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Abstract. The spherical p-spin is a fundamental model for glassy physics,
thanks to its analytical solution achievable via the replica method. Unfortunately,
the replica method has some drawbacks: it is very hard to apply to diluted models
and the assumptions beyond it are not immediately clear. Both drawbacks can
be overcome by the use of the cavity method; however, this needs to be applied
with care to spherical models. Here, we show how to write the cavity equations
for spherical p-spin models, both in the replica symmetric (RS) ansatz (corre-
sponding to belief propagation) and in the one-step replica-symmetry-breaking
(1RSB) ansatz (corresponding to survey propagation). The cavity equations can
be solved by a Gaussian RS and multivariate Gaussian 1RSB ansatz for the dis-
tribution of the cavity fields. We compute the free energy in both ansatzes and
check that the results are identical to the replica computation, predicting a phase
transition to a 1RSB phase at low temperatures. The advantages of solving the
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model with the cavity method are many. The physical meaning of the ansatz for
the cavity marginals is very clear. The cavity method works directly with the dis-
tribution of local quantities, which allows us to generalize the method to diluted
graphs. What we are presenting here is the first step towards the solution of the
diluted version of the spherical p-spin model, which is a fundamental model in
the theory of random lasers and interesting per se as an easier-to-simulate version
of the classical fully connected p-spin model.

Keywords: cavity and replica method, ergodicity breaking, message-passing
algorithms, random graphs, networks
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1. Introduction

Spherical models are made of N real variables σi ∈ R satisfying the global constraint∑
iσ

2
i = N . They play a key role among solvable models in statistical physics, because

they usually allow for closed and compact algebraic solutions [1, 2]. Moreover, since the
variables are real numbers, the space of configurations is continuous and differentiable,
thus allowing one to study several kinds of dynamics in these models (e.g. Langevin
dynamics or gradient descent-like relaxations). At variance, models whose variables sat-
isfy local constraints pose more problems. For example, in the Ising and Potts models
the variables take discrete values and so the space of configuration is not continuous,
while in the O(n) models (e.g. with XY or Heisenberg spins) each variable is continuous,
but needs to satisfy a local constraint of unit norm in an n-dimensional space, and this
in turn makes the analytic solution much more complicated; see for instance [3–5].

The success of spherical models is well witnessed by the fully connected spherical
p-spin model. For p � 3 this model is the most used mean-field model for the glassy
dynamics. We learned a lot from it precisely because both the thermodynamics and the
dynamics can be easily solved [6–9]. The thermodynamic solution has been obtained
via the replica method, and it has a compact analytical form thanks to the spherical
constraint: the solution predicts a random first-order transition from a high-temperature
paramagnetic phase to a low-temperature spin glass phase. The equilibrium and out-of-
equilibrium dynamics have been solved via the generating functional formalism, thanks
to the mean-field nature of the model and the spherical constraint [9, 10].

Notwithstanding the success of fully connected spherical models, we are well aware
that they have several unrealistic features: fully connectedness is unlikely to happen in
any realistic phenomenon and the spherical constraint is just a global surrogate for the
actual constraint each variable should satisfy locally. In other words, in realistic models
each variable is somehow bounded, and one uses the single global spherical constraint to
make computations easier. Although this approximation is extremely useful, it has some
drawbacks. For example, when the interactions are diluted, a condensation phenomenon
may take place [11–13].

The diluted and sparse versions of a model are particularly interesting, because
moving away from the fully connected limit is needed in order to study more realistic
phenomena [14–18]. We reserve the word sparse for graphs with a mean degree O(1),
i.e. not growing with N , while we use the term diluted for a graph which is not fully
connected, but whose mean degree still grows with N . In sparse models the couplings do
not vanish in the large N limit and this implies the solution is deeply non-perturbative.
The cavity method has been developed exactly to solve sparse models [19]. In very few
cases, such method has been exploited for fully connected lattices, e.g. in the study
of models with discrete variables [20] or in the case of linear interactions, as for the
planted Sherrington—Kirkpatrick (SK) problem in the context of inference [21]. Diluted
models are much less studied in the literature with respect to fully connected and sparse
models. Nonetheless, they are very interesting for several aspects. They can be used in
numerical simulations as a proxy for fully connected models, which are very demanding
in terms of computing resources. They appear in models of random lasers where dilution
is induced by the selection rules for the coupling of light modes in random media [22–24].
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Depending on the level of dilution, they allow for heterogeneities and local fluctuations in
models that can still be solved similarly to the fully connected version; that is, exploiting
the fact that couplings are weak and the graph mean degree diverges. We believe it is
worth dedicating more effort to studying the realm of diluted models. In the present
contribution we aim to set up a framework that would allow us to study diluted models
via the cavity method. We are particularly interested in spherical models, because they
are models whose solution turns out to be particularly simple and compact. However,
spherical models may undergo a condensation transition when the interaction graph
is diluted. How the condensation transition can be avoided in a p-spin model by just
modifying the spherical constraint is another open problem which we are currently
investigating and which will be discussed elsewhere [25].

The study of whether condensation takes place is a delicate matter: this depends on
the competition between the functional form of the global constraint, which can even
be non-spherical, and the strength of the interactions, the latter depending on both
the order of the non-linearity and the amount of dilution in the graph. Working with
Hamiltonian models where variables interact via p-body terms and calling M = O(Nδ)
the number of interaction terms, we would like to single out the threshold exponent
δc, such that for δ > δc at finite temperature there is no condensation, while for δ < δc
at any temperature the system is in the condensed phase. So far, the situation is clear
only for the two boundaries of the interval of possible values for δ. For δ = p, which
represents the complete graph, condensation is never found at finite temperature, while
the sparse graph, i.e. δ = 0, is always in the condensed phase provided that interactions
are non-linear, i.e. p > 2. The situation for intermediate values of δ is under current
investigation, and we expect the present work to be an important step in this direction.
For the moment we focus on the dilution regime where such a condensation phenomenon
does not take place.

In the following we present the zero-th order step of the above program by showing
how to use the cavity method to solve the fully connected version of spherical spin glass
models. Although the cavity method is well known [26], its use in spherical models has
not appeared before in the literature (to the best of our knowledge). The application
of the cavity method to spherical models is not straightforward, because one has to
decide how to convert a global constraint in a set of local ones. We will discuss this
aspect explicitly and propose a standardized solution. Once the cavity equations are
written, their solution requires some ansatz for the distribution of local fields. This
is one of the advantages of the cavity method with respect to the replica method: all
assumptions made in the derivation have a clear and direct physical meaning. By using a
Gaussian ansatz for the distribution of local fields (eventually, correlated Gaussian fields
in the spin glass phase where the replica symmetry spontaneously breaks down) we are
able to obtain the exact solution to the spherical p-spin glass model, that was previously
derived via the replica method. We dedicate the main text to the derivation of the saddle
point equations, to the illustration of the ansatz for the local field distributions, to the
discussion on how to implement the spherical constraint and to reporting the resulting
free energies. More technical and lengthy derivations, such as the explicit calculations
of the free energy, are postponed to appendices A and B.
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In section 2 we explain why a Gaussian ansatz for the cavity marginals is correct in
the large degree limit and how to use it to obtain a closure of the belief propagation
equations. In particular, in section 2.5 we discuss the two possible choices to implement
the spherical constraint in the belief propagation equations, which are equivalent only
in the large degree limit. Section 3 is dedicated to the study of survey propagation
equations, i.e. the generalization of belief propagation equations in the case of a 1RSB
scenario. In section 3.1 we present the multivariate Gaussian ansatz needed for the
survey propagation equations, recently introduced in [21], and in section 3.2 we show
how the explicit closure of the equations is obtained by means of this ansatz. While the
1RSB expression of the free energy is reported in section 3.3, its explicit derivation in
full detail can be found in appendices A and B.

2. Cavity equations with spherical constraint

2.1. Spherical models

We consider models with N real variables σi ∈ R constrained to satisfy the condition

A [σ] ≡
N∑
i=1

σ2
i = N (1)

and interacting via p-body interactions

H = −
M∑
a=1

Ja

∏
i∈∂a

σi, (2)

where ∂a is the set of variables entering the ath interaction and we fix |∂a| = p. If the

interaction graph is fully connected then M =
(

N
p

)
and the sum runs over all possible

p-uplets; otherwise, in diluted models, the M interactions are randomly chosen among

the
(

N
p

)
possible p-uplets. The fully connected versions have been solved via the replica

method.
For p = 2 the model is particularly simple because the energy function has only

two minima and the free energy can be computed from the spectrum of the interaction
matrix J . The model possesses a spin glass phase at low temperatures, but the replica
symmetry never breaks down and a replica symmetric (RS) ansatz provides the exact
solution [27]. In this case the spherical constraint, although efficient in keeping variables
bounded, drastically changes the low-energy physics with respect to models with e.g.
Ising variables: indeed, the Sherrington–Kirkpatrick model [28] has a spin glass phase
with spontaneous breaking of the replica symmetry [29, 30].

For p � 3 the spherical model is much more interesting since it undergoes a phase
transition to a spin glass phase where the replica symmetry is broken just once (1RSB
phase) [6] as in the analogous model with Ising variables [31]. More importantly, the
thermodynamic phase transition is preceded by a dynamical phase transition [7] which
has been connected to the structural glass transition [32, 33] and to the mode coupling
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theory [34]. The spherical p-spin model with p � 3 now represents the most used mean-
field model for the random first-order transition [35].

2.2. Self-consistent cavity equations for the local marginals

The replica method allows us to fully characterize the static properties of the spher-
ical p-spin model on complete graphs, as was firstly done in [6]. Our purpose is to
study spherical p-spin models, showing that the cavity method is equivalent to replicas
on complete graphs. A complete hypergraph can be seen as a bipartite graph made
of function nodes, representing the interaction p-uplets, and variable nodes, represent-
ing the N spins σi’s. We will indicate the set of links between function and variable

nodes as edges E. A complete graph has M =
(

N
p

)
= O(Np) function nodes, each of

which is linked to p variable nodes. On the other hand, each variable node is linked to

K =
(

N−1
p−1

)
= O(Np−1) function nodes.

