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ABsTrRACT. We propose and analyze a generalized two dimensional XY model,
whose interaction potential has n weighted wells, describing corresponding
symmetries of the system. As the lattice spacing vanishes, we derive by
I'-convergence the discrete-to-continuum limit of this model. In the energy
regime we deal with, the asymptotic ground states exhibit fractional vortices,
connected by string defects. The I'-limit takes into account both contributions,
through a renormalized energy, depending on the configuration of fractional
vortices, and a surface energy, proportional to the length of the strings.

Our model describes in a simple way several topological singularities arising
in Physics and Materials Science. Among them, disclinations and string de-
fects in liquid crystals, fractional vortices and domain walls in micromagnetics,
partial dislocations and stacking faults in crystal plasticity.
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INTRODUCTION

Since the pioneering paper by Kosterlitz and Thouless [32], the XY model is
considered the classical example of discrete spin system exhibiting phase transitions
mediated by the formation and the interaction of topological singularities. Even
at zero temperature the model presents interesting features: Depending on the
energy regime, the geometry of the ground states is very rich, going from uniform
to disordered states, all the way through isolated vortex singularities and clustered
dipoles. Both topology and energy concentration take place at different length
scales, thus making the analysis fascinating and popular also in the mathematical
community.

In this paper we focus on the variational analysis of a two dimensional modified
XY model at zero temperature, describing the formation of fractional vortices
and string defects. Our main motivation comes from observing that this kind of
singularities characterizes several discrete systems in Physics and Materials Science
such as disclinations and string defects in liquid crystals [37], fractional vortices
and domain walls in micromagnetics [42], partial dislocations and stacking faults in
crystal plasticity [29]. We do not focus on the specific details of any of such models,
rather we aim at providing a simple variational model highlighting some of their
relevant common features.

Given a bounded open set Q C R?, the classical XY energy on the lattice eZ2N)
is given by

(0.1) XY.(v) = =Y (v(i), (),

(4,3
where the sum is taken over pairs of nearest neighbors (i, j); i.e., i, j € eZ2N§ with
li —j| = ¢, and v : QN eZ? — S! is the spin field. By writing v = €, the XY
energy can be rewritten - up to constants - as

02) XV.(0) = 3 F0G) — 0(0),
(i,4)

where f(t) = 1 — cos(t). The rigorous upscaling as ¢ — 0 of the XY, functional
- and more in general of discrete spin systems governed by 27-periodic potentials
f - has been recently obtained in [3, 4, 5, 24| in terms of I'-convergence. Loosely
speaking, configurations with energy of order C|loge| exhibit a finite number (con-
trolled by the pre-factor C') of vortex-like singularities. Around each singularity the
order parameter v looks like a fixed rotation of the map (‘;—l)d where d € Z is the
degree of the singularity. There the energy concentrates and blows up as |d||loge]|.
This analysis is then refined exploiting the next lower order term in the energy
expansion. Indeed, after removing the logarithmic leading order contribution, a
finite interaction energy, referred to as renormalized energy, remains. The renor-
malized energy depends on the positions and the degrees of the vortices, and it is
considered the main driving force responsible for their dynamics [5, 6]. The strategy
adopted to analyze the XY model exploits methods and tools from the earlier anal-
ysis developed for the continuous Ginzburg-Landau functionals [14, 30, 1, 39, 7].
Moreover, these techniques have been successfully used to understand in terms of
I'-convergence the well-known analogy between vortices in the XY model and in
superconductivity, and screw dislocations in anti-plane linearized elasticity [4, 38|.
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To some extent, this analogy extends mutatis mutandis to many other topological
defects in liquid crystals, micromagnetics and crystal plasticity. Let us introduce
and motivate our model using the language of planar uniaxial nematics. In the
Oseen-Frank and Ericksen picture, nematics are described by a vector field u =
e'?, the director, that (in two dimensions) takes values in S'. The molecules are
supposed to interact via an elastic potential depending only on their orientation .
If the nematic molecules present head-to-tail symmetry, the interaction potential
is m-periodic. Therefore there is a clear identification between a 2-dimensional
nematic lattice model and the XY spin model. Doubling the phase variable ¢
of the director, the interaction potential becomes 27-periodic so that the nematic
energy can be written as in (0.2) with ¥ = 2¢. This corresponds to the Lebwohl
and Lasher functional ([33]) recently studied by I'-convergence in [17]. Since in the
classical XY model integer vortices appear, as result of the identification 9 = 2,
for liquid crystals the relevant topological singularities are half vortices, namely the
disclinations.

The presence of half vortices is related to orientability issues of the director, that
can be better described and visualized in a continuous framework: in a configuration
consisting of two half vortices, the director field cannot be smooth everywhere.
Indeed, it has antipodal orientations on the two sides of a line joining the half
vortices. According to [34], we call this kind of discontinuity lines string defects
(see Figure 1). A first rigorous study of orientability issues related to the presence
of half vortices can be found in [12], while the right space to describe discontinuous
directors has been very recently identified in [13] as a suitable subspace of SBV,
the space of special functions with bounded variation.

FIGURE 1. The spin field close to two half vortex pairs (the degree
of the vortices is (+1/2,+1/2) in the left picture and (4+1/2,—1/2)
in right one). The shaded regions highlight necessary antipodal
spins forming the string defects.

In this paper we provide a quantitative analysis of such orientability issues,
by introducing energy functionals which describe both half, and in fact fractional
vortices, and string defects. To this end, we propose a modified XY model, that
draws back to [22, 31, 34, 37, 15]. We consider 2x-periodic potentials, acting on
nearest neighbors, and having n € N wells in [0, 27); in one well the potential is zero,
while in the remaining n — 1 it is positive but vanishing as € goes to zero. In this
way, we model systems with one symmetry, and n — 1 vanishing asymmetries. The
case n = 2 provides a simple toy model for liquid crystals with small head-to-tail
asymmetry, like those made of non centrosymmetric or chiral molecules [36].

More specifically, we consider potentials fe(n) with n — 1 wells of order ¢ (see
Figure 2). Having n wells in the potential produces fractional vortices of degree
:I:%, while the additional energy due to the weighted n — 1 wells yields, together
with the renormalized energy, a new term in the limit, depending on the length of
the string defects. The specific e-scaling of the wells makes finite the string defect
energy, and hence of the same order of the renormalized energy. Other scalings
could be considered, leading to different limit theories.
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FIGURE 2. The plot of the potential fg(n) for n = 2 obtained trun-
cating 1 — cos(2t) at level € around the odd wells.

Let us describe our model and results in more details. Given a discrete director
field configuration u. = e'?<, we introduce the modified XY energy functional

(0.3) Fi(p) =5 > 1)) — 0(i)-

(i.4)
We show that configurations u. = e*? with .Fg(n)(cps) ~ Mm|loge| are consis-
tent with the formation of M fractional vortices at x1,...,zy having degrees :l:%.

Moreover, up to a subsequence, u. strongly converges in L' (; R?) to some unitary
field u belonging to SBV (;S') with u™ € HL (Q\ {z1,...,2m};S?). Indeed in
Theorem 3.2 we prove that the functionals F™ (pe) — M| loge| T-converge to the
limit energy ]-"én) (u) given by

(0.4) FO () = W) + My + / vy Y.
S

Here W(u™) represents the renormalized energy; it depends on the positions and
signs of the fractional vortices, but also on the excess energy due to unneeded
oscillations of u; indeed, minimizing W(u™) with respect to all director fields u
compatible with the given configuration of fractional vortices gives back the classi-
cal renormalized energy for vortices in superconductivity [14]. The constant v is a
core energy stored around each singularity, and has memory of the discrete lattice
structure. The third addendum is the anisotropic length of the string, reminiscent
of the lattice symmetries. We note that the analysis by I'-convergence of discrete
functionals leading to such anisotropic interfacial energies is a well established re-
search field [2, 16, 21]. On the other hand, limit energies as in (0.4) may appear
also as T-limits of continuous Ginzburg-Landau type functionals. Actually, in [2§]
the authors propose and study a variant of the standard Ginzburg-Landau energy,
that could be seen as a continuous counterpart of our modified XY model.

We remark that our I'-convergence result can be considered the first step to-
wards the study of the joint dynamics of strings and vortices, as well as partial
dislocations and stacking faults. We expect that the competition between the sur-
face and the renormalized energies generates non-trivial metastable configurations.
As a matter of fact, neglecting boundary effects, two equally charged vortices - in
the classical XY model - repel each other with a force proportional to the inverse
of their distance, so that they are never in equilibrium. On the other hand, since in
the generalized XY model the surface term diverges with the distance between the
vortices, there exists a critical length at which the two forces balance and equilib-
rium is reached. In this respect, it seems interesting to investigate the dynamics of
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strings and fractional vortices driven by the limit energy functional }‘én), through
both rigorous mathematical analysis and numerical simulations.

1. PRELIMINARIES ON BV AND SBV FUNCTIONS

Here we list some preliminaries on BV and SBV functions that will be useful in
the following. We begin by recalling some standard notations.

Let A C R? be open bounded with Lipschitz boundary. As customary, BV (A; R?)
(resp. SBV (A;R%)) denotes the set of functions of bounded variation (resp. special
functions of bounded variation) defined on A and taking values in R%. Moreover,
we set BV (A) := BV (A;R) and SBV (A) := SBV(A;R). Given any set Z C RY,
the classes of functions BV (A;Z) and SBV(A;Z) are defined in the obvious way.
We refer to the book [10] for the definition and the main properties of BV and
SBYV functions.

