
1

1 Hierarchical classification pathway for white maize, defect and foreign material 

2 classification using spectral imaging 

3 Kate Sendin1, Marena Manley1, Federico Marini1,2 & Paul J. Williams1*

4 1Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South 

5 Africa

6 2Department of Chemistry, University of Rome (La Sapienza), P. le Aldo Moro 5, Rome 00185, Italy

7 *Corresponding author: Email: pauljw@sun.ac.za; Tel: +27 21 808 3155

8

9 ABSTRACT

10 This study aimed to present the South African maize industry with an accurate and affordable automated 

11 analytical technique for white maize grading using near infrared (NIR) spectral imaging. The 17 categories and 

12 sub-categories stipulated in South African maize grading legislation were simultaneously classified (1044 

13 samples; 60 kernels of each class) using 25 partial least squares discriminant analysis (PLS-DA) models. The 

14 models were assembled in a hierarchical decision pathway that progressed from the most easily classified 

15 classes to the most difficult. The full NIR spectrum (288 wavebands) model performed with an overall accuracy 

16 of 93.3% for the main categories. Three waveband selection techniques were employed, waveband windows 

17 (48 wavebands), variable importance in projection (VIP) (21 wavebands) and covariance selection (CovSel) (13 

18 wavebands). Overall, the VIP set based on only 7.3% of the original spectral variables was recommended as the 

19 best trade-off between performance and expected cost of a reduced waveband system.

20 Keywords: near infrared spectroscopy; spectral imaging; waveband optimization; chemometrics; covariance 

21 selection; maize

22

23 1. Introduction

24 Maize grading is conducted throughout the market value chain as maize is traded between the farmer, storage 

25 provider and miller. Grading ensures a fair market price per consignment and is based on the basic condition of 

26 a sub sample of the maize. South Africa currently uses an inspection method, where a grader manually sorts a 

27 150 g (c. 1000 kernels that is representative of a consignment) sample to determine grade based on the presence 

28 of undesirable materials (e.g. damaged maize or foreign materials). During this grading process, defective 

29 kernels are not discarded they sorted, weight and used to determine the quality of the consignment. To increase 

30 throughput and decrease the error associated with this process, the industry is seeking an appropriate analytical 

31 method to replace manual inspection. A previous study [1] demonstrated the potential of using hyperspectral 

32 imaging for sorting 13 South African maize grading classes with an overall classification accuracy of 99.4% 

33 across the 804 kernels/objects. However, this study only considered two-way separations and did not offer a 

34 single system for evaluating all the classes simultaneously. While achieving separation of two classes at a time 

35 is relatively easy, separating multiple classes is a much more challenging endeavour.
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36 Hyperspectral imaging has been used extensively in cereal science research to evaluate a large array of 

37 cereal properties, including hardness classification, chemical composition, variety identification, sprouting 

38 detection, physical quality classification, fungal contamination detection and parasitic contamination detection 

39 [2]. However, due to crucial drawbacks of the technique, it is seldom implemented for routine analysis in 

40 industry. These drawbacks include the high cost and relatively low speed of the hyperspectral imaging 

41 instruments found in research laboratories. A viable solution to these issues is the development of a multispectral 

42 imaging instrument that is tailor-made for one application. Waveband selection studies have been successfully 

43 conducted for separating grain from foreign material [3], identifying maize [4], rice [5] and black bean varieties 

44 [6], detecting genetically modified maize[7], tracking texture deterioration in fresh maize [8], and determining 

45 spelt flour authenticity [9]. Successive projection algorithm (SPA) is a popular waveband selection method that 

46 aims to minimise collinearity between spectral variables [10]. However, SPA only considers the X-data and 

47 selects wavebands without considering the class information (y-data) [11]. The class information should be 

48 considered in applications with closely related classes to identify wavebands that specifically highlight the 

49 differences between two classes. Inspired by SPA, covariance selection (CovSel) works in a similar way but 

50 accounts for the covariance between the X- and y-data. Simply put, the difference between the two is 

51 comparable with the differences between principal component analysis (PCA) and partial least squares (PLS). 

52 Hierarchical or decision pathway modelling is a potential solution for multi-class classification 

53 problems [12]. Many studies with two, three or even four classes utilise a single globally optimised model to 

54 discriminate all classes. This approach is easily and widely accessible to perform, but one critical assumption 

55 must be satisfied, i.e. all classes must be fully separable using the selected set of spectral features. This 

56 assumption is often not fulfilled, especially when dealing with heterogeneous samples and closely related 

57 classes, as was observed in the partial least squares-discriminant analysis (PLS-DA) scores plots in Sendin, 

58 Manley, Baeten, Fernández Pierna and Williams [1]. Instead of performing multi-class classification (e.g. 13 

59 class PLS-DA model for the abovementioned study), hierarchical modelling decomposes the problem into 

60 simpler binary classification steps (two or three class PLS-DA models) that are reassembled into a single 

61 hierarchical structure. To minimise the effects of error propagation through the successive steps of the decision 

62 pathway, the pathway must be carefully selected. A prudent approach is to handle the most easily classified 

63 classes first and work towards the most challenging [13]. A recent study demonstrated value of hierarchical 

64 modelling for the rapid detection of meat species, processing (fresh or frozen) and muscle type using a hand-

65 held near infrared (NIR) spectrometer [14]. However, the use of hierarchical pathway modelling for multi-class 

66 problems in NIR hyperspectral imaging or for the classification of cereals remains limited.

67 The aim of this study was to simultaneously distinguish sound white maize kernels from common 

68 undesirable material types stipulated in the South African maize grading legislation using NIR spectral imaging. 

69 This was achieved through hierarchical assembly of PLS-DA classification models for the separation of 17 

70 classes. One hierarchical model based on the full spectrum and three based on different waveband selection 

71 methods (waveband windows, waveband optimisation based on VIP scores, and waveband optimisation using 

72 the CovSel algorithm) were developed. 

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120



3

73

74 2. Materials and methods

75 2.1 Samples

76 White maize kernels and undesirable materials were obtained from the Southern African Grain Laboratory 

77 (SAGL, Pretoria, South Africa) and Pioneer Foods (Paarl, South Africa) in August 2018. These maize samples 

78 were silo samples (i.e. mixed origin, cultivar, and harvest date), and were graded visually by expert graders 

79 according to South African white maize grading regulations ([15]. This act stipulates five main categories, 

80 namely sound (healthy) white maize, defective white maize, pinked white maize, other colour (yellow) maize, 

81 and foreign materials (Table 1). The legislation also stipulates sub-categories for defective kernels and foreign 

82 materials. Of the nineteen defects stipulated in the grading regulation, twelve were evaluated during this study 

83 since these were prevalent during the 2018 season. These included Fusarium fungal, Diplodia fungal, heat, 

84 water, frost and pest (rodent and insect) damage, as well as broken (screenings), sprouted and immature kernels. 

