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Abstract. We propose and analyze a generalized two dimensionalXY model,
whose interaction potential has n weighted wells, describing corresponding
symmetries of the system. As the lattice spacing vanishes, we derive by
Γ-convergence the discrete-to-continuum limit of this model. In the energy
regime we deal with, the asymptotic ground states exhibit fractional vortices,
connected by string defects. The Γ-limit takes into account both contributions,
through a renormalized energy, depending on the configuration of fractional
vortices, and a surface energy, proportional to the length of the strings.

Our model describes in a simple way several topological singularities arising
in Physics and Materials Science. Among them, disclinations and string de-
fects in liquid crystals, fractional vortices and domain walls in micromagnetics,
partial dislocations and stacking faults in crystal plasticity.
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Introduction

Since the pioneering paper by Kosterlitz and Thouless [32], the XY model is
considered the classical example of discrete spin system exhibiting phase transitions
mediated by the formation and the interaction of topological singularities. Even
at zero temperature the model presents interesting features: Depending on the
energy regime, the geometry of the ground states is very rich, going from uniform
to disordered states, all the way through isolated vortex singularities and clustered
dipoles. Both topology and energy concentration take place at different length
scales, thus making the analysis fascinating and popular also in the mathematical
community.

In this paper we focus on the variational analysis of a two dimensional modified
XY model at zero temperature, describing the formation of fractional vortices
and string defects. Our main motivation comes from observing that this kind of
singularities characterizes several discrete systems in Physics and Materials Science
such as disclinations and string defects in liquid crystals [37], fractional vortices
and domain walls in micromagnetics [42], partial dislocations and stacking faults in
crystal plasticity [29]. We do not focus on the specific details of any of such models,
rather we aim at providing a simple variational model highlighting some of their
relevant common features.

Given a bounded open set Ω ⊂ R2, the classical XY energy on the lattice εZ2∩Ω
is given by

(0.1) XYε(v) = −
∑
〈i,j〉

(v(i), v(j)),

where the sum is taken over pairs of nearest neighbors 〈i, j〉; i.e., i, j ∈ εZ2∩Ω with
|i − j| = ε, and v : Ω ∩ εZ2 → S1 is the spin field. By writing v = eiϑ, the XY
energy can be rewritten - up to constants - as

(0.2) XYε(v) =
1

2

∑
〈i,j〉

f(ϑ(j)− ϑ(i)),

where f(t) = 1 − cos(t). The rigorous upscaling as ε → 0 of the XYε functional
- and more in general of discrete spin systems governed by 2π-periodic potentials
f - has been recently obtained in [3, 4, 5, 24] in terms of Γ-convergence. Loosely
speaking, configurations with energy of order C| log ε| exhibit a finite number (con-
trolled by the pre-factor C) of vortex-like singularities. Around each singularity the
order parameter v looks like a fixed rotation of the map

(
x
|x|
)d where d ∈ Z is the

degree of the singularity. There the energy concentrates and blows up as |d|| log ε|.
This analysis is then refined exploiting the next lower order term in the energy
expansion. Indeed, after removing the logarithmic leading order contribution, a
finite interaction energy, referred to as renormalized energy, remains. The renor-
malized energy depends on the positions and the degrees of the vortices, and it is
considered the main driving force responsible for their dynamics [5, 6]. The strategy
adopted to analyze the XY model exploits methods and tools from the earlier anal-
ysis developed for the continuous Ginzburg-Landau functionals [14, 30, 1, 39, 7].
Moreover, these techniques have been successfully used to understand in terms of
Γ-convergence the well-known analogy between vortices in the XY model and in
superconductivity, and screw dislocations in anti-plane linearized elasticity [4, 38].
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To some extent, this analogy extendsmutatis mutandis to many other topological
defects in liquid crystals, micromagnetics and crystal plasticity. Let us introduce
and motivate our model using the language of planar uniaxial nematics. In the
Oseen-Frank and Ericksen picture, nematics are described by a vector field u =
eiϕ, the director, that (in two dimensions) takes values in S1. The molecules are
supposed to interact via an elastic potential depending only on their orientation ϕ.
If the nematic molecules present head-to-tail symmetry, the interaction potential
is π-periodic. Therefore there is a clear identification between a 2-dimensional
nematic lattice model and the XY spin model. Doubling the phase variable ϕ
of the director, the interaction potential becomes 2π-periodic so that the nematic
energy can be written as in (0.2) with ϑ = 2ϕ. This corresponds to the Lebwohl
and Lasher functional ([33]) recently studied by Γ-convergence in [17]. Since in the
classical XY model integer vortices appear, as result of the identification ϑ = 2ϕ,
for liquid crystals the relevant topological singularities are half vortices, namely the
disclinations.

The presence of half vortices is related to orientability issues of the director, that
can be better described and visualized in a continuous framework: in a configuration
consisting of two half vortices, the director field cannot be smooth everywhere.
Indeed, it has antipodal orientations on the two sides of a line joining the half
vortices. According to [34], we call this kind of discontinuity lines string defects
(see Figure 1). A first rigorous study of orientability issues related to the presence
of half vortices can be found in [12], while the right space to describe discontinuous
directors has been very recently identified in [13] as a suitable subspace of SBV ,
the space of special functions with bounded variation.

Figure 1. The spin field close to two half vortex pairs (the degree
of the vortices is (+1/2,+1/2) in the left picture and (+1/2,−1/2)
in right one). The shaded regions highlight necessary antipodal
spins forming the string defects.

In this paper we provide a quantitative analysis of such orientability issues,
by introducing energy functionals which describe both half, and in fact fractional
vortices, and string defects. To this end, we propose a modified XY model, that
draws back to [22, 31, 34, 37, 15]. We consider 2π-periodic potentials, acting on
nearest neighbors, and having n ∈ N wells in [0, 2π); in one well the potential is zero,
while in the remaining n − 1 it is positive but vanishing as ε goes to zero. In this
way, we model systems with one symmetry, and n− 1 vanishing asymmetries. The
case n = 2 provides a simple toy model for liquid crystals with small head-to-tail
asymmetry, like those made of non centrosymmetric or chiral molecules [36].

More specifically, we consider potentials f (n)
ε with n − 1 wells of order ε (see

Figure 2). Having n wells in the potential produces fractional vortices of degree
± 1

n , while the additional energy due to the weighted n − 1 wells yields, together
with the renormalized energy, a new term in the limit, depending on the length of
the string defects. The specific ε-scaling of the wells makes finite the string defect
energy, and hence of the same order of the renormalized energy. Other scalings
could be considered, leading to different limit theories.
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Figure 2. The plot of the potential f (n)
ε for n = 2 obtained trun-

cating 1− cos(2t) at level ε around the odd wells.

Let us describe our model and results in more details. Given a discrete director
field configuration uε = eiϕε , we introduce the modified XY energy functional

(0.3) F (n)
ε (ϕ) :=

1

2

∑
〈i,j〉

f (n)
ε (ϕ(j)− ϕ(i)).

We show that configurations uε = eiϕε with F (n)
ε (ϕε) ' Mπ| log ε| are consis-

tent with the formation of M fractional vortices at x1, . . . , xM having degrees ± 1
n .

Moreover, up to a subsequence, uε strongly converges in L1(Ω;R2) to some unitary
field u belonging to SBV (Ω;S1) with un ∈ H1

loc(Ω \ {x1, . . . , xM};S1). Indeed in
Theorem 3.2 we prove that the functionals F (n)

ε (ϕε)−Mπ| log ε| Γ-converge to the
limit energy F (n)

0 (u) given by

(0.4) F (n)
0 (u) :=W(un) +Mγ +

ˆ
Su

|νu|1 dH1.

Here W(un) represents the renormalized energy; it depends on the positions and
signs of the fractional vortices, but also on the excess energy due to unneeded
oscillations of u; indeed, minimizing W(un) with respect to all director fields u
compatible with the given configuration of fractional vortices gives back the classi-
cal renormalized energy for vortices in superconductivity [14]. The constant γ is a
core energy stored around each singularity, and has memory of the discrete lattice
structure. The third addendum is the anisotropic length of the string, reminiscent
of the lattice symmetries. We note that the analysis by Γ-convergence of discrete
functionals leading to such anisotropic interfacial energies is a well established re-
search field [2, 16, 21]. On the other hand, limit energies as in (0.4) may appear
also as Γ-limits of continuous Ginzburg-Landau type functionals. Actually, in [28]
the authors propose and study a variant of the standard Ginzburg-Landau energy,
that could be seen as a continuous counterpart of our modified XY model.

We remark that our Γ-convergence result can be considered the first step to-
wards the study of the joint dynamics of strings and vortices, as well as partial
dislocations and stacking faults. We expect that the competition between the sur-
face and the renormalized energies generates non-trivial metastable configurations.
As a matter of fact, neglecting boundary effects, two equally charged vortices - in
the classical XY model - repel each other with a force proportional to the inverse
of their distance, so that they are never in equilibrium. On the other hand, since in
the generalized XY model the surface term diverges with the distance between the
vortices, there exists a critical length at which the two forces balance and equilib-
rium is reached. In this respect, it seems interesting to investigate the dynamics of
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strings and fractional vortices driven by the limit energy functional F (n)
0 , through

both rigorous mathematical analysis and numerical simulations.

1. Preliminaries on BV and SBV functions

Here we list some preliminaries on BV and SBV functions that will be useful in
the following. We begin by recalling some standard notations.

LetA ⊂ R2 be open bounded with Lipschitz boundary. As customary, BV (A;Rd)
(resp. SBV (A;Rd)) denotes the set of functions of bounded variation (resp. special
functions of bounded variation) defined on A and taking values in Rd. Moreover,
we set BV (A) := BV (A;R) and SBV (A) := SBV (A;R). Given any set I ⊂ Rd,
the classes of functions BV (A; I) and SBV (A; I) are defined in the obvious way.
We refer to the book [10] for the definition and the main properties of BV and
SBV functions.

Here we recall that the distributional gradient Dg of a function g ∈ SBV (A;Rd)
can be decomposed as:

Dg = ∇gL2 A+ (g+ − g−)⊗ νgH1 Sg,

where ∇g is the approximate gradient of g, Sg is the jump set of g, νg is a unit
normal to Sg and g± are the approximate trace values of g on Sg.

For p > 1, SBV p(A;Rd) denotes the subspace of SBV (A;Rd) defined by

SBV p(A;Rd) := {g ∈ SBV (A;Rd) : ∇g ∈ Lp(A;R2d), H1(Sg) < +∞}.

Moreover, SBV ploc(A;Rd) denotes the class of functions belonging to SBV p(A′;Rd)
for all A′ ⊂⊂ A open.

We recall three results about compactness, lower semicontinuity and density
properties of SBV p and SBV ploc functions.

Theorem 1.1 (Compactness [8]). Let {gh} ⊂ SBV p(A;Rd) for some p > 1. As-
sume that there exists C > 0 such that

(1.1)
ˆ
A

|∇gh|p dx+H1(Sgh) + ‖gh‖L∞(A;Rd) ≤ C for all h ∈ N.

Then, there exists g ∈ SBV p(A;Rd) such that, up to a subsequence,

gh → g (strongly) in L1(A;Rd),

∇gh ⇀ ∇g (weakly) in Lp(A;R2d),

lim inf
h→∞

H1(Sgh ∩A′) ≥ H1(Sg ∩A′),
(1.2)

for any open set A′ ⊆ A.

In the following, we say that a sequence {gh} ⊂ SBV p(A;Rd) weakly converges
in SBV p(A;Rd) to a function g ∈ SBV p(A;Rd), and we write that gh ⇀ g
in SBV p(A;Rd), if gh satisfy (1.1) and gh → g in L1(A;Rd). Moreover, we
say that {gh} ⊂ SBV ploc(A;Rd) weakly converges in SBV ploc(A;Rd) to a function
g ∈ SBV ploc(A;Rd), and we write that gh ⇀ g in SBV ploc(A;Rd), if gh ⇀ g in
SBV p(A′;Rd) for any open set A′ ⊂⊂ A.