Here we recall that the distributional gradient Dg of a function g € SBV (A;R%)
can be decomposed as:

Dg=VgLLA+ (g7 —g ) ®@v,H' LSy,

where Vg is the approximate gradient of g, S, is the jump set of g, vy is a unit
normal to S, and gT are the approximate trace values of ¢ on Sy.
For p > 1, SBVP(A;R?) denotes the subspace of SBV (A;R?) defined by

SBVP(A;RY) := {g € SBV(A;R?) : Vg € LP(A;R*), H(S,) < +oo}.

Moreover, SBV{? (A;R%) denotes the class of functions belonging to SBVP(A’;RY)
for all A’ CC A open.

We recall three results about compactness, lower semicontinuity and density
properties of SBV? and SBV/? functions.

loc

Theorem 1.1 (Compactness [8]). Let {gn} C SBVP(A;RY) for some p > 1. As-
sume that there exists C > 0 such that

A1) [Vl e+ U (S0) + lanl s aney < € for allh €N,

Then, there exists g € SBVP(A;R?) such that, up to a subsequence,
gn — g (strongly) in L'(A;RY),
(1.2) Vgn — Vg (weakly) in LP(A; R?d),
lim inf #' (S, N A") > H'(S; N A),
— 00
for any open set A’ C A.

In the following, we say that a sequence {g} C SBVP(A;R?) weakly converges
in SBVP(A;R?) to a function ¢ € SBVP(A;RY), and we write that g, — g¢
in SBVP(A;R?), if g; satisfy (1.1) and g, — ¢ in L'(A;R%). Moreover, we
say that {gn} C SBV (4;R?) weakly converges in SBV{’ (A;R?) to a function
g € SBVE (A;RY), and we write that g, — ¢ in SBV (4;R?), if g — ¢ in
SBVP(A’;R?) for any open set A’ CC A.

Theorem 1.2 (Lower semicontinuity [9, 10]). Let K C RY be compact and let
Cop>0. Let © € C(K x K;[Cy,00)) be a positive, symmetric function satisfying

(1.3) O(a,c) < O(a,b) + O(b,c) for all a,b,c € K,
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and let ¥ € C(R%RY) be an even, convex and positively 1-homogeneous function
satisfying ¥ (v) > Colv| for all v € St.
If {gn} Cc SBV} (A; K) and g, — g in SBV, (A;RY) for some p > 1, then

(1) [ elgtg ), an <hmmf/ 057,97 )W (v, ) AH.
SQ

Finally, we state the density result proved in [18, Theorem 2.1 and Corollary
2.4]. First we recall that a polyhedral set in € is (up to a H! negligible set) a finite
union of segments contained in €.

Theorem 1.3 (Density [18]). Let Z C R? be finite and let g € SBV (A; Z). Then
there exists a sequence {gn} C SBV(A; Z) such that Sy, is polyhedral, g, — g in
SBVP(A;RY) for any p > 1, and

Jim / O(Gr G s vgn) AW = / o9t 97 vg) dH!
— 00 . Sg

for any continuous function ¢: Z x Z x St — R satisfying ¢(a,b,v) = ¢(b, a, —v)

for all (a,b,v) € Z x Z x 8. In particular, |Dgn|(A) — |Dg|(A).

2. DESCRIPTION OF THE PROBLEM

Let n € N be a fixed natural number, and let & C R? be an open bounded
set with Lipschitz continuous boundary, representing the domain of definition of
the relevant fields in the models we deal with. Additionally, to simplify matter,
we assume that 2 is simply connected. This is convenient in our constructions
where we make use of Poincaré Lemma (as in proof of Lemma 4.3). Nevertheless,
this assumption can be removed with some slight additional effort in our proofs, by
introducing a finite number of “cuts” ; in €, such that Q\U;~; is simply connected.

1. The discrete lattice. For every € > 0, we set

Q. = U i+,
i€eZ?: i+eQCQ

where Q = [0,1]? is the unit square Moreover we set QY := £Z? N ()., and Q] =
{(2 J) €W xQ0:|i—j|=e¢, [i,j] C Q.}, where [i, j] denotes the (closed) segment
joining ¢ and j . These objects represent the reference lattice and the class of nearest
neighbors, respectively. The cells contained in (). are labeled by the set of indices
02 = {ie:i+eQ CQ.}. Finally, we define the discrete boundary of © as
0.9 := 0. NeZ2. In the following, we will extend the use of such notations to any
given subset A of R2.

2.2. Discrete functions and discrete topological singularities. Here we in-
troduce the classes of discrete functions on 0 and a notion of discrete topological
singularity. We first set
AF(Q) := {¢: Q2 > R},
and we introduce the class of admissible fields from Q2 to the set S* of unit vectors
in R?2
AXY.(Q) = {w: Q2 —» S'}.
For any ¢ € AF.(Q), w € AXyE(Q), and for any (i,5) € Q! we set
Ao, j) :=v() —¢@),  dw(ij) :=w(j) —wli).
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Following the formalism in [5], we introduce a notion of discrete vorticity for any
given function ¢ € AF (). To this purpose, let P : R — Z be defined as follows

(2.1) P(t) = argmin {|t — s|: s € 27Z},

with the convention that, if the argmin is not unique, then P(t) is the smallest one.
Let ¢ € AF.(Q) be fixed. For every (i,j) € QL, we define the signed distance of
the discrete gradient of ¢ from 277, as

el s\ L dﬂ}(z,j)—P(dd)(Z,])) leS.]
(22) ) "{ (i, j) + P(Ab(1) if j <i,

where i < j means that i; < j; for [ € {1,2}. Notice that by definition d® (i, j) =
—d®(j,4) for all (i,5) € QL. For every i € Q2 we define the discrete vorticity of
the cell i + Q) as

1
(2:3) ay(i) =5 (ol°1 Wi, +eer) +dV (i + ser, i+ cey + een)
+d (i + eey + ceq, i + cea) + A (i + ceo, z)) .

One can easily see that the vorticity oy, takes values in {—1,0,1}.

Stokes” Theorem in our discrete setting reads as follows. Let A C 2 with A,
bounded and simply connected. Set L := #0.A and let 9. A := {i!,... i}, with
(i',4!*1) € Al for any I = 1,..., L — 1, and notice that (i*,i') € Al. Then, for any
P e AF-(Q), it holds

(2.4) Z d® (it ittty 4 d e =21 > oyl

1€A?2

We define the vorticity measure p(¢) as follows

(2.5) =T Z Oéw Z £(e1te2)-

1€Q2

Let A C R%. For any p = n Y.~ did,, with N € N, d; € Z\ {0} and z; € 4,
the flat norm of u is defined as

||/~L||ﬂat = sup <M777>
.0 (1) <1

Whenever it will be convenient, we will declare the domain A of the test functions
7 in the definition of the flat norm by writing [|||gas(a) instead of |[|p|laas. We will

denote by p, flag 1 the flat convergence of u,, to p.

It is well-known that the flat norm of u is related to integer 1-currents T with
OT = p and having minimal mass (for the theory and terminology of integer currents
we refer the reader to [26]). More precisely, by [26, Section 4.1.12] (see also [5,
formula (6.1)]) there holds

min [T| = sup (u,7n),
T=p n€Lip! (A)
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where Lip'(A) is the set of functions 7 with supm;eA W < 1. Since for
y#x
every n € Wy ™ (A) we have
n(y) = n(@)] , n(y) = n(@)]
sup —— < ||nllyre gy < (14 diam(2)) sup ———=—
z,y€A ly — | Wo ™ (4) z,ycA ly — x|
yF#T y#T

we deduce that

2. in |T| > ap > ———————— T
(26) i, 1T = ellone = Ty SR, 1T

2.3. The discrete energy. Here we will introduce a class of energy functionals
defined on AF (). Let f: R — R be a continuous 2m-periodic function such
that

(i) f(t) 1f and only if t € 27Z;

(i) f(¢) — cost for any t € R;

(iii) f(t) —|— O(t3) as t — 0.

and set f (“)( t) := f(nt). For any fixed € > 0, we consider the pairwise interaction
() R 5 R+ defined by

(2.7) F @) = ™) v 52X[(§+2k‘n—,—§+(2k+2)n] (t).
kez

|| I\/ ||

potentials fE

We stress that the analysis done in this paper might be extended with minor changes
to a larger class of potentials such as the smooth ones considered in [31].
For any ¢ € AF.(§), we define

(2.8) F™ (g Z F () = (i)
(m)eﬁl

For the convenience of the reader, we now introduce two additional energy func-
tionals, which will be useful in the proof of our main result. We define

(2.9) Fm(g) = % S FWG) - 06), for any ¥ € AF.(Q),
(4,5)€0t

(2.10) XY (v) := i Z lv(j) — v(i)|?, for any v € AXY.(Q).
(4,5)€Ql

Let ¢ € AF.(Q2) and set 9y, := nop, u, 1= ¥ and v, := e’ = u2. By (i), we
have that

(211)  F(@)2 P02 5 S (- cosl()  9)) = XV (u).