In order to ensure the extensivity of the energy, not only must the N real vari-
ables satisfy the spherical constraint in equation (1), the couplings {Ja}, which are
independent and identically distributed quenched random variables, must be properly
normalized: in the case of symmetric couplings we have

〈J〉 = 0, 〈J2〉 = p!J2

2Np−1
(3)

with J2 = O(1) to ensure an extensive energy. Since we have in mind to extend the
results of the present study to the case of increasing dilution of the hypergraph, let
us start from the statistical ensemble where the partition function of the model, and
hence the corresponding thermodynamic potentials, are always well defined, i.e. the
microcanonical ensemble.

In presence of the spherical constraint written in equation (1) the partition function
of the model reads thus

ΩA(E,N) =

∫ N∏
i=1

dσi δ (E −H[σ]) δ (A−A[σ]) . (4)

The first, very important, assumption of the present derivation is the equivalence
between the ensemble with hard constraints on both A and E, i.e. the partition func-
tion written in equation (4), and the one where the same spherical constraints are
realized via a Lagrange multiplier. This means that the study of the partition function
in equation (4) is fully equivalent to that of its Laplace transform:

Zλ(β,N) =

∫ ∞

0

dA e−λA

∫ +∞

−∞
dE e−βE ΩA(E,N)

=

∫ N∏
i=1

dσi exp

{
−λ

N∑
i=1

σ2
i + β

M∑
a=1

Ja

∏
i∈∂a

σi

}
, (5)
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For a given choice of values A and E the ensembles are equivalent if and only if it is
possible to find real values of the Lagrange multipliers λ and β such that

A = − ∂

∂λ
log [Zλ(β,N)]

E = − ∂

∂β
log [Zλ(β,N)] . (6)

In this paper we will consider only choices of E ∝ A ∝ N such that it is possible to
find real positive values of λ and β which solve the equations in equation (6). It is
nevertheless important to keep in mind that there are situations where equation (6)
does not have a solution in terms of either a real λ or a real β: this is the situation
where the equivalence of ensembles breaks down and we expect it to happen in sparse
hypergraphs, where condensation takes place. See for instance the recent discussion in
[13].

Let us now introduce the cavity approach to solve the analyzed problem. We will
introduce two kinds of cavity messages: with ηi→a(σi) we will indicate the variable-to-
function cavity message, which indicates the probability that the spin on the i node
assumes the value σi in the absence of the link between the variable node i and the
function node a. Analogously with η̂a→i(σi) we indicate the function-to-variable cavity
message. In the general case ηi→a(σi) will depend on all the messages η̂b→i(σi), with
b ∈ ∂i\a, which are correlated random variables. However, for tree-like graphs they are
independent, due to the absence of loops. Loops are negligible at the leading order also
on the Bethe lattice, which is locally tree-like (there are loops of size log(N )). A complete
graph is not at all locally tree-like, since each spin participates in O(Np−1) interactions,
and there are always short loops. Nevertheless, due to the vanishing intensity of coupling
constants Ja, i.e. 〈J2〉 ∼ 1/Np−1, η̂b→i(σi), with b ∈ ∂i\a, behave as independent random
variables even on complete graphs.

This allows us to introduce the following cavity equations :

ηi→a(σi) =
1

Zi→a

∏
b∈∂i\a

η̂b→i(σi) (7)

η̂a→i(σi) =
1

Ẑa→i

e−
λσ2i
2 K

∫ ∏
j∈∂a\i

dσj ηj→a(σj) exp

⎧⎨
⎩βJaσi

∏
j∈∂a\i

σj

⎫⎬
⎭ , (8)

with Zi→a and Ẑa→i, which are normalization constants to ensure that the messages are
normalized,∫ ∞

−∞
dσiηi→a(σi) =

∫ ∞

−∞
dσiη̂i→a(σi) = 1.

Let us spend few words to explain the way we have transformed the global spheri-

cal constraint into the local terms exp(−λσ2
i

2K
) appearing in the equations for the cavity
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marginals η̂a→i(σi). The factor 1/2 is convenient for the definition of the Gaussian dis-
tributions (the Lagrange multiplier can be changed by a multiplicative factor without
changing the physics). Although the most natural place to insert the spherical constraint
would be as an external field in the equation for the cavity marginal ηi→a(σi), namely
into equation (7), we found it more convenient to put the spherical constraint in the
equation for the cavity marginal ηi→a(σi), that is into equation (8). The proof that these
two choices are equivalent in the large-N limit is given in section 2.5. We notice that
the idea of moving the external field from the variables to the interactions is not new.
It is used, for example, in the real space renormalization group.

Once equations (7) and (8) are solved (e.g. in an iterative way as in the belief
propagation algorithm), the local marginals for each spin are given by

ηi(σi) =
1

Zi

∏
b∈∂i

η̂b→i(σi) (9)

with Zi a new normalization constant.

2.3. The Gaussian ansatz in the large degree limit

In the fully connected model, but also in diluted models, the mean degree grows and
diverges in the large N limit. At the same time, the coupling intensities decrease as
N−(p−1)/2 to ensure well-defined local fields. In this limit we can close the cavity equations
with the following Gaussian ansatz for the cavity marginal distribution

ηi→a(σi) =
1√

2πvi→a
exp

[
−(σi −mi→a)

2

2vi→a

]
∝ exp

[
mi→a

vi→a
σi −

1

2vi→a
σ2
i

]
. (10)

Since 〈J2〉 ∼ 1/Np−1 the large N limit is equivalent to a small J or high-temperature
expansion, known as the Plefka/Georges–Yedidia expansion [36, 37]. Expanding to
second order in J , and inserting the ansatz equation (10), we get

η̂a→i(σi) =
1

Ẑa→i

e−
λσ2i
2 K

∫ ∏
j∈∂a\i

dσj ηj→a(σj) exp

⎧⎨
⎩βJaσi

∏
j∈∂a\i

σj

⎫⎬
⎭

� 1

Ẑa→i

e−
λσ2i
2K

⎡
⎣1 + βJaσi

∏
j∈∂a\i

mj→a +
β2J2

a

2
σ2
i

∏
j∈∂a\i

(m2
j→a + vj→a )

⎤
⎦

� 1

Ẑa→i

e−
λσ2i
2K exp

⎧⎨
⎩βJaσi

∏
j∈∂a\i

mj→a +
β2J2

a

2
σ2
i

×

⎛
⎝ ∏

j∈∂a\i

(
m2

j→a + vj→a

)
−
∏

j∈∂a\i

m2
j→a

⎞
⎠
⎫⎬
⎭ (11)

and
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ηi→a(σi) =
1

Zi→a

∏
b∈∂i\a

η̂b→i(σi)

=
1

Zi→a
e−

λ
2 σ

2
i exp

⎧⎨
⎩βσi

∑
b∈∂i\a

Jb

∏
j∈∂b\i

mj→b +
β2

2
σ2
i

∑
b∈∂i\a

J2
b

×

⎛
⎝ ∏

j∈∂b\i

(
m2

j→b + vj→b

)
−
∏

j∈∂b\i

m2
j→b

⎞
⎠
⎫⎬
⎭ . (12)

Comparing equations (10) and (12), one obtains the following self-consistency equations
for the means and the variances of the Gaussian marginals:

mi→a

vi→a
= β

∑
b∈∂i\a

Jb

∏
j∈∂b\i

mj→b

1

vi→a
= λ− β2

∑
b∈∂i\a

J2
b

⎛
⎝ ∏

j∈∂b\i

(
m2

j→b + vj→b

)
−
∏

j∈∂b\i

m2
j→b

⎞
⎠ . (13)

The λ parameter has to be fixed in order to satisfy the spherical constraint.∑
i〈σ2

i 〉 = N , where the average is taken over the marginals defined in equation (9).
However, given that we are in a dense system, the cavity marginal and full marginals
differ by just terms of order O(1/N), so we can impose the spherical constraint using
cavity marginals. These are the replica symmetric cavity equations for dense (fully
connected or diluted) spherical p-spin models.

In the limit of large degree (fully connected or diluted models) the two summations
appearing in equation (13) are over a large number K of terms. So we can use the
law of large numbers and the central limit theorem to simplify the self-consistency
equations in (13). Reminding that in the large K limit the couplings scale according to
〈J〉 ∼ 1/K and 〈J2〉 ∼ 1/K, the second equation in (13) concentrates vi→a close its mean
value v = E(vi→a), while the first equation in (13) implies that the cavity magnetization
mi→a are Gaussian random variables with first moments m = E(mi→a) and q = E(m2

i→a),
satisfying the following equations:

m

v
= β〈J〉Kmp−1 (14)

q

v2
= β2〈J2〉K qp−1 + β2〈J〉2K2m2(p−1) (15)

1

v
= λ− β2〈J2〉K

(
(q + v)p−1 − qp−1

)
. (16)
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By imposing the spherical constraint,
∑

i〈σ2
i 〉 = N , one gets the identity q + v = 1 that

fixes the Lagrange multiplier and further simplifies the equations:

λ =
1

1− q
+ β2〈J2〉K(1− qp−1) (17)

m = β〈J〉Kmp−1(1− q) (18)

q =
[
β2〈J2〉K qp−1 + β2〈J〉2K2m2(p−1)

]
(1− q)2. (19)

It can be checked by using this expression for λ that the normalization of messages
η̂a→i(σi) is always well defined in the limit of large N .