85 Foreign materials included five common commodities, including soy, sorghum, sunflower seeds and wheat, as 

86 well as miscellaneous plant materials. See Fig. 1 for a digital image of all classes included in the study.

87 Calibration and validation sample sets were selected at random for each of the 17 classes, where one 

88 set of 60 kernels/objects was used for calibration and another set of 60 was used for validation. There were three 

89 exceptions, namely (1) pest damage, which included separate sets of 60 kernels for rodent damage and insect 

90 damage (total of 120 for calibration and 120 for validation); (2) sprouted kernels, where 30 kernels were used 

91 in each set due to limited availability; and (3) immature kernels, where 54 kernels were used in each set due to 

92 limited availability. Overall, 1044 samples were used for calibration and 1044 for validation, giving a total of 

93 2088 samples.

94

95 2.2 NIR hyperspectral system

96 Hyperspectral images were acquired using a short-wave infrared (SWIR) camera (Hyspex SWIR-384 Norsk 

97 Elektro Optikk, Norway) in reflectance mode. The camera had a mercury–cadmium–telluride (HgCdTe) 

98 detector and operated in the range 953 to 2517 nm, with 5.45 nm between each of the 288 spectral bands. Images 

99 were 384 pixels wide, and varied in length of ca. 700 pixels. The frame period was 3800 µs and the integration 

100 time was 3600 µs, chosen by visually assessing the saturation images of the samples during test scans. Samples 

101 were illuminated with a halogen light source, which was switched on 10 min before imaging to avoid light 

102 source temperature drift and ensure spatial lighting uniformity. A 50% grey Zenith Allucore diffuse reflectance 

103 standard (SphereOptics GmbH, Germany) was used for image correction and calibration, and was scanned every 

104 30 min during the imaging session. 

105

106 2.3 Image acquisition

107 Unique calibration and validation images were captured for each of the 17 classes individually. As pest damage 

108 included rodent and insect damage, two image sets were taken for pest damage, giving a total of 18 calibration 

109 and validation image sets (36 images). Sixty kernels/objects of a single class were arranged in a grid of 6  ×
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110 10. In applicable classes, the top three rows were placed with the maize germ facing up towards the camera, 

111 and the bottom three rows with germ facing down.

112

113 2.4 Hyperspectral image analysis

114 2.4.1 Image correction and cleaning

115 Radiometric calibration from irradiance to radiance to pseudo-absorbance was done in the HySpex Ground 

116 software v4.1 (HySpex, Norsk Elektro Optikk, Norway). The grey reference image acquired most recently 

117 preceding the acquisition of each image was used. There is no significant difference in the calculated reflectance 

118 values of the sample when using the 50% (grey) or 99% (white) reflectance target. The 50% target allows for 

119 using longer integration times that would typically saturate the 99% target. The longer integration times lead to 

120 increased SNR for these samples.

121 Cleaning was conducted using the interactive Evince v.2.7.0 (Prediktera AB, Umeå, Sweden) spectral 

122 image analysis software. On average, the raw hypercubes were 384 * 973 * 288 in dimension (373632 pixels). 

123 However some differed slightly in the y-dimension due to the number of samples or length of the sample holder 

124 imaged. PCA was applied to the mean-centred unfolded hypercubes (373632 * 288), and the score plots and 

125 score images were used interactively to identify unwanted pixels, e.g. outliers, sample stage background, dead 

126 pixels, shading errors and edge effects [16]. A notable issue in several images was either specular reflection or 

127 overexposure occurring in some small regions. All unwanted pixels were removed. 

128

129 2.4.2 Particle analysis

130 The cleaned images were analysed further in PLS_Toolbox (Eigenvector Research Inc., Wenatchee, WA) 

131 software package and subjected to particle (object) analysis. Objects were identified as isolated contiguous 

132 regions of pixels with similar intensity values. Each pixel was assigned either 0 or 1 to indicate non-object pixels 

133 (deleted background) and potential object pixels (maize kernels), creating a binary image or image mask. The 

134 mean spectrum of each object was calculated based on the arithmetic mean of all pixel spectra within the object. 

135 Thus, an image of ca. 200000 pixel spectra was reduced to ca. 60 mean spectra while the retaining spatial 

136 information. A table of the 60 mean spectra of each calibration image was created to further reduce the data size 

137 from ca. 100 MB to 100 KB. As the objects were numbered when calculated (i.e. 1 – 60), the information from 

138 the table could be related back to the image mask at a later stage. 

139 The mean spectra table of all 18 calibration images were combined to give one table with 288 

140 wavebands as columns and 1044 calibration samples as rows. The class of each sample in the table was assigned. 

141 This was repeated for the validation data.

142

143 2.5 Optimal waveband selection

144 2.5.1 Reduced spectral channels (windows)

145 The number of spectral channels was reduced by dividing the 288 wavebands (953 – 2517 nm) into 48 windows 

146 of 6 wavebands. The third waveband in each window was chosen as the centre point. The 48 selected wavebands 
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147 were: 964, 996, 1029 1062, 1095, 1127, 1159, 1193, 1225, 1258, 1291, 1323, 1356, 1388, 1421, 1454, 1487, 

148 1520, 1552, 1585, 1618, 1651, 1683, 1716, 1749, 1781, 1814, 1847, 1879, 1912, 1945, 1978, 2010, 2043, 2076, 

149 2108, 2141, 2174, 2206, 2239, 2272, 2305, 2337, 2370, 2403, 2435, 2468 and 2501 nm. The pre-processed 

150 mean spectrum (SNV transformation) marked with the windows (grey and red), VIP (red) and CovSel (green) 

151 waveband sets is shown in Fig. 2.

