
Noname manuscript No.
(will be inserted by the editor)

Decidability in Robot Manipulation Planning

Marilena Vendittelli1, Andrea Cristofaro1, Jean-Paul Laumond2,

Bud Mishra3

the date of receipt and acceptance should be inserted later

Abstract Consider the problem of planning collision-

free motion of n objects movable through contact with

a robot that can autonomously translate in the plane

and that can move a maximum of m ≤ n objects simul-

taneously. This represents the abstract formulation of

a general class of manipulation planning problems that

are proven to be decidable in this paper. The tools used

for proving decidability of this simplified manipulation

planning problem are, in fact, general enough to handle

the decidability problem for the wider class of systems

characterized by a stratified configuration space. These

include, e.g., problems of legged and multi-contact lo-

comotion, bi-manual manipulation. In addition, the de-

scribed approach does not restrict the dynamics of the

manipulation system to be considered.

1 Introduction

The problem of planning collision free motion for a free-

flying single-body robot in environments populated by

static obstacles has been widely studied in the past

decades and can be considered today well understood.

In this paper we consider a generalization of this basic

problem by allowing the presence of movable obstacles,

i.e., objects in the environment that the robot can move

by “grasping” them, while avoiding collisions with all

the obstacles and objects.
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The problem of motion planning in the presence of

movable obstacles was first addressed in [14], where the

decidability is proven for the case of discrete grasps.

This problem was further generalized in [1] to the so-

called manipulation planning problem where the mov-

able obstacles are considered as objects to be moved

to reach a goal position. In that paper the authors

present an algorithm for the case of discrete placements

and grasps. This is the formulation briefly described

in Chapter 11 of Latombe’s book [9]. Decidability of

the problem in the case of continuous grasps and place-

ments was shown in [4] considering one movable object.

While [2] provides an efficient probabilistically com-

plete algorithm in the case of several movable obstacles,

the decidability problem, i.e., the existence of an exact

algorithm that decides wether a solution exists in finite

time, remained open even in the case of two movable

objects as also mentioned in [8].

In this paper we prove that the manipulation plan-

ning problem is decidable for a robot that can freely

translate in the plane and manipulate up to m ≤ n ob-

jects simultaneously, with n the total number of mov-

able objects. The objects can move only if they are

in contact with (“grasped” by) the robot. The proof

is based on a cell decomposition of the collision-free

contact configuration space, a refinement of the cells

through a properly defined projection/lifting procedure,

and on the reduction property. This property establishes

the equivalence of two types of paths: namely, paths

continuously satisfying the contact constraint (hereafter

called paths in contact or contact paths) and manip-

ulation paths, along which the objects either translate

rigidly with the robot as a single object (transfer paths)

or remain in a fixed position while the robot moves

freely (transit path). To prove that the reduction prop-

erty holds for the considered manipulation model we ex-
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ploit the configuration space structure and investigate

the controllability of the system based on the stratified

controllability notion [6].

The decidability procedure for this simplified case

of manipulation planning problem uses methodological

tools which are abstract enough to allow handling a

more general class of manipulation planning problems.

The result, presented here, lays the basis for answer-

ing important questions such as under which conditions

motion in contact can be reduced to a manipulation

path, how to efficiently construct manipulation graphs

related to many different problems (climbing, walking,

multi-contact planning), and how to determine the rate

of convergence of probabilistic planners for the manipu-

lation of multiple objects. It is worth emphasizing that

our main goal is to provide a versatile decision algo-

rithm, and therefore we do not give any specific plan-

ning algorithm.

This paper is an extension of our previous work [13]

in which initially we had only proved the decidability for

3 disks. A strongly related approach was later proposed

in [5], stating a more general result than the one in [13].

In the present paper, we show that the method in [13]

is general enough to consider an arbitrary number of

movable objects with arbitrary shape and discuss the

general characteristics of the approach which permits

dealing with other classes of planning problems.

The work, presented here, differs from the close con-

tribution in [5] mainly in the approach that relies on (a)

the decomposition of the composite configuration space

and (b) the definition of a control model for the robotic

manipulation system. This approach enjoys several ad-

vantages: namely, (i) it leads to easy-to-check condi-

tions for decidability; (ii) it decouples the projection

and lifting procedure performed on the unconstrained

composite configuration space from the controllability

properties of the manipulation system; this separation

allows one to decide planning problems also for manip-

ulation systems characterized by non-constant distribu-

tions; (iii) it can naturally encode kinematic constraints

in the system dynamics; (iv) it considers also the case in

which the robot can manipulate a maximum of objects

m < n, where n is the total number of manipulable

objects in the workspace.

Beyond the decidability procedure, this work con-

tributes to the analysis of the manipulation planning

problem structure in an accessible way, providing tools

for analysing the decidability of robotic manipulation

systems.

The paper is organized as follows. The next section

formalizes the problem after defining the configuration

space and its connectivity through manipulation paths.

Section 3 analyses the controllability properties of the

manipulation system. Section 4 establishes the condi-

tions under which paths in contact can be reduced to

manipulation paths. Section 5 illustrates the main steps

for the construction of the manipulation graph. Sec-

tion 6 opens perspective about the generalization of the

results to other manipulation planning problems and fi-

nally, Sect. 7 concludes the paper.

2 Problem formulation

Consider the scene in Fig. 1: the “robot” R can trans-

late autonomously in a polygonal (or semi-algebraic)

environment populated by fixed obstacles and objects

n objects O1, O2, . . . , On that R can move by estab-

lishing a contact with them. More specifically, the ob-

jects O1, O2, . . . , On translate rigidly with the robot

when in contact with it; otherwise, they are considered

as fixed obstacles.

R

O1

O2

On

...

Fig. 1: Scenario of the considered manipulation planning
problem discussed here.

2.1 Configuration space

The configuration spaces of the robot and the objects

are defined as:

• CR = R2, the configuration space of the robot;

• COi
= R2 the configuration space of Oi, i ∈ 1, . . . , n.

The combined configuration space is obtained as C =

CR×CO1
×CO2

×· · ·×COn
= R2(n+1) and, accordingly,

a configuration q ∈ C is described by the (n+ 1)-tuple

q = (qR, qO1
, qO2

, . . . , qOn
), where qR ∈ CR, qOi

∈
COi

, i ∈ 1, . . . , n.