2.4. The replica symmetric free energy

We now have all the pieces we need to compute the replica symmetric free energy of the
model, which is defined as [26]

−βF ≡ β

⎛
⎝ M∑

a=1

Fa +

N∑
i=1

Fi −
∑
(ai)∈E

Fai

⎞
⎠ ≡

M∑
a=1

log(Za) +

N∑
i=1

log(Zi)−
∑
(ai)∈E

log(Z(ai)),

(20)

where we have respectively

Za =

∫ ∞

−∞

∏
i∈∂a

dσi ηi→a(σi) e
βJa

∏
i∈∂a

σi
(21)

Zi =

∫ ∞

−∞
dσi

∏
a∈∂i

η̂a→i(σi) (22)

Z(ai) =

∫ ∞

−∞
dσi η̂a→i(σi) ηi→a(σi). (23)

The computation of these three terms is reported in appendix A. Here, we just report
the final result:

−βFRS =
N

2

[
β2

2
(1− qp)J2 + log(1− q) +

q

(1− q)

]
. (24)

The free energy written in equation (24) is identical to that of the spherical p-spin
computed with replicas in the replica symmetric case; see equation (4.4) of [6]. From
now on we will set J2 = 1.
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2.5. Alternatives for the spherical constraint: equivalence in the large N limit

The experienced reader will have probably noticed that the way we have introduced the
spherical constraint in the cavity equations is not, perhaps, the most natural one, which
would correspond to an external field of intensity λ acting on every spin. As such, we
should have put

ηi→a(σi) ∝ e−
λ
2 σ

2
i , (25)

rather than

η̂a→i(σi) ∝ e−
λ
2K σ2

i , (26)

as we have done in the equations for the cavity marginals in equations (7) and (8).
In what follows we show that the choice of where to put the spherical constraint is
arbitrary in the large N limit. In practice, we are going to show that either we let the
constraint act as an external field in the variable-to-function message ηi→a(σi), as in
equation (25), or inside the function-to-variable marginal η̂a→i(σi), as in equation (26).
In both cases we obtain the same expression for the free energy to the leading order
in N . The reader must therefore bear in mind that the two ways to put the con-
straint in the cavity equations might not be equivalent in the case of a graph with finite
connectivity.

After a trial and error procedure we realized that the choice in equation (26) makes
all calculations simpler, so we opted for this one. We have already shown that by doing
so we obtain, at high temperature, a free energy which is identical to the one obtained
from mean-field replica calculations; see equation (24). We now want to show explicitly
that the free energy in the high-temperature ergodic phase is identical for the two choices
(equations (25) and (26)) to introduce the constraint.

Let us term η
(λ)
i→a(σi) and η̂

(λ)
a→i(σi) the local cavity marginals corresponding to the

case where the field λ acts directly on the spin:

η
(λ)
i→a(σi) =

1

Z
(λ)
i→a

e−
λσ2i
2

∏
b∈∂i\a

η̂
(λ)
b→i(σi) (27)

η̂
(λ)
a→i(σi) =

1

Ẑ
(λ)
a→i

∫ ∞

−∞

∏
j∈∂a\i

dσj η
(λ)
j→a(σj) exp

⎧⎨
⎩βJaσi

∏
j∈∂a\i

σj

⎫⎬
⎭ . (28)

Accordingly, since in the function-to-variable messages there is now no trace of the
external field, one has to consider the following modified definition of the entropic term
in the local partition functions:

Z(λ)
a =

∫ ∞

−∞

∏
i∈∂a

dσi η
(λ)
i→a(σi) e

βJa
∏

i∈∂aσi (29)
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Z
(λ)
i =

∫ ∞

−∞
dσi e

−λσ2
i /2
∏
a∈∂i

η̂
(λ)
a→i(σi) (30)

Z
(λ)
(ai) =

∫ ∞

−∞
dσi η̂

(λ)
a→i(σi) η

(λ)
i→a(σi). (31)

Our task is now to show that

M∑
a=1

log(Za) +
N∑
i=1

log(Zi)−
∑
(ai)∈E

log(Z(ai))

=
M∑
a=1

log(Z(λ)
a ) +

N∑
i=1

log(Z
(λ)
i )−

∑
(ai)∈E

log(Z
(λ)
(ai)). (32)

The key observation is that, in order to have overall consistency, the Gaussian ansatz
for the variable-to-function message must be the same in both cases; that is

ηi→a(σi) =
1√

2πvi→a

exp

[
−(σi −mi→a)

2

2vi→a

]
= η

(λ)
i→a(σi). (33)

The assumption of equation (33) allows us to conclude immediately that Z
(λ)
a = Za, so

that the identity we need to prove reduces to

N∑
i=1

log(Zi)−
∑
(ai)∈E

log(Z(ai)) =
N∑
i=1

log(Z
(λ)
i )−

∑
(ai)∈E

log(Z
(λ)
(ai)). (34)

By exploiting equation (33), once again we obtain

η̂
(λ)
a→i(σi) =

1

Ẑ
(λ)
a→i

∫ ∞

−∞

∏
j∈∂a\i

dσj ηj→a(σj) exp

⎧⎨
⎩βJaσi

∏
j∈∂a\i

σj

⎫⎬
⎭ , (35)

which, by comparison with the definition in equation (8), leads to

η̂
(λ)
a→i(σi) Ẑ

(λ)
a→i = η̂a→i(σi) Ẑa→i e

λσ2i
2K , (36)

so that

η̂
(λ)
a→i(σi) = η̂a→i(σi)

Ẑa→i

Ẑ
(λ)
a→i

e
λσ2i
2K . (37)

By inserting equation (37) in the definition of Z
(λ)
i in equation (30), one finds

https://doi.org/10.1088/1742-5468/abc4e3 12

https://doi.org/10.1088/1742-5468/abc4e3


J.S
tat.

M
ech.

(2020)
113302

Solving the spherical p-spin model with the cavity method: equivalence with the replica results

Z
(λ)
i =

∫ ∞

−∞
dσi e

−λσ2
i /2
∏
a∈∂i

η̂
(λ)
a→i(σi)

=
∏
a∈∂i

(
Ẑa→i

Ẑ
(λ)
a→i

)∫ ∞

−∞
dσi

∏
a∈∂i

η̂a→i(σi)

=
∏
a∈∂i

(
Ẑa→i

Ẑ
(λ)
a→i

)
Zi, (38)

so that the identity that we want to prove is further simplified in

∑
(ai)∈E

log(Z(ai)) =
∑
(ai)∈E

log(Z
(λ)
(ai))−

N∑
i=1

∑
a∈∂i

log

(
Ẑa→i

Ẑ
(λ)
a→i

)
. (39)

Using, once again, equation (33) we can write

Z
(λ)
(ai) =

∫ ∞

−∞
dσi η̂

(λ)
a→i(σi) η

(λ)
i→a(σi)

=

∫ ∞

−∞
dσi η̂

(λ)
a→i(σi) ηi→a(σi)

=
Ẑa→i

Ẑ
(λ)
a→i

∫ ∞

−∞
dσi e

λσ2i
2K η̂a→i(σi) ηi→a(σi)

� Ẑa→i

Ẑ
(λ)
a→i

Z(ai), (40)

where the last line equality holds for large N (see equations (A15)–(A17) in
appendix A). The N →∞ limit is equivalent to the K →∞ limit, since K ∼ Np−1.
Finally, by plugging the result of equation (40) into equation (39) we can conclude that
the identity in equation (39) is true in the limit N →∞. We have thus demonstrated
that in the large N limit it is equivalent, and thus just a matter of convenience, to write
down explicitly the spherical constraint inside the definition of the function-to-variable
message η̂a→i(σ), as we have done, or inside the definition of the variable-to-function
one, η̂i→a(σ).

3. 1RSB solution

In the previous sections we have reviewed the replica symmetric solution that is stable for
high temperatures. In this phase we have written closed cavity equations for the marginal
distributions of the variables, relying on the assumption that the joint distribution of
the cavity variables is factorized as in a single pure state.

However, lowering the temperature, it is known from the replica solution [6] that
several metastable glassy states arise on top of the paramagnetic state, their number
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being exponential inN with a rate Σ called complexity . The function Σ(f) is in general an
increasing function of the state free energy f, with a downwards curvature (for stability
reasons as for the entropy).

Comparing the total free energy of the glassy states computed using Σ(f) and the
paramagnetic free energy [38], one can derive the dynamical critical temperature T d,

where the ergodicity breaks down, and the thermodynamic critical temperature, also
called the Kauzmann temperature TK, where a phase transition to a replica-symmetry-
breaking phase takes place.

Below T d the dynamics of the model are dominated by the states of larger free
energy—the so-called threshold states—which are the most abundant and always expo-
nentially many in N (although a more refined picture has been recently presented
in [39]).

For T < T d, the Gibbs measure is split over many different states, such that two
different equilibrium configurations can be in the same (metastable) state or in different
states. Defining the overlap between two different configurations as how close they are
to each other, the 1RSB phase is characterized by an overlap q1 between configurations
inside the same pure state (independently of the pure state) and an overlap q0 < q1
between configurations in two different states.

In formulas, the presence of many metastable pure states yields an additional con-
tribution to the free energy. The complexity Σ(f), which counts the number of ‘states’
(disjoint ergodic components of the phase space) with the same free energy f, can be
written as

Σ(f) =
1

N
log

[ N∑
η=1

δ(f − fη)

]
, (41)

where N is the total number of metastable glassy states (formally they can be defined
as the non-paramagnetic stationary points of the TAP free energy [40]) and fη is the
free energy of the glassy state η. Please note that the expression in equation (41) is
identical to the standard microcanonical definition of entropy, with the only difference
being that now we measure the number of phase space regions with the same free energy
rather than the volume of phase space with the same energy. The total free energy is
thus given by

F = − 1

βN
log Z = − 1

βN
log

(∑
η

e−βNfη

)
= − 1

βN
log

∫
df
∑
η

δ(f − fη) e
−βNf

= − 1

βN
log

∫
df e−N(βf−Σ). (42)

The problem is that we do not know how to characterize the different states and how
to count them to obtain Σ: we are still not able to compute F . In the following we will
solve this problem applying the method of real coupled replicas introduced by Monasson
in [41] (see also [26] for a rigorous derivation and [38] for a pedagogical review). This
method was applied to the spherical p-spin in [42] to compute the 1RSB free energy with
a replica computation. The idea of [41] is to introduce x real clones, that we will call
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replicas, on a single realization of a graph. These replicas will be infinitesimally coupled
together in such a way that, even when the coupling between them goes to zero, they
will all fall in the same pure state below T d: this cloning method is a way to select a state
equivalent to what is usually done in ferromagnetic systems to select a state adding an
infinitesimal magnetic field. The free energy Φ(x) of x replicas in the same state is

Φ(x) = − 1

βN
log

(∑
η

e−βNxfη

)
= − 1

βN
log

∫
df e−N(βxf−Σ)

= − 1

β
max

f
(βxf − Σ(f)). (43)

The complexity in this way simply results in the Legendre transform of the free
energy of the replicated system. The total free energy in the 1RSB phase is derived
passing to the analytical continuation of x to real values and turns out to be F = minx
Φ(x)
x
. Besides the Monasson–Mezard cloning method, which is mostly useful to study

the complexity of systems without quenched disorder, it is worth recalling the physical
meaning of the analytic continuation to positive real values of x in a more general setting:
it allows us to compute the large deviations of the free energy, e.g. its sample-to-sample
fluctuations [43, 44].

