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Abstract

Recently, a daily routine for associative neural networks has been pro-
posed: the network Hebbian-learns during the awake state (thus behaving
as a standard Hopfield model), then, during its sleep state, it consoli-
dates pure patterns and removes spurious ones, optimizing information
storage: this forces the synaptic matrix to collapse to the projector one
(ultimately approaching the Kanter-Sompolinksy model), allowing for the
maximal critical capacity (for symmetric interactions).
So far this emerging picture (as well as the bulk of papers on unlearning
techniques) was supported solely by mathematically-challenging routes,
e.g. mainly replica-trick analysis and numerical simulations, while here
we rely extensively on Guerra’s interpolation techniques and we extend
the generalized stochastic stability approach to the case. Focusing on the
replica-symmetric scenario (where the previous investigations lie), the for-
mer picture is entirely confirmed.
Further, still relying on Guerra’s schemes, we develop a fluctuation anal-
ysis to check where ergodicity is broken (an analysis entirely absent in
previous investigations). Remarkably, we find that, as long as the network
is awake, ergodicity is bounded by the Amit-Gutfreund-Sompolinsky crit-
ical line (as it should), but, as the network sleeps, spin-glass states are
destroyed and both the retrieval and the ergodic region get wider. Thus,
after a whole sleeping session the solely surviving regions are the retrieval
and ergodic ones, in such a way that the network achieves the perfect
retrieval regime.

1 Introduction

Statistical mechanics of spin glasses [52] has been playing a primary role in the
investigation of neural networks, as for the description of both their learning
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phase [12, 63] and their retrieval properties [9, 27]. Along the past decades,
beyond the bulk of results achieved via the so-called replica-trick [52], a consid-
erable amount of rigorous results exploiting alternative routes (possibly mathe-
matically more transparent) were also developed (see e.g. [3, 4, 22, 23, 24, 15,
19, 20, 31, 32, 64, 65, 59, 58] and references therein). This paper goes in the
latter direction and focuses on a generalization of the Hopfield model [33] that
is able to saturate the optimal storage capacity and whose main characteristics
are summarized hereafter.
In [33] the Hebbian kernel underlying the Hopfield model was revised to account
also for reinforcement and removal processes. The resulting kernel can be in-
terpreted as the effect of a daily routine: during the awake state, the network
is fed with inputs (i.e. patterns of information) that are stored in an Hebbian
fashion1, then, during the asleep state, it weeds out the (combinatorial2) pro-
liferation of the spurious mixtures (unavoidably created as metastable states in
the free-energy landscape of the system during the learning stage) and it consol-
idates the pure states (making their free-energy minima deeper in this landscape
picture). Remarkably, after these procedures, the network is able to saturate
the storage capacity α (that is the amount of stored patterns P over the amount
of available neurons N , in the thermodynamic limit, i.e. α = limN→∞ P/N) to
its upper bound3 which, for symmetric networks, is αc = 1 [34, 35, 36, 37]. Fur-
ther, in the retrieval phase of its parameter space, pure states are global minima
up to α ∼ 0.85 (see Figure 1), that is a much broader range with respect to
the classical Hopfield counterpart, where they remain global minima solely for
α < 0.05.
In this work, we first show the equivalence between the aforementioned gener-
alized neural network and a tripartite (or “three-layers” in a machine-learning
jargon) spin-glass, where couplings between neurons of different layers exhibit
correlations and the third layer is a spectral layer equipped with imaginary num-
bers (see Fig. 2 and Remark 3). Then, we generalize the stochastic stability
technique, introduced in [8, 28] to address Sherrington-Kirkpatrick spin-glass
and later developed in [19] to account also for bipartite spin-glasses (namely
restricted Boltzmann machines or Hopfield networks [16] in a machine learning
jargon [39, 62]), so that it can as well deal with the present tripartite and cor-
related spin-glass.
Next, by using this novel approach -that is mathematically well controllable at
any stage of the calculations- we obtain the expression of the quenched replica-
symmetric free energy related to the model (as well as the set of self-consistent
equations for the order parameters) and we show that the resulting picture
sharply coincides with that obtained via the replica-trick analysis [33]. This
implies, in a cascade fashion, that all the results previously heuristically derived
are actually proved (the most remarkable one being the saturation of the critical
capacity).
Finally, we extend our analysis to order-parameter fluctuations in order to

1We stress that, given the equivalence between restricted Boltzmann machines and Hopfield
neural networks [16], also learning via e.g. contrastive divergence [61] ultimately falls into the
Hebbian category [6, 5].

2The growth in the number of spurious states is roughly exponential in the number of
stored patterns, namely -in the high storage regime- in the number of neurons.