The collision-free configuration space Cfree is ob-

tained by removing from C the set of inadmissible con-

figurations:
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• qR such that the robot is in contact with static ob-

stacles or overlaps with either static or movable ob-

stacles;

• qOi
, i ∈ 1, . . . , n such that Oi overlaps with the

static obstacles, the robot or with Oj , j 6= i. Note

that contact between objects and obstacles is al-

lowed.

2.2 Configuration space paths and manipulation paths

Configuration space paths may or may not include con-

tacts. To move the objects, however, the robot must be

in contact with the objects. In the (composite and un-

constrained) configuration space C any motion in con-

tact is allowed.

Paths of interest in C can be categorized according

to the two motion modalities:

• robot free motion: this is a path in C characterized

by the absence of contact between the robot and the

objects;

• contact motion: this is a path in C constrained by

the condition that the robot is in contact with at

least one object; along the path the robot position

and the positions of the objects relative to the robot

can change.

The paths described above might or might not be

feasible. It is the dynamics of the manipulation system

that defines the characteristics of grasping and, hence,

of the feasible robot-object motion.

In the following developments we consider only ma-

nipulation by rigid grasp. Therefore, not all the config-

uration space paths are feasible in our setting. Feasible

motions correspond to paths of two types:

– transfer paths along which the robot grasps at least

one object and moves rigidly with it (the objects

not grasped remain in a fixed position); along these

paths the relative configurations between robot and

objects in contact do not change.

– transit paths along which the robot moves alone and

the objects remain in fixed positions.

A sequence of transit and transfer paths is called a ma-

nipulation path.

2.3 Configuration space connectivity through

manipulation paths

The maximum number m of objects that the robot can

simultaneosly manipulate affects the structure of C in-

duced by the contact constraints. In this section we il-

lustrate the structure of C in terms of the submanifolds

(a)

(b)

Fig. 2: Structure of C induced by the contact constraints and
interconnection of the contact submanifolds through transit
and transfer paths. The case illustrated in (a) corresponds to
n = 2 and m = 2, while in (b) it is considered n = 2 and
m = 1.

defined by the contact constraints and their intercon-

nection through transit and transfer paths.

Figure 2 shows representative configurations in each

submanifold for the cases n = 2 and m = 2 or m = 1,

respectively illustrated in Fig. 2a and Fig. 2b. The em-

bedding configuration space C has dimension 6 and foli-

ates with the position of the movable objects. In partic-

ular, leaves of dimension 2 correspond to fixed positions

of the two objects. Transit paths belong to one of these

leaves. A representative configuration in this manifold is

shown at the top of Fig. 2a. Manipulation paths across

the leaves may require leaving the manifold.

Configurations on the second row (from top) of Fig. 2a

represent the single-contact manifold which has dimen-

sion 5. The leaves of interest for the problem of interest
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have dimension 3 and correspond to fixed positions of

the object which is not in contact with the robot. Ma-

nipulation paths across the leaves (change of the posi-

tion of the object not in contact) require leaving the

submanifold.

The double-contact submanifold, represented by the

configurations on the third row of Fig. 2a, has dimen-

sion 4 and foliates with the relative position of the con-

tact points. The leaves of interest have dimension 3 and

2 and correspond respectively to one or both the points

of contact being fixed. Manipulation paths across the

leaves (change of the contact point) require leaving the

submanifold.

Finally, the triple-contact submanifold has dimen-

sion 3, it foliates with the position of the contact points

and the leaves have dimension 2. Manipulation paths

across the leaves require leaving the submanifold.

This last submanifold is not present in the structure

of C when m = 1 as illustrated in Fig. 2b. However, our

solution requires considering also this submanifold of

C to prove decidability, as will be illustrated in what

follows.

In general, the structure of C depends both on the

number n of movable objects and on m, the maximum

number of objects that the robot can move at the same

time.

As will be illustrated in section 3.3, the “manipula-

bility” properties associated with the above described

submanifolds are actually transversal to this geomet-

ric structure and depend on the controllability of the

underlying manipulation system (see Sect. 3.2).

2.4 The manipulation planning problem

Given the definitions and analysis in the previous sec-

tions, we can formulate the following problem.

Manipulation Planning Problem. Assigned an initial con-

figuration qs ∈ Cfree and a goal configuration qg ∈
Cfree, find a sequence of transit and transfer paths join-

ing qs to qg, if it exists.

To prove that this problem is decidable we adopt

the same approach as [4]. First we study the problem

of reducing configuration space paths belonging to the

contact submanifolds represented in Fig. 2 to manipu-

lation paths. Then, we determine a cell decomposition

of the contact space. Finally, we construct the manipu-

lation graph whose connected components characterize

the existence of solutions to the manipulation problem

defined above. In casem < n we remove some nodes and

the corresponding arcs from the manipulation graph.

The first part of our approach consists in answer-

ing the following question: is it possible to reduce any

collision-free configuration space path describing mo-

tion of the robot in contact with at least one object to

a (finite) sequence of transit and transfer paths? An-

swering this question requires studying the local con-

trollability of the dynamic system that is possible to

associate with the manipulation model. The analysis

is described in the following section and makes use of

the result by Goodwine and Burdick [6] providing suffi-

cient conditions for controllability of kinematic control

systems on stratified configuration spaces.

This part of our approach shares with [10] the idea of

first determining the manifold of the “unconstrained”

(i.e., unaware of the manipulation system dynamics)

configuration space where the solution path could exist

and then prove that the paths in this manifold can be

reduced to manipulation, i.e. feasible, paths. In other

words, both the approaches rely on the combination of

an algebraic/geometric method to find a solution path

and on the local controllability of the, possibly con-

strained, system under study. The core components re-

lated to the specificity of the problem at hand, however,

are the projection/lifting procedure of Sect. 5 and the

proof of Theorem 1, together allowing to establish de-

cidability of the manipulation planning problem.

3 Controllability of the manipulation system

To answer the first part of the manipulation planning

problem, we define here the simple kinematics describ-

ing the manipulation system underlying the planning

problem under consideration. This system has a strati-

fied configuration space and we use the result in [6] to

establish its local controllability.