In the following we will use this cloning method to write 1RSB closed cavity equations
for the spherical p-spin, in a way analogous to what has been done in [21] for the
planted SK model. In a situation with many pure states, the factorization of the
distribution of the cavity variables is valid only inside a single pure state: we can
thus still write some cavity closed equations considering the coupled replicas in the
same pure state. Then, we will compute the 1RSB free energy in a cavity approach
below T d, obtaining exactly the same expression found with replica computations in
[6, 42].

3.1. The ansatz for the distribution of x coupled replicas

For the RS phase, in the dense case, we have written a Gaussian ansatz for the marginal
probability of the spin on a given site in equation (10). In the 1RSB phase, we will
consider the joint probability distribution of x coupled replicas that are all in the same
pure state. We will comment in the next sections on the choice and the physical meaning
of x. In order to lighten the notation, let us indicate as σi = {σα

i }, α = 1, . . . , x, the
vector of all x replicas on site i. The 1RSB form of the ansatz for the marginal probability
ηi→a(σi) amounts to

ηi→a(σi) =

∫ ∞

−∞
dmi→a

1√
2πΔ

(0)
i→a

exp

(
−(mi→a − hi→a)

2

2Δ
(0)
i→a

)

× 1[√
2πΔ

(1)
i→a

]x exp

(
−

x∑
α=1

(σα
i −mi→a)

2

2Δ
(1)
i→a

)
. (44)
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This 1RSB ansatz was firstly introduced in [21]. By shortening the integration measure
for the joint probability distribution σi with the symbol∫

Dσi =

∫ ∞

−∞

x∏
α=1

dσα
i , (45)

and defining the distribution

Qi→a (mi→a) ≡
1√

2πΔ
(0)
i→a

exp

(
−(mi→a − hi→a)

2

2Δ
(0)
i→a

)
, (46)

the first diagonal and second moments of the cavity marginal are simply computed as

〈σα
i 〉 =

∫
Dσi σ

α
i ηi→a(σi) =

∫ ∞

−∞
dmi→a mi→a Qi→a (mi→a) = hi→a

〈(σα
i )

2〉 =
∫

Dσi (σ
α
i )

2 ηi→a(σi) =

∫ ∞

−∞
dmi→a (Δ

(1)
i→a +m2

i→a) Qi→a (mi→a)

= Δ
(1)
i→a +Δ

(0)
i→a + h2

i→a

〈σα
i σ

β
i 〉 =

∫
Dσi σ

α
i σβ

i ηi→a(σi) =

∫ ∞

−∞
dmi→a m2

i→a Qi→a (mi→a)

= Δ
(0)
i→a + h2

i→a.

(47)

Let us comment briefly on the form of the ansatz. The marginal probability of a
single replica in a given state is still a Gaussian, being on a dense graph. If the real
replicas are coupled, they will fall in the same state. The only effect of the infinitesimal
coupling between the replicas will be that the configurations of the real replicas will
be independent variables extracted from the same distribution in each state, once the
average m and variance Δ(1) are given,

ηsi→a

(
σα
i

)
≡ 1√

2πΔ
(1)
i→a

exp

(
−(σα

i −mi→a)
2

2Δ
(1)
i→a

)
. (48)

In the same way, the average magnetizations in different states will be independent
variables extracted from the same distribution Qi→a(mi→a), that will depend on Δ(0)

and h; see, e.g. [45].
With this simple scenario in mind, we can give a simple physical interpretation to

the parameters of the distribution in equation (44), rewriting them as

hi→a = 〈σα
i 〉

Δ
(1)
i→a = 〈(σα

i )
2〉 − 〈σα

i σ
β
i 〉 = 1− qi→a

1

Δ
(0)
i→a = 〈σα

i σ
β
i 〉 − 〈σα

i 〉2 = qi→a
1 − qi→a

0 , (49)
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where the average is taken with respect to the probability distribution in equation (44).
qi→a
1 and qi→a

0 are the local overlap (in the absence of the link from i to a) inside a state
and between states that we mentioned at the beginning of this section. Obviously on a
complete graph, they will be independent of i and a, as for the only parameter in the
RS case (the magnetization) in the homogeneous case. However, we here prefer to write
explicitly the dependence on i and a, because in this way the equations we will obtain
could be easily applied to non-complete graphs.

3.2. 1RSB cavity equations

We now write the replicated cavity equations for the 1RSB ansatz introduced in the
previous section:

ηi→a(σi) ∝
∏

b∈∂i\a

η̂b→i(σi) (50)

η̂a→i(σi) ∝ e−
λ

2 K

∑x
α=1 (σ

α
i )

2

∫ ∞

−∞

∏
k∈∂a\i

Dσk ηk→a(σk)

× exp

⎧⎨
⎩βJa

x∑
α=1

σα
i

∏
k∈∂a\i

σα
k

⎫⎬
⎭ . (51)

We have omitted the normalization factors that are irrelevant in the subsequent
computations. As we did for the RS case, in the dense limit we take the leading term
in a small Ja expansion (valid in the large N limit for dense graphs) and in this setting
we will close the equations on the parameters of the multivariate Gaussian. That is, we
write

∫ ∞

−∞

∏
k∈∂a\i

Dσk ηk→a(σk) exp

⎧⎨
⎩βJa

x∑
α=1

σα
i

∏
k∈∂a\i

σα
k

⎫⎬
⎭

�
∫ ∞

−∞

∏
k∈∂a\i

Dσk ηk→a(σk)

⎡
⎣1 + βJa

x∑
α=1

σα
i

∏
k∈∂a\i

σα
k +

1

2
β2J2

a

⎛
⎝ x∑

α=1

σα
i

∏
k∈∂a\i

σα
k

⎞
⎠

2⎤
⎦

= 1+ βJa

⎛
⎝ ∏

k∈∂a\i

hk→a

⎞
⎠ x∑

α=1

σα
i +

1

2
β2J2

a

⎡
⎣ ∏
k∈∂a\i

(
Δ

(1)
k→a+Δ

(0)
k→a+ h2

k→a

)⎤⎦ x∑
α=1

(
σα
i

)2

+
1

2
β2J2

a

⎡
⎣ ∏

k∈∂a\i

(
Δ

(0)
k→a + h2

k→a

)⎤⎦ x∑
α=β

σα
i σ

β
i

� exp

{
Âa→i

x∑
α=1

σα
i − 1

2
B̂

(d)
a→i

x∑
α=1

(σα
i )

2 +
1

2
B̂

(nd)
a→i

x∑
α=β

σα
i σ

β
i

}
, (52)
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where the three coefficients are respectively

Âa→i = βJa

∏
k∈∂a\i

hk→a

B̂
(d)
a→i = β2J2

a

⎡
⎣ ∏
k∈∂a\i

h2
k→a −

∏
k∈∂a\i

(
Δ

(1)
k→a +Δ

(0)
k→a + h2

k→a

)⎤⎦

B̂
(nd)
a→i = β2J2

a

⎡
⎣ ∏
k∈∂a\i

(
Δ

(0)
k→a + h2

k→a

)
−
∏

k∈∂a\i

h2
k→a

⎤
⎦ .

(53)

The function-to-variable message, expressed by equation (51), therefore reads as

η̂a→i(σi) ∝ exp

{
Âa→i

x∑
α=1

σα
i − 1

2

(
B̂

(d)
a→i +

λ

K

) x∑
α=1

(σα
i )

2 +
1

2
B̂

(nd)
a→i

x∑
α=β

σα
i σ

β
i

}
,

(54)

while from equation (50) we have that the variable-to-function message reads as

ηi→a(σi) ∝ exp

⎧⎨
⎩
⎛
⎝∑

b∈∂i\a

Âb→i

⎞
⎠ x∑

α=1

σα
i − 1

2

⎛
⎝∑

b∈∂i\a

B̂
(d)
b→i + λ

⎞
⎠ x∑

α=1

(σα
i )

2

+
1

2

⎛
⎝∑

b∈∂i\a

B̂
(nd)
b→i

⎞
⎠ x∑

α=β

σα
i σ

β
i

⎫⎬
⎭ . (55)

In order to keep the notation simple, let us define

Ai→a ≡
∑
b∈∂i\a

Âb→i =
∑
b∈∂i\a

βJb

∏
k∈∂b\i

hk→b

B
(d)
i→a ≡ λ+

∑
b∈∂i\a

B̂
(d)
a→i = λ−

∑
b∈∂i\a

β2J2
b

×

⎡
⎣ ∏
k∈∂b\i

(
Δ

(1)
k→b +Δ

(0)
k→b + h2

k→b

)
−
∏

k∈∂b\i

h2
k→b

⎤
⎦

B
(nd)
i→a ≡

∑
b∈∂i\a

B̂
(nd)
a→i =

∑
b∈∂i\a

β2J2
b

⎡
⎣ ∏

k∈∂b\i

(
Δ

(0)
k→b + h2

k→b

)
−
∏

k∈∂b\i

h2
k→b

⎤
⎦ ,

(56)

so that equation (50) can be rewritten in the more compact form as
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ηi→a(σi) ∝ exp