Theorem 1.2 (Lower semicontinuity [9, 10]). Let K ⊂ Rd be compact and let
C0 > 0. Let Θ ∈ C(K ×K; [C0,∞)) be a positive, symmetric function satisfying

(1.3) Θ(a, c) ≤ Θ(a, b) + Θ(b, c) for all a, b, c ∈ K,
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and let Ψ ∈ C(Rd;R+) be an even, convex and positively 1-homogeneous function
satisfying Ψ(ν) ≥ C0|ν| for all ν ∈ S1.

If {gh} ⊂ SBV ploc(A;K) and gh ⇀ g in SBV ploc(A;Rd) for some p > 1, then

(1.4)
ˆ
Sg

Θ(g+, g−)Ψ(νg) dH1 ≤ lim inf
h→∞

ˆ
Sgh

Θ(g+
h , g

−
h )Ψ(νgh) dH1.

Finally, we state the density result proved in [18, Theorem 2.1 and Corollary
2.4]. First we recall that a polyhedral set in Ω is (up to a H1 negligible set) a finite
union of segments contained in Ω.

Theorem 1.3 (Density [18]). Let Z ⊂ Rd be finite and let g ∈ SBV (A;Z). Then
there exists a sequence {gh} ⊂ SBV (A;Z) such that Sgh is polyhedral, gh ⇀ g in
SBV p(A;Rd) for any p > 1, and

lim
h→∞

ˆ
Sgh

φ(g+
h , g

−
h , νgh) dH1 =

ˆ
Sg

φ(g+, g−, νg) dH1

for any continuous function φ : Z ×Z ×S1 → R+ satisfying φ(a, b, ν) = φ(b, a,−ν)
for all (a, b, ν) ∈ Z × Z × S1. In particular, |Dgh|(A)→ |Dg|(A).

2. Description of the problem

Let n ∈ N be a fixed natural number, and let Ω ⊂ R2 be an open bounded
set with Lipschitz continuous boundary, representing the domain of definition of
the relevant fields in the models we deal with. Additionally, to simplify matter,
we assume that Ω is simply connected. This is convenient in our constructions
where we make use of Poincaré Lemma (as in proof of Lemma 4.3). Nevertheless,
this assumption can be removed with some slight additional effort in our proofs, by
introducing a finite number of “cuts” γi in Ω, such that Ω\∪iγi is simply connected.

2.1. The discrete lattice. For every ε > 0, we set

Ωε :=
⋃

i∈εZ2 : i+εQ⊂Ω

(i+ εQ),

where Q = [0, 1]2 is the unit square. Moreover we set Ω0
ε := εZ2 ∩ Ωε, and Ω1

ε :={
(i, j) ∈ Ω0

ε × Ω0
ε : |i− j| = ε, [i, j] ⊂ Ωε

}
, where [i, j] denotes the (closed) segment

joining i and j . These objects represent the reference lattice and the class of nearest
neighbors, respectively. The cells contained in Ωε are labeled by the set of indices
Ω2
ε :=

{
i ∈ Ω0

ε : i+ εQ ⊂ Ωε
}
. Finally, we define the discrete boundary of Ω as

∂εΩ := ∂Ωε ∩ εZ2. In the following, we will extend the use of such notations to any
given subset A of R2.

2.2. Discrete functions and discrete topological singularities. Here we in-
troduce the classes of discrete functions on Ω0

ε and a notion of discrete topological
singularity. We first set

AFε(Ω) :=
{
ψ : Ω0

ε → R
}
,

and we introduce the class of admissible fields from Ω0
ε to the set S1 of unit vectors

in R2

AXYε(Ω) :=
{
w : Ω0

ε → S1
}
.

For any ψ ∈ AFε(Ω), w ∈ AXYε(Ω), and for any (i, j) ∈ Ω1
ε we set

dψ(i, j) := ψ(j)− ψ(i), dw(i, j) := w(j)− w(i).
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Following the formalism in [5], we introduce a notion of discrete vorticity for any
given function ψ ∈ AFε(Ω). To this purpose, let P : R→ Z be defined as follows

(2.1) P (t) = argmin {|t− s| : s ∈ 2πZ} ,

with the convention that, if the argmin is not unique, then P (t) is the smallest one.
Let ψ ∈ AFε(Ω) be fixed. For every (i, j) ∈ Ω1

ε, we define the signed distance of
the discrete gradient of ψ from 2πZ, as

(2.2) del ψ(i, j) :=

{
dψ(i, j)− P (dψ(i, j)) if i ≤ j
dψ(i, j) + P (dψ(j, i)) if j ≤ i,

where i ≤ j means that il ≤ jl for l ∈ {1, 2}. Notice that by definition del ψ(i, j) =

−del ψ(j, i) for all (i, j) ∈ Ω1
ε. For every i ∈ Ω2

ε we define the discrete vorticity of
the cell i+ εQ as

(2.3) αψ(i) :=
1

2π

(
del ψ(i, i+ εe1) + del ψ(i+ εe1, i+ εe1 + εe2)

+ del ψ(i+ εe1 + εe2, i+ εe2) + del ψ(i+ εe2, i)
)
.

One can easily see that the vorticity αψ takes values in {−1, 0, 1}.
Stokes’ Theorem in our discrete setting reads as follows. Let A ⊂ Ω with Aε

bounded and simply connected. Set L := ]∂εA and let ∂εA := {i1, . . . , iL}, with
(il, il+1) ∈ A1

ε for any l = 1, . . . , L− 1, and notice that (iL, i1) ∈ A1
ε. Then, for any

ψ ∈ AFε(Ω), it holds

(2.4)
L−1∑
l=1

del ψ(il, il+1) + del ψ(iL, i1) = 2π
∑
i∈A2

ε

αψ(i).

We define the vorticity measure µ(ψ) as follows

(2.5) µ(ψ) := π
∑
i∈Ω2

ε

αψ(i)δi+ ε
2 (e1+e2).

Let A ⊂ R2. For any µ = π
∑N
i=1 diδxi with N ∈ N, di ∈ Z \ {0} and xi ∈ A,

the flat norm of µ is defined as

‖µ‖flat := sup
‖η‖

W
1,∞
0 (A)

≤1

〈µ, η〉.

Whenever it will be convenient, we will declare the domain A of the test functions
η in the definition of the flat norm by writing ‖µ‖flat(A) instead of ‖µ‖flat. We will

denote by µn
flat→ µ the flat convergence of µn to µ.

It is well-known that the flat norm of µ is related to integer 1-currents T with
∂T = µ and having minimal mass (for the theory and terminology of integer currents
we refer the reader to [26]). More precisely, by [26, Section 4.1.12] (see also [5,
formula (6.1)]) there holds

min
∂T=µ

|T | = sup
η∈Lip1(A)

〈µ, η〉,
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where Lip1(A) is the set of functions η with supx,y∈A
y 6=x

|η(y)−η(x)|
|y−x| ≤ 1 . Since for

every η ∈W 1,∞
0 (A) we have

sup
x,y∈A
y 6=x

|η(y)− η(x)|
|y − x|

≤ ‖η‖W 1,∞
0 (A) ≤ (1 + diam(Ω)) sup

x,y∈A
y 6=x

|η(y)− η(x)|
|y − x|

,

we deduce that

(2.6) min
∂T=µ

|T | ≥ ‖µ‖flat ≥
1

1 + diam(Ω)
min
∂T=µ

|T |.

2.3. The discrete energy. Here we will introduce a class of energy functionals
defined on AFε(Ω). Let f : R → R+ be a continuous 2π-periodic function such
that

(i) f(t) = 0 if and only if t ∈ 2πZ;
(ii) f(t) ≥ 1− cos t for any t ∈ R;
(iii) f(t) = t2

2 +O(t3) as t→ 0.

and set f (n)(t) := f(n t). For any fixed ε > 0, we consider the pairwise interaction
potentials f (n)

ε : R→ R+ defined by

(2.7) f (n)
ε (t) := f (n)(t) ∨ ε

∑
k∈Z

χ[(πn +2kπ,−πn +(2k+2)π](t).

We stress that the analysis done in this paper might be extended with minor changes
to a larger class of potentials such as the smooth ones considered in [31].

For any ϕ ∈ AFε(Ω), we define

(2.8) F (n)
ε (ϕ) :=

1

2

∑
(i,j)∈Ω1

ε

f (n)
ε (ϕ(j)− ϕ(i)).

For the convenience of the reader, we now introduce two additional energy func-
tionals, which will be useful in the proof of our main result. We define

F sym
ε (ϑ) :=

1

2

∑
(i,j)∈Ω1

ε

f(ϑ(j)− ϑ(i)), for any ϑ ∈ AFε(Ω),(2.9)

XYε(v) :=
1

4

∑
(i,j)∈Ω1

ε

|v(j)− v(i)|2, for any v ∈ AXYε(Ω).(2.10)

Let ϕ ∈ AFε(Ω) and set ϑϕ := nϕ, uϕ := eiϕ and vϕ := eiϑϕ = unϕ. By (ii), we
have that

(2.11) F (n)
ε (ϕ) ≥ F sym

ε (ϑ) ≥ 1

2

∑
(i,j)∈Ω1

ε

(1− cos(ϑϕ(j)− ϑϕ(i))) = XYε(vϕ).

In the following we will consider also the localized version of the energy F (n)
ε (ϕ),

defined for any set D ⊂ Ω by

F (n)
ε (ϕ,D) :=

1

2

∑
(i,j)∈D1

ε

f (n)
ε (ϕ(j)− ϕ(i)).

The localized versions of the energies F sym
ε (·) and XYε(·) on a set D ⊂ Ω are

analogously defined and are denoted by F sym
ε (·, D) and XYε(·, D), respectively.
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2.4. Extensions of the discrete functions. Here we introduce the extensions of
our discrete order parameters to the whole domain.

In order to extend the discrete functions from Ω0
ε to the whole Ωε, we will use

two types of interpolations depending on whether the function is scalar or vector
valued. To this purpose, we consider the triangulation defined by the following sets:

{T−i }i∈Ω2
ε

:= {Co (i, i+ ε e1, i+ ε e1 + ε e2)}i∈Ω2
ε
,

{T+
i }i∈Ω2

ε
:= {Co (i, i+ ε e1 + ε e2, i+ ε e2)}i∈Ω2

ε
,

(2.12)

where, for any i, j, k ∈ R2, Co (i, j, k) denotes their convex envelope. Let w ∈
AXYε(Ω). According to (2.12), we define the piecewise affine interpolations of w
in an as follows: for any i = (i1, i2) ∈ Ω2

ε and for any x = (x1, x2) ∈ i+ εQ, we set

A(w)(x) :=

{
w(i)+ dw(i,i+εe1)

ε (x1 − i1)+ dw(i+εe1,i+εe1+εe2)
ε (x2 − i2), if x ∈ T−i ,

w(i)+ dw(i+εe2,i+εe1+εe2)
ε (x1 − i1)+ dw(i,i+εe2)

ε (x2 − i2), if x ∈ T+
i .

One can easily check that, for any open set D ⊂ Ω and for any w ∈ AXYε(Ω),

(2.13) XYε(w,D) ≥ 1

2

ˆ
Dε

|∇A(w)|2 dx.

Let ϕ ∈ AFε(Ω). We say that (i, j) ∈ Ω1
ε is a jump pair of ϕ, if dist(dϕ(i, j), 2πZ) >

π
n and we denote by JPϕ the set of jump pairs of ϕ. Furthermore we say that i+εQ
(i ∈ Ω2

ε) is a jump cell, if (j, k) is a jump pair of ϕ for some bond

(j, k) ∈ {(i, i+ εe1), (i+ εe1, i+ εe1 + εe2), (i+ εe2, i+ εe1 + εe2), (i, i+ εe2)}.
We denote by JCϕ the set of jump cells of ϕ.

Now, recalling that uϕ = eiϕ, we set

(2.14) ûϕ(x) :=

{
uϕ(i) if x ∈ i+ ε

◦
Q with i+ εQ ∈ JCϕ,

A(uϕ) otherwise in Ωε.