3.1 Controllability definitions

This section recalls the controllability definitions of in-

terest to prove decidability of the manipulation prob-

lems of interest. Given an open set V ⊆M , where M is

the manifold describing the state space, let RV (x0, T )

be the set of states xf such that there exists u : [0, T ]→
U that steers the control system from x(0) = x0 to

x(T ) = xf and satisfies x(t) ∈ V for 0 ≤ t ≤ T , where

U is the set of admissible control inputs. Define the set

of states reachable up to time T as

RV (x0,≤ T ) =
⋃

0<τ≤T

RV (x0, τ). (1)

Definition 1. [Small Time Local Controllability]:

A smooth analytic system is small time locally con-

trollable (or STLC) if RV (x0,≤ T ) contains a neighbor-

hood of x0 for all neighborhoods V of x0 and T > 0.
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A more suited notion of controllability for proving

decidability is the so-called local–local controllability

(LLC) introduced in [7].

Definition 2. [Local–Local Controllability]:

A smooth analytic system is local–local controllable

(or LLC) from x0 if ∀ε > 0 ∃ δ(ε) > 0 such that for

all admissible states x, ||x − x0|| < δ(ε) there exists

admissible control u : [0, T ] → U , producing the state

trajectory x(t), t ∈ [0, T ] with

x(t1) = x0, x(t2) = x and ||x(t)−x0|| < ε, ∀t ∈ [t1, t2].

(2)

LLC requires that the trajectory to reach points in

the neighborhood of a given state x0 is local. The time,

however, is not specified (or bounded) in advance. For

systems with bounded inputs STLC implies LLC [3],

while for driftless systems (which is the case considered

in this paper) the two properties are equivalent.

3.2 Controllability on stratified configuration spaces

The definition of STLC above is generalized in [6] to

include the case of stratified systems. We briefly recall

here the main definitions and properties of stratified

configuration spaces and the stratified controllability

property that we prove to hold in our case.

Stratified configuration manifold (Definition 2.2 in [6]):

Let M be a manifold (possibly with boundary), and n

functions Ψi: M 7→ R, i = 1, . . . , n be such that the

level sets Si = Ψ−1i (0) ⊂ M are regular submanifolds

of M , for each i, and the intersection of any number of

the level sets, Si1i2...im = Ψ−1i1 (0)∩Ψ−1i2 (0)∩ . . . Ψ−1im (0),

m ≤ n , is also a regular submanifold ofM . ThenM and

the functions Ψi, define a stratified configuration space.

The level sets Si, i = 1, ..., n, and their intersections SI ,

where I is an arbitrary multi-index of length m ≤ n, are

referred to as the strata of the configuration manifold.

The driftless systems defined on stratified configu-

ration manifolds are described on each stratum, or on

strata intersections, by equations of motion character-

ized by smooth vector fields and the only discontinuities

present in the equations of motion are due to transitions

on and off the strata or their intersections.

Stratified controllability (Definition 3.2 in [6]): A strat-

ified system is stratified controllable in the stratum SI
from x0 ∈ SI if RV (x0,≤ T ) contains a neighborhood

of x0 in SI for all neighborhoods V ⊆ SI of x0 and

T > 0, where RV (x0,≤ T ) is defined by Eq. (1) with

V ⊆ SI .

Stratified controllability (Proposition 4.4 in [6]): if there

exists a nested sequence of submanifolds at the config-

uration x0

x0 ∈ Sp ⊂ Sp−1 ⊂ · · · ⊂ S1 ⊂ S0 = M

where the subscript is the codimension of the subman-

ifold, such that the associated involutive distributions

satisfy

p∑
j=0

−
∆Sj

|x0
= Tx0

M

and each
−
∆Sj

has constant rank for some neighborhood

Vj ⊂ Sj , of x0, then the system is stratified controllable

from x0 in M .

Stated differently, if the closure of the involutive dis-

tributions associated to each submanifold in the nested

sequence intersect transversely then the system can flow

in any direction in M . Intuitively, this controllability

concept allows to prove that any path in contact in

the composite configuration space of the robot and the

movable objects can be reduced to a sequence of transit

and transfer paths, i.e., a path in the stratified config-

uration space of the manipulation system.

3.3 Stratified controllability of the manipulation

system

To use the stratified controllability concept for proving

that a contact path can be transformed into a manip-

ulation path, we consider ambient manifolds and strat-

ifications defined by the contact submanifolds. In par-

ticular, there exist np =

(
n

p

)
, p = {1, . . . ,m}, ambi-

ent submanifolds Mnp
given by the combined configu-

ration space of the robot and the p objects in contact.

The dimension of each ambient submanifold is equal to

dim(Mnp
) = 2 + 2p and it contains

(
p

p− i

)
submani-

folds of codimension p− i, i = {0, . . . , p− 1} defined by

all the possible contact combinations of the p objects

with the robot. Note that these submanifolds are leaves

of the combined configuration space C of the robot and

all the n objects.

The stratified controllability property is easily veri-

fied to hold on each of these ambient manifolds, while it

is not verified on submanifolds of C of dimension greater

than 2+2p. Hence, the considered manipulation system

is stratified controllable on all the leaves of C defined

by the submanifolds Mnp
. How to build the nested se-

quence of submanifolds providing stratified controlla-

bility is the subject of what follows.
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Denote by x = (xR, yR, xOc1
, yOc1

, . . . , xOcp
, yOcp

)T ,

a configuration of the manipulation system formed by

the robot and p movable objects. Set the maximum

number of objects that the robot can move at the same

time equal to p. The equations of motion on each stra-

tum are determined by considering that R can only

translate in the plane and the objects can be moved

when in contact with R with a stable grasp. The con-

trol system underlying this manipulation model can be

written in the form

ẋ = gSi
1 u1 + gSi

2 u2, (3)

where u1, u2 are the robot cartesian velocities consid-

ered as the system inputs and gSi
1 , gSi

2 are the input

vector fields that have a different expression on each

substratum. In particular, in S0 = C we have

gS01 = (1, 0, 0)T , gS02 = (0, 1, 0)T ,

where the first two components of the vector fields de-

termine the motion of the robot and are invariant on

all the strata. In S0 they describe the free motion of the

robot alone on a leaf of C that depends on the position

of the objects. The remaining components have been

grouped in vectors of zeros of dimension p− 2.