{
Ai→a

x∑
α=1

σα
i − 1

2
B

(d)
i→a

x∑
α=1

(σα
i )

2 +
1

2
B

(nd)
i→a

x∑
α=β

σα
i σ

β
i

}
. (57)

The expression above can be further simplified by introducing the matrix Mαβ and the
vector uα such that

uα =
Ai→a

B
(d)
i→a − (x− 1)B

(nd)
i→a

∀α,

Mαβ = δαβ B
(d)
i→a + (1− δαβ) (−B

(nd)
i→a ) (58)

and the normalized distribution, written in the standard form for a multivariate
Gaussian, reads

ηi→a(σi) =

√
det M
(2π)x

exp

{
−1

2
(σi − u)TM(σi − u)

}
. (59)

The closed cavity equations, which in the 1RSB case are three rather than two, are
simply obtained by taking the averages in equation (49) with respect to the marginal
distribution ηi→a(σi):

hi→a = 〈σα
i 〉 = uα

Δ
(0)
i→a = 〈σα

i σ
β
i 〉 − [〈σα

i 〉]2 = M−1
αβ

Δ
(1)
i→a = 〈[σα

i ]
2〉 − 〈σα

i σ
β
i 〉 = M−1

αα −M−1
αβ ,

where the general expression of the inverse matrix element is

M−1
αβ =

1(
B

(d)
i→a +B

(nd)
i→a

) δαβ +
B

(nd)
i→a(

B
(d)
i→a +B

(nd)
i→a

)(
B

(d)
i→a + (1− x)B

(nd)
i→a

) . (60)

For the ease of the reader wishing to implement them in a code, let us write explicitly
the closed cavity equations:

hi→a =

β
∑

b∈∂i\a
Jb

∏
k∈∂b\i

hk→b

D(1)
i→a − xD(0)

i→a

Δ
(0)
i→a =

D(0)
i→a

D(1)
i→a

(
D(1)

i→a − xD(0)
i→a

) (61)

Δ
(1)
i→a =

1

D(1)
i→a

with

D(1)
i→a ≡ λ− β2

∑
b∈∂i\a

J2
b

⎡
⎣ ∏

k∈∂b\i

(
Δ

(0)
k→b +Δ

(1)
k→b + h2

k→b

)
−
∏

k∈∂b\i

(
Δ

(0)
k→b + h2

k→b

)⎤⎦
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D(0)
i→a ≡ β2

∑
b∈∂i\a

J2
b

⎡
⎣ ∏
k∈∂b\i

(
Δ

(0)
k→b + h2

k→b

)
−
∏

k∈∂b\i

h2
k→b

⎤
⎦ .

While the parameter λ is fixed by the normalization condition, the parameter x is a
variational one and has to be chosen in order to extremize the free energy, a quantity
that is computed explicitly in the next subsection in the case of a complete graph.

In the limit of large mean degree, the above saddle point equations can be further

simplified by noting that both D(0)
i→a and D(1)

i→a concentrate to their mean values, which

we denote as 〈D(0)
i→a〉 = D(0) and 〈D(1)

i→a〉 = D(1), due to the law of large numbers, while
hi→a becomes a Gaussian variable and it is enough to consider its first two moments.

m ≡ 〈hi→a〉 =
β〈J〉K mp−1

D(1) − xD(0)
(62)

q0 ≡ 〈h2
i→a〉 =

β2
[
〈J2〉K qp−1

0 + 〈J〉2K2m2(p−1)
]

(D(1) − xD(0))
2 (63)

Δ(0) =
D(0)

D(1) (D(1) − xD(0))
(64)

Δ(1) =
1

D(1)

with

D(1) ≡ λ− β2〈J2〉K
[(

q0 + Δ(0) + Δ(1)
)p−1

−
(
q0 + Δ(0)

)p−1
]

D(0) ≡ β2〈J2〉K
[(

q0 + Δ(0)
)p−1

− qp−1
0

]

and where the symbols Δ(1) and Δ(0) represent, respectively, Δ(1) = 〈Δ(1)
i→a〉 and Δ(0) =

〈Δ(0)
i→a〉. By considering the most common model with Gaussian couplings of zero mean

(〈J〉 = 0 and 〈J2〉 = p!/(2Np−1)) and recalling that Δ(0) = q1 − q0, Δ
(1) = 1− q1 and

K =

(
N

p− 1

)
∼ Np−1

(p− 1)!
, ⇒ 〈J2〉K ∼ p

2
(65)

we are left with the following three closed equations:

β2p

2
qp−2
0 =

[
λ− p

β2

2

(
1− xqp−1

0 + (x− 1)qp−1
1

)]2
(66)

q1 − q0 =
pβ2

2

(
qp−1
1 − qp−1

0

)[
λ− pβ2

2

(
1− qp−1

1

)] [
λ− pβ2

2

(
1− xqp−1

0 + (x− 1)qp−1
1

)] (67)

1− q1 =
1

λ− pβ2

2

(
1− qp−1

1

) . (68)
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Let us note that equation (68) allows us to easily re-express the spherical constraint
parameter λ as a function of q1 and β, i.e.

λ =
1

1− q1
+ p

β2

2

(
1− qp−1

1

)
, (69)

which will be useful later on. Comparing the expression of the Lagrange multiplier with
the one obtained in the RS case in equation (17), we see that they are the same with
the substitution q → q1: in the 1RSB phase the Lagrange multiplier is enforcing the
spherical constraint inside each pure state.

3.3. 1RSB free energy

We now want to compute the free energy F(x) in the presence of a one-step replica
symmetric ansatz. The free energy for the replicated system is [26, 38]

Φ(x) = −

⎛
⎝ M∑

a=1

F
RSB
a (x) +

N∑
i=1

F
RSB
i (x)−

∑
(ai)∈E

F
RSB
ai (x)

⎞
⎠ . (70)

The total free energy of the system is just the free energy of the x coupled replicas,
divided by x (and extremized over x). In principle, the three contributions, respectively
representing the energetic and the entropic contributions and a normalization, read as

βFRSB
a (x) = log

{∫ ∏
i∈∂a

[dmi→aQi→a(mi→a)] exβFa({mi→a})

}
(71)

βFRSB
i (x) = log

{∫ ∏
a∈∂i

[
dm̂a→iQ̂a→i(m̂a→i)

]
exβFi({m̂a→i})

}
(72)

βFRSB
ai (x) = log

{∫
dm̂a→i dmi→a Q̂a→i(m̂a→i) Qi→a(mi→a) e

xβFai(mi→a,m̂a→i)

}
(73)

where Fa,Fi and Fai are the RS free energy parts in equation (20), Qi→a(mi→a) is the
distribution of the cavity marginals that in the case of the dense Gaussian 1RSB ansatz
has been defined in equation (46), section 3.1, and the distribution Q̂a→i(m̂a→i) should
be the one of the function-to-variable fields.

The detailed computation is reported in appendix B.2; here we just write the result,
which is the same as that found with the replica approach [6]:
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−xβF(x) =
M∑
a=1

βFRSB
a +

N∑
i=1

βFRSB
i −

∑
(ai)∈E

βFRSB
ai

=
xN

2

{
β2

2

[
1− (1− x)qp1 − xqp0

]
+

q0
[1− xq0 − (1− x)q1]

+
x− 1

x
log (1− q1) +

1

x
log [1− xq0 − (1− x)q1]

}
.

(74)
4. Conclusions

In this paper we have derived the cavity equations for solving diluted spherical p-spin
models. Such a cavity-based derivation makes evident the underlying assumption that
reflects itself in the distribution of local fields: in the RS ansatz, replicas are uncorre-
lated and have Gaussian local fields, while in the 1RSB ansatz replicas have correlated
Gaussian local fields whose covariance matrix depends on whether the replicas are in
the same state or not, as pointed out in [21].

We have derived the cavity equations exploiting the same high-temperature expan-
sion that leads to mean-field approximations [46].

We have solved the cavity equations in the fully connected case. In this case the
solution is homogeneous, depends on very few parameters and can be written explicitly,
leading to the same expression that was obtained via the replica method.

The approach based on the cavity method has several advantages:

• it makes clear the underlying assumptions;

• it holds also for the diluted version of the model (provided the solution does not
condensate);

• it can be converted in message-passing algorithms, the RS belief propagation and
the 1RSB survey propagation;

• it allows us to study heterogeneous solutions in diluted models, until the condensation
transition.

Our work, besides providing the first complete reference on the equivalence between
the replica and the cavity methods for spherical disordered models, paves the way to
a more systematic study of inhomogeneous glassy phases in diluted mean-field models
and represents a reference point for the systematic development of algorithms for combi-
natorial optimization and inference problems characterized by continuous variables [21,
47–49].
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Appendix A. Replica symmetric free energy

In this section we compute the replica symmetric free energy of the model, which is
defined as [26]

−βF ≡ β

⎛
⎝ M∑

a=1

Fa +
N∑
i=1

Fi −
∑
(ai)∈E

Fai

⎞
⎠ ≡

M∑
a=1

log(Za) +
N∑
i=1

log(Zi)−
∑
(ai)∈E

log(Z(ai)),

(A1)

where we have respectively

Za =

∫ ∞

−∞

∏
i∈∂a

dσi ηi→a(σi) e
βJa

∏
i∈∂a

σi
(A2)

Zi =

∫ ∞

−∞
dσi

∏
a∈∂i

η̂a→i(σi) (A3)

Z(ai) =

∫ ∞

−∞
dσi η̂a→i(σi) ηi→a(σi). (A4)

Let us now compute the three contributions to the free energy, starting from the simplest,
which is the energy per functional node log(Za). By expanding the Boltzmann weight
in equation (A2), we get:

Za �
∫ (∏

i∈∂a
dσi ηi→a(σi)

) [
1 + βJa

∏
i∈∂a

σi +
β2

2
J2
a

∏
i∈∂a

σ2
i

]

=

[
1 + βJa

∏
i∈∂a

mi→a +
β2

2
J2
a

∏
i∈∂a

(
vi→a +m2

i→a

)]

� exp

{
βJa

∏
i∈∂a

mi→a +
β2

2
J2
a

(∏
i∈∂a

(
vi→a +m2

i→a

)
−
∏
i∈∂a

m2
i→a

)}
. (A5)

We have, therefore, that the sum over all the M =
(

N
p

)
interaction nodes reads as
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M∑
a=1

log (Za) = β
M∑
a=1

Ja

∏
i∈∂a

mi→a +
β2

2

M∑
a=1

J2
a

(∏
i∈∂a

(
vi→a +m2

i→a

)
−
∏
i∈∂a

m2
i→a

)

= βmpM〈J〉+ β2

2
(1− qp)M〈J2〉

= N
β2

4
(1− qp)J2, (A6)

since we have assumed 〈J〉 = 0 and for large N

M〈J2〉 = MJ2p!

