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Time evolution of a Vlasov-Poisson plasma

with different species and infinite mass in R
3
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Abstract

We study existence and uniqueness of the solution to the Vlasov-
Poisson system describing a plasma constituted by different species
evolving in R

3, whose particles interact via the Coulomb potential.
The species can have both positive or negative charge. It is assumed
that initially the particles are distributed according to a spatial density
with a power-law decay in space, allowing for unbounded mass, and
an exponential decay in velocities given by a Maxwell-Boltzmann law,
extending a result contained in [10], which was restricted to finite total
mass.

Key words: Vlasov-Poisson equation, Coulomb interaction, infinitely ex-
tended plasma.
Mathematics Subject Classification: 82D10, 35Q99, 76X05.

1 Introduction and main results

In the present paper we study the time evolution of a plasma constituted
by n different species (positive and negative ions, electrons, etc...) when the
initial species have infinite masses Mi. The reason for allowing Mi → ∞ is
not an effort for a pure mathematical generalization, but it reflects the aim
to show the weak dependence of the result on the intensity of each mass Mi.
Thus, in some sense, the properties of the solution do not depend on the
size of the system.

For one species alone (that is, n = 1) this problem has been studied in
several papers, starting from the first results on the existence of the global
classical solution [1, 22, 23, 24, 28] (and [16] for a review of such results),
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and the results adopting the so-called method of propagation of moments
[14, 18, 19, 20], with a steady spatial asymptotic behavior [15, 21, 25, 26, 27],
in cases in which the mass of the system is infinitely large (and for different
mutual interactions) [2, 7, 8, 11, 13, 17], or there is an external magnetic
field confining the system in a given domain [3, 4, 5, 6, 9, 10, 12]. To our
knowledge the case of more species with different signs of charge has been
studied only in the case of an initial distribution with compact support, or
anyway with finite total mass (see for instance [16]).
The infinite mass problem is studied in the papers cited before by using a
technique which cannot be extended to more species of different charge signs.
However this last case can be studied when we restrict the investigation to
the important case of a mutual coulomb interaction, by exploiting accurately
the form of the potential energy and the energy conservation, in a suitable
truncated dynamics.
The main result of the present paper is stated below and discussed in Section
2, where we introduce also the important tool of a partial dynamics. In
Section 3 we outline a possible application.

Let us denote by n the total number of species constituting the plasma.
For any i = 1, 2, ..., n let fi(x, v, t) represent the distribution function of
charged particles at the point of the phase space (x, v) at time t and let σi
be the charge per unit mass of the i-th species, which can be positive or
negative. We describe the time evolution of this system via the n Vlasov-
Poisson equations:







































∂tfi(x, v, t) + v · ∇xfi(x, v, t) + σiE(x, t) · ∇vfi(x, v, t) = 0

E(x, t) =

n
∑

i=1

σi

∫

R3

x− y

|x− y|3
ρi(y, t) dy

ρi(x, t) =

∫

R3

fi(x, v, t) dv

fi(x, v, 0) = fi,0(x, v) ≥ 0, x ∈ R
3, v ∈ R

3, i = 1 . . . n

(1.1)

where ρi are the spatial densities of the species, E is the electric field.
System (1.1) shows that fi are time-invariant along the solutions of the so
called characteristics equations:























Ẋi(t) = Vi(t)

V̇i(t) = σiE(Xi(t), t)

(Xi(0), Vi(0)) = (x, v)

fi(Xi(t), Vi(t), t) = fi,0(x, v),

(1.2)

where we have used the simplified notation

(Xi(t), Vi(t)) = (Xi(t, x, v), Vi(t, x, v)) (1.3)
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to represent a characteristic of the species i at time t passing at time t = 0
through the point (x, v). Hence we have

‖fi(t)‖L∞ = ‖fi,0‖L∞ . (1.4)

Moreover this dynamical system preserves the measure of the phase space
(Liouville’s theorem). It is well known that a result of existence and unique-
ness of solutions to (1.2) implies the same result for solutions to (1.1) if f0
is smooth.
In what follows positive constants depending only on the initial data and pa-
rameters will be generally denoted by C, but some of them will be numbered
in order to be put in evidence.
We state our main result in the following theorem, where we put

ρi,0(x) = ρi(x, 0).

Theorem 1. Let us fix an arbitrary positive time T. For any i = 1 . . . n, let
fi,0 satisfy the following hypotheses:

0 ≤ fi,0(x, v) ≤ C1 e
−λ|v|2 1

(1 + |x|)α
(1.5)

with α > 1, and λ, C1, positive constants. Then there exists a solution to
system (1.2) in [0, T ] and positive constants C2 and λ′ such that

0 ≤ fi(x, v, t) ≤ C2 e
−λ′|v|2 1

(1 + |x|)α
. (1.6)

This solution is unique in the class of those satisfying (1.6).

Remark 1. The request α > 1 comes from the necessity to have a well posed
problem at time 0, with a finite electric field.
In the cases α = 3 (a border case with infinite mass) and α > 3 (finite
mass), the proof of the theorem requires much less effort with respect to the
case 1 < α < 3, to which we concentrate in the present paper.

The proof of Theorem 1 follows the same steps of what done in [11],
once some important results about the energy of the system are previously
stated, which is the aim of the next section. After that, it will be pointed
out how the main estimates needed to achieve the result in [11] are also
satisfied in the present context, in such a way that the rest of the proof
proceeds analogously and therefore we do not repeat it.
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2 Partial dynamics

An essential tool to achieve the proof of Theorem 1 consists in the intro-
duction of a partial dynamics, given by considering in equations (1.1) the
truncated initial condition:

fN
i,0(x, v) = fi,0(x, v)χ{|x|≤Nβ}(x)χ{|v|≤N}(v) (2.1)

where χ{·}(·) is the characteristic function of the set {·} and fi,0 satisfies
the hypotheses of Theorem 1. We introduce then a velocity cutoff, N , and
a spatial cutoff, Nβ (with β > 0 to be fixed suitably), and we want to
investigate the limit N → ∞.