On the single-contact manifolds C1 the input vector

fields have the same first two components, the (i+2)-th

entry of gC11 and the (i+ 3)-th entry of gC12 , i ∈ 1, . . . , p,

equal to 1, the remaining components equal to zero.

Flowing along these vector fields amounts to moving the

object in contact while staying on a leaf that depends

on the position of the objects that are not touched by

the robot. Since all the single-contact manifolds have

codimension 1, S1 will be equal to either one of them

in the sequence of nested submanifolds. This control

will however implicitly assume that the position of the

other objects will remain constant, i.e., the system is

flowing on a leaf of the single contact manifold. Hence,

if the system is stratified controllable, it will be only

possible to prove that any path in contact on a leaf of

S1 can be reduced to a manipulation path. In fact, we

need this local controllability to guarantee that a col-

lision free path in continuous contact can be reduced

to a manipulation path that is contained in a neighbor-

hood of the original contact path. Complete decidability

study requires the analysis of the manipulation graph

connectivity.

The vector fields describing the motion on the sub-

sequent strata can be defined iteratively by setting the

components corresponding to the coordinates of the ob-

jects in contact equal to 1 and all the remaining com-

ponents equal to zero. As noted above, the first two

components of each vector field do not change across

the strata and only one stratum for each codimension

will be considered in the sequence of nested submani-

folds. Analogously to the single contact case, this im-

plies that the reduction property, or the possibility to

reduce a collision-free path to a manipulation path, is

only valid on a leaf of each substratum Sj , j ∈ 1, . . . ,m.

Note that, in our setting, a substratum Sj collects all

the contact submanifolds of codimension j defined by

the contact of the robot and j of the n movable obsta-

cles.

As an example, assuming that n = m = 2, consid-

ering the unique ambient submanifold Mnp with n =

p = 2, on the single-contact manifolds C1, composing

the stratum S1, the input vector fields in (3) have the

expressions

gS1
1 = (1, 0, 1, 0, 0, 0)T , gS1

2 = (0, 1, 0, 1, 0, 0)T

or

gS1
1 = (1, 0, 0, 0, 1, 0)T , gS1

2 = (0, 1, 0, 0, 0, 1)T .

On the double-contact manifold S2 = C2, in case of

contact with the objects O1 and O2, it is

gS2
1 = (1, 0, 1, 0, 1, 0)T , gS2

2 = (0, 1, 0, 1, 0, 1)T .

On this stratum the objects move with the robot with-

out changing the points of contact.

It is easy to verify that the stratified controllabil-

ity proposition holds by choosing as involutive distri-

butions

−
∆ S2 = span (gS2

1 gS2
2 )

−
∆ S1 = span (gS1

1 gS1
2 )

−
∆ S0 = span (gS0

1 gS0
2 )

where gS1
1 and gS1

2 can have either one of the expressions

provided above.

Figure 3 illustrates the stratification of the configu-

ration space induced by the contact constraints in the

case n = m = 2. By virtue of the controllability prop-

erty described above, any continuous path in contact

with the robot in S2 can be reduced to a manipulation

path.

Considering then as ambient manifold one of the

two submanifolds Mnp
with n = 2 and p = 1 defined

by the object in contact with the robot. The preceding

construction can be adapted to prove stratified control-

lability on each of these submanifolds that are leaves of

the complete configuration space defined by the robot

and the two movable objects. Hence, a path in contact

in each leaf of S1 can be reduced to a manipulation path

that possibly goes through strata of lower codimension.

Until here we are not considering obstacles, hence

the existence of a manipulation path depends locally
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on the controllability property. We take the hypothesis

that the free configuration space of the robot without

considering the objects is an open (same as the hypoth-

esis H in [4]). Then, any collision-free path in contact

can be reduced to a collision-free manipulation path.

Intuitively, if the system is controllable, the “maneu-

vers” involved in the manipulation path can be made

as small as desired so as the manipulation path remains

in the neighbourhood of the contact path.

The following statement summarizes and generalizes

the above arguments.

Proposition 1. Consider the general case n ≥ m and

the ambient manifold Mnm . Let S0 define, as before,

the foliation of Mnm
where only the robot moves and

the objects are in a fixed position. Sort the m objects as

i1, ..., im and consider the sequence of nested submani-

folds

Sm ⊂ Sm−1 ⊂ · · · ⊂ S1 ⊂ S0

where Sj indicates the submanifold characterized by the

robot in contact with the objects i1, ..., ij and the re-

maining objects ij+1, ..., im in a fixed position. Then, if

x0 ∈ Sm, the system is stratified controllable from x0 in

Mnm
.

Proof The idea is to apply the result of [6, Proposi-

tion 4.4]. Let us set again

gS01 = (1, 0, 0)T , gS02 = (0, 1, 0)T ,

with
−
∆ S0 = span (gS0

1 gS0
2 ). For j = 1, ...,m, let us

denote by e1
j ∈ R2+2m the canonical vector with 1 in

the (2j + 1)-th entry and 0 in all other entries and by

e2
j ∈ R2+2m the canonical vector with 1 in the (2j+ 2)-

th entry and 0 in all other entries, i.e.

e1
j = (0, 0, . . . , 0︸ ︷︷ ︸

2j

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
2m−2j+1

)T

e2
j = (0, 0, . . . , 0︸ ︷︷ ︸

2j+1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
2m−2j

)T

The input vector fields associated to the sequence of

submanifold Sj and the involutive distributions can be

computed recursively as follows:

g
Sj
1 = g

Sj−1

1 + e1
ij , g

Sj
2 = g

Sj−1

2 + e2
ij ,

and
−
∆ Sj = span (g

Sj

1 g
Sj

2 ). It is then clear that the

property

m∑
j=0

−
∆Sj |x0 = Tx0Mnm

holds true, this providing stratified controllability.