Finally, recalling that vϕ = einϕ, we set v̂ϕ := A(vϕ). With a little abuse of
notations we identify the functions ûϕ and v̂ϕ with L1 functions defined on Ω, just
by extending them to 0 in Ω \ Ωε.

3. The main result

In this section we state our Γ-convergence result for the energies F (n)
ε defined

in (2.8). To this purpose, we precisely define its Γ-limit F (n)
0 . As mentioned in

the Introduction (0.4), the functional F (n)
0 is given by the sum of three terms: the

renormalized energyW, representing the energy far from the limit singularities, the
core energy γ, and the anisotropic surface term measuring the length of the string
defects.

3.1. The Γ-limit. We start by defining the renormalized energy W. Fix M ∈ N,
we set

(3.1) DM :=
{
v ∈W 1,1(Ω;S1) : Jv = π

M∑
i=1

diδxi for some di ∈ {−1, 1}, xi ∈ Ω

with xi 6= xj for i 6= j, and v ∈ H1
loc(Ω \ (supp Jv);S1)

}
,
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where Jv denotes the distributional Jacobian of v = (v1, v2) (see for instance [30]),
defined by

Jv = div(v1∂x2
v2,−v1∂x1

v2).

As shown in [5], if v ∈ DM with Jv := π
∑M
i=1 diδxi , then the function

(3.2) w(σ,Ω) :=
1

2

ˆ
Ω\

⋃M
i=1 Bσ(xi)

|∇v|2 dx−Mπ| log σ|

is monotonically decreasing with respect to σ. Therefore, it is well defined the
functional W : DM → R given by

(3.3) W(v) := lim
σ→0

w(σ,Ω).

We introduce also the localized version of the energyW. For any open D ⊆ Ω with
supp Jv ⊂ D, we consider w(v,D) defined as in (3.2) with Ω replaced by D, and
set

(3.4) W(v,D) := lim
σ→0

w(σ,D).

Remark 3.1. Set

(3.5) D̄M :=
{
v ∈ H1

loc(Ω \ (

M⋃
i=1

{xi});S1) for some xi ∈ Ω

with xi 6= xj for i 6= j, and deg(v, ∂Bσ(xi)) = ±1

for any σ < min
i 6=j
{ 1

2 |xi − xj |,dist(xi, ∂Ω)}
}
,

where deg(v, ∂Bσ(xi)) denotes the degree of v on ∂Bσ(xi) (see for instance [20, 7]).
As shown in [5], the renormalized energy W(v) in (3.3) is well defined for any
v ∈ D̄M . Moreover, by [5, Remark 4.4], if W(v) < +∞, then the Dirichlet energy
of v is uniformly bounded on all diadic annuli around each xi. By using Hölder
inequality (on each diadic annulus) we obtain that v ∈ W 1,1(Ω;S1). In particular
the class of functions in D̄M with W(v) < +∞ coincides with the class of functions
in DM with W(v) < +∞. Finally, we notice that if v ∈ D̄M with W(v) < +∞,
integration by parts easily yields

Jv = π

M∑
i=1

deg(v, ∂Bσ(xi))δxi .

In order to define the “finite core energy” γ, we consider an auxiliary minimization
problem. Given 0 < ε < σ, we set

(3.6) γ(ε, σ) := min
ϕ∈AFε(Bσ)

{F sym
ε (ϑ,Bσ) : ϑ(·) = θ(·) on ∂εBσ} ,

where F sym
ε is defined in (2.9) and θ(x) denotes the angular polar coordinate for

any x ∈ R2 \ {0}. Moreover, we set

(3.7) γ := lim
ε→0

γ(ε, σ)− π
∣∣ log

ε

σ

∣∣.
By [5, Theorem 4.1] the above limit exists, is finite and does not depend on σ.

Finally, for any M ∈ N, we define the domain of the Γ-limit as

Dn
M :=

{
u ∈ SBV (Ω;S1) : un ∈ DM , u ∈ SBV 2

loc(Ω \ (supp Jun);S1),

H1(Su) < +∞
}
,

(3.8)
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and for any u ∈ Dn
M we set

(3.9) F (n)
0 (u) :=W(un) +Mγ +

ˆ
Su

|νu|1 dH1,

where, for any ν = (ν1, ν2) ∈ R2, |ν|1 := |ν1|+ |ν2| denotes the 1-norm of ν.

3.2. The Γ-convergence result. We are now in a position to state our Γ-convergence
result. We recall that the assumptions on the interaction potentials f (n)

ε are listed
in Subsection 2.3. Moreover, given ϕ ∈ AFε(Ω) we recall that ϑϕ := nϕ and
vϕ := eiϑϕ . In order to ease the notations, for any function ϕε ∈ AFε(Ω), we
will denote the fields ϑϕε , uϕε , ûϕε , vϕε , v̂ϕε (introduced in Subsection 2.4) by
ϑε, uε, ûε, vε, v̂ε, respectively; for the same reason, we will denote by µε the dis-
crete vorticity measure µ(ϑε).

Theorem 3.2. Let n,M ∈ N be fixed. The following Γ-convergence result holds
true.

(i) (Compactness) Let {ϕε} ⊂ AFε(Ω) be a sequence satisfying

(3.10) F (n)
ε (ϕε) ≤Mπ| log ε|+ C,

for some C ∈ R. Then, up to a subsequence, µε
flat→ µ = π

∑N
i=1 diδxi with N ∈ N,

di ∈ Z \ {0}, xi ∈ Ω, xi 6= xj for i 6= j and
∑N
i=1 |di| ≤M .

Moreover, if
∑
i |di| = M , then |di| = 1 and there exists u ∈ Dn

M with Jun = µ
such that, up to a further subsequence, ûε ⇀ u in SBV 2

loc(Ω \ ∪Mi=1{xi};R2).

(ii) (Γ-liminf inequality) Let u ∈ Dn
M and let {ϕε} ⊂ AFε(Ω) be such that µε

flat→
Jun and ûε → u in L1(Ω;R2). Then,

(3.11) lim inf
ε→0

F (n)
ε (ϕε)−Mπ| log ε| ≥ F (n)

0 (u).

(iii) (Γ-limsup inequality) Given u ∈ Dn
M , there exists {ϕε} ⊂ AFε(Ω) such that

µε
flat→ Jun, ûε ⇀ u in SBV 2

loc(Ω \
⋃M
i=1{xi};R2) and

(3.12) lim
ε→0
F (n)
ε (ϕε)−Mπ| log ε| = F (n)

0 (u).

A similar Γ-convergence result for the functional F sym
ε has been proved in [5].

For our purposes it is convenient to present here its precise statement using our
notations.

Theorem 3.3. Let M ∈ N be fixed. Let {ϑε} ⊂ AFε(Ω) be such that F sym
ε (ϑε) ≤

Mπ| log ε|+C, for some C ∈ R. Then, up to a subsequence, µε
flat→ µ = π

∑N
i=1 diδxi

with N ∈ N, di ∈ Z \ {0}, xi ∈ Ω, xi 6= xj for i 6= j and
∑N
i=1 |di| ≤ M ;

moreover, there exists a constant C̄ ∈ R such that for any i = 1, . . . ,M and for any
σ < 1

2 dist(xi, ∂Ω ∪
⋃
j 6=i xj), there holds

(3.13) lim inf
ε→0

F sym
ε (ϑε, Bσ(xi))− π|di| log

σ

ε
≥ C̄.

In particular,

(3.14) lim inf
ε→0

F sym
ε (ϑε)− π|µ|(Ω) log

σ

ε
≥MC̄.

Furthermore, if
∑N
i=1 |di| = M , then



12 R. BADAL, M. CICALESE, L. DE LUCA, AND M. PONSIGLIONE

(a) |di| = 1 for any i = 1, . . . ,M ;
(b) up to a further subsequence, v̂ε⇀v in H1

loc(Ω \ (suppµ);R2) for some v ∈
DM with Jv = µ;

(c) lim inf
ε→0

F sym
ε (ϑε, D)−Mπ| log ε| ≥ W(v,D)+Mγ, for any open D ⊆ Ω with

supp Jv ⊂ D.

Remark 3.4. Since in [5] it is not explicitly stated that Jv = µ, for the reader’s
convenience we provide here a short proof of this fact.

As proven in [4], if F sym
ε (ϑε) ≤ C| log ε|, then

(3.15) Jv̂ε − µε
flat→ 0 as ε→ 0.

Now let F sym
ε (ϑε) ≤ Mπ| log ε| + C, µε

flat→ µ = π
∑N
i=1 diδxi with |di| = 1 and

xi ∈ Ω, xi 6= xj for i 6= j, and v̂ε⇀v in H1
loc(Ω \ (suppµ);R2) for some v ∈ DM .

Let J := (v1∂x2
v2,−v1∂x1

v2) and let Jε be analogously defined with v replaced
by v̂ε. Then, Jv = divJ , Jv̂ε = divJε, and Jε →J in L2

loc(Ω \
⋃M
i=1{xi};R2).

Let σ be as in (3.5) and let η : R+ → [0, 1] be the piecewise affine function such
that η = 1 in [0, σ2 ], η = 0 in [σ,+∞) and η is affine in [σ2 , σ]. Fix i ∈ {1, . . . ,M}
and set ηi(x) := η(|x− xi|) for any x ∈ Ω. Then, in view of (3.15), we have

di = 〈µ, ηi〉 = lim
ε→0
〈µε, ηi〉 = lim

ε→0

ˆ
Bσ(xi)

Jv̂εηi dx

= − lim
ε→0

ˆ
Bσ(xi)

Jε · ∇ηi dx = −
ˆ
Bσ(xi)\Bσ

2
(xi)

J · ∇ηi dx = deg(v, ∂Bσ(xi)),

which combined with the fact that Jv = 0 in Ω \
⋃M
i=1{xi}, yields Jv = µ.

4. Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2. In what follows the letter
C will denote a constant in R that may change from line to line; if the constant C
will depend on some parameters α1, . . . , αk we will write Cα1,...,αk . Moreover, for
any ρ > 0, for any D ⊂ Ω open and for any ν = π

∑N
i=1 diδyi , we set

(4.1) Dρ(ν) := D \
N⋃
i=1

Bρ(yi).

4.1. Proof of (i): Compactness. By (2.11) and by (3.10), we immediately get

(4.2) F sym
ε (ϑε) ≤Mπ| log ε|+ C;

therefore, by Theorem 3.3, we have that, up to a subsequence, µε
flat→ µ for some µ

with all the desired properties. Let us assume that
∑N
i=1 |di| = M . By Theorem

3.3(a), we get that |di| = 1, and by Theorem 3.3(b), up to passing to a further
subsequence, v̂ε⇀v in H1

loc(Ω \ (suppµ);R2) for some v ∈ DM with Jv = µ.
Now we prove that ûε ⇀ u in SBV 2

loc(Ω \ ∪Mi=1{xi};R2), for some u ∈ Dn
M with

un = v, and hence, in particular, Jun = µ. Consider an increasing sequence {Ωh}
of open smooth sets compactly contained in Ω such that ∪h∈NΩh = Ω. Fix h ∈ N
(large enough) and let ρ > 0 (small enough) be such that the balls B2ρ(xi) are
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pairwise disjoint and contained in Ωh. We first prove that {ûε} satisfies the upper
bound (1.1) in Ωhρ(µ), i.e., that

(4.3) sup
ε>0

{ˆ
Ωhρ (µ)

|∇ûε|2 dx+H1(Sûε Ωhρ(µ)) + ‖ûε‖L∞(Ωhρ (µ);R2)

}
< Cρ,h,

for some constant Cρ,h.
Let ε > 0 be small enough so that Ωh ⊂ Ωε. We preliminarly notice that

(4.4) |ûε| ≤ 1 in Ωh.