3Actually the network seems to perform even better, returning its maximal capacity to be
αc ∼ 1.07 > 1: this is obviously not possible and, as explained by Dotsenko and Tirozzi
[31, 32], it is a chimera of the replica-symmetric regime at which the theory is developed.
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Figure 1: Critical line for the transition between retrieval and spin-glass phases
for various values of the unlearning time. From the left to the right: t = 0 (Hop-
field, black dashed line), 0.1, 1 and 1000. The inset shows two curves tracing
the boundary of the maximal retrieval regions where patterns are global free
energy minima (inner boundary) or local free energy minima (outer boundary)
in the long sleep limit.

investigate ergodicity breaking: interestingly, as suggested also by the self-
consistencies, we find that -without sleeping- ergodicity breaks as predicted
by Amit-Gutfreund-Sompolinsky [9] (as it should), but -as sleeping takes place-
the spin-glass region shrinks and ultimately the network phase-diagram exhibits
only retrieval and ergodic phases (see Fig.s 5,6).

This paper is structured as follows: in Sec. 2, once the model is introduced and
embedded in its statistical mechanical framework, we calculate its quenched
free energy by introducing a novel interpolating structure à la Guerra and this
provides a first picture of the phase diagram of the model (as we can identify
the transition between the retrieval and the spin-glass regions). Next, in Sec. 3,
we study the fluctuations of the order parameters to inspect where ergodicity
is spontaneously broken as this is a signature of the critical line, namely the
transition between the ergodic and the spin-glass regions): by combining the
two results a full picture of the phase diagram of the model can be finally
deduced. Sec. 4 is left for conclusions. Technical details and further remarks on
the interpolation approach are provided in the appendices.

2 Replica symmetric free energy analysis

2.1 Definition of the Model

Driven by the works of Personnaz, Guyon, Dreyfus [60] and of Dotsenko et al.
[31, 32], in [33] we introduced the following generalization of the standard Hop-
field paradigma [42], referred to as “reinforcement&removal” (RR) algorithm:
consider a network composed by N Ising neurons {σi}i=1,...,N and P patterns
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{ξµ}µ=1,...,P (namely quenched random vectors of the same length N), and de-
note with t ∈ R+ the sleep extent (such that for t = 0 the network has never
slept, while for t → ∞ an entire sleeping session has occurred), we can then
introduce the following
Definition 1. The Hamiltonian of the reinforcement&removal model reads as:4

H
(RR)
N,P (σ|ξ, t) := − 1

2N

N∑

i=1

N∑

j=1

P∑

µ=1

P∑

ν=1

ξµi ξ
ν
j

(
1 + t

I + tC

)

µ,ν

σiσj , (1)

where σi = ±1 ∀i ∈ (1, ..., N), ξ1 -that is the pattern candidate to be retrieved-
has binary entries ξ1i ∈ {−1,+1} drawn from P (ξµi = +1) = P (ξµi = −1) = 1

2 ,
while the remaining P − 1 patterns {ξµ}µ=2,...,P , have i.i.d. standard Gaussian
entries ξµi ∼ N [0, 1], and the correlation matrix C is defined as

Cµ,ν :=
1

N

N∑

i=1

ξµi ξ
ν
i .

Remark 1. We stress that, for the sake of mathematical convenience, as deep-
ened in [3], we take solely the pattern candidate for retrieval (i.e. the signal) to
be Boolean, while all the remaining ones (acting as slow noise on the retrieval)
are chosen as Gaussian: although neural networks, in general, do not exhibit the
universality properties of spin glasses [38], this is no longer true if we confine
our focus solely to the structure of the slow noise generated by patterns5.
Remark 2. Note that the matrix ξT

(
1+t
I+tC

)
ξ, encoding the neuronal coupling,

recovers the Hebbian kernel for t = 0 , while it approaches the pseudo-inverse
matrix for t → ∞ (see [33] for the proof). Accordingly, the model described
by the Hamiltonian (1) spans, respectively, from the standard Hopfield model
(t→ 0) to the Kanter-Sompolinksy model [46] (t→∞).
During the sleeping session, both reinforcement and remotion take place: over-
simplifying, in the generalized synaptic coupling appearing in (1), the denomi-
nator (i.e., the term ∝ (1 + tC)−1) yields to the remotion of unwanted mixture
states, while the numerator (i.e., the term ∝ 1+t) reinforces the pure memories.

We are interested in obtaining the phase diagram of the model coded by the cost
function (1), solely in the thermodynamic limit and under the replica symmetric
assumption. To achieve this goal the following definitions are in order.
Definition 2. Using β ∈ R+ as a parameter tuning the level of fast noise in
the network (with the physical meaning of inverse temperature, i.e. calling T
the temperature, β ≡ T−1 in proper units,), the partition function of the model
(1) is introduced as

ZN,P (σ|ξ, t) :=
∑

{σ}

e−βH
(RR)
N,P (σ|ξ,t) =

∑

{σ}

exp


 β

2N

N,N∑

i,j=1

P,P∑

µ,ν=1

ξµi ξ
ν
j

(
1 + t

I + tC

)

µ,ν

σiσj


 .