The stratified controllability property will be used

to prove decidability by showing that if a solution ex-

ists it will either lie on a leaf of the free configuration

space defined by a fixed position of the objects, i.e., the

solution does not imply manipulation of the objects, or

it passes through the submanifolds defined by the con-

tact constraints between the robot and the objects. On

each leaf of these submanifolds the reduction property

holds, then a manipulation path exists if start and goal

configurations can be connected through collision-free

transit paths and paths in contact.

Fig. 3: Stratification of the configuration space induced by
the robot-objects contact constraints in the case n = m = 2.
Note how the relevant contact submanifolds needed to prove
controllability are determined by the contact configurations
between the robot and the objects.

4 Reduction property

The aim of this section is to show that any collision-

free path in contact on a leaf of one of the m− 1 strata

or on the stratum Sm can be reduced to a sequence of

admissible maneuvers, i.e., a collision-free manipulation

path.

Consider then a finite length, collision-free path P ∈
Sj (more specifically, on a leaf of Sj if j = 1, . . . ,m−1,

or on Sm) from a given start configuration xstart ∈
R2+2j , j = 1, . . . ,m to a final configuration xgoal ∈
R2+2j . Since P is admissible, all the configurations along

the path are such that the robot is only in contact with

the objects, and each object is in contact with the robot

only. Assume no contact between objects or with the
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obstacles occurs (some comments on how to move be-

yond such assumption are provided further on).

The following Proposition 1 provides a sufficient

condition for reducibility of a path in contact.

Theorem 1. Any path in contact P on any leaf of

a stratum Sj, j = 0, . . . ,m such that along P no ob-

ject/object nor object/obstacle contact occurs, can be

reduced to a manipulation path.

Proof Consider a configuration x along the path P. De-

termine first the set NR(x) of configurations reachable

from x by the robot through collision-free paths with-

out considering the objects. NR(x) is clearly an open

neighbour of the projection xR of x on R2 and includes

all the robot transit paths that are not in collision with

static obstacles.

Consider then the set N1,i(x), i = 1, . . . , j of config-

urations reachable from x by the robot through collision-

free paths in contact in S1 without considering the j−1

objects that are not in contact with the robot. Each

N1,i(x), i = 1, . . . , j is an open neighbourhood of the

projection x1,i of the configuration x on the S1,i stra-

tum reachable by paths in contact with the i-th object,

including transfer paths, that do not touch obstacles.

Lift each N1,i(x) to R2+2j , by considering all the robot

and object configurations in N1,i(x) that do not over-

lap, i.e., remove the contact constraint while preserving

admissibility. This is an open neighbourhood of x reach-

able by all the transit paths that are not in contact with

obstacles and do not overlap with the i-th object and by

all the paths in contact with the i-th object, including

transfer paths, that do not touch obstacles.

Iterate the process by determining the set Nk,i(x),

i = 1, . . . ,
(
j
k

)
of configurations reachable from x through

collision-free paths in contact in Sk,i without consider-

ing the j − k objects that are not in contact with the

robot. Each Nk,i(x), i = 1, . . . ,
(
j
k

)
is a neighbour of

the projection xk,i of the configuration x on the Sk,i
stratum. Lift each Nk,i(x) to R2+2j with the procedure

illustrated before. This is an open neighbourhood of x

reachable by all the transit paths that are not in con-

tact with obstacles and do not overlap with the k ob-

jects and by all the paths in contact with i ∈ {1, . . . , k}
objects, including transfer paths, that do not touch ob-

stacles.

The process terminates on Sj leading to the deter-

mination of the set Nj(x), of configurations reachable

from x by the robot through collision-free paths in con-

tact in Sj . The set Nj(x) is an open neighbourhood of

x by construction. Lift Nj(x) to R2+2j . This is an open

neighbourhood of x reachable by all the transit paths

that are not in contact with obstacles and do not over-

lap with the j objects and by all the paths in contact

with the i ∈ {1, . . . , j} object, including transfer paths,

that do not touch obstacles.

Let us define now a polishing operation on the lifted

sequence of neighbourhoods. Such operation corresponds

to progressively eliminate from the lift of NR(x) to

R2+2j the closure of the set of configurations in R2+2j

that have been found to be not admissible during the

lifting of Nk,i(x), k = 1, . . . , j, i = 1, . . . ,
(
j
k

)
to R2+2j .

The polished lifting of NR(x) to R2+2j is then an open

neighbourhood of x reachable by robot transit config-

urations that are not in contact with obstacles and do

not overlap with any object and by admissible paths in

contact, including transfer paths.

The intersection of this neighbourhood ofR2+2j with

all the strata Sk,i, k = 0, . . . , j, generates the neigh-

bourhoods Ñk,i(x), k = 0, . . . , j, i = 1, . . . ,
(
j
k

)
[6].

Determine then the disk of maximum radius εx con-

tained in the smallest neighbourhood belonging to the

family Ñk,i(x), k = 0, . . . , j, i = 1, . . . ,
(
j
k

)
then lift it

to the R2+2j space where it is a ball Bεx(x) with ra-

dius ε centered in x. Being P a compact set and εx a

continuous function of x, there exists ε > 0 such that

ε = min{x∈P} εx. By virtue of the stratified controlla-

bility of Proposition 1 and using continuity of P, there

exists δ = δ(ε) > 0 such that for each configuration x

along the path there always exists a configuration x′ on

the path such that ||x−x′|| < δ(ε) and the manipulation

path from x to x′ is always contained in Bε(x).

The set of all the balls Bδ(x), x ∈ P, constitutes

a covering of P. Since P is compact, it is possible to

get a finite sequence of configurations (xi)1≤i≤k (with

x1 = xstart, xk = xgoal), such that the balls Bδ(xi)
cover P.

To complete the proof, consider a point yi,i+1 ∈ P
at the intersection Bδ(xi) ∩ Bδ(xi+1). Between xi and

yi,i+1 (respectively xi+1 and yi,i+1) there is an admis-

sible manipulation path that does not escape Bε(xi)
(respectively Bε(xi+1)).

Then there is an admissible path between xi and

xi+1 that does not escape Bε(xi) ∪ Bε(xi+1); this path

is then collision-free. The sequence (xi)1≤i≤k is finite

and we can conclude that there exists a collision-free

admissible path between xstart and xgoal.