2Np−1
� N J2/2. (A7)

Let us now compute the entropy per spin log(Zi). From equation (22) we have that

Zi =

∫ ∞

−∞
dσi

∏
a∈∂i

⎡
⎣ 1

Ẑa→i

exp

⎧⎨
⎩− λ

2K
σ2
i + βJa

⎛
⎝ ∏

j∈∂a\i

mi→a

⎞
⎠ σi

+
β2

2
J2
a

⎛
⎝ ∏

j∈∂a\i

(
vj→a +m2

j→a

)
−
∏

j∈∂a\i

m2
j→a

⎞
⎠ σ2

i

⎫⎬
⎭
⎤
⎦

=

[∏
a∈∂i

1

Ẑa→i

]∫ ∞

−∞
dσi exp

⎧⎨
⎩−λ

2
σ2
i + βσi

K∑
a=1

Ja

⎛
⎝ ∏

j∈∂a\i

mi→a

⎞
⎠

+
β2

2
σ2
i

K∑
a=1

J2
a

⎛
⎝ ∏

j∈∂a\i

(
vj→a +m2

j→a

)
−
∏

j∈∂a\i

m2
j→a

⎞
⎠
⎫⎬
⎭ . (A8)

Since to the leading order we have

K∑
a=1

J2
a

⎛
⎝ ∏

j∈∂a\i

(
vj→a +m2

j→a

)
−
∏

j∈∂a\i

m2
j→a

⎞
⎠

�
∑
a∈∂i\b

J2
a

⎛
⎝ ∏

j∈∂a\i

(
vj→a +m2

j→a

)
−
∏

j∈∂a\i

m2
j→a

⎞
⎠ , (A9)

we can take advantage of the cavity equations (equation (13)) and of the fact that both
m2

j→a and vj→a are variables which concentrate in the large N limit to write

β2
K∑
a=1

J2
a

⎛
⎝ ∏

j∈∂a\i

(
vj→a +m2

j→a

)
−
∏

j∈∂a\i

m2
j→a

⎞
⎠ = λ− 1

1− q
, (A10)
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which allows us to write

Zi =

[∏
a∈∂i

Ẑ−1
a→i

]∫ ∞

−∞
dσi exp

⎧⎨
⎩− 1

2(1− q)
σ2
i + β σi

K∑
a=1

Ja

⎛
⎝ ∏

j∈∂a\i

mj→a

⎞
⎠
⎫⎬
⎭

=

[∏
a∈∂i

Ẑ−1
a→i

]
√
2π (1− q)1/2 exp

⎧⎨
⎩(1− q)

2

⎡
⎣β K∑

a=1

Ja

⎛
⎝ ∏

j∈∂a\i

mj→a

⎞
⎠
⎤
⎦
2⎫⎬
⎭ . (A11)

By taking the square of the last summation left in the argument of the exponential
function in equation (A11), we get

β2

⎡
⎣ K∑

a=1

Ja

∏
j∈∂a\i

mj→a

⎤
⎦
2

= β2
K∑
a=1

J2
a

∏
j∈∂a\i

m2
j→a +

K∑
a=b

JaJb

⎛
⎝ ∏

j∈∂a\i

mj→a

⎞
⎠

×

⎛
⎝ ∏

k∈∂a\i

mk→a

⎞
⎠

� β2K〈J2〉qp−1 +K2〈J〉2m2p−2 =
q

(1− q)2
, (A12)

where for the rightmost identity in the last line of equation (A12) we used equation (15)
and the definition of the spherical constraint. By then plugging the result of
equation (A12) into equation (A11), we get

Zi =

[∏
a∈∂i

Ẑ−1
a→i

]
√
2π (1− q)1/2 exp

{
1

2

q

(1− q)

}
. (A13)

From the expression of equation (A13), summing over all spins (and neglecting constant
terms), one finds

N∑
i=1

log(Zi) =
N

2

[
log(1− q) +

q

(1− q)

]
−

N∑
i=1

∑
a∈∂i

log(Ẑa→i). (A14)

Finally, the contribution to the free energy coming from the edges reads as

Z(ai) =

∫ ∞

−∞
dσi η̂a→i(σi) ηi→a(σi)

=

∫ ∞

−∞
dσi

exp

{
− (σi−mi→a)

2

2vi→a
− λ

2K σ2
i + βJaσi

∏
j∈∂a\i

mj→a +
1
2β

2J2
a

( ∏
j∈∂a\i

(vj→a +m2
j→a)−

∏
j∈∂a\i

m2
j→a

)
σ2
i

}

Ẑa→i

√
2πvi→a

.

(A15)
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Since in the large N limit we have, respectively

(σi −mi→a)
2

2vi→a

= O(1)

|Ja| = O
(

1

N (p−1)/2

)

J2
a = O

(
1

Np−1

)
1

K
= O

(
1

Np−1

)
,

(A16)

all terms added inside the argument of the exponential equation (A15) are subleading
with respect to the first one, so that one can write

Z(ai) �
1

Ẑa→i

∫ ∞

−∞

dσi√
2πvi→a

e−
(σi−mi→a)

2

2vi→a =
1

Ẑa→i

. (A17)

Finally, summing over all the edges, we get

∑
(ai)∈E

log(Z(ai)) = −
∑
(ai)∈E

log(Ẑa→i) = −
N∑
i=1

∑
a∈∂i

log(Ẑa→i), (A18)

which, in turn, allows us to write

N∑
i=1

log(Zi)−
∑
(ai)∈E

log(Z(ai)) =
N

2

[
log(1− q) +

q

(1− q)

]
−

N∑
i=1

∑
a∈∂i

log(Ẑa→i)

+
N∑
i=1

∑
a∈∂i

log(Ẑa→i)

=
N

2

[
log(1− q) +

q

(1− q)

]
. (A19)

By finally taking into account also the contribution of
∑M

a=1 log(Za), we get

−βFRS =
N

2

[
β2

2
(1− qp)J2 + log(1− q) +

q

(1− q)

]
, (A20)

where we used the fact that N
∑

a∈∂i =
∑

(ai)∈E.

Appendix B. 1RSB solution

B.1. 1RSB cavity equations

We derive here some useful identities which can be obtained from the 1RSB cavity
equations. One has just to equate the coefficients of the diagonal, i.e.

∑x
α=1 (σ

α)2, and
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off-diagonal, i.e.
∑x

α=β σ
ασβ on the left and on the right of the first of the cavity equations

in equation (51). Before doing this let us just write the local 1RSB marginal η(σi)
explicitly, i.e. we compute explicitly the integral over mi→a in equation (44):

ηi→a(σi) =

∫ ∞

−∞
dmi→a

1√
2πΔ

(0)
i→a

exp

(
−(mi→a − hi→a)

2

2Δ
(0)
i→a

)

× 1[√
2πΔ

(1)
i→a

]x exp
(
−

x∑
α=1

(σα
i −mi→a)

2

2Δ
(1)
i→a

)

≈ exp

{
− 1

2Δ
(1)
i→a

x∑
α=1

σ2
α −

hi→a

2Δ
(0)
i→a

}∫ ∞

−∞
dmi→a exp

{
−1

2

(
Δ

(1)
i→a + xΔ

(0)
i→a

Δ
(1)
i→aΔ

(0)
i→a

)
m2

i→a

−
(

hi→a

Δ
(0)
i→a

+
1

Δ(1)

x∑
α=1

σα

)
mi→a

}

≈ exp

⎧⎨
⎩− 1

2Δ
(1)
i→a

x∑
α=1

σ2
α−

hi→a

2Δ
(0)
i→a

+
1

2

(
Δ

(1)
i→aΔ

(0)
i→a

Δ
(1)
i→a + xΔ

(0)
i→a

)(
hi→a

Δ
(0)
i→a

+
1

Δ
(1)
i→a

x∑
α=1

σα

)2
⎫⎬
⎭

≈ exp

{
− 1

2Δ
(1)
i→a

(
1− Δ

(0)
i→a

Δ
(1)
i→a+ xΔ

(0)
i→a

)
x∑

α=1

σ2
α+

1

2Δ
(1)
i→a

(
Δ

(0)
i→a

Δ
(1)
i→a+ xΔ

(0)
i→a

)
x∑

α=β

σασβ

+

(
hi→a

Δ
(1)
i→a + xΔ

(0)
i→a

)
x∑

α=1

σα

}
,

(B1)

where, in the last line of equation (B1), we have retained only terms at least linear in
σα
i . Thus, matching the coefficients of the linear and quadratic in σα

i , both diagonal and
non-diagonal, appearing in the expression of η(σα

i ) in equation (B1) above here and in
equation (57), we get a set of three equations:

hi→a

Δ
(1)
i→a + xΔ

(0)
i→a

= β
∑

b∈∂i\a
Jb
∏

k∈∂b\i
hk→b = A

1

Δ
(1)
i→a

(
1− Δ

(0)
i→a

Δ
(1)
i→a + xΔ

(0)
i→a

)
= λ+

∑
b∈∂i\a

β2J2
b

⎡
⎣ ∏
k∈∂b\i

h2
k→b−

∏
k∈∂b\i

(
Δ

(1)
k→b +Δ

(0)
k→b + h2

k→b

)⎤⎦ = B(d)

1

Δ
(1)
i→a

(
Δ

(0)
i→a

Δ
(1)
i→a + xΔ

(0)
i→a

)
=
∑

b∈∂i\a
β2J2

b

⎡
⎣ ∏
k∈∂b\i

(
Δ

(0)
k→b + h2

k→b

)
−
∏

k∈∂b\i
h2
k→b

⎤
⎦ = B(nd).