152

153 2.5.2 Variable importance in projection scores 

154 Variable importance in projection (VIP) scores were calculated based on the PLS-DA models for each of the 

155 15 levels or sub-levels of the full spectrum hierarchical model (see Section 2.6). VIP scores evaluate the 

156 importance of each waveband for separating the classes in a PLS-DA model, where the VIP score of waveband 

157  was calculated according to Eq. 1:𝑘

158  (1)𝑉𝐼𝑃𝑘 =  ∑𝑎
𝑗 = 1(𝑤 2

𝑗𝑘 𝑆𝑆𝑅𝑗)
𝐿

𝑆𝑆𝑇

159 where: 

160  is waveband,  is the number of latent variables (LVs) in the PLS-DA model,  is the PLS weight of waveband 𝑘 𝑎 𝑤

161 ,  is the residual sum-of-squares,  is the number of wavebands (288) and  is the total sum-of-squares.𝑘 𝑆𝑆𝑅 𝐿 𝑆𝑆𝑇

162 The VIP scores were calculated based on the PLS-DA calibration dataset, and thus pre-processed 

163 spectra (Savitzky-Golay (7 smoothing points; 3rd order polynomial; 1st derivative), SNV and mean-centring). A 

164 line chart was generated displaying the waveband and VIP score value for each PLS-DA model. Waveband 

165 windows or groupings were used to overcome multicollinearity issues. If a maximum value appeared at any 

166 waveband in this window, it was recorded and shaded as follows: below 0.99 – unshaded, 1 to 1.49 – green, 1.5 

167 to 1.99 – yellow, 2 to 2.49 – orange, and above 2.5 – red (Fig. 3). A VIP score value greater than 1 indicated 

168 that a window was highly influential for the separation of a particular class. Any window scoring above 1 in 7 

169 or more of the 15 PLS-DA models was chosen as part of the optimised waveband set. The 21 selected wavebands 

170 were: 964, 1127, 1159, 1323, 1356, 1388, 1421, 1716, 1847, 1879, 1912, 1945, 2043, 2239, 2272, 2305, 2337, 

171 2403, 2435, 2468 and 2501 nm. 

172

173 2.5.3 Covariance selection

174 CovSel was calculated based on methods described by Roger, Palagos, Bertrand and Fernandez-Ahumada [10] 

175 and Biancolillo, Marini and Roger [17]. The process takes place in two main steps: (i) identifying the variable 

176 with the highest covariance by calculating the covariance between all the X- and y-variables; and (ii) projecting 

177 all the X- and y-variables orthogonally to the identified variable until an optimal number of wavebands was 

178 selected. The 13 selected wavebands were: 953, 1122, 1340, 1416, 1574, 1721, 1869, 1901, 1939, 1994, 2097, 

179 2250 and 2512 nm. 

180

181 2.5.4 Mean spectrum pre-treatment

182 The following pre-treatments were considered: (1) mean-centring; (2) standard normal variate (SNV); (3) 
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183 Savitzky-Golay transformation (various polynomial, derivative, and smoothing parameters); and (4) detrending. 

184 Preliminary two-way PLS-DA models of sound maize vs. each class were calculated to evaluate the pre-

185 treatment combinations based on cross-validated classification results (venetian blinds cross-validation). Pre-

186 treatments yielding consistently good classification results were chosen. No noisy wavebands were observed in 

187 the mean spectra, thus all 288 wavebands were kept as variables. 

188 Savitzky-Golay (7 smoothing points; 3rd order polynomial; 1st derivative), SNV and mean-centring was 

189 applied for the full spectra [18, 19]. Only SNV and mean-centring were applied to the reduced waveband 

190 spectra. Savitzky-Golay transformation was not applied to these discrete datasets because the transformation 

191 involves smoothing and the calculation of derivatives, thus requiring continuous points.

192

193 2.6 Hierarchical model development and calibration

194 A series of PLS-DA models were calculated and assembled in a hierarchical model that consisted of various 

195 levels and sub-levels. A detailed description of the model’s architecture is given in the Supplementary 

196 Information. The mean spectra of all 18 calibration images were used to calibrate all PLS-DA models in the 

197 hierarchical model. Four separate hierarchical models were developed, for the full spectrum, window 

198 wavebands, VIP scores and CovSel waveband sets. The specific order of the sub-levels in each hierarchical 

199 model was optimised individually according to the performance of the PLS-DA models, where the structure of 

200 the hierarchical model based on the full spectrum data is given in Table S1. 

201 Hierarchical pathway Level 1 classified each object as either a foreign material or a maize kernel. A 

202 two-class PLS-DA model of a grouped maize class vs. a grouped foreign material class was calculated. The 

203 grouped maize class consisted of the sound white maize, all defective white maize classes, pinked white maize 

204 and yellow maize classes, and the grouped foreign material class consisted of soy, sorghum, sunflower seeds, 

205 wheat and plant material. If classified as a maize kernel, the object proceeded to the hierarchical model branch 

206 for maize kernel classification (Level 2), and if classified as a foreign material, the object proceeded to the 

207 hierarchical model branch for foreign material classification (Level 3). 

208 At Level 2, the maize hierarchical model was used to classify the following 12 classes: sound maize, 

209 screenings, Fusarium damage, Diplodia damage, heat damage, water damage, frost damage, pest damage, 

210 sprouted kernels, immature kernels, pinked maize, and yellow maize. The hierarchical model structure was 

211 designed based on separating the most easily separated class from the rest, with following steps working towards 

212 the most difficult class. The order was determined by calculating two-class PLS-DA models of one class vs. a 

213 grouped class of all other maize classes and evaluating the cross-validated classification result, where the classes 

214 were ordered according to descending model performance.

215 At Level 3, the foreign material hierarchical model first separated objects into two main categories of 

216 surface chemical composition, namely cellulose-rich and starchy. Thus, the first two-class PLS-DA model 

217 separated a grouped class of soy, sorghum and wheat (starchy) and a grouped class of sunflower seeds and plant 

218 material (cellulose-rich). Next, a three-class PLS-DA separated soy, sorghum and wheat, and a two-class PLS-

219 DA model separated sunflower seeds and plant material. 
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220 A secondary classification step was added to the decision pathway for most classes, including both 

221 maize and foreign materials. This accounted for easily confused classes within the grouped classes. For example, 

222 heat damage and yellow maize were easily confused. When a classification result of ‘heat damage’ was 

223 generated, this object was classified by a second two-way PLS-DA of heat damage vs. yellow maize. The result 

224 of the secondary classification was used as the final result in all instances where implemented. The secondary 

225 classification steps included in the hierarchical model based on the full spectrum data are listed in Table S1. 

226

227 2.7 Hierarchical model validation

228 The hierarchical model was tested using the mean spectra of the 18 validation images. The mean spectrum of 

229 each object was classified by the hierarchical model, beginning at the Level 1 classification of maize or foreign 

230 materials, and moving on to the relevant subsequent branches and models until a final classification was made. 