(7)€l

In the following we will consider also the localized version of the energy ]-'E(n) (),
defined for any set D C 2 by

F (g, D) : Z (e o(i)).
(Z,])EDl

The localized versions of the energies F¥™(-) and XY.(-) on a set D C § are
analogously defined and are denoted by F¥™ (-, D) and XY.(-, D), respectively.
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2.4. Extensions of the discrete functions. Here we introduce the extensions of
our discrete order parameters to the whole domain.

In order to extend the discrete functions from Q0 to the whole ., we will use
two types of interpolations depending on whether the function is scalar or vector

valued. To this purpose, we consider the triangulation defined by the following sets:
(2.12) {T; Yicaz == {Co(i,i +ce1,i+ecer +eea) ficqz,
' {T Yicqz :={Co(i,i+cer +eea,i+eer)icaz,

where, for any i,j,k € R2, Co(i,j, k) denotes their convex envelope. Let w €
AXY.(Q). According to (2.12), we define the piecewise affine interpolations of w
in an as follows: for any i = (i1,42) € Q2 and for any = = (z1,72) € i + £Q, we set

g

w(i)+ dw(i+se2’i+sel+662) (x1 — i1)+7dw(i’i+sez) (w2 —ia), if 2 € T;F.

w(l)"‘w(xl . i1)+dw(i+eel,i+ae1+sez)(mz . ig), if o e T,
A(w)(x):=

One can easily check that, for any open set D C  and for any w € AXY(Q),
1
(2.13) XY.(w,D) > 5/ |VA(w)]*d .
D.

Let o € AF-(Q). Wesay that (i,j) € QL is a jump pair of ¢, if dist(d (i, ), 27Z) >
= and we denote by J P, the set of jump pairs of . Furthermore we say that i+¢ Q
(i € Q2) is a jump cell, if (j, k) is a jump pair of ¢ for some bond
(4, k) € {(i,i +ee1), (i +cer,i+eer +€er), (i +eea, i +ce1 + cea), (1,1 + €ea) }.

We denote by JC,, the set of jump cells of ¢.
Now, recalling that u, = €'?, we set

(2.14) () = up(t) ifxei+eQ withi+eQ e JC,,
A(uy,) otherwise in ..

Finally, recalling that v, = e™?, we set 0, := A(v,). With a little abuse of
notations we identify the functions 4, and 9, with L' functions defined on €, just
by extending them to 0 in Q \ €.

3. THE MAIN RESULT

In this section we state our I'-convergence result for the energies .Fs(n) defined
in (2.8). To this purpose, we precisely define its I'-limit fén). As mentioned in
the Introduction (0.4), the functional ]—"én) is given by the sum of three terms: the
renormalized energy VW, representing the energy far from the limit singularities, the
core energy -y, and the anisotropic surface term measuring the length of the string
defects.

3.1. The I'-limit. We start by defining the renormalized energy W. Fix M € N,
we set

M
(31) Dy :={ve W' Q8" : Jv= WZdic;wi for some d; € {—1,1}, z; € Q
i=1

with z; # z; for i # j, and v € HL(Q\ (supp Jv); ")},
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where Jv denotes the distributional Jacobian of v = (vy,vs) (see for instance [30]),
defined by
Jv = div(v1 0y, V2, —01 04, V2).
As shown in [5], if v € Dy with Jv:=7 Zf\il d;dz,, then the function
1 /

2 Jo\uM, By
is monotonically decreasing with respect to o. Therefore, it is well defined the
functional W : Djy; — R given by

(3.3) W(v) := lim w(o, ).

o—0

(3.2) w(o, Q) |Vol2dx — Mr|logo|

We introduce also the localized version of the energy W. For any open D C () with
supp Jv C D, we consider w(v, D) defined as in (3.2) with Q replaced by D, and
set

(3.4) W(v, D) := lim w(o, D).
o—0
Remark 3.1. Set
M
(3.5) D= {v € Hp () (U{J;l}),Sl) for some z; €
i=1

with z; # z; for i # j, and deg(v,0B,(x;)) = £1
for any o < n;ém{%kcl — x|, dist(z;,00)} },
i#]

where deg(v, 0B, (z;)) denotes the degree of v on 0B, (z;) (see for instance [20, 7]).
As shown in [5], the renormalized energy W(v) in (3.3) is well defined for any
v € Dps. Moreover, by |5, Remark 4.4], if W(v) < +o00, then the Dirichlet energy
of v is uniformly bounded on all diadic annuli around each z;. By using Hélder
inequality (on each diadic annulus) we obtain that v € WH(Q; St). In particular
the class of functions in Dy; with W(v) < +oo coincides with the class of functions
in Dy with W(v) < +oo. Finally, we notice that if v € Dy with W(v) < +oo,
integration by parts easily yields

M
Ju=m Z deg(v, 0By (2;))0s, -
i=1
In order to define the “finite core energy” v, we consider an auxiliary minimization

problem. Given 0 < € < o, we set

— : sym 90 — .
(3.6) v(g,0): goeAH]l»‘lsr%B,,) {FZ™(9,By) : () =6(-) on 9.B, },

where FY™ is defined in (2.9) and 6(z) denotes the angular polar coordinate for
any z € R?\ {0}. Moreover, we set
(3.7 v :=lim (g, 0) —7r|log£|.
e—0 o
By [5, Theorem 4.1] the above limit exists, is finite and does not depend on o.
Finally, for any M € N, we define the domain of the I'-limit as
DYy :={u € SBV(;S") : u™ € D, u € SBVZ,(Q\ (supp Ju”); S1),

(3:8) H'(Su) < +oo},
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and for any u € Dj; we set
(3.9) F§ (u) = W(u®) + My + / vy MY,
Su

where, for any v = (v1,v2) € R?, |v|; := |v1| + |v2| denotes the 1-norm of v.

3.2. The I'-convergence result. We are now in a position to state our I'-convergence

result. We recall that the assumptions on the interaction potentials fs(n) are listed
in Subsection 2.3. Moreover, given ¢ € AF.(2) we recall that ¥, := n¢ and
v, = €. In order to ease the notations, for any function ¢. € AF.(Q2), we
will denote the fields ¥,_, uy_, Uy, , Ve, , Uy, (introduced in Subsection 2.4) by
Ve, Ug, Ue, Ve, Ue, respectively; for the same reason, we will denote by p. the dis-
crete vorticity measure p(d).

Theorem 3.2. Let n,M € N be fized. The following I'-convergence result holds
true.

(i) (Compactness) Let {¢oc} C AF:(2) be a sequence satisfying
(3.10) F™(p.) < Mr|loge| + C,

for some C € R. Then, up to a subsequence, pi. flag w= ﬂzf\il didy, with N € N,
d; € Z\ {0}, z; € Q, z; # xj for i # j and Zfil |d;| < M.

Moreover, if Y. |d;| = M, then |d;| =1 and there exists v € Dy, with Ju™ = p
such that, up to a further subsequence, 4. — u in SBV;2 (2 \ UM, {z;}; R?).

(it) (T-liminf inequality) Let v € DY, and let {p:} C AF(Q) be such that pe a

Ju™ and G. — u in L*'(Q;R?). Then,
(3.11) lim inf F (ip2) — M| loge| > F™ (w).
e—

(ii) (T-limsup inequality) Given u € Dy, there exists {¢c} C AF:(S2) such that
He B Jun, d. = win SBV2.(9\ Uij\i1{xi}§R2) and

(3.12) lim F{™)(i0.) — Mr|loge| = 7™ (u).

A similar T'-convergence result for the functional F2¥™ has been proved in [5].
For our purposes it is convenient to present here its precise statement using our
notations.

Theorem 3.3. Let M € N be fized. Let {9.} C AF-(Q) be such that F™(J,) <
Mm|loge|+C, for some C € R. Then, up to a subsequence, fic o w=m Ziil didz,
with N € N, d; € Z\ {0}, z; € Q, x; # z; for i # j and Zf\i1 |di| < M;
moreover, there exists a constant C' € R such that for anyi=1,..., M and for any
o < 1 dist(z;, 0QU Ujxi @), there holds

(3.13) lim inf F2¥™ (0., By (,)) — ldi] logg > C.

In particular,

(3.14) lim inf F¥™ (9,) — 7|u|(Q) log = > MC.
e—0 IS

Furthermore, if Ziil |di| = M, then
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(a) |di] =1 foranyi=1,...,M;
(b) up to a further subsequence, H.—v in HL_(Q2\ (supp p);R?) for some v €
Dy with Jv = p;
(c) lim i(r)lf FY(D., D)—Mnrl|loge| > W(v, D)+ M~, for any open D C Q with
e—
supp Jv C D.

Remark 3.4. Since in [5] it is not explicitly stated that Jv = p, for the reader’s
convenience we provide here a short proof of this fact.
As proven in [4], if F2¥™(9,) < C|loge|, then

(3.15) Jio—pe B0 ase— 0.

Now let F¥™(9.) < Mnrl|loge| + C, pe a W= in]\il d;6,, with |d;| =1 and
z; € Q, x; # xj for i # j, and 6.—v in HL (Q\ (supp p); R?) for some v € Dyy.
Let ¢ := (v10;,v2, —v103,v2) and let _Z. be analogously defined with v replaced
by 9. Then, Ju = div_#, Jo. = div_¢., and _#. — ¢ in L2 (Q\ UM, {z:};R?).