Moreover, (recalling the notations introduced in Subsection 2.4), we set

Jε :=
⋃

i+εQ∈JCϕε

(i+ εQ);

it is easy to check, that for any (i, j) ∈ Ω1
ε with i, j /∈ Jε, it holds

(4.5)
|uε(j)− uε(i)|2

|vε(j)− vε(i)|2
=

1− cos(ϕε(j)− ϕε(i))
1− cos(n(ϕε(j)− ϕε(i)))

≤ Cn,

for some Cn > 0. Using that ûε is piecewise constant in Jε, (2.11) and (2.13),we
get

(4.6)
ˆ

Ωhρ (µ)

|∇ûε|2 dx =

ˆ
Ωhρ (µ)\Jε

|∇ûε|2 dx ≤ Cn

ˆ
Ωhρ (µ)

|∇v̂ε|2 dx

≤ CnXYε(vε,Ω ρ
2
(µ)) ≤ Cn F sym

ε (ϑε,Ω ρ
2
(µ)) ≤ CnCρ,

where the last inequality is a consequence of (3.10) and (3.13), and Cρ > 0.
We now show that

(4.7) H1(Sûε) ≤ C,

for some constant C independent of ρ, h and ε. First, it is easy to see that

H1(Sûε) ≤ Cε]JPϕε ≤ CFn
ε (ϕε, Jε);

then, in order to prove (4.7), it is enough to prove that F (n)
ε (ϕε, Jε ∩ Ωhρ(µ)) is

uniformly bounded with respect to ε, ρ and h. By (3.10), (2.11) and (3.13), we
have

(4.8) C ≥ F (n)
ε (ϕε)−Mπ| log ε| ≥

M∑
i=1

(F sym
ε (ϑε, Bρ(xi))− π log ρ

ε )

+ F (n)
ε (ϕε,Ω

h
ρ(µ))−Mπ| log ρ| ≥ C̄ + F (n)

ε (ϕε,Ω
h
ρ(µ))−Mπ| log ρ|

≥ C̄ + F sym
ε (ϕε,Ω

h
ρ(µ) \ Jε) + F (n)

ε (ϕε,Ω
h
ρ(µ) ∩ Jε)−Mπ| log ρ|

≥ C̄ +
1

2

ˆ
Ωh2ρ(µ)

|∇v̂ε|2χΩh2ρ(µ)\Jε dx−Mπ| log ρ|+ F (n)
ε (ϕε,Ω

h
ρ(µ) ∩ Jε)

Since

(4.9) |Jε| = ε2]JCϕε ≤ 2ε2]JPϕε ≤ CεF (n)
ε (ϕε) ≤ Cε| log ε|,
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we have∇v̂εχΩh2ρ(µ)\Jε ⇀ ∇v in L
2(Ωh2ρ(µ);R2). By lower semicontinuity, we obtain

1

2

ˆ
Ωh2ρ(µ)

|∇v̂ε|2χΩh2ρ(µ)\Jε dx−Mπ| log ρ| ≥

1

2

ˆ
Ωh2ρ(µ)

|∇v|2 dx−Mπ| log(2ρ)|−Mπ log 2+r(ε) ≥ W(v)−Mπ log 2+r(ε, ρ, h),

where limε→0 r(ε) = limh→∞ limρ→0 limε→0 r(ε, ρ, h) = 0. This, together with (4.8)
yields F (n)

ε (ϕε,Ω
h
ρ(µ) ∩ Jε) ≤ C + r(ε, ρ, h) and in turn (4.7).

Therefore, by (4.4),(4.6) and (4.7), the bound (4.3) is satisfied and by Theorem
1.1 there exists a unitary field uh,ρ such that, up to a subsequence, ûε ⇀ uh,ρ in
SBV 2(Ωhρ(µ);R2). By a standard diagonal argument, up to a further subsequence,
ûε ⇀ u in SBV 2

loc(Ω \
⋃M
i=1{xi};R2), for some u ∈ SBV 2

loc(Ω \
⋃M
i=1{xi};S1).

Moreover, by (4.7), H1(Su) is finite.
In order to complete the proof it remains to show that un = v. To this purpose,

we set wε := ûnε . Let i ∈ Ω2
ε with i+ εQ ⊂ Ωε \Jε and let x ∈ T−i , with T−i defined

as in (2.12). By (4.5), we have

|∇wε(x)|2 ≤ C

ε2
(|duε(i, i+ εe1)|2 + |duε(i+ εe1, i+ εe1 + εe2)|2)

≤ C Cn

ε2
(|d vε(i, i+ εe1)|2 + |d vε(i+ εe1, i+ εe1 + εe2)|2),

which combined with the fact that wε(i) = vε(i) and the Mean Value Theorem,
yields

(4.10) |wε(x)− v̂ε(x)|2 ≤ 2(|wε(x)− wε(i)|2 + |v̂ε(x)− vε(i)|2)

≤ C(|d vε(i, i+ εe1)|2 + |d vε(i+ εe1, i+ εe1 + εe2)|2).

Using the same argument one can show that for any x ∈ T+
i

|wε(x)− v̂ε(x)|2 ≤ C(|d vε(i+ εe2, i+ εe1 + εe2)|2 + |d vε(i, i+ εe2)|2).

By integrating (4.10) and using (4.9), we obtain
ˆ

Ω

|wε(x)− v̂ε(x)|2 dx ≤
ˆ

Ωε\Jε
|wε(x)− v̂ε(x)|2 dx+

ˆ
Jε

|wε(x)− ṽε(x)|2 dx

≤ Cε2XYε(vε,Ωε \ Jε) + Cε| log ε|,

which, sending ε → 0, yields ûnε = wε → v in L2(Ω;R2). Now, since ûε → u
in L1(Ω;R2), we clearly have that ûnε → un in L1(Ω;R2), so that we conclude
un = v. �

4.2. Proof of (ii): Γ-liminf inequality. We can assume without loss of gen-
erality that (3.10) holds and that F (n)

ε (ϕε) − Mπ| log ε| converges; then, by the
Compactness result (i) of Theorem 3.2, ûε ⇀ u in SBV 2

loc(Ω \ (supp Jun);R2) for
some u ∈ Dn

M . Set µ := Jun. Since u ∈ Dn
M , µ = π

∑M
i=1 diδxi with |di| = 1

and xi ∈ Ω for any i = 1, . . . ,M . Let ρ > 0 be such that the balls Bρ(xi) are
pairwise disjoint and contained in Ω. As Su is rectifiable, it is contained, up to a
H1-negligible set, in a countably union

⋃∞
i=1 Ci of compact C1-curves contained in
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Ω. For every N ∈ N, we define SNu := Su ∩
⋃N
i=1 Ci. Then, for any given δ > 0 we

define the δ-tube around SNu in Ωρ(µ) (see Figure 3) as

TNδ,ρ := {x ∈ Ωρ(µ) : dist(x, SNu ) < δ}.

Moreover, we set TNδ,ρ,ε := (TNδ,ρ)ε. Notice that for all ε > 0 and for δ small enough,
Ω \ TNδ,ρ,ε has Lipschitz continuous boundary.

xi
ρ

δ

TNδ,ρ

Ω

Figure 3. The blue lines represent C1-curves C1, . . . , CN and the
dashed lines represent the boundary of the tube TNδ,ρ.

By (2.11), Theorem 3.3 (c) and using the very definition ofW in (3.3) and (3.4),
we have that

(4.11) lim inf
ε→0

F (n)
ε (ϕε,Ω)−Mπ| log ε|

≥ lim inf
ε→0

(F sym
ε (ϑε,Ω \ TNδ,ρ)−Mπ| log ε|) + lim inf

ε→0
F (n)
ε (ϕε, T

N
δ,ρ)

≥ W(v,Ω \ TNδ,ρ) +Mγ + lim inf
ε→0

F (n)
ε (ϕε, T

N
δ,ρ,ε)

=W(v) +Mγ − 1

2

ˆ
TNδ,ρ

|∇v|2 dx+ lim inf
ε→0

F (n)
ε (ϕε, T

N
δ,ρ,ε).

We claim that

(4.12)
ˆ
SNu ∩Ωρ(µ)

|νu|1 dH1 ≤ lim inf
ε→0

F (n)
ε (ϕε, T

N
δ,ρ,ε).

Using the claim, the Γ-liminf inequality follows by sending ε → 0, δ → 0, ρ → 0
and N → +∞ in (4.11) and in (4.12).

It remains to prove the claim (4.12). Fix 0 < t < 1 and let Θt : R × R → R be
defined by

Θt(a, b) :=

{
(t+ 1−t

2 sin π
n
|a− b|) if |a− b| ≤ 2 sin π

n

1 if |a− b| ≥ 2 sin π
n .

It is straightforward to check that Θt is positive, symmetric and satisfies the triangu-
lar inequality (1.3). Let {An}n∈N be a sequence of open sets with An ⊂ An ⊂ An+1

for all n ∈ N and such that
⋃
n∈NAn = TNδ,ρ. Since |u+ − u−| ≥ 2 sin π

n on Su, we
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have that Θt(u
+, u−) = 1 on Su, whence, recalling also Theorem 1.2, we get

(4.13)
ˆ
SNu ∩Ωρ(µ)

|νu|1 dH1 ≤
ˆ
Su∩TNδ,ρ

|νu|1 dH1 =

ˆ
Su∩TNδ,ρ

Θt(u
+, u−)|νu|1 dH1

= lim
n→+∞

ˆ
Su∩An

Θt(u
+, u−)|νu|1 dH1 ≤ lim

n→+∞
lim inf
ε→0

ˆ
Sûε∩An

Θt(û
+
ε , û

−
ε )|νûε |1 dH1

≤ lim inf
ε→0

ˆ
Sûε∩TNδ−√2ε,ρ,ε

Θt(û
+
ε , û

−
ε )|νûε |1 dH1.

Therefore, in order to get (4.12) it is enough to prove that

(4.14) lim inf
ε→0

F (n)
ε (ϕε, T

N
δ,ρ,ε) + Ct ≥ lim inf

ε→0

ˆ
Sûε∩TNδ−√2ε,ρ,ε

Θt(û
+
ε , û

−
ε )|νûε |1 dH1,

for some C > 0. To this purpose, we set

T ng
ε :=

⋃{
i+ εQ : i ∈ Ω2

ε, dist(ϕε(k)− ϕε(j), 2π
n Z) > 3

√
ε for some

(j, k) ∈ Ω1
ε with {j, k} ∩ ∂(i+ εQ) 6= ∅

}
.

We first show that

(4.15) lim inf
ε→0

ˆ
Sûε∩T

ng
ε ∩Ωρ(µ)

Θt(û
+
ε , û

−
ε )|νûε |1 dH1 = 0.

Indeed, by the energy bounds (2.11) and (3.13), there exists Cρ > 0 such that

XYε(vε, T
ng
ε ) ≤ F sym

ε (ϑε,Ωρ(µ)) ≤ Cρ.

Therefore, by the definition of T ng
ε there exists C > 0 such that

C ](T ng
ε )1

ε(1− cos(n 3
√
ε))

≤ ]{(j, k) ∈ (T ng
ε )1

ε : dist(ϕε(k)− ϕε(j), 2π
n Z) > 3

√
ε}(1− cos(n 3

√
ε))

≤ XYε(vε, T ng
ε ) ≤ Cρ,

which by Taylor expansion yields ε](T ng
ε )1

ε → 0 and eventually

(4.16) lim
ε→0
H1(Sûε ∩ T ng

ε ∩ Ωρ(µ)) = 0.

Then (4.15) follows by noticing that Θt is uniformly bounded by 1.
Consider the map J : (R2)1

ε → (R2)1
ε defined by

J ((i, i+ εe1)) = (i− εe2, i), J ((i, i+ εe2)) = (i− εe1, i) for all i ∈ εZ2,

and J (i, j) = −J (j, i) for all (i, j) ∈ (R2)1
ε. Moreover, for all (i, j) ∈ (R2)1

ε, let
(ı, ) := J (i, j). Now, set

T̃Nδ,ρ,ε := TNδ,ρ,ε \ T
ng
ε , T̃N

δ−
√

2ε,ρ,ε
:= TN

δ−
√

2ε,ρ,ε
\ T ng

ε .

We show that for any (i, j) ∈ (T̃Nδ,ρ,ε)
1
ε and for any x ∈ [i, j], there holds

(4.17) |uε()− uε(ı)| − 3
√
ε ≤ |û+

ε (x)− û−ε (x)| ≤ |uε()− uε(ı)|+ 3
√
ε.