(2)
4As a matter of notation, we stress that the denominator 1/(I + tC) in the generalized

kernel is intended as the inverse matrix (I+ tC)−1.
5As extensively discussed in [17, 18] by varying the nature of the neurons as well as of the

pattern entries, for instance ranging from Boolean (Ising) to standard Gaussians, the retrieval
performances of the network vary sensibly and, in some limits, are entirely lost: in this sense
neural networks do not share universality with standard spin-glasses.
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Definition 3. Denoting with Eξ the average over the quenched patterns, for
a generic function O(σ, ξ) of the neurons and the couplings, we can define the
Boltzmann 〈O(σ, ξ)〉 as

〈O(σ, ξ)〉 :=

∑
{σ}O(σ, ξ)e−βH

(RR)
N,P (σ|ξ,t)

ZN,P (σ|ξ, t)
, (3)

(4)

such that its quenched average reads as Eξ〈O(σ, ξ)〉.
Definition 4. Once introduced the partition function ZN,P (σ|ξ, t), we can define
the infinite volume limit of the intensive quenched free-energy FN (α, β, t) and
of the intensive quenched pressure A(α, β, t) associated to the model (1) as

−βF (α, β, t) ≡ A(α, β, t) := lim
N→∞

1

N
E lnZN,P (σ|ξ, t). (5)

As anticipated, the pressure of the model (1) was analyzed in [33] via replica-
trick [27] (corroborated by extensive numerical simulations), showing that (at
the replica symmetric level of description) the maximal critical capacity of this
neural network saturates the Gardner’s bound [34, 35, 36, 37] (i.e. αc = 1, for
symmetric noiseless networks).
Remark 3. The partition function defined in (2) can be represented in Gaussian
integral form as

ZN,P (σ|ξ, t) =
∑

{σ}

∫ ( P∏

µ=1

dµ(zµ)
)( N∏

i=1

dµ(φi)
)
·

· exp



√
β

N
(t+ 1)

P,N∑

µ,i

zµξ
µ
i σi + i

√
t

N

P,N∑

µ,i

zµξ
µ
i φi


 ,

(6)

where dµ(zµ) and dµ(φi) are the standard Gaussian measures. This relation
shows that the partition function of the reinforcement&removal model is equiv-
alent to the partition function of a tripartite spin-glass where the intermediate
party (or hidden layer to keep a machine learning jargon) is made of real neu-
rons {zµ}µ=1,...,P with zµ ∼ N [0, 1],∀µ, while the external layers are made,
respectively, of a set of Boolean neurons {σi}i=1,...,N (the visible layer) and of
a set of imaginary neurons with magnitude {φ}i=1,...,N , being φi ∼ N [0, 1],∀i
(the spectral layer), see Fig. 2.

2.2 Guerra’s interpolating framework for the free energy

Definition 5. Once expressed the partition function (2) in its integral repre-
sentation (6), we can introduce the related tripartite spin glass Hamiltonian as

HN,P =
a√
N

N∑

i=1

P∑

µ=1

zµξ
µ
i ki, (7)

where we introduced the “multi-spin” ki = σi + bφi and where

a =
√
β(t+ 1), b = i

√
t

β(t+ 1)
. (8)
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Figure 2: Stylized representation of the generalized Hopfield network (left) and
its dual generalized (restricted) Boltzmann machine (right), namely the three-
partite spin-glass under study: in machine learning jargon these parties are
called layers and, here, they are respectively the visible, hidden and spectral
layers. Note further that, as it should, when t→ 0 the duality above reduces to
the standard picture of Hopfield networks and restricted Boltzmann machines
[3, 16].

Remark 4. Note that the cost function (7) and the one associated to the orig-
inal model (1) share the same partition function and therefore exhibit the same
Thermodynamics. By a practical perspective, the latter is more suitable for un-
derstanding the retrieval capabilities of the network, the former for dealing with
its learning skills [16, 17].

In the following we consider the challenging case with P = αN for large N and
we aim to obtain an expression for the quenched pressure (5) in terms of the
order parameters introduced in the next
Definition 6. The natural order parameters for the neural network model (1)
-as suggested by its integral representation (7)- are the overlaps qab and pab
between the k’s and the z’s variables, respectively, as functions of two replicas
(a,b) of the system, and the generalized Mattis overlap6 m1, namely

qab := 1
N

∑N
i=1 k

(a)
i k

(b)
i , (9)

pab := 1
P

∑
µ≥2 z

(a)
µ z

(b)
µ , (10)

m1 := 1
N

∑N
i=1 ξ

1
i ki. (11)

Remark 5. The replica symmetric approximation (RS) is imposed by requiring
that the order-parameters of the theory do not fluctuate in the thermodynamic

6We arbitrarily (but with no loss of generality) nominated the first pattern as the retrieved
one.
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limit7, i.e.

qab
RS→Wδab + q(1− δab),

pab
RS→ Xδab + p(1− δab),

m1
RS→ m,

(12)

where we called, respectively, W, q,X, p,m the replica symmetric values of the
diagonal and off-diagonal overlap q, the diagonal and off-diagonal overlap p and
the Mattis magnetization m1.