Let o be as in (3.5) and let n : Ry — [0, 1] be the piecewise affine function such
that 7 = 1in [0, §], » = 0 in [0, +00) and 7 is affine in [§,0]. Fixie {1,..., M}
and set n;(x) := n(|x — 24]) for any x € Q. Then, in view of (3.15), we have

di = (u,m;) = lim (pe, m;) = lim Joen; dx
e—0 e—0 Bo(zi)
:—hm/ /E-dexz—/ F - Vn;dx = deg(v,0B,(x;)),
e—0 Bo(z:) Ba(mi)\B% (z4)

which combined with the fact that Ju =0 in Q\ Ugl{xi}, yields Jv = p.

4. PROOF OF THEOREM 3.2

This section is devoted to the proof of Theorem 3.2. In what follows the letter
C will denote a constant in R that may change from line to line; if the constant C
will depend on some parameters ayq, ..., ax we will write Cy,, . .. Moreover, for

any p > 0, for any D C Q open and for any v = WZ?; d;dy,, we set

N
(4.1) D,(v) =D\ | By(y:)-

i=1
4.1. Proof of (i): Compactness. By (2.11) and by (3.10), we immediately get
(4.2) FI™(9.) < Mr|loge| + C;

therefore, by Theorem 3.3, we have that, up to a subsequence, p. flag w1 for some p
with all the desired properties. Let us assume that Zi\il |d;| = M. By Theorem
3.3(a), we get that |d;| = 1, and by Theorem 3.3(b), up to passing to a further
subsequence, 9.—v in H_(2\ (supp u); R?) for some v € Dy with Jv = p.

Now we prove that @ — u in SBV;2 (2 \ UM, {z;};R?), for some u € DY, with
u™ = v, and hence, in particular, Ju® = p. Consider an increasing sequence {Q"}
of open smooth sets compactly contained in Q such that UpenQ? = Q. Fix h € N

(large enough) and let p > 0 (small enough) be such that the balls By,(x;) are
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pairwise disjoint and contained in Q". We first prove that {i.} satisfies the upper
bound (1.1) in Q%(p), i.e., that

(4.3) sup{ / |va5|2dx+w<sasm’;<u>>+||as||Loo<m<u>;Rz>}<Cp,h,
>0 L Jan(u) ?

for some constant C), ;.
Let € > 0 be small enough so that Q" c Q.. We preliminarly notice that

(4.4) || <1 in Q"

Moreover, (recalling the notations introduced in Subsection 2.4), we set

Je = U (i +€Q);

i+eQ€JCy,

it is easy to check, that for any (i, ) € Q! with 4,5 ¢ J., it holds

|uE(J) - us(i)‘2 _ 1- COS((PE(]') B QOE(Z))
(45) 0:G) o~ T~ cos(alpe () —peld)) = O™

for some Cy, > 0. Using that 4. is piecewise constant in J., (2.11) and (2.13),we
get

wo [

where the last inequality is a consequence of (3.10) and (3.13), and C, > 0.
We now show that

h
P

Vi | d :/ Vi |?dx < C’n/ Vo> da
() QB (w)\Je Qh(w)

< Co XVe(02, Qg (1)) < Cu FE™ (9, Q4 (1)) < CaCpy

(4.7) H'(Sa,) < C,
for some constant C' independent of p, h and €. First, it is easy to see that
IHl(Sﬂg) < CgﬁJPLPE < C}—En(tpe, Js)§

then, in order to prove (4.7), it is enough to prove that ]:E(n)(gos, Je N QZ(;L)) is
uniformly bounded with respect to €, p and h. By (3.10), (2.11) and (3.13), we
have

M
(4.8) C = F™(pc) — Mr|loge| > > (F&™ (e, By(:)) — wlog 2)
=1
+ F (e, (1) — Mr|log p| > C + F™ (0o, () — M| log p|
> C'+ F2¥™ (02, (1) \ Je) + F™ (pe, (1) N J2) — M| log p|
1

>C+ 5 /Qh ) ‘V{)E‘QXQ’QLP(H)\JE dz — Mﬂ-‘ 10gp| +]:s(n)(§06792(:u) n JE)
2p M

Since

4.9 J.| = eYJC,. <2eMJIP, < CeF™(p.) < Cellogel,
Pe Pe 15
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we have Vicxon )\, — Vo in L?(Q4,(11); R?). By lower semicontinuity, we obtain
P €

1/ 19
— Ve |“xan dx — Mm|logp| >
3 1y o TN 001 [logp

% /Qh " |Vo|? dx—M7|log(2p)| — M7 log 2+7r(e) > W(v)—Mnlog2+r(e, p, h),
2p K

where lim._,o 7(¢) = limp o0 lim, 0 lim. o (¢, p, h) = 0. This, together with (4.8)

yields fg")(gag, Qt(p)NJ.) < C+r(e,p,h) and in turn (4.7).

Therefore, by (4.4),(4.6) and (4.7), the bound (4.3) is satisfied and by Theorem
1.1 there exists a unitary field uy,, such that, up to a subsequence, i — up,, in
SBV? (QZ (1); R?). By a standard diagonal argument, up to a further subsequence,
4. — u in SBV2.(Q\ UX,{x:};R?), for some u € SBV2.(Q2\ UY,{x:};SY).
Moreover, by (4.7), H'(S,) is finite.

In order to complete the proof it remains to show that 4™ = v. To this purpose,
we set w, := 4. Let i € Q2 with i +eQ C Q. \ J. and let x € T, , with T, defined
as in (2.12). By (4.5), we have

C . . .
|Vw, (z)|* < 5—2(| duc(iyi+eer)* + | duc(i +cer,i+ cey + eez)|?)
CCy
< -2
which combined with the fact that w.(i) = v.(¢) and the Mean Value Theorem,
yields

(|dwve(i,i + geq)|* + |dve(i+eer, i+ ceq —|—€€2)|2),

(4.10)  |we () — ﬁs(x)|2 < 2(|we(z) — wE(i)|2 + |0 (z) — Us(i)‘g)
< C(|dwe(iyi+ee)? + |dv.(i 4 ge1, i + cey + ce2)]?).

Using the same argument one can show that for any = € Ti+
lwe () — 0 (x)]? < O(|dve(i + geq,i + cey +eea)|? + | dv(i,i + ce)|?).

By integrating (4.10) and using (4.9), we obtain

[we@) —s@Pdes [ ) - i@Pdet [ o) - 0P ds
Q Qo\Je J.
< Ce’ XY (v, Q. \ Jo) + Celloge],

which, sending ¢ — 0, yields 4® = w. — v in L?(;R?). Now, since @t — u
in L'(Q;R?), we clearly have that 4® — u™ in L'(Q;R?), so that we conclude
u™ = . (]

4.2. Proof of (ii): T-liminf inequality. We can assume without loss of gen-
erality that (3.10) holds and that fa(n)(gos) — Mm|loge| converges; then, by the
Compactness result (i) of Theorem 3.2, 4. — u in SBV;2.(Q\ (supp Ju™); R?) for
some u € DY, Set p := Ju™. Since u € DY, p = Wzij\il d;b,, with |d;] = 1
and z; € Q for any i = 1,..., M. Let p > 0 be such that the balls B,(z;) are
pairwise disjoint and contained in Q. As S, is rectifiable, it is contained, up to a
H!-negligible set, in a countably union U;2, Ci of compact C L_curves contained in
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Q. For every N € N, we define SY := S, N Ufil C;. Then, for any given § > 0 we
define the d-tube around SY in Q,(u) (see Figure 3) as

Ty, = {x € Qy(n): dist(z,S,) < 5}.

Moreover, we set T(SJX)’E = (Ti\'p)s. Notice that for all € > 0 and for § small enough,
Q\ Tgp, . has Lipschitz continuous boundary.

FIGURE 3. The blue lines represent C'-curves C1,...,Cy and the
dashed lines represent the boundary of the tube T&]\;.

By (2.11), Theorem 3.3 (c¢) and using the very definition of W in (3.3) and (3.4),
we have that

(4.11)  liminf F™ (¢, Q) — Mn|loge|
e—0
> lim inf (F2Y™ (0, \ T3, — M| loge|) + lim inf F™) (., 7))

> W(v,Q\ T},) + My + liminf F™ (., T, )
’ e—0 e

1 o n
=W() + M~y — 5/ |Vv|2dx+llgggffé )(gag,Tél,vpja).

N
T5,p

We claim that
(4.12) / vult dH! < liminf ™ (oo, T)Y, ).
SN R, (1) =0

Using the claim, the I'-liminf inequality follows by sending ¢ =+ 0, § — 0, p — 0
and N — +o0 in (4.11) and in (4.12).