231 The final classification was evaluated in two ways, namely whether the main category was correct and, 

232 where relevant, whether the sub-category was correct. For legislative purposes, only the main category is 

233 necessary, but a human grader (to which this study is comparing spectral imaging) is able to see the difference 

234 between sub-categories.

235

236 3. Results and discussion

237 3.1 Experimental design

238 This study aimed to emulate the current grading practices as closely as possible. Although based on legislative 

239 guidelines, human graders make logical decisions which cannot always be strictly defined. This is an important 

240 aspect of human decision-making that is difficult to replace using an automated analytical technique. An 

241 important decision-making step occurred when sorting the defective white maize samples used in the study. 

242 Many of the defects occur simultaneously, or one defect can make a kernel susceptible to another at a later 

243 stage. For example, a kernel may become sprouted, water and/or frost damaged during a bout of bad weather, 

244 while rodent damage may leave a kernel vulnerable to insect or fungal infestation. Further, some ear diseases, 

245 including Diplodia, induce sprouting of kernels. Kernels presenting symptoms of multiple defects were 

246 encountered regularly during the grading of samples for this study, in which case the grader determined the 

247 predominant defect. However, this is very subjective. Further, the legislation is based solely on levels of each 

248 main category (e.g. all defective kernels). Thus, misclassifications at the sub-category level (as in any of the 

249 examples given above) were not considered a major shortfall, and would have no effect on the overall accuracy 

250 of the assigned grade. 

251 The aims of this study presented two challenges, namely separating closely related samples and 

252 separating an unusually large number of classes compared to other similar hyperspectral imaging studies. This 

253 application was a good candidate for hierarchical modelling, where multiple classes are classified stepwise, 

254 working from most easily separated to most closely related. An object was first classified as a maize kernel or 

255 foreign material, and these two groups were further classified separately. Separating the maize kernels was the 

256 most challenging task, where the twelve closely related classes were separated sequentially as sound maize, 
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257 yellow maize, pinked maize and defective maize (nine sub-categories). The classification of foreign materials 

258 was less challenging, as this was separating different commodities, not classes of a single commodity. 

259 The secondary classification step was introduced to minimise misclassification between closely related 

260 classes. Due to the large number of classes used, a clear separation between each class was not expected. During 

261 hierarchical model development, the classification results for one class vs. all remaining classes were examined. 

262 If a substantial number (ca. 10%) of class 1 was misclassified as class 2 (i.e. errors do not occur randomly), a 

263 secondary step was included, where all objects classified as class 2 were predicted by a simple two-class PLS-

264 DA (class 1 vs. class 2) and this result was taken as the final classification. The secondary step classification 

265 models had high Q2-values and excellent cross-validated classification accuracies (often 98 – 100%), and single 

266 classes were well-defined and easily separated. The number of errors between closely related classes was greatly 

267 reduced by including this step.

268

269 3.3 Full spectrum classification

270 The full spectrum hierarchical model performed well, with high classification accuracy (75 – 100%) considering 

271 the challenging task of separating 17 classes (Table 2). The sub-category and main category classification 

272 accuracies were both recorded, describing if an object was classified as the correct class, or as any class in the 

273 correct main category, respectively. The sub-category accuracy of the defective white maize classes appeared 

274 low (13 – 95%), but this should not be of concern if they are misclassified among themselves and not as other 

275 main categories. As previously mentioned, these defects either occur simultaneously or cause vulnerability to 

276 other defects. For instance, the water damaged kernels (23% sub-category accuracy) were almost exclusively 

277 misclassified for frost damage and sprouting. Frost damage is often viewed as a severe form of water damage 

278 (see digital image in Fig. 1) and sprouting occurs as a result of prolonged exposure to water. An experienced 

279 grader struggles to determine the sub-category of kernels with differing severity of multiple defects, thus the 

280 class determined by the reference method (human grading) in these cases was not necessarily more accurate 

281 than the hyperspectral imaging method under investigation.

282 The main category accuracy is the most important parameter for grading based on the current 

283 legislation. An overall classification accuracy of 93.3% was achieved across the 1044 validation samples. The 

284 individual accuracies were as follows: 88% for sound white maize, 93% for defective white maize, 83% for 

285 pinked white maize, 75% for yellow maize and 100% for foreign materials. There was a tremendous 

286 improvement in the accuracy of detecting defective maize kernels in the main category accuracy compared to 

287 the sub-categories, confirming that these classes were predominantly confused with sub-categories within the 

288 same main category.

289 Sound white maize was the most important class to classify accurately, as a normal grading sample is 

290 expected to contain ca. 95% sound white maize. If a large number of errors occur in this class, an inaccurate 

291 grade is likely to be assigned. The results were fair, but 7 of the 60 kernels were misclassified. These 

292 misclassifications were of an array of defects, pinked and yellow maize, with no clear links to a specific class. 

293 Conversely, very few objects of other classes were misclassified as sound. In other words, the model was 
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294 sensitive for the detection of undesirable materials but less specific for the detection of sound maize. This shows 

295 promise for ensuring a system that does not allow defective or unsafe materials to enter the food chain.

296 Although visually distinct, the separation of yellow maize was the most challenging. This was also 

297 observed in an earlier study by Sendin, Manley, Baeten, Fernández Pierna and Williams [1], where the two-way 

298 PLS-DA separation of white and yellow maize in a similar spectral region also achieved 75% correct 

299 classification. There is only one specific difference between white and yellow maize and it is determined by the 

300 presence of a single gene [20]. This gene controls the production of yellow beta-carotene pigment in the maize 

301 endosperm.  The presence of two recessive alleles results in no pigment formation (white) and the presence of 

302 a single dominant allele causes pigment formation (yellow). While the two commodities exhibit a distinct colour 

303 difference in the visible region, beta-carotene has an absorbance maximum at 440 nm and does not interact 

304 strongly with NIR radiation [21]. Thus, NIR spectroscopic techniques are not suited to detect this specific 

305 chemical constituent. Other differences in the chemical composition of maize samples, such as hardness, 

306 moisture content and oil content, can vary as greatly between cultivars of white maize as between white and 

307 yellow maize. The classification of yellow and white maize using NIR spectral imaging remains a challenge, 

308 and a possible solution is including spectral variables from the visible region, specifically a band at 440 nm. A 

309 similar phenomenon was observed for pinked maize, as this class is also highly related to sound white maize. 