If the objects are allowed to touch the obstacles (a

realistic case), and hence it is not possible to define an

open neighbour around some or all the configuration of

a path in contact P on a stratum Sj , j = 0, . . . ,m, then

it is still possible to prove that a sufficient condition is

that for any configuration x along the path there exist

an open set in ∈ R2+2j containing x and a segment of

the path from x with non-zero length.

Finally, if the objects can also touch each other along
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segments of the path, then in the reduction procedure

their motion should be handled as the motion of a sin-

gle object.

The proof in these last cases presents complex tech-

nicalities that are not of practical use for real robotic

manipulation systems for which the control-based tools

adopted to define the decision procedure are more rel-

evant and easy to use, e. g., in defining the properties

that a robotic manipulation system should have for de-

cidability purposes.

5 Building the manipulation graph

The remaining key issue involve building a geometric

data structure that accounts for the obstacles presence

and ultimately for the decidability of the manipulation

problem.

5.1 Cell decomposition and refinement

We propose here an extension of the manipulation graph

as it has been introduced in [4] for the case of a sin-

gle movable object, i.e., n = m = 1. In that case the

admissible (i.e., not in collision with static obstacles

nor overlapping the object to move) contact configura-

tions between the robot and the object were represented

by the class GRASP . The nodes of the manipulation

graph were then given by the connected components of

GRASP where the controllability, and hence reduction,

property is easily shown to hold.

In the case of n movable objects and a maximum of

m ≤ n objects movable at the same time by the robot,

it is necessary to introduce np classes GRASPΦnp
, p =

{1, . . . ,m}, and to build the manipulation graph over

the connected components of these classes (see Fig. 4

for a graphical illustration).

Each class GRASPΦnp
represents the configurations

in Cfree such that the robot is in contact with the p

objects corresponding to one of the np combinations

also defining the ambient manifolds in Sect. 3.3 within

which the stratified controllability holds.

We define, hence, Φnp as the string of length p con-

sisting in one of the np combinations of p from the n

objects. The position of the objects not included in Φnp

can change within the class. To distinguish the differ-

ent np combinations we introduce the notation Φnp,i
,

i = {1, . . . , np}. When only the length of the string Φnp

is relevant the index i is not specified and we do not

make a distinction between the np combinations.

The reduction property shown in the previous sec-

tion does not apply on the whole connected components

of GRASPΦnp
but inside each leaf of the foliation of

WAFR 2014, Istanbul, August 4, 
2014

contact space of interest

manipulation graph

• GRASP1  (GRASP2) represents all the configurations in Cfree such that 
the robot is in contact with the object O1 (O2)

11

connected
GR ASP1

connected
GR ASP2

connected 
GR ASP1 ∩ GR ASP2Cfree

Fig. 4: Example of GRASP classes with 2 objects: GRASPi,
i = 1, 2 represents all the configurations in Cfree such that
the robot is in contact with the object Oi.

GRASPΦnp
that keeps constant the position of the ob-

stacles that are not in contact with the robot: any path

inside these leaves can be reduced to a sequence of tran-

sit and transfer paths. These are, for example, leaves of

dimension 3 in the single contact manifolds schemati-

cally represented in Fig. 2a for the case n = m = 2.

The key questions are then: (i) how to determine

the connected components of each GRASPΦnp
, and (ii)

how to build a manipulation graph on which it is possi-

ble to decide for the existence of a manipulation path.

To answer the first question consider that each class

GRASPΦnp
is by definition a contact submanifold of

Cfree of dimension 2(1 +n)− p, p = {1, . . . ,m}. If there

exists a cell decomposition of the 2(1 + n)-dimensional

space Cfree, then this cell decomposition induces, by re-

traction on its boundary, a cell decomposition of the

(2(1 + n) − p)-dimensional contact submanifolds (up

to some potential singularities whose analysis goes be-

yond the scope of the present paper, see [11]). Then,

such a cell decomposition leads to a straightforward

characterization of the connected components of each

GRASPΦnp
. The first question is then reduced to the

existence of an algorithm that provides a cell decompo-

sition of Cfree. A cylindrical decomposition can be used

to this aim, as proposed in [11].

Building the manipulation graph is the second is-

sue to be addressed. In particular, we need a suitable

adjacency relationship between the cells of the classes

GRASPΦnp
. Note that each cell in the class GRASPΦnp

includes configurations that can be joined by elemen-

tary collision-free paths. These elementary paths, how-

ever, consist in the coordinated motion of robot and

objects, including those which are not in contact. The

configuration space is unconstrained by definition, that

is, it has been constructed without considering that to

change the position of an object it is necessary to move

in contact with the robot. Hence, only the elementary

paths that remain in the same leaf of a connected com-
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ponent of GRASPΦnp
are guaranteed to be reducible to

collision-free manipulation paths by retracting the cell

decomposition of Cfree on its boundaries, as outlined in

Fig. 5.

WAFR 2014, Istanbul, August 4, 
2014

decomposition of the contact space

manipulation graph

• obtained by retraction on its boundary of the Cfree decomposition due to 
Schwartz and Sharir (IJRR, 1983)

12

Fig. 5: Example of GRASP classes with 2 objects: the contact
space is decomposed by retraction on the boundary

Then, we need to refine the cell decomposition of

the connected components of each GRASPΦnp
by con-

sidering their projections along the directions of the fo-

liations generated by: (i) transit paths (the robot moves

alone), (ii) transfer paths of type p (the p objects are

moved by the robot while the remaining n − p do not

move).

WAFR 2014, Istanbul, August 4, 
2014

refinement of the decomposition

manipulation graph

14

• project the cells of GRASP1  and GRASP2 onto GRASP1\GRASP2 along the 
directions of the respective foliations

Fig. 6: Example of GRASP classes with 2 objects: foliation
in GRASPi is obtained through transfer paths of type i with
i = 1, 2 (so that the object O3−i does not move), and the cells
of GRASPi are projected onto GRASP1 ∩GRASP2 along the
directions of the respective foliations

Note first that the projection of a given cell C1

onto a cell C2 induces a decomposition of C2 into sev-

eral cells. The projection of a GRASPΦnp,i
cell de-

composition along the direction of its foliations onto

a GRASPΦnp+1
(as in Fig. 6) gives rise to a decomposi-

tion of this last class into multiple cells. This decompo-

sition is further refined by projecting the cell decompo-

sition of each GRASPΦnp,j
such that the length of the

string Φnp,i ∪Φnp,j is equal to p+ 1 onto GRASPΦnp+1
.