It remains to prove the claim (4.12). Fix 0 <t <1 and let ©; : R x R — R be
defined by

(t+ 5itela —b|) if|a—b] <2sin T
[e) b) = 2sin & n
(@) { 1 if o — b| > 2sin T

It is straightforward to check that ©; is positive, symmetric and satisfies the triangu-
lar inequality (1.3). Let { A, }nen be a sequence of open sets with A,, C 4,, C Ap41
for all n € N and such that {J, .y An = T3, Since [u* —u~| > 2sin T on S, we
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have that ©;(u™,u~) = 1 on S, whence, recalling also Theorem 1.2, we get

(4.13) / V|1 dH? g/ |z/u\1d7-11:/ O (ut, u™) vy |1 dH?
SNNQ, (1) SuNTy, SuNTy,

= lim O:(uT, u) vy dH! < lim liminf/ O (at, a7 )|va, [ dH*

n——4oo SuNA, n—+oo e£—0 Sa.NA,

< liminf/ O (at, a7 )|va, [ dH .
e—0 S. NTN
e §—+/2¢e,p,e

Therefore, in order to get (4.12) it is enough to prove that

(4.14) lim jnf F&™ (e, TN, )+ Ct > lim nf /S . O, (at, 07 )|va, |1 dH,
be §—2e,p,e

for some C' > 0. To this purpose, we set
Tre = J{i+eQ: i€ Q2 dist(p. (k) — (j), 22Z) > /e for some
(j,k) € QL with {j,k} N9(i +eQ) # 0} .
We first show that

(4.15) liminf/ O, (iit, i) |va [y dH! = 0,
Sa. NTSENQ, (1)

e—0
Indeed, by the energy bounds (2.11) and (3.13), there exists C, > 0 such that
XYz (ve, TI®) < FE (0, Qp (1) < G
Therefore, by the definition of T'¢ there exists C' > 0 such that

CHITP)L(1 - cos(n )
< H{(, ) € (T2} - dist(pa(k) — 9=(i), 22) > YE}(1 — cos(n JE))
< XY (v, T7%) < Oy,
which by Taylor expansion yields ef(7*)! — 0 and eventually
(4.16) lim #'(Sa. N T8 N Q, (1) = 0.
e—0

Then (4.15) follows by noticing that ©; is uniformly bounded by 1.

Consider the map J : (R?)! — (R?)! defined by

J((i,i+eer)) = (i —eea,i), JT((i,i+ees)) = (i —eeq,i) for all i € 72,
and J(i,7) = —J(j,i) for all (i,7) € (R?)L. Moreover, for all (i,5) € (R?)., let
(1,7) = J(i,7). Now, set

nN ._ 7N ng ng
T(S,p,& T T67p75 TE ] \Tg .

=N TN
T(if\/ie,p,s T T5,\/§5’p’5
We show that for any (i,7) € (Ti\’p@); and for any z € [i, j], there holds
(4.17) lue(9) — ue(0)| — Ve < |af (z) — ac (2)] < Jue(y) — ue(2)] + Ve

We prove (4.17) only in the case j = i + €eq, the proof in the case j = i + ceq
being analogous. Notice that it is trivial whenever i +e@Q and i —ees +£(Q) belong to
the family of jump cells JC,,_ (see Figure 4), since in this case for any = € [i,i+ceq]

o (z) — a7 (2)] = Jue(i) — ue(i — eea)| = |ue(y) — ue(2)].
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J (i, 7) J (i, 7)

FIGURE 4. On the left hand side: two adjacent jump cells. On the
right hand side: a lower jump cell adjacent to a non-jump cell.

Analogously, (4.17) is trivial whenever both i+e@Q and i—ees+e@Q) are not jump cells,
since in this case |0 () — 42 (z)] = 0 and (recall (4,7) & T8) |us(9) — ue(2)| < e
Now, without loss of generality we assume that (see Figure 4) ¢ + @ is not a jump
cell while i — geq + @ is a jump cell (the proof being fully analogous in the case
that i — ees + €@ is not a jump cell while i + @ is a jump cell). Furthermore,
we prove only the second inequality in (4.17) since the first one follows similarly.
Let § € [0,1] be such that x = i + See;. Then, using that i + Q C Ti\'p’g and
i+eQ ¢ JC,_, we have

(4.18) |af (i + seer) — ag (i + seeq)]
= |uc(i) + 5(uc(i + ee1) — ue (7)) — ue (i — eez)|
<ue () — ue (i — cea)| + |uc (i + eer) — u(4)]
\?/7

< ue(t) — ue(i — eea)] +2Sin7€ < ue (i) — us(i — eea)| + /.

In conclusion we have proven that (4.17) holds true.
Notice now that if (¢, j) € (T3Y, .)!, then (i,7) ¢ (T2#)}, and hence (1, 7) = J (i, j)
satisfies either

(4.19) dist (e (g) — @e(2),27Z) < /e
. A'm )
(4.20) dist(pe(7) = we(1), —) < Ve,

i~
for some I’ € Z \ nZ. If (1, ) satisfies (4.19), then, by (4.17),

max [if (2) = iz (@)] < Jue(s) = ue()] + V& = 2] sin 52 + Y2 < 20
A )

On the other hand, if (z,)) satisfies (4.20) for some I’ € Z \ nZ, then, again by
(4.17), and using Taylor expansion, for any x € [i, j| and for ¢ sufficiently small, we
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have
2|sin LT | — 23/ < 2|sin Lell_eel)] _ &7
= [u(9) —ue ()| = Ve < |af () — a2 (2)] < |ue(y) — ue(0)] + Ve
< 2|sm |+ 2.

It follows that, if € is sufficiently small, the jump bonds of @, in Tﬁ,p,a’ and, a

fortiori, the jump bonds of 4. in T L Vaep he in one of the following sets
15,0 ={(,]) € (Tﬁﬁa,p,g)i : f?ﬁf] it () — i ()| < 2Ve),
B ,e = A{0,0) € (T} s, )% ¢ |laf(z) —ag ()] - 2sin G| < 276
for any x € [i,j], for some l=1,...,n—1}.
Set
E= | lal, E= U [l
(L,9)€13 , . (h5)€ll , .

By the very definition of ©; and by the uniform bound of H*(S;_) in (4.7), for ¢
small enough we have

(4.21) / O, 4 )va L dH' < (t+ £ V) H (Sa.) < C(t + ¥/e).
SﬂEOES n
In order to conclude the proof of (4.14), we first show that

(4.22) lim inf O (aF, a7 )|va, |1 dH! < lim inf 72 (e, Ty, ).
e— o

€20 Js,.nEY

To this purpose, we set
T3 pe = {0 k) € (TR, )L\ (T2%)L = dist(pe (k) — pe (), 27) < V2
for some I’ € Z \ nZ},

Notice that J (I} ) C (TN ¥, <)t Now we show that, for ¢ small enough, J(I! ) C
A Let (i,7) € I&pﬁ and let [ € 1,...,n — 1 be such that, for all = € [¢, j] we

§,p,€"
have
(4.23) it (z) — a2 (z)] € [25in & — 2/, 25in T 4 2¢/2).

On one hand, by (4.17) and (4.23), we have that

l l .
(4.24) 2sin£—3%g e (7) — ue(1)] §2Sin£—|—3€/§.
On the other hand, since (i, ) ¢ (T78)}, there exists I’ € Z such that

(4.25) dist (e (5) — (1), &) < Ve.
Therefore, by (4.24) and (4.25) and Taylor expansion, it immediately follows that,
for € small enough, I’ € [ 4+ Z and hence (v,)) € Ig’ p.e- We have concluded the proof
that J(I2,.) C I},

Since the map J is injective, we have

(426) ng,é,p = ﬂj(‘[g,p,s) < ﬁIg,p,s'
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Now, using that ©; < 1, we obtain
e 1 b b n N
/S . et(us ) Ue )|Vﬁs |1 dH < deJ,p,s < Eﬁ"[(s,p,s < ‘Fe( )(cpEaTé,p,s)a
e NE

which is exactly (4.22).
By (4.15), (4.21) and (4.22), we deduce

liminf/ @t(ﬁjvﬂ;)h’us‘l A
e—0 Sﬂs mTéj\i\/Es e
:liminf/ @t(ﬁj;ﬁ;)h/ﬁshd%l
e—0 (S77rs mj}z\rfﬁa’p,a)
< lim inf O (0, 4 ) va L dH" + C(t + /e)
e—0 S,;,EﬁEb :

< liminf F™ (., T}, ) + Ct,
which concludes the proof of the inequality in (4.14) and of the I'-liminf inequality.

4.3. Proof of (iii): I'-limsup inequality. We start this subsection by proving
two lemmas that will be useful in the proof of the I'-limsup inequality (3.12). The
first lemma concerns with the first-order core energy induced by a singularity with
degree d = 1. We recall that 6(-) denotes the angular polar coordinate in R?\ {0}.

Lemma 4.1. Letd € {—1,+1}. For anye,0 > 0, set
(4.27) v (g, 0) = wef}iﬁBg) {]—'s(“)(cp, B,) : eim?l) = ¢id00) op GEBC,} ;
there holds

T . / _ £ — . . . . !/ _ 5
(4.28) ~= 11r;1_s>}]1p hr;lj(l)lp’y (¢,0) — mllog £| hgn_}glf hiri)%lf’y (e,0) —m|log £,

where v is defined in (3.7).

Proof. We prove (4.28) only in the case d = 1, the proof in the case d = —1 being
fully analogous.
By (2.11), v'(g,0) > (e, 0) for any &, o > 0, whence

lim inf lim inf 7/ (e, o) — 7| log £| > 7.

o—0 e—0
In order to prove (4.28), it is enough to show that
(4.29) V(e 0) < (e, 0) +7(e,0),

where limsup,,_,, limsup,_,,7(e,0) = 0.