310 The light pink superficial discolouration of these maize kernels is due to the production of a red pigment, 

311 anthocyanin [22]. The discolouration is limited to the pericarp and does not affect meal colour after milling. 

312 Furthermore, it does not cause any other internal changes. Certain white hybrids are simply prone to pinking 

313 under specific climatic conditions, such as sunlight exposure, and the defect is very leniently legislated with a 

314 maximum allowed content of 20%. However, the subtlety of this defect resulted in a classification accuracy of 

315 only 83%. The addition of a spectral variable at 550 nm is expected to aid the classification of pinked maize. It 

316 should also be noted that improved classification of yellow and pinked maize should lead to improved 

317 classification of sound white maize due to increased class separation.

318

319 3.3 Reduced spectral channels (windows) classification

320 Spectral features in NIR spectroscopy (e.g. harmonics and combination bands) are associated with broad peaks. 

321 Pure substances are often characterised by natural bandwidths larger than 10 nm, while mixtures are usually 

322 broader [23, 24]. Examples of these large bandwidths include 22.5 nm for sucrose (centred at ~2046 nm), 30.1 

323 nm for maize oil (~2305 nm), 110.4 nm for moisture (~1928 nm) and 162 nm for wheat starch (~2103 nm) [25]. 

324 The spectral intervals of the hyperspectral instrument’s full spectrum were 5.45 nm, and the interval of each 

325 window of 6 wavebands was 32.7 nm. Thus, many of the spectral features that play a role in classifying maize 

326 kernels spanned one or more windows (Fig. 2).

327 An instrument that measures a large number of wavebands is high in cost, as a more expensive sensor 

328 is required. When considering the requirements of an instrument for a specific application, a trade-off between 

329 performance and price is often unavoidable. The window-based hierarchical model was based on 16.7% of the 

330 original spectral variables. The model did not perform as accurately as the full spectrum model, with an overall 
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331 loss of accuracy from 93.3 to 87.1% that affected all classes (Table 3).  Furthermore, the windows waveband 

332 set did not offer better classification performance than the other two reduced waveband sets in a number of 

333 classes. While an instrument that acquires only 48 wavebands will cost less than the hyperspectral instrument 

334 with 288 wavebands, it would be the most expensive of the three optimised sets presented. The trade-off 

335 between instrument performance and cost associated with the windows waveband set was not favourable. 

336

337 3.4 Variable Importance in Projection (VIP) classification

338 VIP scores reveal which wavebands are the biggest drivers of separation throughout all of the LVs calculated 

339 in a single PLS-DA model. This is an advantage over using loadings values, where it is difficult to assess the 

340 importance of a waveband when numerous components are calculated. Higher VIP scores are considered more 

341 important, where a score greater than 1 is considered as highly influential, between 0.8 and 1 as moderately 

342 influential, and less than 0.8 as less influential [26]. Due to the large number of analyses, only wavebands with 

343 a score greater than 1 were investigated. The VIP scores results in Fig. 3 were shaded according to increasing 

344 values as follows: below 0.99 – unshaded, 1 to 1.49 – green, 1.5 to 1.99 – yellow, 2 to 2.49 – orange, and above 

345 2.5 – red. This allowed easy visual assessment of important spectral regions, appearing as hot zones, and 

346 uninformative regions which remained blank. 

347 Cereals, including maize, comprise of several major chemical constituents, namely starch, protein, 

348 fat/oil and moisture. When interpreting the NIR spectrum of cereal samples, prominent regions are expected to 

349 be associated with chemical bonds present in these constituents. A total of 21 wavebands were selected based 

350 on VIP scores, of which a large number were attributed to starch, including 1879 nm (O–H stretch and C–O 

351 stretch), 2272 nm (O–H stretch and C–C stretch), 2435, 2468 and 2501 nm (all C–H stretch and C–C stretch) 

352 [27, 28]. Absorption bands related to cellulose were in close proximity to the starch associated wavebands, as 

353 the two chemical components are very similar, and included 1847 nm (O–H and C–O stretch) and 2337 nm (C–

354 H stretch and deformation) [29]. Wavebands attributed to protein or amino acids included 1127 nm (N–H 

355 stretch), 2043 nm (N–H symmetrical stretch) and 2239 nm (N–H stretch and NH3 deformation) [27]. While CH2 

356 and CH3 groups are common in organic molecules, fats are the main chemical components in maize associated 

357 with these functional groups and were related to 1159 nm (C–H stretch), 1323 nm (C–H stretch and 

358 deformation), 1716 nm (C–H stretch) and 2305 nm (C–H stretch and deformation) [27, 28]. The wavebands 

359 linked to moisture were among the lower scoring significant VIP scores, which included 964 nm (O–H stretch), 

360 1945 nm (O–H stretch and deformation) and 2403 nm (O–H deformation) [27]. The absorption bands at 1421 

361 and 1912 nm (both O–H stretch) were associated with alcohol groups. Specifically, 1421 nm is attributed to 

362 absorption by an aromatic alcohol and may be related to the amino acid tyrosine, as maize is known to be rich 

363 in this minor component [30]. 

364 The performance of the hierarchical models based on the windows (87.1%) and VIP (84.5%) 

365 wavebands sets were comparable (Table 3). While the windows waveband included 16.7% of the spectral 

366 variables, this was further reduced to 7.3% with little further loss of classification accuracy. The classification 

367 accuracy of white maize was 78.3%, which is a 10% drop from the full spectrum classification. This was 
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368 concerning, as the majority of a white maize grading sample is expected to belong to this class and a large error 

369 is likely to result in an unacceptably high rate of misclassification. However, of the three reduced waveband 

370 sets, the VIP set performed best for the sound maize class. The classification accuracy for the defective white 

371 maize main category also decreased by 10% compared to the full spectrum. This change was most notable in 

372 the subtle defects (e.g. screenings and Diplodia fungal damage). The 18% decrease in classification accuracy 

373 for yellow maize was related to the 18% decrease for heat damage, as a large proportion of the heat damaged 

374 kernels were misclassified as yellow maize and vice versa. Pinked maize was difficult to classify using the full 

375 spectrum, and while a 5% decrease was observed in comparison to the full spectrum, the VIP hierarchical model 

376 outperformed the windows hierarchical model by 3%. Lastly, a small number of the foreign materials were 

377 misclassified (4%), but the occurrence of these materials is very rare due to the use of dockage sorters early in 

378 the processing of maize. A classification accuracy of 95.7% is considered high in NIR hyperspectral imaging 

379 applications, and comparable to the performance of the windows hierarchical model (96.7%).  