We prove (4.17) only in the case j = i + εe1, the proof in the case j = i + εe2

being analogous. Notice that it is trivial whenever i+εQ and i−εe2 +εQ belong to
the family of jump cells JCϕε (see Figure 4), since in this case for any x ∈ [i, i+εe1]

|û+
ε (x)− û−ε (x)| = |uε(i)− uε(i− εe2)| = |uε()− uε(ı)|.
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(i, j) (i, j)

J (i, j) J (i, j)

Figure 4. On the left hand side: two adjacent jump cells. On the
right hand side: a lower jump cell adjacent to a non-jump cell.

Analogously, (4.17) is trivial whenever both i+εQ and i−εe2+εQ are not jump cells,
since in this case |û+

ε (x)− û−ε (x)| = 0 and (recall (i, j) /∈ T ng
ε ) |uε()−uε(ı)| ≤ 3

√
ε.

Now, without loss of generality we assume that (see Figure 4) i+ εQ is not a jump
cell while i − εe2 + εQ is a jump cell (the proof being fully analogous in the case
that i − εe2 + εQ is not a jump cell while i + εQ is a jump cell). Furthermore,
we prove only the second inequality in (4.17) since the first one follows similarly.
Let s̄ ∈ [0, 1] be such that x = i + s̄εe1. Then, using that i + εQ ⊂ T̃Nδ,ρ,ε and
i+ εQ /∈ JCϕε , we have

(4.18) |û+
ε (i+ s̄εe1)− û−ε (i+ s̄εe1)|

= |uε(i) + s̄(uε(i+ εe1)− uε(i))− uε(i− εe2)|
≤ |uε(i)− uε(i− εe2)|+ |uε(i+ εe1)− uε(i)|

≤ |uε(i)− uε(i− εe2)|+ 2 sin
3
√
ε

2
≤ |uε(i)− uε(i− εe2)|+ 3

√
ε.

In conclusion we have proven that (4.17) holds true.
Notice now that if (i, j) ∈ (T̃Nδ,ρ,ε)

1
ε, then (i, j) /∈ (T ng

ε )1
ε, and hence (ı, ) = J (i, j)

satisfies either

(4.19) dist(ϕε()− ϕε(ı), 2πZ) ≤ 3
√
ε

or

(4.20) dist(ϕε()− ϕε(ı),
2l′π

n
) ≤ 3
√
ε,

for some l′ ∈ Z \ nZ. If (ı, ) satisfies (4.19), then, by (4.17),

max
x∈[i,j]

|û+
ε (x)− û−ε (x)| ≤ |uε()− uε(ı)|+ 3

√
ε = 2| sin ϕε()−ϕε(ı)

2 |+ 3
√
ε ≤ 2 3

√
ε.

On the other hand, if (ı, ) satisfies (4.20) for some l′ ∈ Z \ nZ, then, again by
(4.17), and using Taylor expansion, for any x ∈ [i, j] and for ε sufficiently small, we
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have

2| sin l′π
n | − 2 3

√
ε ≤ 2| sin ϕε()−ϕε(ı)

2 | − 3
√
ε

= |uε()− uε(ı)| − 3
√
ε ≤ |û+

ε (x)− û−ε (x)| ≤ |uε()− uε(ı)|+ 3
√
ε

≤ 2| sin l′π
n |+ 2 3

√
ε.

It follows that, if ε is sufficiently small, the jump bonds of ûε in T̃Nδ,ρ,ε, and, a
fortiori, the jump bonds of ûε in T̃N

δ−
√

2ε,ρ,ε
lie in one of the following sets

Isδ,ρ,ε := {(i, j) ∈ (T̃N
δ−
√

2ε,ρ,ε
)1
ε : max

x∈[i,j]
|û+
ε (x)− û−ε (x)| ≤ 2 3

√
ε},

Ibδ,ρ,ε := {(i, j) ∈ (T̃N
δ−
√

2ε,ρ,ε
)1
ε :

∣∣|û+
ε (x)− û−ε (x)| − 2 sin lπ

n

∣∣ ≤ 2 3
√
ε

for any x ∈ [i, j], for some l = 1, . . . ,n− 1}.

Set
Es :=

⋃
(i,j)∈Isδ,ρ,ε

[i, j], Eb :=
⋃

(i,j)∈Ibδ,ρ,ε

[i, j].

By the very definition of Θt and by the uniform bound of H1(Sûε) in (4.7), for ε
small enough we have

(4.21)
ˆ
Sûε∩Es

Θt(û
+
ε , û

−
ε )|νûε |1 dH1 ≤ (t+ 1−t

sin π
n

3
√
ε)H1(Sûε) ≤ C(t+ 3

√
ε).

In order to conclude the proof of (4.14), we first show that

(4.22) lim inf
ε→0

ˆ
Sûε∩Eb

Θt(û
+
ε , û

−
ε )|νûε |1 dH1 ≤ lim inf

ε→0
Fn
ε (ϕε, T

N
δ,ρ,ε).

To this purpose, we set

Ibδ,ρ,ε := {(j, k) ∈ (TNδ,ρ,ε)
1
ε \ (T ng

ε )1
ε : dist(ϕε(k)− ϕε(j), 2l′π

n ) ≤ 3
√
ε

for some l′ ∈ Z \ nZ},

Notice that J (Ibδ,ρ,ε) ⊂ (TNδ,ρ,ε)
1
ε. Now we show that, for ε small enough, J (Ibδ,ρ,ε) ⊂

Ibδ,ρ,ε. Let (i, j) ∈ Ibδ,ρ,ε and let l ∈ 1, . . . ,n − 1 be such that, for all x ∈ [i, j] we
have

(4.23) |û+
ε (x)− û−ε (x)| ∈ [2 sin lπ

n − 2 3
√
ε, 2 sin lπ

n + 2 3
√
ε].

On one hand, by (4.17) and (4.23), we have that

(4.24) 2 sin
lπ

n
− 3 3
√
ε ≤ |uε()− uε(ı)| ≤ 2 sin

lπ

n
+ 3 3
√
ε.

On the other hand, since (i, j) /∈ (T ng
ε )1

ε, there exists l′ ∈ Z such that

(4.25) dist(ϕε()− ϕε(ı), 2l′π
n ) ≤ 3

√
ε.

Therefore, by (4.24) and (4.25) and Taylor expansion, it immediately follows that,
for ε small enough, l′ ∈ l+Z and hence (ı, ) ∈ Ibδ,ρ,ε. We have concluded the proof
that J (Ibδ,ρ,ε) ⊂ Ibδ,ρ,ε.

Since the map J is injective, we have

(4.26) ]Ibε,δ,ρ = ]J (Ibδ,ρ,ε) ≤ ]Ibδ,ρ,ε.
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Now, using that Θt ≤ 1, we obtainˆ
Sûε∩Eb

Θt(û
+
ε , û

−
ε )|νûε |1 dH1 ≤ ε]Ibδ,ρ,ε ≤ ε]Ibδ,ρ,ε ≤ F (n)

ε (ϕε, T
N
δ,ρ,ε),

which is exactly (4.22).
By (4.15), (4.21) and (4.22), we deduce

lim inf
ε→0

ˆ
Sûε∩TNδ−√2ε,ρ,ε

Θt(û
+
ε , û

−
ε )|νûε |1 dH1

= lim inf
ε→0

ˆ
(Sûε∩T̃Nδ−√2ε,ρ,ε

)

Θt(û
+
ε , û

−
ε )|νûε |1 dH1

≤ lim inf
ε→0

ˆ
Sûε∩Eb

Θt(û
+
ε , û

−
ε )|νûε |1 dH1 + C(t+ 3

√
ε)

≤ lim inf
ε→0

F (n)
ε (ϕε, T

N
δ,ρ,ε) + Ct,

which concludes the proof of the inequality in (4.14) and of the Γ-liminf inequality.

4.3. Proof of (iii): Γ-limsup inequality. We start this subsection by proving
two lemmas that will be useful in the proof of the Γ-limsup inequality (3.12). The
first lemma concerns with the first-order core energy induced by a singularity with
degree d = ±1. We recall that θ(·) denotes the angular polar coordinate in R2 \{0}.

Lemma 4.1. Let d ∈ {−1,+1}. For any ε, σ > 0, set

(4.27) γ′(ε, σ) := min
ϕ∈AFε(Bσ)

{
F (n)
ε (ϕ,Bσ) : einϕ(·) = eidθ(·) on ∂εBσ

}
;

there holds

(4.28) γ = lim sup
σ→0

lim sup
ε→0

γ′(ε, σ)− π|log ε
σ | = lim inf

σ→0
lim inf
ε→0

γ′(ε, σ)− π| log ε
σ |,

where γ is defined in (3.7).

Proof. We prove (4.28) only in the case d = 1, the proof in the case d = −1 being
fully analogous.

By (2.11), γ′(ε, σ) ≥ γ(ε, σ) for any ε, σ > 0, whence

lim inf
σ→0

lim inf
ε→0

γ′(ε, σ)− π| log ε
σ | ≥ γ.

In order to prove (4.28), it is enough to show that

(4.29) γ′(ε, σ) ≤ γ(ε, σ) + r(ε, σ),

where lim supσ→0 lim supε→0 r(ε, σ) = 0.
To this purpose fix σ > 0. For any ε > 0, let ϑε,σ be a solution of the mini-

mization problem in (3.6) and set µε,σ := µ(ϑε,σ). By (2.4), (for ε <
√

2σ) we have
µε,σ(Bσ) = 1. Let ϑ′ε,σ : (B2σ)0

ε → R be the extension of ϑε,σ defined by

ϑ′ε,σ(i) :=

{
ϑε,σ(i) if i ∈ (Bσ)0

ε

θ(i) otherwise,

where θ is the angular polar coordinate. Notice that µ(ϑ′ε,σ) = µε,σ so that

(4.30) µ(ϑ′ε,σ)(B2σ \Bσ) = 0 and µ(ϑ′ε,σ)(B̄σ) = 1.
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We show that there exists ξ ∈ B̄σ such that

(4.31) ‖µε,σ − δξ‖flat(B2σ) → 0.

Notice that, by standard interpolation estimates [23],

lim
ε→0
F sym
ε (ϑ′ε,σ, B2σ \ (Bσ)ε) = π log 2;

therefore, for sufficiently small ε, we have

F sym
ε (ϑ′ε,σ, B2σ)− π| log ε

σ |

≤ F sym
ε (ϑ′ε,σ, B2σ \ (Bσ)ε) + F sym

ε (ϑ′ε,σ, Bσ)− π| log
ε

σ
| ≤ 2π log 2 + 2γ.

By Theorem 3.3, we have that, up to a subsequence,

(4.32) ‖µ(ϑ′ε,σ)− µ‖flat(B2σ)
ε→0−→ 0,

where either µ ≡ 0 or µ = πdδξ for some d ∈ {−1, 1} and ξ ∈ B2σ.
Since, in view of (4.30), we have µ(B2σ \ Bσ) = 0 and µ(B̄σ) = π, we get that

µ = πδξ with ξ ∈ B̄σ, which concludes the proof of (4.31).
By (2.6) there exist integer 1-currents Tε,σ, whose support is a finite union of

segments, with ∂Tε,σ B2σ = µε,σ − δξ and

(4.33) lim
ε→0
|Tε,σ| = 0.

Let moreover T ξ be an integer 1-current with ∂T ξ B2σ = δξ and |T ξ| ≤ 4σ (such
a current can be constructed, for instance, by considering an oriented segment Iξ
joining ξ with a point in ∂B2σ).

Set T̂ε,σ := Tε,σ + T ξ; by construction ∂T̂ε,σ B2σ = µε,σ and, by (4.33),

(4.34) lim sup
ε→0

|T̂ε,σ| ≤ lim sup
ε→0

|Tε,σ|+ lim sup
ε→0

|T ξ| ≤ 4σ.