The initial cell decomposition of classes GRASPΦnp,i

and GRASPΦnp,j
can then be refined by “lifting” all

cells inGRASPΦnp+1
along the foliations ofGRASPΦnp,i

and GRASPΦnp,j
. Such lifting procedure, as displayed

in Fig. 7, yields an additional and finer cell decom-

position in the classes GRASPΦnp,i
and GRASPΦnp,j

that is inherited from the cell decomposition at their

boundary interface. The class GRASPΦnp+1
is then de-

composed in elementary cells of which some are at the

basis of two cylinders containing respectively cells of

GRASPΦnp,i
and GRASPΦnp,j

.

The cell decomposition of GRASPΦnp+1
may how-

ever need to be further refined. The complete cell re-

finement is obtained by incrementally projecting cells of

GRASPΦnp
on cells of GRASPΦnp+1

, p = 1, . . . ,m− 1,

along the foliations induced by transfer paths of type

np. Then each cell of GRASPΦnm−i
is lifted to the class

GRASPΦnm−i−1
, i = 0, . . . ,m − 2. The cells generated

by this refinement procedure and belonging to at least

one cylinder constitute the nodes of the manipulation

graph.

WAFR 2014, Istanbul, August 4, 
2014

refinement of the decomposition

manipulation graph

• lift the cells of GRASP1\GRASP2 along the directions of the foliations
• each cell of GRASP1\GRASP2 is the basis of two cylinders that contain cells 
GRASP1  and  GRASP2 

• can be obtained through the cylindrical decomposition proposed by Schwartz 
in1983

15

Fig. 7: Example of GRASP classes with 2 objects: the decom-
position is further refined by lifting the cells of GRASP1 ∩
GRASP2 along the directions of foliations. These cells are
the bases of two cylinders containing cells of GRASP1 and
GRASP2, respectively

WAFR 2014, Istanbul, August 4, 
2014

adjacency in the contact space

manipulation graph

• two cells in GRASP1 (resp. GRASP2) are adjacent (by transfer paths) if and 
only if they have a common frontier and they belong to a same cylinder

16

Fig. 8: Example of GRASP classes with 2 objects: two cells
in GRASPi, i = 1, 2, are adjacent (by transfer paths) if and
only if they have a common frontier and they belong to a
same cylinder

5.2 Adjacency

In order to move from one node of the manipulation

graph to another, the corresponding cells must be ad-
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jacent, in the sense that a manipulation path connect-

ing them must exist and be feasible. We then introduce

the following adjacency relation: two cells in a class

GRASPΦnp
are adjacent by transfer paths if and only

if they have a common frontier and they belong to at

least one same cylinder.

If GRASPΦnp
belongs to a contact manifold of min-

imum dimension, i.e., p = m, and it is n = m then ad-

jacency is given by the existence of a common frontier

between two cells. In fact, in this submanifold, any path

in contact is equivalent to a manipulation path due to

the stratified controllability property that, in this case,

holds on C.
We can then introduce the following recursive defi-

nition of adjacency by transfer paths (see also Fig. 8):

Two cells belonging to two different classes GRASPΦni

and GRASPΦnj
are adjacent by transfer paths if and

only if their projections on GRASPΦni
∪Φnj

along the

respective foliations, induced by transfer paths, inter-

sect cells of the class GRASPΦni
∪Φnj

which are adja-

cent by transfer paths. Note that the recursion termi-

nates if m = n because in the GRASPΦn
class the ad-

jacency is given by the existence of a common frontier

between cells.

Finally, consider the adjacency by transit paths, i.e.,

paths along which the robot is not in contact with any

object. The main idea is the same as before. It is simpler

because we have to consider only the foliation induced

by transit paths in the robot free space. The leaves of

such foliation are 2-dimensional. We consider the cell

decomposition of each GRASPΦnp
after the previously

described cell refinement. We add an edge between two

cells c1 and c2 belonging respectively to GRASPΦni
and

GRASPΦnj
if and only if the projection of either one

of the two cells onto the other along the foliation by

transit paths is not empty1.

5.3 Decidability

Wrapping up, the manipulation graph nodes are cells

of the Sj strata refined through the projection and lift-

ing process described before; adjacency in the contact

space is provided by transfer paths between the refined

cells; adjacency in the robot free space is provided by

transit paths between the refined cells.

To prove decidability the graph is always constructed

by considering m = n. In case m < n, the nodes

corresponding to classes GRASPΦnp
, p > m, are re-

moved from the graph together with all adjacency re-

lations between cells that are based on the adjacency

1 Note that we are implicitly assuming that the robot dy-
namics is symmetric.

R

a

b

c

Fig. 9: Example of a manipulation problem: the robot R can
move up to the three objects a, b, and c (left) at the same
time to achieve a manipulation task. The collision free path
connecting two configurations of GRASPa and including the
autonomous motion of b (right) is an admissible path within
GRASPa but not necessarily a manipulation path.

of GRASPΦnp
cells. This will, of course, change the

manipulation graph connectivity and problems requir-

ing the simultaneous manipulation of all the movable

objects will be correctly reported to be not solvable2.

The cell decomposition and the adjacency relation-

ships provided in Sections 5.1 and 5.2, in a similar way

to the cases treated in [4] and [12], allow us to establish

the decidability of the problem as summarized in the

following statement.

Theorem 2. There exists a manipulation path between

two configurations in the free space if and only if these

configurations retract on two cells belonging to the same

connected component of the manipulation graph.

5.4 Example: n = m = 3

Consider the case of n = 3 movable objects and a robot

that can move up to m = 3 objects together to achieve

the planning task. The scenario is sketched in Fig. 9

(left).

In this case we have the following classes: GRASPi
with i = {a, b, c}, GRASPab, GRASPac, GRASPbc,
GRASPabc, where the index denotes the object in con-

tact with the robot.