380

381 3.5 Covariance selection classification

382 CovSel has not been reported extensively in literature but is a hybrid of the popular SPA technique. It was 

383 prudent to use CovSel in this application, as the samples within each class were highly heterogeneous. An 

384 unsupervised technique (e.g. SPA) will identify sources of variation between all of the spectra, regardless of 

385 class, and would thus include intra-class variation. By considering the covariance between the X- and y-

386 variables, only inter-class variation was considered. Nine of the thirteen CovSel wavebands were associated 

387 with the same spectral features as the VIP wavebands discussed in Section 3.4, including 953 nm (linked to 964 

388 nm), 1122 nm (1127 nm), 1340 nm (1323 nm), 1721 nm (1716 nm), 1869 and 1901 nm (1879 nm), 1939 nm 

389 (1945 nm), 1994 nm (2043 nm) and 2512 nm (2501 nm).  The waveband at 1416 nm was closely related to the 

390 aromatic alcohol band in the VIP set (1421 nm), however 1416 nm is attributed to C–H stretching and 

391 deformation in aromatic rings, and not to the alcohol group (O–H) [26]. Of the three wavebands unique to the 

392 CovSel, two were associated with starch, namely 2097 nm (O–H deformation and C–O stretch) and 2250 nm 

393 (O–H stretch and deformation) [26]. Lastly, the band at 1574 nm (N–H stretch) is specifically related to the 

394 peptide bonds (-CONH-) linking amino acids in proteins [27].

395 While all three of the reduced waveband sets resulted in decreased model performance, CovSel gave 

396 the poorest results, with an overall classification accuracy of 81.9% (Table 3). A notable difference between the 

397 VIP and CovSel sets lies in the range 2250 to 2512 nm (Fig. 2). Numerous high absorbance bands occurred in 

398 this part of the spectrum and the VIP scores clearly highlighted this region. These features were attributed to 

399 C–C and C–H bonds in starch and cellulose, two chemical components which contribute to large proportions of 

400 a maize kernel. The omission of this region from the CovSel waveband set likely contributed to its poor 

401 performance. The class of most concern was sound white maize, which was classified with a relatively low 

402 classification accuracy of 63% (25% decrease compared to full spectrum). Yellow maize was also classified 

403 poorly with an accuracy of 48% (27% decrease). Pinked maize did not exhibit the same dramatic decrease in 

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660



12

404 classification accuracy (3% decrease), and was the only main category in which the windows and VIP 

405 hierarchical models were outperformed by CovSel. 

406 While the capacity of a human to conduct manual classification reliably and consistently is limited [31], 

407 the performance of the CovSel hierarchical model would not be an attractive option for the industry. The cost 

408 of building an instrument based on this set would be the cheapest, as only 4.5% of the original spectral variables 

409 were used. However, the loss of classification ability by removing 95.5% of the spectral variables was too high.

410

411 4. Conclusion

412 NIR hyper- and multispectral imaging show promise as an automated analytical technique for white maize 

413 grading. The complex task of maize grading was broken down to simple binary steps that were assembled in a 

414 single hierarchical decision pathway. The hierarchical model classified the kernels according to their full mean 

415 spectrum with an overall accuracy of 93.3% for the main categories (5 classes) and 75.5% for the sub-categories 

416 (17 classes). While the accuracy of human grading is difficult to determine and accurately compare with an 

417 alternative method, the performance of the NIR hyperspectral imaging method was impressive. 

418 Waveband reduction and optimisation was conducted to establish if a simpler spectral imaging solution 

419 could be provided to the South African maize industry at a lower cost. Three approaches to waveband selection 

420 were investigated, namely waveband windows, VIP waveband selection and CovSel waveband selection. The 

421 overall classification accuracy decreased from 93.3% for the full spectrum to 87.1%, 84.5% and 81.9% for the 

422 windows, VIP and CovSel waveband sets, respectively. The waveband windows approach simply reduced the 

423 number of spectral variables from 288 to 48 by selecting every sixth waveband from the full spectrum, thus 

424 preserving only 16.7% of the spectral variables. The decreased accuracy was consistent across the main 

425 categories, although yellow maize suffered a considerable drop. VIP scores highlighted the 21 wavebands with 

426 the highest weighting throughout the individual PLS-DA models in the hierarchical model. This hierarchical 

427 model performed with similar main category classification accuracies to the windows model, despite using only 

428 7.3% of the spectral variables. CovSel is a sophisticated waveband optimisation algorithm that was used to 

429 select 13 wavebands (4.5% of the spectral variables wavebands) based on the co-variance between the X- and 

430 y-data. However, the overall main category classification was considered too low. Throughout the waveband 

431 selection trials, a trade-off between performance and price was unavoidable. Considering the results of all three 

432 waveband reduction and optimisation approaches, the 21 wavebands selected based on VIP scores (964, 1127, 

433 1159, 1323, 1356, 1388, 1421, 1716, 1847, 1879, 1912, 1945, 2043, 2239, 2272, 2305, 2337, 2403, 2435, 2468 

434 and 2501 nm) are recommended for white maize grading using reduced waveband spectral imaging. 

435 The classification of sound white, pinked white and yellow maize should ideally be improved. This 

436 could be achieved by including visible wavebands, as pinked white maize and yellow maize are distinguishable 

437 due to the presence of anthocyanin (550 nm) and beta-carotene (440 nm), respectively, which do not interact 

438 with NIR radiation. The overall performance and robustness could be improved using a larger sample set 

439 collected over several harvest seasons. Furthermore, this larger number of samples would justify recalculation 

440 of the models using non-linear techniques such as locally weighted PLS-DA, kernel- or dissimilarity-PLSDA, 
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441 or non-linear support vector machines (SVM). Overall, hierarchical modelling allowed for the classification of 

442 17 classes and shows promise for extending the application of NIR hyperspectral imaging to more complex 

443 applications in the food and agro-product industries.
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530 Figure 1 Digital image of all sample classes: (a) sound; (b) Fusarium; (c) Diplodia; (d) heat; (e) water; (f) frost; 
531 (g) pest (rodent); (h) pest (insect); (i) sprouted; (j) immature; (k) pinked; (l) screenings; (m) yellow; (n) sorghum; 
532 (o) soy; (p) wheat; (q) sunflower; and (r) plant material. 
533
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534
535 Figure 2 The pre-processed mean spectrum (SNV transformation) with the windows (grey and red), VIP (red) 
536 and CovSel (green) waveband sets indicated. 
537
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538 Figure 3 The raw mean spectrum of all 1044 calibration samples (top); the pre-processed mean spectrum with 
539 Savitzky-Golay (7 smoothing points; 3rd order polynomial; 1st derivative), SNV and mean-centring 
540 transformations (middle); and the VIP scores for 48 waveband groups (6 wavebands per group) in the PLS-DA 
541 models in classification models.