Set
V :=

⋃
i∈(Bσ)2

ε

(i+εQ)∩ supp T̂ε,σ 6=∅

(i+ εQ)

and E := Bσ \ V . Let E1, . . . , EKε,σ denote the connected components of Eε. Let
A ⊂ Bσ be such that Aε is simply connected and ∂Aε ∩ supp T̂ε,σ = ∅. Then, it is
easy to see that µε,σ(Aε) = 0. By (2.4), it follows that

(4.35)
L−1∑
l=1

del ϑε,σ(il, il+1) + del ϑε,σ(iL, i1) = 0,

where L := ]∂εA and ∂εA := {i1, . . . , iL}, with (il, il+1) ∈ A1
ε for any l = 1, . . . , L−

1. Therefore, it is well-defined the function θ̄ε,σ : E0
ε → R constructed as follows:

For any k = 1, . . . ,Kε,σ fix i0k ∈ (Ek)0
ε and for any i ∈ (Ek)0

ε, set

(4.36) ϑ̄ε,σ(i) := ϑε,σ(i0k) +

L∑
l=1

del ϑε,σ(il−1
k , ilk),

where {i0k, i1k, . . . , iLk (= i)} ⊂ (Ek)0
ε is such that (il−1

k , ilk) ∈ (Ek)1
ε for l = 1, . . . , L.
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Figure 5. Closed path in the core Bσ: The line segments denote
the support of Tε,σ. All cells having positive (resp., negative) vor-
ticity αϑε,σ are colored red (resp., blue). It can be easily seen that
any closed path in E is surrounding the same amount red and blue
cells, implying that the definition of ϑ̄ε,σ in (4.36) is well-posed.

Indeed, by (4.35), one can easily check that ϑ̄ε,σ(i) does not depend on the path
i0k, i

1
k, . . . , i

L
k (= i) (see also Figure 5). Moreover, since for any (i, j) ∈ E1

ε there
exists k = 1, . . . ,Kε,σ such that (i, j) ∈ (Ek)1

ε, there holds

(4.37) d ϑ̄ε,σ(i, j) = del ϑε,σ(i, j) for all (i, j) ∈ E1
ε .

Furthermore, by the very definition of P , it immediately follows that

(4.38) ϑ̄ε,σ(i)− ϑε,σ(i) ∈ 2πZ for any i ∈ E0
ε .

For any i ∈ (Bσ)0
ε, we set

(4.39) ϕ̄ε,σ(i) :=

{
ϑ̄ε,σ(i)

n if i ∈ E0
ε

ϑε,σ(i)
n otherwise.

By (4.38), ϕ̄ε,σ is a competitor for the minimum problem (4.27).
In order to prove (4.29), it is enough to show that

(4.40) F (n)
ε (ϕ̄ε,σ, Bσ) ≤ F sym

ε (ϑε,σ) + r(ε, σ),

with lim supσ→0 lim supε→0 r(ε, σ) = 0.
In order to get (4.40) we first notice that by (4.37), for any (i, j) ∈ E1

ε , there
holds

−π
n
≤ ϕ̄ε,σ(j)− ϕ̄ε,σ(i) ≤ π

n
,

whence, using (4.38) and the very definition of f (n)
ε in (2.7), we obtain

(4.41)
1

2

∑
(i,j)∈E1

ε\V 1
ε

f (n)
ε (ϕ̄ε,σ(j)− ϕ̄ε,σ(i)) =

1

2

∑
(i,j)∈E1

ε\V 1
ε

f(ϑε,σ(j)− ϑε,σ(i)).

Moreover, again by the definition of f (n)
ε , we have

(4.42)
1

2

∑
(i,j)∈V 1

ε

f (n)
ε (ϕ̄ε,σ(j)− ϕ̄ε,σ(i)) ≤ 1

2

∑
(i,j)∈V 1

ε

f(ϑε,σ(j)−ϑε,σ(i))+2ε]V 0
ε .
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Set r(ε, σ) := 2ε]V 0
ε , by construction and by (4.34), we have that

(4.43) lim sup
σ→0

lim sup
ε→0

r(ε, σ) ≤ C lim sup
σ→0

lim sup
ε→0

|T̂ε,σ| ≤ C lim sup
σ→0

|T ξ| = 0.

In the end, by (4.41), (4.42) and (4.43), we get

F (n)
ε (ϕ̄ε,σ, Bσ) =

1

2

∑
(i,j)∈E1

ε\V 1
ε

f (n)
ε (ϕ̄ε,σ(j)− ϕ̄ε,σ(i))

+
1

2

∑
(i,j)∈V 1

ε

f (n)
ε (ϕ̄ε,σ(j)− ϕ̄ε,σ(i))

=
1

2

∑
(i,j)∈E1

ε

f(ϑε,σ(j)− ϑε,σ(i)) +
1

2

∑
(i,j)∈V 1

ε

f (n)
ε (ϕ̄ε,σ(j)− ϕ̄ε,σ(i))

≤ 1

2

∑
(i,j)∈E1

ε\V 1
ε

f(ϑε,σ(j)− ϑε,σ(i)) +
1

2

∑
(i,j)∈V 1

ε

f(ϑε,σ(j)− ϑε,σ(i)) + r(ε, σ)

= F sym
ε (ϑε,σ, Bσ) + r(ε, σ)

which proves (4.40) and concludes the proof of the lemma. �

Remark 4.2. For any y ∈ R2, set

(4.44) γy(ε, σ) := min
ϕ∈AFε(Bσ(y))

{
F (n)
ε (ϕ,Bσ(y)) : einϕ(·) = eiθ(·−y) on ∂εBσ(y)

}
;

it is easy to check that for any y ∈ R2

γ = lim sup
σ→0

lim sup
ε→0

γy(ε, σ)− π|log ε
σ | = lim inf

σ→0
lim inf
ε→0

γy(ε, σ)− π|log ε
σ |,

where γ is defined in (3.7).

Now we pass to a lemma which allows to deal with the far-field energy, i.e., with
the energy outside suitable balls centered in the limit singularities. To this purpose,
for any u ∈ Dn

M , we denote, as usual, Jun by µ = π
∑M
i=1 diδxi (see (3.1) and (3.8)).

Moreover, we recall that for any D ⊂ Ω open and for any ρ > 0, Dρ(µ) is defined
according to (4.1).

Lemma 4.3. Let u ∈ Dn
M and let Γ1, . . . ,ΓM be pairwise disjoint segments such

that Γi joins xi with ∂Ω and H1(Γi ∩Su) = 0 for any i = 1, . . . ,M . Fix ρ > 0, and
set ΩΓ

ρ (µ) := Ωρ(µ)\
⋃M
i=1 Γi. Then, there exist w ∈ H1(ΩΓ

ρ (µ)) with [w] = ± 2π
n on

each Γi and ψ ∈ SBV (Ωρ(µ);Z), such that ϕ := ψ + w is a lifting of u in Ωρ(µ),
i.e., eiϕ = u. In particular, for any i = 1, . . . ,M

(4.45) ([ψ] + [w]) Γi ∈ 2πZ.

Moreover, there exist two sequences {wh} ⊂ C∞(ΩΓ
ρ (µ)) with [wh] = [w] and

{ψh} ⊂ SBV (Ωρ(µ);Z) with polyhedral jump set Sψh , such that, setting ϕh :=
ψh + wh, the following properties are satisfied:

(i) wh → w in H1(ΩΓ
ρ (µ));

(ii) ψh ⇀ ψ in SBV (Ωρ(µ));
(iii) limh→∞

´
Sϕh

φ(ϕ+
h , ϕ

−
h , νϕh) dH1 =

´
Sϕ
φ(ϕ+, ϕ−, νϕ) dH1 for any bounded

and continuous integrand φ : R2 × R2 × S1 → R+ satisfying φ(a, b, ν) =
φ(b, a,−ν) for all (a, b, ν) ∈ R2 × R2 × S1.
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Proof. We will prove the lemma in five steps.
Step 1: Construction of w and ψ. Let ϕ̄ ∈ SBV 2

loc(Ω \
⋃M
i=1{xi}) ∩ SBV (Ω)

be a lifting of u. Such a lifting always exists in virtue of [25, Remark 4]. By [14,
Chapter 1], we have that ∇ϕ̄ is a conservative vector field on ΩΓ

ρ (µ), and hence
there exists a function w ∈ H1(ΩΓ

ρ (µ)) such that ∇w = ∇ϕ̄ ΩΓ
ρ (µ). Moreover,

using that Jun = µ one can easily show that for any i = 1, . . . ,M

(4.46) [w] Γi = ±2π

n
di,

the sign depending on the orientation of the normal to Γi. Since ∇(ϕ̄ − w) = 0
in ΩΓ

ρ (µ), there exists a Caccioppoli partition {Ul}l∈N of Ωρ(µ) subordinated to
Sϕ̄ ∪

⋃M
i=1 Γi, such that

(4.47) ϕ̄− w =
∑
l∈N

clχUl in Ωρ(µ),

for some cl ∈ R. By (4.46) and by the fact that un ∈ H1(Ωρ(µ);S1), it follows that
there exists a constant c such that cl − c ∈ 2π

n Z for any l ∈ N. Up to replacing w
with w + c, we can always assume that cl ∈ 2π

n Z. For any j = 1, . . . ,n− 1 we set

Ej :=
⋃

l∈N : cl∈ 2π
n j+2πZ

Ul .

Set moreover ψ :=
∑n−1
j=1

2π
n jχEj . By construction

(4.48) H1(Sψ) ≤ H1(Su) +

M∑
i=1

H1(Γi) < +∞.

Moreover, again by construction, ψ+w− ϕ̄ ∈ 2πZ; therefore, ϕ := ψ+w is a lifting
of u, and (4.45) is satisfied.

Step 2: Approximation of w. By (4.46), the function z := einw belongs to
H1(Ωρ(µ);S1). Therefore, by [41], there exists {zh} ⊂ C∞(Ωρ(µ);S1) such that
zh → z in H1(Ωρ(µ);R2). It is well known (see for instance [19]) that for h suf-
ficiently large deg(zh, ∂Bρ(xi)) = di for any i = 1, . . . ,M . Since Ω is simply con-
nected, also ΩΓ

ρ (µ) is and hence there exists {ζh} ⊂ C∞(ΩΓ
ρ (µ)) such that zh = eiζh .

Recalling that ‖zh − z‖H1(Ωρ(µ);R2) → 0, we have that ‖zhz̄ − 1‖H1(Ωρ(µ);C) → 0

(where we have identified R2 with C) and hence

‖∇(ζh − nw)‖L2(Ωρ(µ);C) = ‖∇(zhz̄)‖L2(Ωρ(µ);C) → 0;

this fact, combined with Poincaré inequality, yields∥∥∥∥∥ζh −
 

ΩΓ
ρ (µ)

ζh + n

 
ΩΓ
ρ (µ)

w − nw

∥∥∥∥∥
L2(Ωρ(µ);R2)

→ 0.

For any h ∈ N set

wh :=
ζh −

ffl
ΩΓ
ρ (µ)

ζh

n
+

 
ΩΓ
ρ (µ)

w;

then, {wh} ⊂ C∞(ΩΓ
ρ (µ)), [wh] = [w] and (i) is satisfied.
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Step 3: Approximation of ψ. For every i = 1, . . . ,M , we denote by pi the
intersection point of Γi with ∂Ω and by ni a (fixed) unit normal vector to Γi. Fix
η > 0. For any ξ > 0 and for any i = 1, . . . ,M , we set

Recti(ξ, η) := {xi + ani + b pi−xi|pi−xi| : −ξ ≤ a ≤ ξ, ρ+ η ≤ b ≤ H1(Γi)− η},

Lright
i (ξ) := {xi + ξni + b pi−xi|pi−xi| : ρ+ η ≤ b ≤ H1(Γi)− η},

Lleft
i (ξ) := {xi − ξni + b pi−xi|pi−xi| : ρ+ η ≤ b ≤ H1(Γi)− η}.

Moreover, for any δ > 0 we set

ΩΓ
ρ,δ,η(µ) := ΩΓ

ρ (µ) \
M⋃
i=1

Recti(δ, η).

