (68). Noteworthy, fibrosis and
EMT share one of their major inducer that is transforming
growth factor-b (TGF-b) (69).

Recent studies have proposed a role for GrB in heart, lung,
adipose tissue and skin fibrosis (27, 29, 32, 49, 61, 69).

Elevated GrB expression was detected in human and murine
fibrotic hearts (32). Moreover, a perforin-independent role for GrB
in the pathogenesis of cardiac fibrosis was suggested in vivo, showing
that GrB deficiency inmice protected against angiotensin II-induced
November 2020 | Volume 11 | Article 587581
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cardiac fibrosis, reducing microhemorrhage, inflammation, and
fibroblast accumulation (32).

In COPD, GrB–expressing monocytes and granulocytes were
identified, and CD8+T infiltrating cells and apoptosis increased
in airway epithelial cells, while soluble GrB levels and GrB-
expressing T cells increased in BAL, suggesting that GrB
upregulation in CD8+ and CD8- cells may be involved in
small airway wall remodeling (27).

In obesity, increased CD8+T cells and GrB expression were
found in adipose tissue in vivo, suggesting a role for GrB in
adipose tissue fibrosis (33, 61). Furthermore, CD8+T-cell-
depletion in overfed mice improved obesity-induced insulin
resistance and decreased adipose tissue pro-inflammatory
macrophages; these effects were reversed when mice were
reconstituted with CD8+T cells (34). These findings suggest
that, in obesity, adipose tissue CD8+T cells induce the
recruitment of macrophages and that both may induce adipose
tissue dysfunction and insulin resistance.

A role for GrB has also been indicated in skin fibrosis, as
extensively discuss elsewhere (29, 49).

The mechanisms by which GrB induces fibrosis have not been
completely elucidated and multiple GrB-mediated activities have
been proposed.

GrB can cleave the ECM proteoglycan decorin, a potent anti-
fibrotic (30) and a pro-autophagic (35) molecule. Indeed,
decorin, by attaching to cell surface receptor and ECM
molecules, regulates signal transduction pathways controlling
genes involved in ECM organization (30). In addition, by
attaching to cell receptors, decorin promotes autophagy in
endothelial cells leading to inhibition of angiogenesis (35).
Therefore, decorin cleavage by GrB might underlie aberrant
ECM and/or vascular remodeling, involved in the initiation
and/or the progression of various fibroproliferative disorders.
Note also that decreased autophagy is involved in the
pathogenesis of inflammaging, fibrotic diseases and tumors.
Studies have shown a reduction of decorin in different fibrotic
organs, as in cardiac fibrosis following myocardial infarction and
in acute exacerbation-idiopathic pulmonary fibrosis (IPF) (70–
72). Animal experiments in decorin-null mice with myocardial
infarction (70) or in hamster and mice models of lung fibrosis
(73–75) showed both decorin requirement for proper fibrotic
evolution of tissue injury and the potential therapeutic anti-
fibrotic effect of decorin administration. Evidence also exists for a
role of decorin in maintaining glucose tolerance in obesity (76).

Moreover, GrB, cleaving decorin and other ECM substrates as
biglycan, beta-glycan and fibrillin-1 which act as reservoir of
cytokines and growth factors as TGF-b, induces the release of
active TGF-b, a key regulator of fibrosis (30, 69). Therefore, the
aberrant release of sequestered TGF-b by GrB-mediated cleavage
of ECM components represents another potential mechanism by
which GrB may contribute to fibrosis.