Now the plan is to get an explicit expression for the pressure (5) in terms of these
order parameters, to extremize the former over the latter and get a phase dia-
gram for the network. To reach this goal we generalize a Guerra’s interpolation
scheme [19]: the idea is to compare the original system, as represented in eq.
(7) (namely a three-layer correlated spin glass), with three random single-layers,
where each layer experiences, statistically, the same mean-field that would have
been produced by the other layers over it. To this aim we introduce the follow-
ing
Definition 7. Being s ∈ [0, 1] an interpolating parameter, {ηi}i∈(1,...,N) a set
of N i.i.d. Gaussian variables, {λµ}µ∈(2,...,P ) a set of P − 1 i.i.d. Gaussian
variables, and the scalars C1, C2, C3, C4, C5 to be set a posteriori, we use as
interpolating pressure the following quantity

A(s) :=
1

N
Eξ,η,λ ln

∑
σ

∫
dµ (z, φ) exp

[√
s
a√
N

∑
i,µ≥2

zµξ
µ
i ki +

√
s
a√
N

∑
i

z1ξ
1
i ki (13)

+
√
1− s

(
C1

N∑
i

ηiki + C2

∑
µ≥2

λµzµ
)
+

1− s
2

(
C3

∑
µ≥2

z2µ + C4

∑
i

k2i + C5a
∑
i

ξ1i ki
)]
.

Remark 6. When s = 1 we recover the original model, namely A(α, β, t) =
limN→∞A(s = 1), while for s → 0 we are left with a one-body problem, and,
consequently, the probabilistic structure of A(s = 0) is more tractable.
Remark 7. We note the importance of splitting the sum on the ξ’s into ξ1

(i.e. the signal) and the ξ2 · · · ξP (i.e. the quenched noise) since the quenched
average treats them differently, and so we will need to address them separately.
Proposition 1. The infinite volume limit of the quenched pressure related to
the model (1) can be obtained by using the Fundamental Theorem of Calculus
as

A(α, β, t) ≡ lim
N→∞

A(s = 1) = lim
N→∞

(
A(s = 0) +

∫ 1

0

dA(s)

ds
ds

)
. (14)

To follow this approach, two calculations are in order: the streaming dsA(s)
(and its successive back-integration) and the evaluation of the Cauchy condition
A(s = 0). Let us start with dsA(s):

dA(s)

ds
= 1

2N Eξ,λ,η
[

a√
sN

∑
i,µ≥2 ξ

µ
i 〈zµki〉 − 1√

1−s

(
C1

∑
i ηi〈ki〉+ C2

∑
µ≥2 λµ〈zµ〉

)
+(15)

+ a√
sN

∑
i ξ

1
i 〈z1ki〉 − C3

∑
µ≥2〈z2µ〉 − C4

∑
i〈k2i 〉 − C5a

∑
i〈ξ1i ki〉

]
. (16)

7This request is obviously perfectly consistent with the replica-symmetric ansatz when
approaching the problem via the replica trick [27, 33].
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We can proceed further by usingWick’s Theorem [ExxF (x) = Ex(x2)·Ex∂xF (x)]
on the fields z1, ξ2···P , λµ, ηi, obtaining

dA(s)
ds

=
1

2N
Eξ,λ,η

[a2
N

∑
i,µ≥2

(
〈z2µk2i 〉 − 〈zµki〉2

)
+
a2

N
〈
(∑

i

ξ1i ki
)2〉 − C2

1

∑
i

(
〈k2i 〉 − 〈ki〉2

)
− C2

2

∑
µ≥2

(
〈z2µ〉 − 〈zµ〉2

)
− C3

∑
µ≥2

〈z2µ〉 − C4

∑
i

〈k2i 〉 − C5a
∑
i

〈ξ1i ki〉
]
.

(17)

Using the definition of the order parameters (11) we can write dsA(s) as

dA(s)

ds
=

1

2
Eξ,λ,η

[
a2α〈q11p11〉+ a2〈m2

1〉 − a2α〈q12p12〉 − C2
1 〈q11〉+ C2

1 〈q12〉+

− C2
2α〈p11〉+ C2

2α〈p12〉 − αC3〈p11〉 − C4〈q11〉 − aC5〈m1〉
]
.

(18)

It is now convenient to fix the free scalars C1,..,5 as

C2
1 = a2αp, C2

2 = a2q, C3 = a2(W − q), C4 = a2α(X − p), C5 = 2ma,
(19)

such that we can recast the streaming dsA(s) as

dA(s)

ds
=

1

2
Eξ,λ,η

[
a2α〈(q11 −W )(p11 −X)〉+ a2〈(m1 −m)2〉 − a2α〈(q12 − q)(p12 − p)〉

]
+

+
αa2

2
(qp−WX)− a2

2
m2.

(20)

Remark 8. When requiring replica symmetry, we have that 〈q11〉 →W , 〈p11〉 →
X, 〈m1〉 → m, 〈q12〉 → q and 〈p12〉 → p, hence the evaluation of the integral in
eq. (14) becomes trivial as the r.h.s. of eq. (20) reduces to

dsA(s) =
αa2

2
(qp−WX)− a2

2
m2 (21)

that does not depend on s any longer.