The retraction of the cylindrical decomposition of

the 8-dimensional configuration space on its boundary

induces a cell decomposition of the (8-p)-dimensional

(p = 1, . . . , 3) contact submanifolds and this decompo-

sition characterizes the connected components of each

2 Note that, if the projection of a cell on a lower dimensional
contact manifold is empty, then the lifting process does not
take place and adjacency may only be provided by transi-
tion through higher dimensional contact submanifolds or on
a same leaf of a contact submanifold.
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Fig. 10: To connect an initial and a desired configuration of
GRASPa it is first necessary to establish a contact with b

(left), take b to a convenient collision free configuration, i.e.,
move within GRASPab, and then reach the goal. Along this
paths motion in contact is allowed.

of the above listed classes GRASPΦnp
, where Φnp

=

{a, b, c, ab, ac, bc, abc}. To refine the cell decomposition

of each GRASPΦnp
proceed as follows:

1. merge the projections of GRASPa cell decomposi-

tion along the direction of its foliations (correspond-

ing to constant positions of the objects b and c) onto

GRASPab; this gives rise to a decomposition of this

last class into many cells; these cells can be reached

by collision free paths in contact with a that belong

to the leaves of GRASPa; it is not guaranteed how-

ever that all the configurations in these cells can be

reached by collision free paths in contact with b; this

is guaranteed by a cell refinement illustrated in the

next step;

2. repeat the analogous projection for GRASPb onto

GRASPab; this further refines the decomposition of

this last class after the projection of the first step;

the cells in GRASPab that appear to be at the ba-

sis of two cylinders containing cells of GRASPa and

GRASPb can be reached by collision free paths re-

spectively in contact with a and b; any path within

these cells belonging to a same leaf (i.e., the ob-

ject c remains in a same position) can be reduced

to a collision free manipulation path; Fig. 10 illus-

trates through an example the adjacency by transfer

path in class GRASPa; to guarantee that any path

within a cell in this class is collision free it is however

necessary to refine the decomposition as illustrated

below;

3. execute the steps analogous to 1. and 2. to refine

the decomposition of GRASPac and GRASPbc;

4. merge sequentially the projections of GRASPab,

GRASPac and GRASPbc along their respective fo-

liations onto GRASPabc; this generates a decompo-

sition of this last class into many elementary cells;

5. lift each elementary cell in GRASPabc to GRASPab,

GRASPac and GRASPbc along their respective fo-

liations; each elementary cell in GRASPabc is at

the basis of two cylinders containing cells of either

GRASPab and GRASPac respectively or GRASPab
and GRASPbc or GRASPac and GRASPbc; these

cells are nodes of the manipulation graph;

6. lift each elementary cell in GRASPab, GRASPac
and GRASPbc, obtained through refinement in the

previous step, to GRASPa, GRASPb and GRASPc
along their respective foliations; the cells inGRASPa,

GRASPb and GRASPc resulting from this refine-

ment and belonging to at least one cylinder are

nodes of the manipulation graph; the cell refinement

is then completed.

6 Generality of the approach

To avoid formal complications, we have illustrated the

decision process by making reference to a specific ma-

nipulation system. The approach, however, is general

enough to be applied to any manipulation system dy-

namics, any shape and any number of robots and ob-

jects. To support this generality claim, consider first

the following synthetic description of the decision pro-

cedure.

1. Verify stratified controllability of the manipulation

system.

2. If the system is stratified controllable, build the ma-

nipulation graph as described in Sect. 5:

(a) based on a cylindrical decomposition of Cfree, de-

termine the connected components of each class

GRASPΦnp
, p = {1, . . . ,m}, m = n;

(b) refine the cell decomposition of each GRASPΦnp

through appropriate projections and lifting op-

erations;

(c) connect cells within each class GRASPΦnp
and

between classesGRASPΦni
andGRASPΦnj

which

are adjacent by transfer paths;

(d) connect cells which are adjacent by transit paths;

(e) if m < n, remove the nodes corresponding to

classes GRASPΦnp
, p > m, together with all

arcs corresponding to adjacency relations between

cells that are based on the adjacency ofGRASPΦnp

cells.
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3. Search the manipulation graph for a solution; return

failure if it does not exists.

Note first that the use of a cylindrical decompo-

sition as proposed in [11] to determine the connected

components of the composite free configuration space

allows robot, obstacles, objects and environment of any

shape, provided that they posses a semi-algebraic ge-

ometry. The chosen decomposition also allows to de-

compose the free configurations for multiple robots and

objects. On the other hand, the stratified controllability

test in [6] can be repeatedly applied to multiple nested

sequences of strata. If the top stratum in each sequence

is different (as would be the case of multiple robots),

then the test determines controllability for the union of

the top strata. In addition, the test can be used with

robots of any kinematic architecture. In principle, also

the nature of the contact could be included in testing

the controllability. In this case, however, we need to de-

fine other kind of adjacencies in addition to adjacency

by transfer and transit paths characterising the dynam-

ics of a rigid grasp. Hence, we argue that it is possible

to build the manipulation graph for obstacles of any

shape, in 2D and 3D workspaces, with multiple robots,

possibly multi-articulated.

7 Conclusion

We have proposed in this paper a decision procedure

for the problem of planning the motion of systems with

stratified configuration space. The main contribution

is the development of the decision algorithm, and no

specific path planner is considered in the paper. Ma-

nipulation, climbing, walking, legged or multi-contact

locomotion planning fall in the class of motion plan-

ning problems that may be handled with the presented

approach.

The decision process relies on the cylindrical decom-

position of the composite (i.e., robot and movable ob-

jects) free configuration space and the construction of

a manipulation graph whose nodes are cells in the com-

posite free configuration space. Cell refinement and ad-

jacency is determined through a projection/lifting pro-

cess on leaves of the contact configuration space. Within

each cell in these submanifolds, paths in contact can

be reduced to manipulation paths remaining in the free

configuration space due to the stratified controllability

of the manipulation system.

Although illustrated for a particular manipulation

problem, the tools and approach adopted are general

enough to include a much wider class of problems as

discussed in Sect. 6.
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