We notice that for δ > 0 small enough, Recti(2δ, η) are pairwise disjoint and
contained in Ωρ(µ) and ∂ΩΓ

ρ,δ,η(µ) is Lipschitz continuous. Then, by applying
Theorem 1.3 with A = ΩΓ

ρ,δ,η(µ), g = ψ ΩΓ
ρ,δ,η(µ), and Z = { 2jπ

n : j = 1, . . . ,n−
1}, we have that there exists a sequence {ψh,δ,η} ⊂ SBV (ΩΓ

ρ,δ,η(µ);Z) such that,
for any h ∈ N, Sψh,δ,η is polyhedral and the following properties are satisfied

(4.49) lim
h→∞

‖ψh,δ,η − ψ‖L1(ΩΓ
ρ,δ,η(µ)) = 0,

(4.50) Dψh,δ,η
∗
⇀ D(ψ ΩΓ

ρ,δ,η(µ)) as h→∞,

and

(4.51) lim
h→∞

ˆ
Sψh,δ,η

φ(ψ+
h,δ,η, ψ

−
h,δ,η, νψh,δ,η ) dH1

=

ˆ
Sψ∩ΩΓ

ρ,δ,η(µ)

φ(ψ+, ψ−, νψ) dH1

for all continuous φ : Z × Z × S1 → R+ satisfying φ(a, b, ν) = φ(b, a,−ν).
We now extend ψh,δ,η from ΩΓ

ρ,δ,η(µ) to Ωρ(µ) by reflection along the segments
Lright
i (δ) and Lleft

i (δ) in the following manner (see also Figure 6). Set

xi

ni

pi

Γi

∂Ω

η

δ

ρ

Recti(δ, η)

Sψh,δ,η

Figure 6. Extension of ψh,δ,η into Ωρ(µ) by reflection.
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Rectright
i (δ, η) := {xi + ani + b pi−xi|pi−xi| : 0 ≤ a ≤ δ, ρ+ η ≤ b ≤ H1(Γi)− η},

Rectleft
i (δ, η) := {xi + ani + b pi−xi|pi−xi| : −δ ≤ a ≤ 0, ρ+ η ≤ b ≤ H1(Γi)− η},

and let Rright
i,δ (x) : Rectright

i (δ, η)→ Recti(2δ, η) \ Recti(δ, η) be defined by

(4.52) Ri,δ(x) := x+ 2 dist(x, Lright
i (δ))ni.

Analogously, we define the reflection map Rleft
i,δ . We define the extensions ψ̄h,δ,η of

ψh,δ,η in Ωρ(µ) as

ψ̄h,δ,η(x) :=


ψh,δ,η(x) if x ∈ ΩΓ

ρ,δ,η(µ),

ψh,δ,η(Rright
i,δ (x)) if x ∈ Rectright

i (δ, η),

ψh,δ,η(Rleft
i,δ (x)) if x ∈ Rectleft

i (δ, η).

It is easy to see that ψ̄h,δ,η ∈ SBV (Ωρ(µ)) and that Sψ̄h,δ,η is polyhedral. Let
ψ̄+
h,δ,η (resp., ψ̄

−
h,δ,η) denote the trace of ψ̄h,δ,η on

⋃M
i=1 L

right
i (2δ) (resp.,

⋃M
i=1 L

left
i (2δ)

). By Theorem 1.3 |Dψh,δ,ρ| → |D(ψ ΩΓ
ρ,δ,η(µ))| and hence, (see for instance [27,

Theorem 2.11]), we obtain
(4.53)

lim
h→∞

‖ψ̄+
h,δ,η − ψ

+‖L1(
⋃M
i=1 L

right
i (2δ)) = 0, lim

h→∞
‖ψ̄−h,δ,η − ψ

−‖L1(
⋃M
i=1 L

left
i (2δ)) = 0.

Moreover, we also have that for any i = 1, . . . ,M

(4.54) lim
δ→0
‖ψ(· ± 2δni)− ψ±(·)‖L1(Γi∩Recti(δ,η)) = 0.

Set ϕh,δ,η := ψ̄h,δ,η + wh. By construction and by (4.49),

lim sup
h→∞

‖ψ̄h,δ,η − ψ‖L1(Ωρ(µ)) ≤ lim sup
h→∞

‖ψ̄h,δ,η − ψ‖L1(∪Mi=1Recti(δ,η))

≤ 2(n− 1)π

n

M∑
i=1

|Recti(δ, η)| ≤ C δ,

for some constant C > 0 depending on M , n and Ω. Therefore

(4.55) lim
η→0

lim
δ→0

lim
h→∞

‖ψ̄h,δ,η − ψ‖L1(Ωρ(µ)) = 0.

Step 4: Convergence of the surface energy. In this step we prove that

lim
η→0

lim
δ→0

lim
h→∞

ˆ
Sϕh,δ,η

φ(ϕ+
h,δ,η, ϕ

−
h,δ,η, νϕh,δ,η ) dH1 =

ˆ
Sϕ

φ(ϕ+, ϕ−, νϕ) dH1.(4.56)

Now we pass to the proof of (4.56). Let φ be as in (iii). Since by construction
wh, w ∈ H1(ΩΓ

ρ (µ)), in order to show (4.56), it is sufficient to prove

lim
η→0

lim
δ→0

lim
h→∞

ˆ
Sψ̄h,δ,η

\(
⋃M
i=1 Γi)

φ(ψ̄+
h,δ,η, ψ̄

−
h,δ,η, νψ̄h,δ,η ) dH1(4.57)

=

ˆ
Sψ\(

⋃M
i=1 Γi)

φ(ψ+, ψ−, νψ) dH1,

lim
η→0

lim
δ→0

lim
h→∞

ˆ
Sϕh,δ,η∩(

⋃M
i=1 Γi)

φ(ϕ+
h,δ,η, ϕ

−
h,δ,η, νϕh,δ,η ) dH1(4.58)

=

ˆ
Sϕ∩(

⋃M
i=1 Γi)

φ(ϕ+, ϕ−, νϕ) dH1.
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We first show (4.57). Set Z := { 2lπ
n : l = 1, . . . ,n−1}. Since ψ̄h,δ,η takes values

in Z, using (4.51), we obtain

lim sup
h→∞

∣∣∣∣∣
ˆ
Sψ̄h,δ,η

\(
⋃M
i=1 Recti(δ,η))

φ(ψ̄+
h,δ,η, ψ̄

−
h,δ,η, νψ̄h,δ,η ) dH1

−
ˆ
Sψ\(

⋃M
i=1 Recti(δ,η))

φ(ψ+, ψ−, νψ) dH1

∣∣∣∣∣ = 0.

By triangular inequality, it follows that

(4.59) lim sup
h→∞

∣∣∣∣∣
ˆ

(Sψ̄h,δ,η
\
⋃M
i=1 Γi)\(

⋃M
i=1 Recti(δ,η))

φ(ψ̄+
h,δ,η, ψ̄

−
h,δ,η, νψ̄h,δ,η ) dH1

−
ˆ

(Sψ\
⋃M
i=1 Γi)\(

⋃M
i=1 Recti(δ,η))

φ(ψ+, ψ−, νψ) dH1

∣∣∣∣∣
≤ lim sup

h→∞

ˆ
⋃M
i=1(Γi\Recti(δ,η))

(φ(ψ̄+
h,δ,η, ψ̄

−
h,δ,η, νψ̄h,δ,η )+φ(ψ+, ψ−, νψ)) dH1 ≤ r0(η),

with limη→0 r0(η)=0.
For any i = 1, . . . ,M , we set Ii(δ, η) := ∂Recti(δ, η)\ (Lright

i (δ)∪Lleft
i (δ)) and we

denote byAi(δ, η) (resp., Ai(2δ, η)) the interior of Recti(δ, η)\Γi (resp., Recti(2δ, η)\
Γi ). Fix i = 1, . . . ,M . Again by construction and by (4.51), we have that

(4.60) lim sup
h→∞

ˆ
Sψ̄h,δ,η

∩Ai(δ,η)

φ(ψ̄+
h,δ,η, ψ̄

−
h,δ,η, νψ̄h,δ,η ) dH1

=

ˆ
Sψ∩(Ai(2δ,η)\Ai(δ,η))

φ(ψ+, ψ−, νψ) dH1

≤
ˆ
Sψ∩Ai(2δ,η)

φ(ψ+, ψ−, νψ) dH1 =: r1(δ).

with limδ→0 r1(δ) = 0. Moreover, since by construction [ψ̄h,δ,η] = 0 on Lright
i (δ) ∪

Lleft
i (δ), we have

(4.61) lim sup
h→∞

ˆ
Sψ̄h,δ,η

∩∂Recti(δ,η)

(φ(ψ̄+
h,δ,η, ψ̄

−
h,δ,η, νψ̄h,δ,η ) + φ(ψ+, ψ−, νψ)) dH1

= lim sup
h→∞

ˆ
Sψ̄h,δ,η

∩Ii(δ,η)

(φ(ψ̄+
h,δ,η, ψ̄

−
h,δ,η, νψ̄h,δ,η ) + φ(ψ+, ψ−, νψ)) dH1

≤ Cδ =: r2(δ)

with limδ→0 r2(δ) = 0. By (4.60) and (4.61), and by triangular inequality, it follows
that

(4.62) lim sup
h→∞

∣∣∣∣∣
ˆ
Sψ̄h,δ,η

∩(Recti(δ,η)\Γi)
φ(ψ̄+

h,δ,η, ψ̄
−
h,δ,η, νψ̄h,δ,η ) dH1

−
ˆ
Sψ∩(Recti(δ,η)\Γi)

φ(ψ+, ψ−, νψ) dH1

∣∣∣∣∣ ≤ r1(δ) + r2(δ)→ 0 as δ → 0.

Then (4.57) follows by summing (4.59) and (4.62).
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Finally we prove (4.58). Fix i = 1, . . . ,M . By (4.53) and (4.54), we have

lim
δ→0

lim
h→∞

‖ϕ±h − ϕ
±‖L1(Γi∩Recti(δ,η)) = 0;

then, by Dominated Convergence Theorem, we obtain

(4.63) lim sup
h→∞

∣∣∣∣∣
ˆ

Γi∩Recti(δ,η)

φ(ϕ+
h,δ,η, ϕ

−
h,δ,η, νϕh,δ,η ) dH1

−
ˆ

Γi∩Recti(δ,η)

φ(ϕ+, ϕ−, νϕ) dH1

∣∣∣∣∣ ≤ r(δ),
with limδ→0 r(δ) = 0. It follows that

(4.64) lim sup
h→∞

∣∣∣∣ˆ
Γi

φ(ϕ+
h,δ,η, ϕ

−
h,δ,η, νϕh,δ,η ) dH1 −

ˆ
Γi

φ(ϕ+, ϕ−, νϕ) dH1

∣∣∣∣
≤ lim sup

h→∞

∣∣∣∣∣
ˆ

Γi∩Recti(δ,η)

φ(ϕ+
h,δ,η, ϕ

−
h,δ,η, νϕh,δ,η )− φ(ϕ+, ϕ−, νϕ) dH1

∣∣∣∣∣
+ lim sup

h→∞

ˆ
Γi\Recti(δ,η)

(φ(ϕ+
h,δ,η, ϕ

−
h,δ,η, νϕh,δ,η ) + φ(ϕ+, ϕ−, νϕ)) dH1

≤ r(δ) + 4‖φ‖L∞η.

By summing (4.64) over i = 1, . . . ,M , we obtain (4.58). This concludes the proof
of (4.56).

Step 5: Conclusion Using (4.55) and (4.56), we show that (ii) and (iii) hold
true. By a standard diagonal argument in h, δ and η, there exists a sequence of
functions ψh := ψ̄h,δ(h),η(h) ∈ SBV (Ωρ(µ)) with polyhedral jump set, such that
ϕh := ψh+wh satisfies (iii). Moreover (ii) follows by Theorem 1.1, up to extracting
a further subsequence. �

Remark 4.4. We notice that in Lemma 4.3(iii) the assumption that φ is bounded
can be replaced by requiring that φ(a, b, ν) = Θ(|a − b|)Φ(ν), for some continuous
functions Θ and Φ. In fact, the former assumption is used only in the proof of
(4.63).