We must now evaluate the one-body contribution A(s = 0): this can be done
by directly setting s = 0 in (13)

A(s = 0) =
1

N
Eξ,η,λ ln

∑

σ

∫
dµ (z, φ) exp

[
C1

∑

i

ηiki +
C4

2

∑

i

k2i +
C5a

2

∑

i

ξ1i ki+

+ C2

∑

µ≥2

λµzµ +
C3

2

∑

µ≥2

z2µ

]
.

(22)

Performing standard Gaussian integrations we obtain

A(s = 0) =− α

2
ln(1− C3)− 1

2
ln(1− C4b

2) +
α

2

C2
2

1− C3
+
C4

2

+ Eη ln cosh
[C1η + C5a

2

1− C4b2

]
+ +b2

C2
1 + C2

4 +
C2

5a
2

4

1− C4b2
+ ln 2.

(23)
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Keeping in mind the expressions for the parameters C1, ..., C5 as prescribed in
the relations 19, by plugging eq. (21) and eq. (23) into the sum rule (14) we
finally get an expression for the quenched pressure of the model (1) in terms of
the replica-symmetric order parameters

ARS(α, β, t) =
αa2

2

(
qp−WX

)
− a2

2
m2 − α

2
ln
[
1− a2(W − q)

]
− 1

2
ln
[
1− a2b2α(X − p)

]
+

+
α

2

a2q

1− a2(W − q)
+
αa2

2

(
X − p

)
+
a2b2

2
· αp+m2a2 + a2α2(X − p)2

1− a2b2α(X − p)
+

+ ln 2 + Eη ln cosh
[ aη

√
αp+ma2

1− αa2b2(X − p)

]
.

(24)

To match exactly the notation in [33] there is still a short way to go: it is
convenient to re-scale m, p and X as

X → β2

a2
X, p→ β2

a2
p, m→ β

a2
m, (25)

as this allows us to introduce the composite order parameter ∆ = 1−αβ2b2(X−
p) used in [33] and, under this rescaling, m gets exactly the Mattis magnetiza-
tion.
After these transformations, remembering the definition of the free energy (see
(5)) and the definition of (a, b) (see (8)), we obtain exactly the same expression
for the quenched free energy as that achieved in [33] via the replica trick, as
stated by the next main
Theorem 1. In the infinite volume limit, the replica symmetric free energy
related to the neural network defined by eq. (1) can be expressed in terms of the
natural order parameters of the theory (see def.s (11)) as

FRS(α, β, t) =− βm2

2(1 + t)

(
1 +

t

∆

)
− (1 + t)(∆− 1)

2t
βW − αβ2

2
p(W − q)

− α

2

(
log[1− β(1 + t)(W − q)] +

qβ2(1 + t)

1− β(1 + t)(W − q)

)
− (1 + t)(1−∆)β

2t∆

− log ∆

2
− αβpt

2(1 + t)∆
+ Eη log cosh

[ β
∆

(m+
√
αpη)

]
+ log 2.

(26)

Proposition 2. Using the standard variational principle ~∇FRS = 0 on the free
energy (26), namely by extremizing the latter over the order parameters, we
obtain the following set of self-consistent equations for these parameters, whose
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behavior is outlined in the plots of Fig. 3.

m =
1 + t

∆ + t
Eη tanh

[ β
∆

(m+
√
αpη)

]
,

p =
q(1 + t)2

[1− β(1 + t)(W − q)]2
,

∆ = 1 +
αt

1− β(1 + t)(W − q)
,

q = W +
t

β(1 + t)∆
− 1

∆2
Eη cosh−2

[ β
∆

(m+
√
αpη)

]
,

W∆2 = 1− t∆

β(1 + t)
+
αpt2 −m2t(t+ 2∆)

(1 + t)2
− 2αβpt

(1 + t)∆
Eη cosh−2

[ β
∆

(m+
√
αpη)

]
.

(27)

Remark 9. We stress that we obtained exactly the same self-consistencies pre-
viously appeared in [33], thus all the consequences stemming by them, as reported
in that paper, are here entirely confirmed.

3 Study of the overlap fluctuations

As proved in the previous section, the reinforcement&removal algorithm makes
the retrieval region in the (α, β) plane wider and wider as t is increased (see Fig.
1). As the retrieval region pervades the spin-glass region, one therefore natu-
rally wonders whether the opposite boundary of the spin-glass region (namely
the critical line depicting the transition where ergodicity breakdowns) is as well
deformed. To address this point, we now study the behavior of the overlap
fluctuations, suitably centered around the thermodynamic values of the over-
laps and properly rescaled in order to allow them to diverge when the system
approaches the critical line. In fact, they are meromorphic functions and their
poles identify the evolution of the critical surface βc(α, t) (if any).
It is worth recalling that the critical line for the standard Hopfield model [42]
as predicted by the AGS theory [9] is βc(α, t = 0) = (1 +

√
α)−1.