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080



19

542
543 Table 1 White maize grading main categories and sub-categories, with their shorthand names used in this article, the maximum allowed levels for the best white 
544 maize grade (WM1) and the summarised levels for the 2017/2018 harvest season [only main categories are reported according regulations]. 

Main category Sub-categories Shorthand Max. level (WM1) Average level 
observed 
2017/2018 harvest 
[32]

Sound white maize - Sound N/A
Defective white maize Broken kernels (screenings) Screenings

Fusarium fungal damage Fusarium 
Diplodia fungal damage Diplodia 
Heat damage Heat 
Water damage Water 4.4%
Frost damage Frost 
Pest damage (rodent and insect) Pest 
Sprouted kernels Sprouted 
Immature kernels Immature

7%

Pinked white maize - Pinked 12% 0.4%
Yellow maize - Yellow 3% 0.3%
Foreign materials Soy Soy

Sorghum Sorghum
Sunflower seeds Sunflower 0.1%
Wheat Wheat
Plant material Plant 

0.3%
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546
547 Table 2 Validation results for the classification of 1044 samples using the hierarchical models based on the full 
548 spectrum (288 wavebands). Sub-category classification indicates classification as the true class only and main 
549 category classification as either the true class or a class in the correct main category (where applicable)

Main category Sub-categories Sub-category classification 
accuracy

Main category 
classification accuracy

Sound white maize - 88.3% 88.3%
Defective white maize Average 60.0% 93.3%

Screenings 86.7% 93.3%
Fusarium 95.0% 100%
Diplodia 65.0% 90.0%
Heat 91.7% 95.0%
Water 23.3% 90.0%
Frost 45.0% 96.7%
Pest 40.0% 95.8%
Sprouted 13.3% 86.7%
Immature 79.6% 92.6%

Pinked white maize - 83.3% 83.3%
Yellow maize - 75.0% 75.0%
Foreign materials Average 99.3% 100%

Soy 100% 100%
Sorghum 100% 100%
Sunflower 100% 100%
Wheat 100% 100%
Plant 96.7% 100%

OVERALL 75.5% 93.3%
550
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551 Table 3 Validation results for the classification (main category) of 1044 samples using the hierarchical models 
552 based on the full spectrum (288 wavebands), windows wavebands (48), VIP wavebands (21) and CovSel 
553 wavebands (13) 

Main category Sub-categories Full (288) Windows (48) VIP (21) CovSel (13)
Sound white maize - 88.3% 76.7% 78.3% 63.3%
Defective white maize Average 93.3% 86.7% 83.2% 81.0%

Screenings 93.3% 78.3% 78.3% 73.3%
Fusarium 100% 88.3% 86.7% 83.3%
Diplodia 90.0% 90.0% 71.7% 78.3%
Heat 95.0% 76.7% 76.7% 61.7%
Water 90.0% 88.3% 81.7% 76.7%
Frost 96.7% 90.0% 86.7% 85.0%
Pest 95.8% 93.3% 82.5% 88.3%
Sprouted 86.7% 90.0% 86.7% 93.3%
Immature 92.6% 85.2% 98.1% 88.9%

Pinked white maize - 83.3% 75.0% 78.3% 80.0%
Yellow maize - 75.0% 60.0% 56.7% 48.3%
Foreign materials Average 100% 96.7% 95.7% 94.32%

Soy 100% 100% 100% 100.0%
Sorghum 100% 98.3% 100% 98.3%
Sunflower 100% 100% 100% 100%
Wheat 100% 85.0% 83.3% 83.3%
Plant 100% 100% 95.0% 90.0%

OVERALL  93.3% 87.1% 84.5% 81.9%
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1 Supplementary Information:

2 Hierarchical classification pathway for white maize, defect and foreign 

3 material classification using spectral imaging 

4 Kate Sendin1, Marena Manley1, Federico Marini1,2 & Paul J. Williams

5

6 Architecture of the hierarchical classification pathway

7 The structure of the hierarchical model is given in Table S1. An object starts at Level 1 and is classified 

8 at each level and sub-level as one of the two classes. According to this classification, it follows the 

9 relevant ‘Proceed to’ instruction to subsequent levels until reaching a ‘Final classification’ instruction.

10 The classification pathway begins at Level 1, where all maize classes and all foreign materials 

11 were separated based on a single PLS-DA latent variable (LV) (Q2 = 0.86). If an object was classified 

12 as a maize kernel, it proceeded to classification in Level 2. If it was a foreign material, it proceeded to 

13 Level 3.

14 Level 2 was the most challenging section of the hierarchical model. Twelve closely related 

15 classes had to be separated sequentially, which included the main categories sound maize, yellow maize, 

16 pinked maize and defective maize (9 sub-categories). By calculating models of one class vs. grouped 

17 class of all remaining classes, the order was determined as follows: 2a – Screenings (Q2 = 0.74); 2b – 

18 heat damage (Q2 = 0.55); 2c – Fusarium fungal damage (Q2 = 0.68); 2d – immature kernels (Q2 = 0.75); 

19 2e – water damage (Q2 = 0.50); 2f – Diplodia fungal damage (Q2 = 0.61); 2g – yellow maize (Q2 = 

20 0.68); 2h – sound white maize (Q2 = 0.81); 2i – sprouted kernels (Q2 = 0.76); 2j; frost damage (Q2 = 

21 0.76); 2k – pinked white maize and pest damage (Q2 = 0.75).

22 The classification of foreign materials in Level 3 was less challenging, as this was separating 

23 different commodities, not classes of a single commodity. The previous findings of Sendin et al. (2019) 

24 revealed that the spectral signature of plant materials and sunflower seeds lacked absorbance by starch, 

25 leading to easy differentiation from wheat, soy and sorghum [1]. Instead, plant materials and sunflower 

26 seeds were characterised by a cellulose-rich surface chemistry. Thus, foreign materials were first 

27 separated as cellulose-rich vs. starchy. A two-way PLS-DA model was calculated for plant material vs. 