Noteworthy, GrB (18, 21, 77), as some other granzymes (78–
80), has been recently proposed as promoters of EMT, an
important process linked the stimulation of the three following
events: 1) tissue and organ formation during embryogenesis; 2)
tissue and organ physiologic repair and pathologic fibrosis; 3)
Frontiers in Immunology | www.frontiersin.org 5
tumor cell invasion and metastasis (81). EMT is a process in
which epithelial cells lose E-cadherin-mediated cell-cell adhesion
and acquire some mesenchymal features, as N-cadherin
expression and the capability of invasion, migration, and
production of ECM. Inflammatory molecules, mainly TGF-b,
trigger intracellular signaling cascades, activating EMT-
transcription factors like Snail, ZEB, and TWIST (81). EMT is
involved in multiple organ fibrosis, as those occurring in
cardiovascular and pulmonary (COPD and IPF) diseases (81–
88). Now interestingly, EMT-derived fibrosis has been also called
to possibly account to pulmonary fibrosis in SARS-CoV-2
infection (89), suggesting a possible contribution of GrB in the
severe pulmonary damage in COVID-19 (89, 90). A possible role
for GrB in EMT promotion has emerged in human tumor
models (18, 21, 77). Enzymatically active GrB was expressed,
in absence of perforin, by tumor cells in vitro and in tissues (ex
vivo) (17–21). Although GrB in cancer tissues is widely used as
activation marker for cytotoxic lymphocytes, and lymphocyte-
derived GrB-positive tumor immunostaining is associated with a
favorable clinical outcome in a large spectrum of cancers, in
some cases, GrB expression in tumors correlates to the severity of
the disease, poor prognosis and therapy resistance (91–96). It has
been documented GrB expression by urothelial carcinoma cells
in primary urothelial cancer tissues and its expression was
associated to EMT (analyzed by Snail-1, E- and N-cadherin
expression) (18). Significantly, GrB expression was concentrated
in urothelial neoplastic cells undergoing EMT at the cancer
invasion front, suggesting that the expression of GrB and EMT
molecules might be functionally related (18). A further support
to the hypothesis of considering GrB as an EMT promoter,
derives from the association that existed between GrB expression
in tumor tissues and the pathological tumor spreading, in
particular, the increasing invasiveness status of urothelial
carcinomas (18). In addition, in vitro experiments of loss and
gain of GrB function performed in CRC (including also CRC
patient-derived Cancer Stem Cells), bladder and pancreatic
carcinoma cells showed that GrB deficiency was associated to
the loss of the EMT phenotype and the inhibition of invasion
through matrigel, further supporting a role for GrB in tumor
EMT promotion and cancer cell invasion (18, 21). Finally, GrB
function in EMT was further supported by data indicating a
contribution of GrB in the induction of TGF-b1-driven EMT in
CRC cells (21). Indeed, TGF-b1 enhanced GrB expression while
inducing EMT in CRC cells, whereas GrB depletion resulted in the
inhibition of TGF-b1-driven EMT (21). However, research is
needed to identify GrB targets involved in the mechanisms
underlying EMT modulation by GrB. It should also be taken
into account the possible regulation of GrB activity and function
by the GrB-bound proteoglycan serglycin, considering that its
intracellular activity consists in the promotion of secretory granule
maturation and GrB storage, while its extracellular activity is
implicated in the regulation of tumorigenesis, driving
inflammation, EMT and tumor progression (97). Lastly, the
examination of GrB expression in a large number of cancers in
relation to the clinical outcome is needed, together with the
evaluation of EMT in murine tumor and non-tumor models.
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CONCLUSION

GrB is emerging as a multifunctional pro-inflammatory protease,
acting with tissue and context dependence on multiple targets,
thus representing a putative powerful regulator of a wide range of
crucial processes involved in the pathogenicity and/or in the
severity of inflammatory diseases, either acute or age-related.
The major limitation of this assumption is the paucity of in vivo
direct evidence for the multiple GrB pro-inflammatory activities.
It should be considered that the in vivo function of human GrB is
a challenging problem and difficult to deal with, in that, although
few mechanistic animal studies connecting clinical observations
with in vitro data exist, animal experiments might generate false
interspecies functions of GrB, because of GrB interspecies
structural and functional diversity (98–100). Therefore, further
research is required to explore the multiple activities of GrB
potentially occurring in the inflammatory events underlying
acute and chronic inflammatory diseases.

A greater comprehension of GrB function may favor the
design of new therapies aimed to inhibit and regulate GrB pro-
inflammatory activities, counteracting excessive inflammation,
fibrosis and abnormal EMT-derived processes. Current research
is considering the development and the use of pharmacological
GrB inhibitors as potential therapeutic options for the
prevention and/or treatment of GrB-associated inflammatory
Frontiers in Immunology | www.frontiersin.org 6
pathological conditions (101–106). Progress in this field might be
even more urgent if we consider the possibility to develop
therapies that have an impact on inflammaging and chronic
age-related diseases, as well as on excessive acute inflammatory
reactions, as they occur in COVID-19, especially in aged
individuals tending to excessive inflammatory responses
resulting in lethal lung damage (89, 107, 108).
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