3.1 Guerra’s interpolating framework for the overlap fluc-
tuations

The idea is the same exploited in the previous section, namely to use the gen-
eralized Guerra’s interpolation scheme (see eq. (13)) to evaluate the evolution
of the order parameter’s correlation functions from s = 0 (where they do not
represent the real fluctuations in the system, but their evaluation should be
possible) up to s = 1 (where they reproduce the true fluctuations). To achieve
this goal for the generic correlation function O, we need to evaluate the Cauchy
condition 〈O(s = 0)〉 and the derivative ∂s〈O(s)〉. However, in contrast with
the previous section where we imposed replica symmetry, here -as we just want
to infer the critical line- we impose ergodic behavior, namely, we assume that
the system is approaching this boundary from the high fast-noise limit. This
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Figure 3: Retrieval state solution for the order parameters and free
energy at t = 1000. First row: on the left, the plot shows the Mattis magne-
tization m as a function of the temperature for various storage capacity values
(α = 0, 0.05, 0.2 and 0.5, going from the right to the left). The vertical dotted
lines indicates the jump discontinuity identifying the critical temperature Tc(α)
which separates the retrieval region from the spin-glass phase; on the right, the
plot shows the solutions of the non-diagonal overlap q (normalized to the zero-
temperature value q0 = q(T = 0)), for the same capacity values. The solution
is computed in the retrieval region (i.e. T < Tc(α)). Second row: on the left,
the plot shows the solution for the diagonal overlap −W in the retrieval region
for α = 0, 0.05, 0.2 and 0.5, finally, on the right the plot shows the free-energy
as a function of the temperature for various storage capacity values (α = 0.05,
0.2 and 0.5, going from the bottom to the top) for both the retrieval (red solid
lines) and spin-glass (black dashed lines) states.

allows us to set all the mean values of the overlaps to zero and to achieve explicit
solutions.
Definition 8. The centered and rescaled overlap fluctuations θlm and ρlm are
introduced as

θlm =
√
N
[
qlm − δlmW − (1− δlm)q

]

ρlm =
√
P
[
plm − δlmX − (1− δlm)p

]
.

(28)

Remark 10. As we will address the problem of the overlap fluctuations in the
ergodic region, the signal is absent, thus there is no need to introduce a rescaled
Mattis order parameter: only the boundary between the ergodic region and the
spin-glass region is under study here.
Proposition 3. It is convenient to introduce the r−replicated interpolating pres-
sure ArJ(s), where we further added a source field J , coupled to an observable O
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(that is a smooth function of the neurons of the r-replicas) as

ArJ(s) =Eξ,η,λ ln
∑

σR

∫
dµ (zR, φR) exp

[√
s
a√
N

r∑

l=1

∑

i,µ

z(l)µ ξµi k
(l)
i + JÔ

+
√

1− s
(
C1

r∑

l=1

∑

i

ηik
(l)
i + C2

r∑

l=1

∑

µ

λµz
(l)
µ

)

+
1− s

2

(
C3

r∑

l=1

∑

µ

(z(l)µ )2 + C4

r∑

l=1

∑

i

(k
(l)
i )2

)]
.

(29)

where ki is the same as in Definition 5 and the interpolation constants C1,2,3,4

are the same given in the previous section (see eq. ( (19))).

By definition

〈O(s)〉 =
∂ArJ(s)

∂J

∣∣∣∣
J=0

, ∂s〈O(s)〉 =
∂(∂sArJ)

∂J

∣∣∣∣
J=0

. (30)

Therefore, in order to evaluate the fluctuations of O we need to evaluate first
∂sArJ and, by a routine calculation, we get

∂sArJ =
1

2

√
αβ(1 + t)

r∑

l,m=1

[
〈gl,m〉 − 〈gl,m+r〉

]
, gl,m = θl,mρl,m. (31)

To evaluate the fluctuations of a general operator O, function of r−replicas, we
must use the results (30) and perform the same rescaling that we did in the
previous section, namely

(X, p)→ β2

a2
(X, p). (32)

Overall this brings to the next
Proposition 4. Given O as a smooth function of r replica overlaps (q1, . . . , qr)
and (p1, . . . , pr) , the following streaming equation holds:

dτ 〈O〉 =
1

2

r∑

a,b

〈O·ga,b〉−r
r∑

a=1

〈O·ga,r+1〉+
r(r + 1)

2
〈O·gr+1,r+2〉−

r

2
〈O·gr+1,r+1〉,

(33)
where we used the operator dτ defined as

dτ =
1

β(1 + t)
√
α

d

ds
, (34)

in order to simplify calculations and presentation.

3.2 Criticality and ergodicity breaking

To study the overlap fluctuations we must consider the following correlation
functions (it is useful to introduce and link them to capital letters in order to
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simplify their visualization):

〈θ212〉s = A(s), 〈θ12θ13〉s = B(s), 〈θ12θ34〉s = C(s),

〈θ12ρ12〉s = D(s), 〈θ12ρ13〉s = E(s), 〈θ12ρ34〉s = F (s),

〈ρ212〉s = G(s), 〈ρ12ρ13〉s = H(s), 〈ρ12ρ34〉s = I(s),

〈θ211〉s = J(s), 〈θ11ρ11〉s = K(s), 〈ρ211〉s = L(s),

〈θ11θ12〉s = M(s), 〈θ11ρ12〉s = N(s), 〈ρ11θ12〉s = O(s),

〈ρ11ρ12〉s = P (s), 〈θ11ρ22〉s = Q(s), 〈θ11θ22〉s = R(s).