Now we are in a position to prove the Γ-limsup inequality. We recall that for any
u ∈ Dn

M , Jun = π
∑M
i=1 diδxi , with |di| = 1 and xi ∈ Ω. To ease the notations, for

any i = 1, . . . ,M , we set θi(·) := θ(· − xi), where θ is the angular polar coordinate
(with respect to the origin).

Proof of Theorem 3.2(iii). Without loss of generality we can assume thatW(un) <
+∞ and hence there exists a constant C > 0 such that for any σ > 0

1

2

ˆ
Ωσ(µ)

|∇un|2 dx ≤Mπ| log σ|+ C.

Fix σ > 0 and let Ci,k denote the annulus B2−kσ(xi) \ B2−k−1σ(xi) for any k ∈ N
and for any i = 1, . . . ,M . Arguing as in the proof of [5, Theorem 4.5] (see also [7]),
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one can show that for any k ∈ N there exists a unitary vector ai,k such that∥∥∥∥∥un − ai,k
(
x− xi
|x− xi|

)di∥∥∥∥∥
H1(Ci,k;R2)

=: r1(i, k)→ 0 as k →∞,

‖∇(nϕ− diθi)‖L2(Ci,k;R2) =: r2(i, k)→ 0 as k →∞,(4.65)

for any lifting ϕ of u with ϕ ∈ SBV (Ω) ∩ SBV 2
loc(Ω \

⋃M
i=1{xi}) (a lifting like that

exists by [25, Remark 4]). Fix k ∈ N and let {ψk,h}h and {wk,h}h be the sequences
constructed in Lemma 4.3 for ρ = 2−k−2σ. For any h ∈ N, set ϕk,h := ψk,h +wk,h.
Let moreover ϕk = ψk + wk be the lifting of u constructed in Lemma 4.3 with
ρ = 2−k−2σ. By (4.65) and by Lemma 4.3(i), using also that ∇ϕk(x) = ∇wk(x)
for a.e. x ∈ Ω2−k−2σ(µ), it follows that

(4.66)
1

2

ˆ
Ci,k

∣∣∣∣∇(wk,h − di θin
)∣∣∣∣2 dx ≤

ˆ
Ci,k

|∇wk,h −∇wk|2 dx

+

ˆ
Ci,k

∣∣∣∣∇(ϕk − di θin
)∣∣∣∣2 dx = r(i, k, h),

with limk→∞ limh→∞ r(i, k, h) = 0. By construction and recalling that [wk,h] =

[wk] = 2π
n , we have that ∇(wk,h −

∑M
i=1 di

θi
n ) is a conservative field in Ω2−k−2σ(µ),

and so for any i = 1, . . . ,M there exists a function ξi,k,h ∈ C∞(B2−kσ(xi) \
B2−k−2σ(xi)) with null average such that

∇ξi,k,h = ∇
(
wk,h − di

θi
n

)
in B2−kσ(xi) \B2−k−2σ(xi).

By Poincaré inequality and by (4.66), we have

(4.67) ‖ξi,k,h‖H1(B
2−kσ(xi)\B2−k−2σ

(xi)) ≤ C r(i, k, h),

for some C > 0 depending only on σ (and not on k). Let η ∈ C1
(
[ 1
2 , 1]; [0, 1]

)
be

such that η(t) = 1 for t ∈ [ 1
2 ,

5
8 ] and η(t) = 0 for t ∈ [ 7

8 , 1], and set

(4.68) ϕ̄i,k,h(x) := ϕk,h(x)− η(2kσ−1|x− xi|)ξi,k,h(x) for any x ∈ Ci,k.

Set gi,k,h(y) := ϕ̄i,k,h(xi + 2−kσy). By (4.67) and (4.68), it easily follows that

(4.69) lim
h→∞

‖g̃i,k,h(y)− ai,k( y
|y| )

di‖H1(B1\B 1
2

;R2) = 0.

We define

(4.70) ϕ̄k,h(x) :=

 ϕk,h(x) if x ∈ Ω2−kσ(µ)
ϕ̄i,k,h(x) if x ∈ Ci,k
ϕk,h(x)− ξi,k,h(x) if x ∈ B2−k−1σ(xi) \B2−k−2σ(xi).

Since ∇ϕk,h = ∇wk,h, we have that for any i = 1, . . . ,M

∇ϕ̄k,h =
di
n
∇θi in B2−k−1σ(xi) \B2−k−2σ(xi),

whence
einϕ̄k,h = eidiθi in B2−k−1σ(xi) \B2−k−2σ(xi).

Moreover, for any i = 1, . . . ,M , let ϕ̄i,k,h,ε ∈ AFε(B2−k−1σ(xi)) be a solution of
the minimum problem γxi(ε, 2−k−1σ) with ϕ̄i,k,h,ε = ϕ̄i,k,h on ∂εB2−k−1σ(xi). By
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a standard density argument we can always assume that Ω0
ε ∩ Sϕk,h = ∅, so we can

set

ϕk,h,ε :=

{
ϕ̄k,h in (Ω2−k−1σ(µ))0

ε

ϕ̄i,k,h,ε in (B2−k−1σ(xi))
0
ε.

Set uk,h,ε := eiϕk,h,ε and let ûk,h,ε denote the piecewise affine interpolation of uk,h,ε
constructed according with (2.14). In order to conclude the proof it is enough to
show

lim sup
k→∞

lim sup
h→∞

lim sup
ε→0

‖u− ûk,h,ε‖L2(Ωε;R2) = 0,(4.71)

lim sup
k→∞

lim sup
h→∞

lim sup
ε→0

F (n)
ε (ϕk,h,ε)−Mπ| log ε| = F (n)

0 (u) ;(4.72)

indeed, by (4.71),(4.72) and Theorem 1.1, using a standard diagonal argument,
there exists a sequence {ϕε} := {ϕk(ε),h(ε),ε} satisfying (3.12) and with ûε ⇀ u in
SBV 2

loc(Ω \ ∪Mi=1{xi};R2).
We now prove (4.71) and (4.72). To this purpose set

Tk,h,ε :=
⋃

i∈(Ω
2−k−1σ

(µ))2
ε

(i+εQ)∩Sϕ̄k,h 6=∅

(i+ εQ).

By standard interpolation estimates (see for instance [23]), we have

(4.73) lim sup
ε→0

‖eiϕk,h − ûk,h,ε‖L2((Ω
2−kσ(µ))ε\Tk,h,ε;R2) = 0,

which combined with Lemma 4.3 yields

(4.74) lim sup
k→∞

lim sup
h→∞

lim sup
ε→0

‖u− ûk,h,ε‖L2((Ω
2−kσ(µ))ε\Tk,h,ε;R2) = 0.

Moreover, by Lemma 4.3, (for h sufficiently large)

(4.75) H1(Sϕ̄k,h) ≤ C so that lim
ε→0
|Tk,h,ε| = 0.

Since ‖u− ûk,h,ε‖L∞ ≤ 2, by (4.75)

(4.76) ‖u− ûk,h,ε‖L2(∪Mi=1B2−k+1σ
(xi);R2) + ‖u− ûk,h,ε‖L2(Tk,h,ε;R2)

≤ 2(M |B2−k+1σ|+ |Tk,h,ε|)→ 0 as ε→ 0, k →∞.

Therefore, (4.71) immediately follows by (4.74) and (4.76).
Now we pass to the proof of (4.72). We set

Ek,ε := {(i, j) ∈ Ω1
ε : [i, j] ∩ ∪Mi=1∂Ci,k 6= ∅},
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and

Nk,h,ε :=
1

2

∑
(i,j)∈Ek,ε\(Tk,h,ε)1

ε

f (n)
ε (ϕk,h,ε(j)− ϕk,h,ε(i)),

N ′k,h,ε :=

M∑
i=1

(
F (n)
ε (ϕk,h,ε, Ci,k \ Tk,h,ε)− π log 2

)
,

Ik,h,ε :=

M∑
i=1

(
F (n)
ε (ϕk,h,ε, B2−k−1σ(xi))− π| log ε

2−k−1σ
|
)
,

I ′k,h,ε := F (n)
ε (ϕk,h,ε,Ω2−kσ(µ) \ Tk,h,ε)−Mπ| log(2−kσ)|,

I ′′k,h,ε :=
1

2

∑
(i,j)∈(Tk,h,ε)1

ε

f (n)
ε (ϕk,h,ε(j)− ϕk,h,ε(i)),

We notice that

(4.77) F (n)
ε (ϕk,h,ε)−Mπ| log ε| = Nk,h,ε +N ′k,h,ε + Ik,h,ε + I ′k,h,ε + I ′′k,h,ε.

We investigate the convergence of the terms Nk,h,ε, N ′k,h,ε, Ik,h,ε, I
′
k,h,ε, I

′′
k,h,ε sep-

arately. By construction and by standard interpolation estimates, we have

(4.78) lim sup
k→∞

lim sup
h→∞

lim sup
ε→0

Nk,h,ε = 0.

By (4.69) and again by standard interpolation estimates

(4.79) lim sup
k→∞

lim sup
h→∞

lim sup
ε→0

N ′k,h,ε = 0.

By construction,

(4.80) lim sup
k→∞

lim sup
h→∞

lim sup
ε→0

Ik,h,ε = Mγ.

By standard interpolation estimates, (4.75), and Lemma 4.3, we have

(4.81) lim sup
k→∞

lim sup
h→∞

lim sup
ε→0

I ′k,h,ε =W(un).

Now we prove that

(4.82) lim
k→∞

lim
h→∞

lim
ε→0

I ′′k,h,ε =

ˆ
Su

|νu|1 dH1.

By construction, for any (i, j) ∈ (Tk,h,ε)
1
ε we have

dist(ϕk,h,ε(j)− ϕk,h,ε(i),
2π

n
Z) ≤ ε ‖∇ϕ̄k,h‖L∞(Ω

2−k−1σ
(µ);R2) ≤ Ck,hε,

where the last inequality follows by the very definition of ϕ̄k,h in (4.70) (see also
(4.68)). Therefore, by the very definition of f (n)

ε (see (2.7)), for ε sufficiently small
there holds

f (n)
ε (ϕk,h,ε(j)− ϕk,h,ε(i)) ≤ C2

k,hε
2 if dist(ϕk,h,ε(j)− ϕk,h,ε(i), 2πZ) ≤ Ck,hε,

(4.83)

f (n)
ε (ϕk,h,ε(j)− ϕk,h,ε(i)) = ε if dist(ϕk,h,ε(j)− ϕk,h,ε(i),

2π

n
(Z \ nZ)) ≤ Ck,hε.
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Let φ ∈ C(R× R× S1) be defined by

φ(a, b, ν) :=

{
| sin(n(a− b))| |ν|1 if dist(a− b, 2πZ) ≤ π

2n
|ν|1 otherwise.

Notice that given any segment I ⊂ R2 with normal νI , we have that ε times the
number of the bonds in (R2)1

ε intersecting I converges, as ε → 0, to H1(I)|νI |1.
This fact, together with (4.83), yields

(4.84) lim
ε→0

I ′′k,h,ε =

ˆ
Sϕ̄k,h∩Ω

2−k−1σ
(µ)

φ(ϕ̄+
k,h, ϕ̄

−
k,h, νϕ̄k,h) dH1.

Therefore, by using Lemma 4.3 (iii) and the fact that [ϕ̄k,h] = [ϕk,h] (see (4.68)
and (4.70)), we obtain

(4.85) lim
k→∞

lim
h→∞

lim
ε→0

I ′′k,h,ε

= lim
k→∞

lim
h→∞

ˆ
Sϕ̄k,h∩Ω

2−k−1σ
(µ)

φ(ϕ̄+
k,h, ϕ̄

−
k,h, νϕ̄k,h) dH1

= lim
k→∞

ˆ
Sϕk∩Ω

2−k−1σ
(µ)

φ(ϕ+
k , ϕ

−
k , νϕk) dH1

= lim
k→∞

ˆ
Su∩Ω

2−k−1σ
(µ)

|νu|1 dH1 =

ˆ
Su

|νu|1 dH1,

which is exactly (4.82).
Finally, by(4.77) and by summing (4.78), (4.80), (4.79) (4.81) and (4.82), we get

(4.72), which concludes the proof. �
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