To this purpose fix ¢ > 0. For any ¢ > 0, let 9., be a solution of the mini-
mization problem in (3.6) and set j. , := (V. ). By (2.4), (for € < v/20) we have
fie,o(By) = 1. Let 9., : (Bas)? — R be the extension of ¥, , defined by

Poliy = { s e Dt

6(i) otherwise,
where 6 is the angular polar coordinate. Notice that u(¥J. ,) = e o so that
(4.30) p(0. ;) (Bao \ B;) =0 and  p(d,)(Bs) =1.
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We show that there exists & € B, such that
(4.31) llte,0 — 5€Hﬂat(Bza) — 0.
Notice that, by standard interpolation estimates [23],
lim FY™ (9L ., Bay \ (By):) = mlog2;
e—0

€,0

therefore, for sufficiently small €, we have

F(IL 5, Bay) — 7| log £|
< F™(W.,, Bao \ (Bo)e) + F¥™(0. ., By) — 7 log§| < 21log 2 + 2.

By Theorem 3.3, we have that, up to a subsequence,

0
(4.32) 1#(OL ) = ptllas(Ba0) = O,

where either = 0 or p = ndd¢ for some d € {—1,1} and £ € By,.

Since, in view of (4.30), we have u(Ba, \ B,) = 0 and pu(B,) = 7, we get that
p = m¢ with £ € By, which concludes the proof of (4.31).

By (2.6) there exist integer 1-currents T; ,, whose support is a finite union of

segments, with 07, L Bay = fte » — d¢ and
4. lim |7, =0.
(4.33) lim [Te,0[ = 0

Let moreover T¢ be an integer 1-current with 97¢L_ B, = &¢ and |T¢| < 40 (such
a current can be constructed, for instance, by considering an oriented segment I¢
joining & with a point in 9Ba,).

Set TE,J :=T., + T¢; by construction 8TA51,,|_B20 = e, » and, by (4.33),

(4.34) lim sup |T5)0| < limsup |T; | + limsup |T§| <4o.
e—0 £—0 £—0
Set
V= U (i +£Q)
i€(B,)?

(i+eQ)Nsupp Te o #0

and E/ := B, \ V. Let Ey,..., Ek, , denote the connected components of E.. Let
A C B, be such that A. is simply connected and 0A. N supp Te,a = (). Then, it is
easy to see that pic ,(A:) = 0. By (2.4), it follows that

L—1
(4.35) D AN (i) + a0 . (i, 41) = 0,

=1
where L := 0. A and 0.A := {i',...,i"}, with (i',i""') € Al forany I =1,..., L—
1. Therefore, it is well-defined the function 6., : E? — R constructed as follows:
For any k=1,..., K., fix i} € (Ex)? and for any i € (Ey)?, set

L
(4.36) Do (i) 1= Ve o (i) + Y d" e o (i 1, 1}),
=1

where {0, 4}, ... ik (= i)} C (Ey)? is such that (it ',il) € (By)! for l=1,...,L.
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FI1GURE 5. Closed path in the core B,: The line segments denote
the support of T ,. All cells having positive (resp., negative) vor-
ticity ay, , are colored red (resp., blue). It can be easily seen that
any closed path in F is surrounding the same amount red and blue
cells, implying that the definition of ¥, , in (4.36) is well-posed.

Indeed, by (4.35), one can easily check that 9. , (i) does not depend on the path

i, ity ..., ik (= i) (see also Figure 5). Moreover, since for any (i,j) € E! there
exists k = 1,..., K., such that (,5) € (Ej)., there holds
(4.37) dd. o (i,7) = d® 0. 4 (i, ) for all (i, ) € E..
Furthermore, by the very definition of P, it immediately follows that
(4.38) Veo(i) — Ve (i) €27Z  for any i € EL.
For any i € (B,)?, we set

55 u‘(i) o y 0

. —== ifie E

(4.39) Peo(i) =19 9.20) S

—=2= otherwise.

By (4.38), @.,» is a competitor for the minimum problem (4.27).
In order to prove (4.29), it is enough to show that
(4.40) FiN(@errs Bo) < F2™(e,0) + 7(e,0),

with lim sup,_,, limsup,_,,r(e,0) = 0.
In order to get (4.40) we first notice that by (4.37), for any (i,j) € El, there
holds

™ . _ . ™
“n < 956,0(]) - Qas,a(l) < o
whence, using (4.38) and the very definition of £ in (2.7), we obtain

@) LY el - = s Y Feold) D oli)).

(.7)e BNV 2 (1,7)e BV}

Moreover, again by the definition of fe(n) we have

(4.42) Z F(@e0(f) = @eoli S > FWe0() = Ve 0 (i) + 22V,

(%J)EV1 (m)EV1
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Set r(g,0) := 24V, by construction and by (4.34), we have that

(4.43) lim sup lim sup r(e,0) < Chm sup hm sup IT. o] < Chm sup IT¢| = 0.

o—0 e—0

In the end, by (4.41), (4.42) and (4.43)7 we get

Fin (cpsa,Bg)=% S Y (Genld) - Benld)

(.)€ B\ V]

Z fan %050 9050( )

(z,j)EV1
1 ) 1 W~ N g
=3 Z f(0e,0(d) — Ve, (i) + 5 Z fg( )(805,0(3) — @e,0 (1))
(6.5)eEL @, j)eVl
1
=R D DR (CNT) N0 R S { () BN 1)) BR
(L) EEAVE (m)ev1
= F"(Ve,0,Bs) +1(€,0)
which proves (4.40) and concludes the proof of the lemma. (]

Remark 4.2. For any y € R?, set

y — i (n) . eme(s) — i0(—y) .
(4.44) ~Y(g,0): peAJrfI:}%,,(y)) {]—' (p, Bs(y)) : e e on GEBg(y)},

it is easy to check that for any y € R?

_ . . y o 5 — . . . . y _ g
y hr;ljgphren_s(l)lpfy (e,0) —m|log £ htrrn_%lfhgl_}glfw (e,0) —mllog £,

where 7y is defined in (3.7).

Now we pass to a lemma which allows to deal with the far-field energy, i.e., with
the energy outside suitable balls centered in the limit singularities. To this purpose,
for any v € DY, we denote, as usual, Ju™ by p = Zf\il d;65, (see (3.1) and (3.8)).
Moreover, we recall that for any D C © open and for any p > 0, D,() is defined
according to (4.1).

Lemma 4.3. Let u € D}, and let I'y,...,I'y be pairwise disjoint segments such
that T'; joins x; with OQ and H*(T;NS,) =0 for anyi=1,...,M. Fiz p >0, and
set QE(M) = Qp(u)\Uﬁl T';. Then, there exist w € Hl(QE(,u)) with [w] = +2% on
each T'; and ¢ € SBV (Q,(n); Z), such that ¢ := 1 +w is a lifting of u in Q,(n),
i.e., € =wu. In particular, for anyi=1,..., M

(4.45) ([¢] + [w])LT; € 2nZ.

Moreover, there exist two sequences {wy} C C™( (1)) with [wy] = [w] and
{Yn} C SBV(Q,(n); Z) with polyhedral jump set Sy, , such that, setting op =
Y + wy, the following properties are satisfied:

(i) wp, — w in HI(QE(M));
(ii) ¥n — ¥ in SBV(Q,(n)):
(ili) limpooo [ O(@1, 0h V) dHY = [g o™, 07, vp) AR for any bounded
en ]
and continuous integrand ¢: R? x R? x St — R* satisfying ¢(a,b,v) =
#(b,a,—v) for all (a,b,v) € R? x R? x S*.
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Proof. We will prove the lemma in five steps.

Step 1: Construction of w and . Let ¢ € SBV2 (22 Uf\i1{x1}> N SBV(Q)
be a lifting of u. Such a lifting always exists in virtue of [25, Remark 4|. By [14,
Chapter 1], we have that V@ is a conservative vector field on Qg(,u)7 and hence
there exists a function w € H'(€) (1)) such that Vw = VoL Qf(u). Moreover,
using that Ju™ = p one can easily show that for any i =1,..., M

2
(4.46) [w]LT; = ifdi,

the sign depending on the orientation of the normal to I';. Since V(¢ —w) = 0
in Qp (1), there exists a Caccioppoli partition {U;}ien of Q,(p) subordinated to

Se U Uﬁl T';, such that

(4.47) g—w=> axu inQu),
leN

for some ¢; € R. By (4.46) and by the fact that u® € H'(Q,(n); '), it follows that
there exists a constant ¢ such that ¢; — c € 2”Z for any [ € N. Up to replacing w
with w + ¢, we can always assume that ¢; € 2 “XZ. For any j =1,...,m— 1 we set

E; = U U,.

lEN:CZEQT"j+2TrZ

Set moreover i := E;l 11 2% JXE;- By construction

(4.48) H'(Sy) < H'(Sw) + Z’H, ) < +00.

Moreover, again by construction, ¥ +w — ¢ € 2nZ; therefore, ¢ := ¥+ w is a lifting
of u, and (4.45) is satisfied.

Step 2: Approzimation of w. By (4.46), the function z := ™ belongs to
H'(Q,(p); S'). Therefore, by [41], there exists {z,} C C*°(Q,(n); S*) such that
zp — z in H'(Q,(p);R?). It is well known (see for instance [19]) that for h suf-
ficiently large deg(zp,0B,(z;)) = d; for any ¢ = 1,..., M. Since Q is simply con-
nected, also QF (1) is and hence there exists {¢,} C C*°(Q] (1)) such that zj, = e’».
Recalling that |25, — z[[z1(q,u)r2) — 0, we have that [[z2,.Z — 1|z, u)c) — 0
(where we have identified R? with C) and hence

IV (Ch — nw)llL2(a, (w):ic) = IV (202)ll L2, (n):c) — 0;

this fact, combined with Poincaré inequality, yields

Ch—][ Ch+n][ w — nw
QL (1) QL (1)

For any h € N set

— 0.
L2(Q2p(1);R?)