〈ρ11ρ22〉s = S(s),

Since we are interested in finding the critical line for ergodicity breaking from
above we can treat θa,b, ρa,b as Gaussian variables with zero mean (this allows
us to apply Wick-Isserlis theorem inside averages) as we can also treat both
the ki and zµ as zero mean random variables in the ergodic region (thus all
averages involving uncoupled fields are vanishing): this considerably simplifies
the evaluation of the critical line (as expected since we are approaching criticality
from the trivial ergodic region [21]).
We can thus reduce the analysis to

〈θ212〉s = A(s), 〈θ12ρ12〉s = D(s), 〈ρ212〉s = G(s),

〈θ211〉s = J(s), 〈θ11ρ11〉s = K(s), 〈ρ211〉s = L(s),

〈θ11ρ22〉s = Q(s), 〈θ11θ22〉s = R(s), 〈ρ11ρ22〉s = S(s).

According to (33) and to the previous reasoning we obtain:

dτA = 2AD,

dτD = D2 +AG,

dτG = 2GD.

(35)

Suitably combining A and G in (35) we can write

dτ ln
A

G
= 0 =⇒ A(τ) = r2G(τ), r2 =

A(0)

G(0)
. (36)

Now we are left with

dτD = D2 + r2G2,

dτG = 2GD.
(37)

The trick here is to complete the square by summing dτD + rdτG thus obtain-
ing

dτY = Y 2,

Y = D + rG,

dτG = 2G(Y − rG).

(38)

The solution is trivial and it is given by

Y (τ) =
Y0

1− τY0
, Y0 = D(0) +

√
A(0)G(0). (39)
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Figure 4: Ergodicity breaking critical line. The plot shows a compari-
son between the theoretical predictions (black dashed lines) for the ergodicity
breaking critical line according to Eq. (45) and numerical solutions for spin glass
states (red markers). The latter are evaluated by solving the self-consistency
equations with m = 0 with α fixed and searching for the temperature T above
which the solution has q = 0. Going from top to bottom of the plot, the sleep
extent is t = 0.1, 1 and 2.

So we are left with the evaluation of the correlations at s = 0: namely the
Cauchy conditions related to the solution coded in eq. (39). To this task we
introduce a one-body generating function for the momenta of z, k: this can
be done by setting inside (29) s = 0, r = 1 and adding source fields (ji, Jµ)
coupled respectively to (ki, zµ), with i ∈ (1, ..., N), µ ∈ (1, ..., P ). Since we are
approaching the critical line from the high fast noise limit we can set m, p, q = 0
(when we explicitly make use of the coefficients (19)), overall writing

F (j, J) = ln
∑

σ

∫
dµ (z, φ) exp

[∑

i

jiki +
∑

µ

Jµzµ +
a2W

2

∑

µ

z2µ +
1−∆

2b2

∑

i

k2i

]
.

(40)

Clearly, we took great advantage in approaching the ergodic region from above,
since even the one-body problem (for the Cauchy condition) has been drastically
simplified: showing only the relevant terms in j, J we have

F (j, J) =
b2∆ + 1

2∆2

∑

i

j2i +
1

2(1− a2W )

∑

µ

J2
µ +O(j3). (41)

As anticipated, all the observable averages needed at s = 0 can now be calculated
simply as derivatives of F (j, J), thus the s = 0 correlation functions are finally
given by

D(0) =
√
NP

(
∂jF

)2(
∂JF

)2∣∣∣
j,J=0

= 0,

A(0) =
(
∂2jF

)2∣∣∣
j,J=0

=
[β(1 + t)− t∆
β(1 + t)∆2

]2
= W 2,

G(0) =
(
∂2JF

)2∣∣∣
j,J=0

= (1− β(1 + t)W )−2.

(42)
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Inserting this result in (39), we get

Y (τ) =
W

1− β(1 + t)W − τW
. (43)

Upon evaluating Y (τ) for τ = β(1 + t)
√
αs, s = 1 and reporting the relevant

ergodic self-consistent equations we obtain the following system:

Y (s = 1) =
W

1− β(1 + t)W (1 +
√
α)
,

W∆2 = 1− t∆

β(1 + t)
,

∆ = 1 +
αt

1− β(1 + t)W
.

(44)

Since we are interested in obtaining the critical temperature for ergodicity break-
ing, where fluctuations (in this case Y ) grow arbitrarily large we can check where
the denominator at the r.h.s. of the first eq. (44) becomes zero and recast this
observation as follows
Theorem 2. The ergodic region of the model defined by the cost function (1)
is delimited by the following critical surface in the (α, β, t) space of the tunable
parameters

βc =
1

1 + t

[ ∆2

1 +
√
α

+ t∆
]

with ∆ = 1 +
√
α(1 +

√
α)t. (45)

Remark 11. At t = 0, where the model reduces to Hopfield’s scenario, the
critical surface correctly collapses over the Amit-Gutfreund-Sompolinsky critical
line βc = (1 +

√
α)−1, but in the large t limit the ergodic region collapses to

the axis T = 0: this may have a profound implication, namely that the ergodic
region -during the sleep state- phagocytes the spin-glass region.
Since we have already seen that also the retrieval region phagocytes the spin-
glass region 8 this means that spurious states are entirely suppressed with a
proper rest, allowing the network to achieve perfect retrieval, as suggested in the
pioneering study by Kanter and Sompolinsky [46].