(B2)
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Since we know that the three variables Δ
(1)
k→b, Δ

(0)
k→b and h2

k→b all have a distribution
which becomes concentrated in the large N limit, we have that the summations on the
right-hand side of the last two lines in equation (B2) read as

λ +
∑
b∈∂i\a

β2J2
b

⎡
⎣ ∏

k∈∂b\i

h2
k→b−

∏
k∈∂b\i

(
Δ

(1)
k→b+Δ

(0)
k→b+ h2

k→b

)⎤⎦ = λ− β2K〈J2〉(1− qp−1
0 ) = B(d)

∑
b∈∂i\a

β2J2
b

⎡
⎣ ∏

k∈∂b\i

(
Δ

(0)
k→b + h2

k→b

)
−
∏

k∈∂b\i

h2
k→b

⎤
⎦ = β2K〈J2〉(qp−1

1 − qp−1
0 ) = B(nd),

(B3)

where we have introduced the symbols B(d) and B(nd) to highlight that dependence on
the subscript indices can be dropped. Thus, since expressions on the right-hand side of
the last two lines of equation (B2) are summations over a very large number of local
fields, as a consequence one can drop the site index for the expressions on the left-
hand side. This means that inside the left-hand members in equation (B2), except the

equation in the first line, the fields Δ
(1)
i→a, Δ

(0)
i→a and h2

i→a can be replaced everywhere with
their average values:

〈h2
i→a〉 = q0

〈Δ(0)
i→a〉 = q1 − q0

〈Δ(1)
i→a〉 = 1− q1, (B4)

leading finally to the following expressions:

B(d) =
1

1− q1

[
1− q1 − q0

1− xq0 − (1− x)q1

]

B(nd) =
q1 − q0
1− q1

· 1

1− xq0 − (1− x)q1
. (B5)

For what concerns the first line of equation (B2), while it is in general not possible to
assume concentration for the distribution of hi→a, this can be done for the distribution
of h2

i→a. This fact can be exploited to write useful relations for the squared variable:

A2
i→a = β2

⎡
⎣∑
b∈∂i\a

Jb

∏
k∈∂b\i

hk→b

⎤
⎦

2

= β2
∑
b∈∂i\a

J2
b

∏
k∈∂b\i

h2
k→b + β2

∑
b =c∈∂i\a

JbJa

∏
k∈∂b\i

hk→b

∏
j∈∂c\i

hj→c

� β2〈J2〉〈h2(p−1)〉+ 〈J〉2〈h〉2(p−1), (B6)
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which tells us that we can also write

A2
i→a =

〈
h2
i→a(

Δ
(1)
i→a + xΔ

(0)
i→a

)2
〉

=
〈h2

i→a〉(
〈Δ(1)

i→a〉+ x〈Δ(0)
i→a〉

)2 =
q0

(1− xq0 − (1− x)q1)
2 .

(B7)

B.2. 1RSB free energy

Let us reproduce here the exact formulas that we need to compute F(x) in the presence
of a one-step replica symmetry ansatz. The free energy for the replicated system is
[26, 38]

Φ(x) = −

⎛
⎝ M∑

a=1

F
RSB
a (x) +

N∑
i=1

F
RSB
i (x)−

∑
(ai)∈E

F
RSB
ai (x)

⎞
⎠ . (B8)

In principle, the three contributions, respectively representing the energetic and the
entropic contributions and a normalization, read as

βFRSB
a (x) = log

{∫ ∏
i∈∂a

[dmi→aQi→a(mi→a)] exβFa({mi→a})

}
(B9)

βFRSB
i (x) = log

{∫ ∏
a∈∂i

[
dm̂a→iQ̂a→i(m̂a→i)

]
exβFi({m̂a→i})

}
(B10)

βFRSB
ai (x) = log

{∫
dm̂a→i dmi→a Q̂a→i(m̂a→i) Qi→a(mi→a) e

xβFai(mi→a,m̂a→i)

}
(B11)

where Fa,Fi and Fai are the RS free energy parts in equation (20), Qi→a(mi→a) is the
distribution of the cavity marginals that in the case of the dense Gaussian 1RSB ansatz
has been defined in equation (46), section 3.1, and the distribution Q̂a→i(m̂a→i) should
be the one of the function-to-variable fields. Since we are going to write everything in
terms of the variable-to-function fields mi→a, it is convenient to write the probability
distribution Q̂a→i(m̂a→i) of function-to-variable fields m̂a→i in terms of Qi→a(mi→a) and
mi→a. This can be done taking advantage of the identity [26]:

Q̂a→i(m̂a→i) =

∫ ∏
k∈∂a\i

[dmk→aQk→a(mk→a)] Ẑx
a→i

× ({mk→a})δ [m̂a→i − f({mk→a})] , (B12)

where f(x) is shorthand to refer to the cavity equations and Ẑa→i is the normalization
factor introduced in the RS equation (8). By exploiting the last identity, we can rewrite

https://doi.org/10.1088/1742-5468/abc4e3 29

https://doi.org/10.1088/1742-5468/abc4e3


J.S
tat.

M
ech.

(2020)
113302

Solving the spherical p-spin model with the cavity method: equivalence with the replica results

the expression of the 1RSB entropy per site as

βFRSB
i (x) = log

⎧⎨
⎩
∫ ∏

a∈∂i

∏
k∈∂a\i

dmk→a Qk→a(mk→a) Ẑ
x
a→i

× ({mk→a}k∈∂a\i) exβFi({f({mk→a})}a∈∂i)

⎫⎬
⎭ . (B13)

B.3. 1RSB energy

We compute in what follows the expression of the energetic part of the free energy. By
plugging into the same expression the definition of the energetic contribution to the
local free energy in the RS case, see equation (21), and the 1RSB weighted average over
the local messages written in equation (71), we get

βFRSB
a (x) = log

{∫ ∏
i∈∂α

[dmi→aQi→a(mi→a)]

×
(∫ ∞

−∞

∏
i∈∂a

dσi η
s
i→a(σi) e

βJa
∏
i∈∂a

σi

)x}

= log

{∫ ∏
i∈∂α

[dmi→aQi→a(mi→a)]

×
∫ ∏

i∈∂a

x∏
α=1

dσα
i ηsi→a(σ

α
i ) e

βJa
∑x

α=1

∏
i∈∂a

σα
i

}
. (B14)

The expression in equation (B14) is formally correct but completely useless unless
an explicit ansatz for the distribution Qi→a(mi→a) is given. We consider the ansatz in
equations (46) and (48), which assumes three parameters, the local magnetization hi→a

and the two parameters Δ
(0)
i→a and Δ

(1)
i→a relative to the coupling between replicas:

∫
dmi→aQi→a(mi→a)

x∏
α=1

ηsi→a(σ
α
i )

=

∫ ∞

−∞
dmi→a

e−(mi→a−hi→a)
2/(2Δ

(0)
i→a)√

2πΔ
(0)
i→a

x∏
α=1

e−(σα
i −mi→a)

2/(2Δ
(1)
i→a)√

2πΔ
(1)
i→a

. (B15)

In particular we have that hi→a and Δ
(0)
i→a are variational parameters for the probability

distribution of the fields mi→a on a given edge, while Δ
(1)
i→a is a variational parameter for

the coupling between replicas.
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In order to concretely carry on the calculation, we need first to expand to the leading
order the interaction term in the partition function:

exp

{
βJa

x∑
α=1

∏
i∈∂a

σα
i

}
�
(
1 + βJa

x∑
α=1

∏
i∈∂a

σα
i +

1

2
β2J2

a

x∑
αβ=1

∏
i∈∂a

σα
i σ

β
i

)
. (B16)

By then indicating

∫
dmi→aQi→a(mi→a)

x∏
α=1

ηi→a(σ
α
i ,mi→a) G(σα

i ) =
〈
G(σα

i )
〉
, (B17)

we have

βFRSB
a (x) = log

{〈
eβJa

∑x
α=1

∏
i∈∂aσ

α
i

〉}

� log

{
1 + βJa

x∑
α=1

∏
i∈∂a

〈σα
i 〉+

1

2
β2J2

a

x∑
αβ=1

∏
i∈∂a

〈σα
i σ

β
i 〉
}

� βJa

x∑
α=1

∏
i∈∂a

〈σα
i 〉+

1

2
β2J2

a

x∑
αβ=1

∏
i∈∂a

〈σα
i σ

β
i 〉 −

1

2
β2J2

a

x∑
αβ=1

∏
i∈∂a

〈σα
i 〉〈σ

β
i 〉

= βJa

x∑
α=1

∏
i∈∂a

〈σα
i 〉+

1

2
β2J2

a

x∑
α=1

∏
i∈∂a

〈(σα
i )

2〉+ 1

2
β2J2

a

x∑
α=β

∏
i∈∂a

〈σα
i σ

β
i 〉

− 1

2
β2J2

a

x∑
αβ

∏
i∈∂a

〈σα
i 〉〈σ

β
i 〉. (B18)

Finally, by making use of the definition of the moments 〈σα
i 〉, 〈(σα

i )
2〉 and 〈σα

i σ
β
i 〉

given in equation (47), we can write

βFRSB
a (x) = xβJa

∏
i∈∂a

hi→a +
x

2
β2J2

a

∏
i∈∂a

(
Δ

(1)
i→a +Δ

(0)
i→a + h2

i→a

)

+
x(x− 1)

2
β2J2

a

∏
i∈∂a

(
Δ

(0)
i→a + h2

i→a

)
− x2

2
J2
a

∏
i∈∂a

h2
i→a.