28 sunflower seeds (Q2 = 0.89). Only one LV was required, as the model error increased with the addition 

29 of LVs. Due to sufficient differences between wheat, soy and sorghum, a step-wise approach was not 

30 necessary, and a three-way PLS-DA was calculated (Q2 = 0.95).

31 The secondary classification step was introduced to minimise misclassification between closely 

32 related classes. Due to the large number of classes used, a clear separation between each class was not 

33 expected. During hierarchical model development, the classification results of the one class vs. all 

34 remaining classes were examined. If a large number of the misclassifications (ca. 5+) were due to 

35 confusion with a specific class, a secondary step was included. If only one or two misclassifications 

36 were due to a specific class, the step was not included in order to avoid overfitting. Using similar classes 



37 screenings (broken kernels) and rodent damage (bitten kernels) as an illustration, the classification of 

38 screenings occurs early in the hierarchical model (Level 2a) when many classes remain. As rodent 

39 damage had not yet been classified (Level 2k), all rodent damage kernels should be classified in the 

40 group class and continue to subsequent classification steps. However, many were misclassified as 

41 screenings, and thus did not continue to the following steps. As a corrective measure, all objects 

42 classified as screenings were predicted by a second two-way PLS-DA model of screenings vs. rodent 

43 damage, where the result of this secondary step is taken as the final classification result. The secondary 

44 step classification models had higher Q2 values and excellent cross-validated classification accuracies 

45 (often 98 – 100%), and single classes were well-defined and easily separated. The number of errors was 

46 greatly reduced by including this step.

47 To illustrate how a kernel ideally flows through the hierarchical model decision pathway from 

48 beginning to final classification, a heat damaged kernel is used as an example (see Table S1): 

49 1. Level 1: Classified as the class ‘Group: sound, all defects, pinked & yellow’, where the instruction 

50 ‘Proceed to Level 2’ is given.

51 2. Level 2a: Model of screenings vs. grouped class (heat, Fusarium, immature, water, Diplodia, 

52 yellow, sound, sprouted, frost, pinked & pest) classified the kernel as the grouped class, where the 

53 instruction ‘Proceed to Level 2b’ is given.

54 3. Level 2b: Model of heat vs. grouped class (Fusarium, immature, water, Diplodia, yellow, sound, 

55 sprouted, frost, pinked & pest) classified the kernel as heat damaged, where the instruction ‘Proceed 

56 to 2nd classification’ is given

57 4. Second classification step: Model of heat damage vs. yellow maize classified the kernel as heat 

58 damage, giving a final classification of ‘heat damage’.

59
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Table S1 Full spectrum hierarchical model structure, consisting of 3 main levels and 15 sub-levels, with a total of 25 PLS-DA classification models. Each 
object enters the decision pathway at Level 1 and follows the relevant instructions according to classification result by the PLS-DA model.

CLASS ONE CLASS TWO CLASS THREE 2nd CLASSIFICATION LVs; Q2

LEVEL 1: MAIZE vs. FOREIGN MATERIALS

1
Group: sound, all defects, pinked & 
yellow  
Proceed to LEVEL 2

Group: soy, sorghum, sunflower, wheat 
& plant
Proceed to LEVEL 3

- -
1: 7; 0.861

LEVEL 2: MAIZE CATEGORIES & SUBCATEGORIES

2a
Screenings
Proceed to 2nd classification step

Group: heat, Fusarium, immature, 
water, Diplodia, yellow, sound, 
sprouted, frost, pinked & pest
Proceed to 2b

-
Screenings vs. pest (rodent)
Final classification = predicted class

2a: 12; 0.744
2nd: 4; 0.810

2b
Heat 
Proceed to 2nd classification step

Group: Fusarium, immature, water, 
Diplodia, yellow, sound, sprouted, frost, 
pinked & pest
Proceed to 2c

-
Heat vs. yellow
Final classification = predicted class

2b: 16; 0.554
2nd: 7; 0.847

2c
Fusarium 
Final classification = ‘Fusarium’

Group: immature, water, Diplodia, 
yellow, sound, sprouted, frost,  pinked & 
pest
Proceed to 2d

- - 2c: 11; 0.678

2d
Immature 
Proceed to 2nd classification

Group: water, Diplodia, yellow, sound, 
sprouted, frost, pinked & pest
Proceed to 2e

-
Immature vs. water
Final classification = predicted class

2d: 10; 0.754
2nd: 8; 0.704

2e
Water 
Proceed to 2nd classification

Group: Diplodia, yellow, sound, 
sprouted, frost, pinked & pest
Proceed to 2f

-
Water vs. yellow 
Final classification = predicted class

2e: 7; 0.501
2nd: 7; 0.938

2f
Diplodia 
Final classification= ‘Diplodia’

Group: yellow, sound, sprouted, frost, 
pinked & pest
Proceed to 2g

- - 2f: 12; 0.612



2g
Yellow 
Proceed to 2nd classification

Group: sound, sprouted, frost , pinked & 
pest
Proceed to 2h

-
Yellow vs. heat
Final classification = predicted class

2g: 14; 0.678
2nd: 7; 0.847

2h
Sound
Final classification = ‘Sound’

Group: sprouted, frost, pinked & pest
Proceed to 2i - - 2h: 14; 0.809

2i
Sprouted 
Proceed to 2nd classification

Group: frost, pinked & pest
Proceed to 2j -

Sprouted vs. water 
Final classification = predicted class

2i: 15; 0.757
2nd: 5; 0.867

2j
Frost 
Proceed to 2nd classification

Group: pinked & pest
Proceed to 2k -

Frost vs. water 
Final classification = predicted class

2j: 11; 0.758
2nd: 6; 0.835

2k
Pinked 
Proceed to 2nd classification (1)

Pest
Proceed to 2nd classification (2) -

(1)Pinked vs. sound
(2) Pest vs. Diplodia
Final classification = predicted class

2k: 4; 0.751
2nd (1): 11; 0.948
2nd (2): 16; 0.856

LEVEL 3: STARCHY vs. CELLULOSE-RICH FOREIGN MATERIALS

3a
Soy, sorghum & wheat 
Proceed to 3b

Sunflower & plant  
Proceed to 3c - - 3a: 7; 0.968

3b
Soy
Final classification = ‘Soy’

Sorghum 
Final classification = ‘Sorghum’

Wheat
Final classification = ‘Wheat’ - 3b: 6; 0.954

3c
Sunflower 
Final classification = ‘Sunflower’

Plant
Proceed to 2nd classification -

Plant vs. screenings 
Final classification = predicted class

3c: 1; 0.893
2nd: 8; 0.913