Ch— far(, Ch
Wp, 1= R Ol —1—7[ w;
(k)

n

then, {wn} € C=(Q (1)), [wn] = [w] and (i) is satisfied.
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Step 3: Approximation of ¢. For every ¢ = 1,..., M, we denote by p; the
intersection point of I'; with 9 and by n; a (fixed) unit normal vector to I';. Fix
1 > 0. For any £ > 0 and for any i = 1,..., M, we set

ReCti(gvn) _{Il+an’t+bpl_xz —fﬁagfaP‘FWSbSHl(rz)_n}a

[pi—il
LP¥N(€) s= (i + €ma + =gy + ptn <0 <H() =},
Lidt(f) o= {a; — En; + blgl_;Ll pF+n<b< Hl(Fi) -}

Moreover, for any ¢ > 0 we set

M
QpSn( ) = Qg(ﬂ“) \ U ReCti(é’ 77)

i=1

We notice that for 6 > 0 small enough, Rect;(2d,7n) are pairwise disjoint and
contained in Q,(u) and QL p.6.m(#) is Lipschitz continuous. Then, by applying
Theorem 1.3 with A = Qpan( ), gfz/JI_Qpén( ), and Z = {237r cj=1,...,n—
1}, we have that there exists a sequence {¢n5,} C SBV(Q 5 (1); Z) such that,
for any h € N, Sy, ; = is polyhedral and the following properties are satisfied

(4.49) hli_{go [¥n60 = ¥llzrar,, ) =0
(4.50) Dinsy = DWLO 5, (1) ash— oo,
and
(451)  Jim | S Vg ins,) TH

Yh,s,m

-/ B0 vy) AN
SwﬁQp s, n( )
for all continuous ¢: Z x Z x 8t — R satisfying ¢(a,b,v) = ¢(b,a, —v).

.We now extend vy, 5, from Qg s (1t) to Qy(n) by reflection along the segments
LY (§) and LI (8) in the following manner (see also Figure 6). Set

FIGURE 6. Extension of ¢y, s, into ,(u) by reflection.
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Rect! " (8, 7) = {z; +an; + bE=2h :0<a<d, p+n<b<HY ;) —n},

—

Rect!™(6,7) := {z; + an; + bE=th : =0<a<0,p+n<b<H(T) —n}

and let Rzr.jf;ht(x) : Rect! 8" (8,7) — Rect;(26,7) \ Rect;(8,7) be defined by
(4.52) Ris(x) := x + 2dist(z, LYE"(8))n;.

Analogously, we define the reflection map ngt. We define the extensions z/_Jh@n of

Yh,sm in Q,(p) as

Unbn(e ) if 2 € Q 5, (1),
Unsn(t) == Ynsq(Rig " (2)) if x € Rect;*"(5,1),
Yn,s n(Rleft( ) if 2 € Rect*™ (8, n).
It is easy to see that ¥y, s, € SBV(Q,(n)) and that Sgn.s., is polyhedral. Let
Vi s . (Tesp., i s ) denote the trace of V5.5 O UM LM (26) (resp., Uf\il Lt (26)
). By Theorem 1.3 [D¢y5,| — |[D(¥LQF 5, (11))] and hence, (see for instance [27,

Theorem 2.11]), we obtain
(4.53)

B 167 5= e, oy = 00 135, = s, oy =0
Moreover, we also have that for any ¢ = 1,..., M
(4.54) lim [(- £ 26m;) — ™ ()|l 1 (0, Rect, (6.)) = O-

Set vnsn = ’(Zh’gm + wp,. By construction and by (4.49),

limsup [[¢n,5,1 — ¥l 21 (9, () < Hmsup [|9n,s,5 — Dl L1 M Reet, (5.0))
h—o0 h—oc0

2(n — 1)7
<) [Recti(6,m)| < O,

i=1
for some constant C' > 0 depending on M, n and €2. Therefore

(4.55) lim lim hm ||1/);“;77 'I/JHLI(QP(H)) =0.

n—035—0h
Step 4: Convergence of the surface energy. In this step we prove that
(4.56) lim lim lim qS(cp;,gm,go,;ém,z/%ﬁm)d}ll :/S (et vp) dH

n—06—0 h—o0 S,
h,8,m

Now we pass to the proof of (4.56). Let ¢ be as in (iii). Since by construction
wy, w € H'(Q) (1)), in order to show (4.56), it is sufficient to prove

. . . T4 T B 1
@sn) i g e Vs Vi) 4%

=/ B vy) dHY,
Sw\(Ufwl g

. . . + — 1
@58 i f o, R P Vo) T

:/ ("0 1) AH.
Swm(U£i1 Fi)
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We first show (4.57). Set Z := {2~ : [ =1,...,n—1}. Since ¥y, s, takes values
in Z, using (4.51), we obtain

lim sup
h—o00

Wi 5.0 Vno Vi 5.) A

/swhmvui”il Rect; (6,1))

—/ St o ) dH | =0
Sy \(UM | Rect;(3,n))

By triangular inequality, it follows that

(4.59) limsup

h—o00

Tt g , 1
OWn 50 Vhss Vin,s.n) AH

/ww,h&,, \UM, T)\(UM, Rect; (5.m))

—/ St ) dH!
(Sup\UM, T\ (UM, Rect;(5,1))

(¢(1ﬁ}t57n7 1;]:75’7,7 sz)hy(gm)_k(b(d)‘ka 11[}73 V’lﬂ')) dHl S 7"0(77)7

< lim sup/
h—oo  JUM, (T:\Rect:(8,7))
with lim, o 70(17)=0.
Forany i = 1,..., M, we set I;(6,n) := ORect;(8,1)\ (L™ (8) U LI (5)) and we
denote by A;(8,n) (resp., A;(2d,7n)) the interior of Rect; (5, n )\F (resp., Rect;(26,7)\
I;). Fixi=1,...,M. Again by construction and by (4.51), we have that

(4.60) limsup/ qs(d_)fté,n’qz}izé,n’yﬁh,s,n)dHl
S 5., NAI(6)

h—o0

/‘ p(T " vy) dH!
SyN(A;i(26,m)\Ai(6,m))

g/ ST 9, vy) dHY =2 14(6).
SyNA;(26,m)

with lims_o71(8) = 0. Moreover, since by construction [¢y,.s.,] = 0 on L}8™(5) U
LI (5), we have

(4.61) lim sup/
h—00 Sg, s Y NORect; (5,m)

— limsup / (G352 D Vi 5y) + BT 07 1)) A M
S«P} 8,1 ni (6 77)

(D 50 Vng Vi ) + 0T 07, 0y)) dH!

h— o0
< C§ =:15(6)

with lims_,g 72(6) = 0. By (4.60) and (4.61), and by triangular inequality, it follows
that

(4.62) limsup/ ¢(1/_);t5777,¢_1;;5m,1/1;h7m)d’Hl
h—00 S5y, 5., N(Recti (5,m)\')
_/ ST, 07 vy) dH | < 71(8) +72(8) =0 as 6 — 0.
SyN(Rect; (8,7)\I)

Then (4.57) follows by summing (4.59) and (4.62).
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Finally we prove (4.58). Fixi=1,..., M. By (4.53) and (4.54), we have
: : + + —0-
lim lm lgp — %[l rinrect: (5,0) = 0

then, by Dominated Convergence Theorem, we obtain

(4.63) limsup

h—o0

+ — 1
/ d)((ph,é,n’ (ph,(s,n? V@h,a,rq) dH
I';NRect; (6,n)

- / (™ o v,) dHY| < (),
T';NRect; (5,7])

with limgs_,o7(5) = 0. It follows that

(464) lim sup d)(@;(s,nv 90;7577]’ thh,s,r,) dHl - ¢(90+v Qo_a VAP) dHl
h—o0 T; T;
<lims (o - ) — (T, 0, v,) dH?
< limsup Ph,6,n Ph,o,n Yon,sn Y P SV
h—00 I';NRect; (6,n)

4 lim sup / (OB 52 P Vinsn) 06T, 07, 1)) A
T';\Rect; (6,nm)

h—o0

<7(8) + 4|l L.

By summing (4.64) over ¢ = 1,..., M, we obtain (4.58). This concludes the proof
of (4.56).

Step 5: Conclusion Using (4.55) and (4.56), we show that (ii) and (iii) hold
true. By a standard diagonal argument in h, § and 7, there exists a sequence of
functions vy, = T/Gh,é(h),n(h) € SBV(Q,(n)) with polyhedral jump set, such that
©n, = Yy +wy, satisfies (iii). Moreover (ii) follows by Theorem 1.1, up to extracting
a further subsequence. O

Remark 4.4. We notice that in Lemma 4.3(iii) the assumption that ¢ is bounded
can be replaced by requiring that ¢(a,b,v) = ©(|a — b|)®(v), for some continuous
functions © and ®. In fact, the former assumption is used only in the proof of
(4.63).