(B19)

By then summing over all the M interactions we can replace the local messages with
their average values:

M∑
a=1

βFRSB
a (x) = Mx

[
β〈J〉〈h〉p + 1

2
β2〈J2〉+ x− 1

2
β2〈J2〉qp1 −

1

2
β2〈J2〉qp0

]
. (B20)
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If we assume the zero field case, i.e. 〈J〉 = 〈h〉 = 0, recalling then that 〈J2〉 = p!/(2Np−1)
so that M〈J2〉 � N/2 we finally obtain

M∑
a=1

βFRSB
a (x) = xN

β2

4

[
1− (1− x)qp1 − xqp0

]
. (B21)

B.4. 1RSB entropy

The 1RSB entropy is defined in equation (B13) and we rewrite it here for the ease of
the reader:

βFRSB
i (x) = log

⎧⎨
⎩
∫ ∏

a∈∂i

∏
k∈∂a\i

dmk→a Qk→a(mk→a) Ẑ
x
a→i

× ({mk→a}k∈∂a\i) exβFi({f({mk→a})}a∈∂i)

⎫⎬
⎭

where the local free energy Fi[{mk→a}k∈∂a\i] is the RS one:

exp (βFi) =

∫ ∞

−∞
dσi e

−λσ2
i /2
∏
a∈∂i

⎡
⎣Ẑ−1

a→i({mk→a}k∈∂a\i)

×
∫ ∏

k∈∂a\i

dσk ηsk→a(σk) e
βJaσi

∏
k∈∂a\i

σk

⎤
⎦ . (B22)

By then assuming that x is integer (the analytic continuation to real values will be taken
afterwards) it is straightforward to write∏

a∈∂i
Ẑx

a→i({mk→a}k∈∂a\i) exβFi[{mk→a}k∈∂a\i]

=

∫ ∞

−∞

x∏
α=1

dσα
i e−λ

∑x
α=1 (σ

α
i )

2/2
∏
a∈∂i

×

⎡
⎣∫ x∏

α=1

∏
k∈∂a\i

dσα
k ηsk→a(σ

α
k ) e

βJa
∑x

α=1 σ
α
i

∏
k∈∂a\i

σα
k

⎤
⎦ (B23)

The implementation of the 1RSB ansatz comes at this stage very naturally; we just have
to insert for each link (ka) the ansatz in equations (46) and (48). Thus, if we take the
average over local fields before taking the one over local variables—as for any replica
calculation, but locally—it is convenient to define

ηk→a(σk) =

∫
dmk→a Qk→a(mk→a)

x∏
α=1

ηsk→a(σ
α
k ), (B24)
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which is precisely the quantity defined in equation (44). The above steps allow us to
rewrite the 1RSB entropy simply as

βFRSB
i = log

⎛
⎝∫ ∞

−∞

x∏
α=1

dσα
i e−λ

∑x
α=1 (σ

α
i )

2/2
∏
a∈∂i

⎡
⎣∫ ∞

−∞

∏
k∈∂a\i

Dσk ηk→a(σk) e
βJa

∑x
α=1 σ

α
i

∏
k∈∂a\i

σα
k

⎤
⎦
⎞
⎠

= log

(∫ ∞

−∞

x∏
α=1

dσα
i e

( ∑
a∈∂i

Âa→i

) ∑x
α=1 σ

α
i − 1

2

(
λ+

∑
a∈∂i

B̂
(d)
a→i

) ∑x
α=1 (σ

α
i )

2+ 1
2

( ∑
a∈∂i

B̂
(nd)
a→i

) ∑x
α =β σ

α
i σ

β
i

)
,

(B25)

where the quantities Âa→i, B̂
(d)
a→i and B̂

(nd)
a→i are those defined in equation (53).

By comparing the definitions in equation (53) of the main text with those in
equations (B2) and (B3) of appendix B.1 one gets, at the leading order,

B(d) = λ+
∑
a∈∂i

B̂
(d)
a→i

B(nd) =
∑
a∈∂i

B̂
(nd)
a→i , (B26)

where the expressions of B(d) and B(nd) are those given in appendix B.1. According to
the definition of Âa→i in equation (53) it is then useful to define A as follows:

A =
∑
a∈∂i

Âa→i = β
∑
a∈∂i

Ja

∏
j∈∂a\i

hj→i, (B27)

from which one has

A2 = β2〈J2〉〈h2(p−1)〉+ 〈J〉2〈h〉2(p−1) =
q0

(1− xq0 − (1− x)q1)
2 , (B28)

where the last equality holds by virtue of equation (B7) when 〈J〉 = 〈h〉 = 0.
We can, therefore, define a vector A and a matrix M (already introduced in

equation (58)) as

Aα = A , ∀α

Mαβ = δαβB
(d) + (1− δαβ)(−B(nd)).

α, β = 1, . . . , x . (B29)

The 1RSB entropy can be easily written as

βFRSB
i = log

(∫
Dσ exp

{
x∑

α=1

Aασα −
1

2

∑
αβ

σαMαβσβ

})

=

√
(2π)x

detM exp

(
1

2
A2
∑
αβ

M−1
αβ

)
(B30)
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where, making use of the definition of the inverse M−1 given in equation (60) and with
the help of a little algebra, we get∑

αβ

M−1
αβ =

x

B(d) + (1− x)B(nd)
=

x
1

1−q1
− x(q1−q0)

(1−q1)(1−xq0−(1−x)q1)

= x (1− xq0 − (1− x)q1). (B31)

We thus have

1

2
A2
∑
αβ

M−1
αβ =

1

2

q0
(1− xq0 − (1− x)q1)2

(∑
αβ

M−1
αβ

)
=

xq0
1− xq0 − (1− x)q1

. (B32)

We also need to compute detM, that is the determinant of a symmetric x× x matrix
of the form

M =

⎛
⎜⎜⎜⎜⎝

a1 b b b b
b a2 b b b
b b a3 b b
b b b a4 b
b b b b a5,

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a1 − b 0 0 0 0
0 a2 − b 0 0 0
0 0 a3 − b 0 0
0 0 0 a4 − b 0
0 0 0 0 a5 − b,

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

b b b b b
b b b b b
b b b b b
b b b b b
b b b b b.

⎞
⎟⎟⎟⎟⎠ .

The general formula for such a determinant is

det
[
Diag(a1 − b, . . . , ax − b) + b · 1T

x ⊗ 1x

]
=

x∏
i=1

(ai − b) + b

x∑
i=1

x∏
(aj − b). (B33)

In the case of the rank-x symmetric matrix M defined in equation (B29), where in
addition all the elements on the diagonal are identical, from equation (B33) we have
that

det (M) =
(
B(d) +B(nd)

)x − x B(nd)
(
B(d) +B(nd)

)x−1
. (B34)

By exploiting then the definition of B(d) and B(nd) in terms of x, q0 and q1 written in
equation (B5) one gets, after a very simple algebra,

det (M) =
1

(1− q1)
x−1 ·

1

(1− xq0 − (1− x)q1)
, (B35)

so that

1√
det (M)

= exp

{
1

2
(x− 1) log (1− q1) +

1

2
log (1− xq0 − (1− x)q1)

}
. (B36)
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At this point it is immediate to write (neglecting constant terms) the 1RSB local
free entropy term

N∑
i=1

βFRSB
i =N

{
x

2

q0
[1− xq0 − (1− x)q1]

+
x− 1

2
log (1− q1)

+
1

2
log [1− xq0 − (1− x)q1]

}
. (B37)

B.5. Vanishing of the normalization terms F
RSB
ai

Let us now show how the terms F
RSB
ai vanish in the limit N →∞, provided that nor-

malized distributions are used everywhere. The first step is to plug the definition of
Q̂a→i(m̂a→i) of equation (B12) into the definition of FRSB

ai in equation (73), thus obtaining

exp
[
βFRSB

ai (x)
]
=

∫ ⎡⎣ ∏
k∈∂a\i

dmk→aQk→a(mk→a)

⎤
⎦ dmi→a Ẑx

a→i

× ({mk→a}) Qi→a(mi→a) e
xβFai(mi→a,{mk→a}). (B38)

From the RS equations (8) and (23) we then have that

exβFai(mi→a,{mk→a}) = Zx
(ai)

= Ẑ−x
a→i({mk→a})

⎡
⎣∫ ∞

−∞
dσi ηi→a(σi) e

− λσ2i
2K

×
∫ ∞

−∞

∏
k∈∂a\i

dσk ηk→a(σk) e
βJaσi

∏
k∈∂a\i

σk

⎤
⎦
x

= Ẑ−x
a→i

[
1 + βJa

∏
k∈∂a

mk→a +O(1/K)

]x
. (B39)

Then, since we have Ja ∼ 1/N (p−1)/2 and 1/K ∼ 1/Np−1, to the leading order in N we
can simply write

xβFai(mi→a, {mk→a}) = −x log
[
Ẑa→i({mk→a})

]
+O(1/N (p−1)/2), (B40)

so that inside the integral of equation (B38) we have

Ẑx
a→i({mk→a}) exβFai(mi→a,{mk→a}) � 1. (B41)

In conclusion, to the leading order in N , we can write

exp
[
βFRSB

ai (x)
]
=

∫ ∏
k∈∂a

dmk→a Qk→a(mk→a) = 1, (B42)
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by the closure condition over the probability density Q. We have therefore shown that,
to the leading order in N , one has βFRSB

ai (x) = 0 for each edge (ai).

B.6. 1RSB total free energy

Putting together the results of sections B3 and B4, and remembering that the total free
energy of the system is just the free energy of the x-coupled replicas that we computed,
divided by x (and extremized over x), we obtain

−xβF(x) =
M∑
a=1

βFRSB
a +

N∑
i=1

βFRSB
i −

∑
(ai)∈E

βFRSB
ai

=
xN

2

{
β2

2

[
1− (1− x)qp1 − xqp0

]
+

q0
[1− xq0 − (1− x)q1]

+
x− 1

x
log (1− q1) +

1

x
log [1− xq0 − (1− x)q1]

}
.

(B43)
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