8Note that the ergodic line does not affect the retrieval region, they simply fade one into the
other. This is because the critical surface is calculated assuming an ergodic regime (hence, it
does not takes into account the signal) and, more importantly, the retrieval region is delimited
by a first order phase transition, that is not detected by a second order inspection as that
needed for criticality.
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Figure 5: Phase diagram. Critical lines for ergodicity breaking (dotted curves)
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time. From the top to the bottom: t = 0 (black lines, i.e. the Hopfield phase
diagram), t = 0.1 (red lines), 1 (blue lines) and 1000 (green lines).
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Figure 6: Evolution of the phase diagram. The phase diagram is depicted
for different choices of t, namely, from left to right, t = 0, 0.1, 1, 1000. Notice
that, as t grows, the retrieval region (blue) and the ergodic region (yellow) get
wider at the cost of the spin-glass region (red) which progressively shrinks up
to collapse as t→∞. Also notice the change in the concavity of the critical line
which separates ergodic and spin-glass region.

4 Conclusions and outlooks

In recent years Artificial Intelligence, mainly due to the impressive skills of Deep
Learning machines and the GPU-related revolution [49], has attracted the at-
tention of the whole Scientific Community. In particular, the latter includes
mathematicians involved in the statistical mechanics of complex systems which
has proved to be a fruitful tool in the investigation of neural networks and ma-
chine learning, since the early days (not by chance Boltzmann machines are
named after Boltzmann [1]).
Among the various fields of Artificial Intelligence where, in the present years,
statistical mechanics extensively contributed to the cause (e.g. statistical infer-
ence and signal processing [26, 47], combinatorial and computational complexity
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[48, 53, 55], supervised or unsupervised learning [13, 45], deep learning [14, 54],
compositional capabilities [2, 66], and really much more...) the one we deepened
in this work deals with the phenomenon of dreaming and sleeping9.
In the current work we mathematically described the phenomena of reinforce-
ment and remotion, as pioneered by Crick & Mitchinson [29], by Hopfield [43]
and by many others in the neuroscience literature, see e.g [30, 41, 50, 51]): in-
terestingly, such mechanisms have been evidenced to lead to an improvement
of the retrieval capacity of the system. In particular, in [33], we showed that
the system reaches the expected upper critical capacity αc = 1, still preserving
robustness with respect to fast noise. However, the statistical mechanical anal-
ysis, set at the standard replica symmetric level of description, was carried out
via non-rigorous approaches (e.g., replica trick and numerical simulations).
In this work we extended a Guerra’s interpolation scheme [19], originally devel-
oped to deal with the standard Hopfield model (i.e. equipped with the canonical
Hebbian synaptic coupling), to deal with this generalization: at first we showed
the equivalence of this model with a three-layer spin-glass where some links
among different layers are cloned (hence introducing correlation in the network
and in the random fields required for the interpolation) and the third, and novel
(w.r.t. the standard equivalence between Hopfield models and two-layers Boltz-
mann machines [16, 18]), layer is equipped with imaginary real-valued neurons
(best suitable to perform spectral analysis10). As a consequence, the resulting
interpolating architecture is rather tricky, by far richer than its classical limit
yet it turns out to be managable and actually a sum rule for the quenched free
energy related to the model can be written and even integrated, under the as-
sumption of replica symmetry: such an expression, as well as those stemming
from its extremization for the order parameters, sharply coincides with previous
results [33], confirming them in each detail.
We remark that such theorems state also the validity of other previous inves-
tigation -all replica trick derived- on unlearning in neural networks (see e.g.
[31, 57, 46]).
Beyond confirming previous results, we further systematically developed a fluc-
tuation analysis of the overlap correlation functions, searching for critical be-
haviour, in order to inspect where ergodicity breaks down and in this inves-
tigation we found a very interesting result: as long as the Hopfield model is
awake, the critical line is the one predicted by Amit-Gutfreund-Sompolinksy
(as it should and as it is known by decades). However, as the network sleeps,
the ergodic region starts to invade the spin glass region, ultimately destroying
the spin glass states entirely, thus allowing the network (at the end of an entire
sleep session) to live solely within a -quite large- retrieval region, surrounded by
ergodicity: noticing that at this final stage of sleeping the network approached
the Kanter-Sompolinsky model [46], it shines why these Authors called their
model associative recall of memory without errors.

9We point out that dreaming has been recently connected to compositional capabilities
[40], the latter being natural properties of diluted retricted Boltzmann machines [6, 7, 66].

10We plan to report soon on the learning algorithms for this generalized restricted Boltz-
mann machine, where the properties of the spectral layers will spontaneously shine.
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