Now we are in a position to prove the I'-limsup inequality. We recall that for any
u € DYy, Jum = Wzij\il didz,, with |d;| = 1 and z; € 2. To ease the notations, for
any i =1,..., M, we set 0;(-) := 0(- — x;), where 0 is the angular polar coordinate
(with respect to the origin).

Proof of Theorem 3.2(iii). Without loss of generality we can assume that W(u®) <
400 and hence there exists a constant C' > 0 such that for any o > 0
1

7/ |VuP|?dz < Mr|logo| + C.
2 Ja,(w

Fix 0 > 0 and let C; ;, denote the annulus By-«,(z;) \ By-#s-1,(x;) for any k € N
and for any ¢ = 1,..., M. Arguing as in the proof of [5, Theorem 4.5] (see also [7]),
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one can show that for any £ € N there exists a unitary vector a; ; such that

=:r1(i,k) > 0 ask — oo,

H(C; x;R?)
(465) ||V(l’lg0 - diei)”Lz(C,;yk;R% = TQ(i, k) —0 ask — o0,

for any lifting ¢ of u with ¢ € SBV () N SBV2.(Q\ Ui\il{xz}) (a lifting like that
exists by [25, Remark 4]). Fix k € N and let {¢ 5 }» and {wy 1} be the sequences
constructed in Lemma 4.3 for p = 27¥=2¢. For any h € N, set Pk,h = Vi,h + Wk h-
Let moreover ) = ¥, + wy be the lifting of u constructed in Lemma 4.3 with
p = 27%"25. By (4.65) and by Lemma 4.3(i), using also that Vi (z) = Vws(z)
for a.e. & € Qy—r-2,(p), it follows that

1 0;
(4.66) 2/01* \% (wk,h _din>

2

dxg/ |Vwk,h—Vwk|2dx
Cik

0;
[ [ (e-ag)
Cix n

with limy_, oo limy,—, oo (¢, k,h) = 0. By construction and recalling that [wy 5] =

2
dz =r(i, k,h),

[wy] = 22, we have that V(wy,, — Zf\il di%) is a conservative field in Qy-r—2, (),
and so for any ¢ = 1,..., M there exists a function & ) € C®(By-iy(z;)

By-k-24(x;)) with null average such that
0; .
vgi,k,h =V <wk7h - dll’l> m BQ—ko.(Z'i) \B27k720(f£1').
By Poincaré inequality and by (4.66), we have

(4.67) 6 e ll 22 (B, k(2 \By 42, (i) < C7(E, K, R),

for some C > 0 depending only on ¢ (and not on k). Let n € C* ([3,1];[0,1]) be
such that n(t) =1 for t € [3, 3] and n(t) = 0 for t € [£, 1], and set

(4.68)  @inn(x) = prn(@) =020 o — )& pn(z) forany z € Cyp.
Set gik.n(y) == @ign(zi +27Foy). By (4.67) and (4.68), it easily follows that

(4.69) i [gikn(y) — ai ()™ e 31\ m2) = 0.
We define
Or,n () if 2 € Qyk,(p)
(4.70) @k,h(x) = @i,}c,h(x) ifxe Ci,k

gphh(m) — §i7k,h(x) ifxe Bg—k—la(xi) \BQ*k*QU(‘T"i)'

Since Vg, = Vwy, i, we have that for any i =1,..., M
d:
Vo n = szez in By-k—1,(x;) \ By-r—24(x;),

whence

emPrn — % i By (1) \ Bo-r—2y (1)
Moreover, for any ¢ = 1,...,M, let @; ppe € AF(By—r-1,(x;)) be a solution of
the minimum problem v%i(g,27%~1¢) with @i khe = Pijkh 0N OeBor-1,(x;). By
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a standard density argument we can always assume that QYN Sewrn =0, 50 we can
set

Ok he 1= Phoh in (Qp-k-1,(p))2
e Pikhe i (Byr1g(2i))2.

Set up p.e 1= e*rne and let Uy, h,e denote the piecewise affine interpolation of uy p
constructed according with (2.14). In order to conclude the proof it is enough to
show

(4.71) lim sup lim sup lim Sup llu — tgnellL2(.m2y = 0,
k—oo  h—oo e—0
(4.72) lim sup lim sup lim sup }“E( )(<Pk,h,e) Mr|loge| = (n)( );

k—o0 h—o0 e—0

indeed, by (4.71),(4.72) and Theorem 1.1, using a standard diagonal argument,
there exists a sequence {pc} := {@r(e),n(e),c } satisfying (3.12) and with 4. — u in
SBVE 2\ U {z:}; R?)

We now prove (4.71) and (4.72). To this purpose set

Thhe = U (i +eQ).

i€(Qrm1, (1)
(i+eQ)NS5,, 1, #0

By standard interpolation estimates (see for instance [23]), we have

(4.73) llmjélp Hehpk,h _ ﬁk;,hﬂf||L2((92_ka(}lz))s\Tk,h,€;]R2) = O7
g

which combined with Lemma 4.3 yields

(4.74) lim sup lim sup hmsup lw =tk hellL2(( @,k (1) \ Tk R2) = 0.
k—oo  h—oo e—0

Moreover, by Lemma 4.3, (for h sufficiently large)

(4.75) H' (S5, ,) <C  so that hH(l)
’ E—
Since ||u — Gk, p el < 2, by (4.75)

(4'76) ||u - ﬁkvh)s||L2(U7€\11B2_k+10(fﬂi);R2) + ||U - ﬂk>h75||L2(Tk,h,s;R2)
< 2(M|B2—k+la.| + |Tk,h,s|) —0 ase — 0, k — oo.

Therefore, (4.71) immediately follows by (4.74) and (4.76).
Now we pass to the proof of (4.72). We set

Ero:={(i,5) € QL : [i,5]nUM,0C; 1. # 0},
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and

1 .
Nihe =z Z (e (5) — Prne(i)),

2
(5:9)€Ek, e \(Tk,n,e)}

2
i
M=

(fs(n) (@ hes Cie \ Thon,e) — mlog 2) ,
1

.
Il

,P“ﬂi

I he: (-7:( (Pk,hes Ba—k-14(2;)) — | log ﬁ') ,
i=1

Tpe = F 0k, Qomio (1) \ Tine) — M|log(2~*0),
1

Ikh51:§ Z f( )(<th () = Pr.ne(7)),

(4,5)E(Th,n,e)1

We notice that
(477) ‘chn) ((pk,hys) - M71'| logs\ - Nk7h76 + Nllc,h,e + Ik7h75 + Il/c,h,s + Il/fl,h,s'

We investigate the convergence of the terms Ny ne, Ny p, o Tihes Iy gy oo Iy p, o S€D-
arately. By construction and by standard interpolation estimates, we have

(4.78) lim sup lim sup lim sup Ny 5. = 0.

k—o0 h—o0 e—0

By (4.69) and again by standard interpolation estimates
(4.79) lim sup lim sup lim sup Nk he =0

k—o0 h—o0 e—0

By construction,

(4.80) lim sup lim sup lim sup Iy, , - = M~.

k—oc0 h— o0 e—0

By standard interpolation estimates, (4.75), and Lemma 4.3, we have

(4.81) lim sup lim sup limsup I, ,, . = W(u").

k— o0 h—o00 e—0
Now we prove that

(4.82) lim lim hmfkhE / [Valp dHE.

k—00 h—o00 e—
w

By construction, for any (i,j) € (Tj,nc). we have

. . L 2T B
dlSt(Wk,h,E(J) - @k,h,s(z)> ;Z) <e ||vwk,h|‘L0°(Q27k710(#);R2) < C,ne,

where the last inequality follows by the very definition of @ in (4.70) (see also

(4.68)). Therefore, by the very definition of Fo (see (2.7)), for € sufficiently small
there holds

(4.83)
£ (Orn,e(J) = Pr,ne(i)) < Ck pe? if dist(prpe(d) — o, hs( ),27Z) < Ci, e,

M (@rne (1) = Prne (i) = € if dist(rne (i) = e (D), ;(Z \nZ)) < Cy ne.
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Let ¢ € C(R x R x 8t) be defined by
b(a,b,v) = { |sin(n(a —0))||v|; if dist(a —b,27Z) < X

2n
lv|1 otherwise.
Notice that given any segment I C R? with normal v;, we have that ¢ times the
number of the bonds in (R?)! intersecting I converges, as ¢ — 0, to H(I)|v1]1.

This fact, together with (4.83), yields

(4.84) ;I_)I% Il/c/,h,s = / QS(SZzha@];haV@k.h)del‘
@k’hﬂQQ—k—la(H)

Therefore, by using Lemma 4.3 (iii) and the fact that [@r.n] = [pr.n] (see (4.68)

and (4.70)), we obtain

(4.85)  lim lim lim I},

k—o00 h—o00 e—=0

= lim lim O(PY 1> Pr > Vi) A H!
k— 00 h—00 Sepn k1, (1) k,ho ¥ k,ho ¥ Pk,h
= lim (o1 or V) AH!

F=00 )5, N, ko, (1)

= lim V|1 d H? :/ V|1 dHY,
k=00 /5, n,_k_1, (k) Su
which is exactly (4.82).
Finally, by(4.77) and by summing (4.78), (4.80), (4.79) (4.81) and (4.82), we get
(4.72), which concludes the proof. O
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