Consequently system (1.2) becomes






















ẊN
i (t) = V N

i (t)

V̇ N
i (t) = σiE

N (XN
i (t), t)

(XN
i (0), V N

i (0)) = (x, v)

fN
i (XN

i (t), V N
i (t), t) = fN

i,0(x, v),

(2.2)

where

EN (x, t) =
n
∑

i=1

σi

∫

R3

x− y

|x− y|3
ρNi (y, t) dy

ρNi (x, t) =

∫

R3

fN
i (x, v, t) dv.

It is known that the solution to (2.2), with initial data fN
i,0 having com-

pact support, does exist and it is unique over [0, T ] (see for instance [7] and
[10]). We want to show that this solution converges pointwise, in the limit
N → ∞, to the unique solution of system (1.2) with initial data fi,0. To do
this we have to exploit the properties of the partial dynamics. Keeping an
explicit dependence on N in each estimate on quantities belonging to the
partial dynamics (as electric field, energy, etc.), and by means of an iterative
technique it is possible to show that the limit N → ∞ is well defined, and
it achieves the solution to our problem, proving Theorem 1.

We outline the spirit of the proof. We must control the velocities of the
plasma particles, and to do this we have to estimate the electric field induced
by the same particles. We are not able to obtain a convenient bound for
‖E‖L∞ , but only for the time average of E over [0, T ]; precisely, we define
the maximal velocity of the particles in the partial dynamics as

VN (t) = max

{

C3, sup
s∈[0,t]

sup
(x,v)∈Bx×Bv

max
i=1...n

|V N
i (s)|

}

(2.3)

where Bx = B(0, Nβ), Bv = B(0, N), are balls in R
3 of center 0 and radius

Nβ, N , respectively, and the constant C3 > 1 is suitably chosen. It can
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be proved that (the proof is the same as in [11], Proposition 2.7), for any
t ∈ [0, T ] and any i = 1 . . . n,

∫ t

0
|E(XN

i (s), s)|ds ≤
[

VN (T )
]τ

with τ <
2

3
,

which is sufficient to control the particles’ velocities in the partial dynamics
and to allow the convergence of the iterative method.

Now we state an essential consideration on the energy of our system, in
particular on the potential energy, which can create some troubles due to its
ambiguity in sign. The total energy of the system belonging to the partial
dynamics is

EN (t) =
1

2

∫

dx

∫

dv |v|2fN(x, v, t) +
1

2

∫

dx ρN (x, t)

∫

dy
ρN (y, t)

|x− y|
(2.4)

defining

fN(x, v, t) =

n
∑

i=1

fN
i (x, v, t) and ρN (x, t) =

n
∑

i=1

σi ρ
N
i (x, t), (2.5)

where the first integral is the kinetic energy and the second one the potential
energy. The total energy is finite (because of the finite total mass related to
the partial dynamics) and it is conserved in time,

EN (t) = EN (0).

We want to recall the well known fact (valid for systems of finite total
mass, as in our case with the cutoff N):

Proposition 1.

∫

dx

∫

dy ρN (x, t) ρN (y, t)
1

|x− y|
=

∫

dx |EN (x, t)|2, (2.6)

and hence the potential energy is positive, in spite of the fact that the
spatial density ρN is not definite in sign.

Proof. To show this we put

ΦN (x, t) =

∫

dy ρN (y, t)
1

|x − y|
,

and since ρN (x, t) = divEN (x, t), we have

∫

dx

∫

dy ρN (x, t) ρN (y, t)
1

|x− y|
=

∫

dxΦN (x, t) divEN (x, t) =
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∫

dx
[

div(EN (x, t)ΦN (x, t))− EN (x, t) · ∇ΦN (x, t)
]

=

∫

dxdiv(EN (x, t)ΦN (x, t)) +

∫

dx |EN (x, t)|2.

The first integral vanishes, as it can be seen performing the integral over
a ball of radius R, and taking the limit R → ∞. Indeed, for the Gauss
theorem it is

∫

dxdiv(EN (x, t)ΦN (x, t)) =

∫

(EN (x, t)ΦN (x, t)) · n̂ dS (2.7)

where the right-hand integral is taken over the surface of the ball. To show
that the previous integral vanishes we have to obtain the behavior of the
electric field for large x. Denoting by Γt the support of ρNt at time t, we
have

|EN (x, t)| ≤

∫

Γt

|ρN (y, t)|

|x− y|2
dy ≤

∫

At

|ρN (y, t)|

|x− y|2
dy +

∫

Bt

|ρN (y, t)|

|x− y|2
dy (2.8)

where At = Γt ∩ {y : |x − y| ≤ |x|
2 } and Bt = Γt ∩ {y : |x − y| > |x|

2 }. By
definition Γ0 = {x : |x| ≤ Nβ}, whereas, as a result of Corollary 2.8 of [11],
it is VN (t) ≤ CN , which implies Γt ⊂ {x : |x| ≤ Nβ + CN}. Then, since
we are interested to estimate |EN (x, t)| at large |x| (in order to perform the
limit R → ∞ in (2.7)), we consider |x| ≫ Nβ +CN , which brings to At = ∅
and consequently

|EN (x, t)| ≤
4

|x|2

∫

Bt

|ρN (y, t)| dy ≤
4

|x|2

∫

Γt

|ρN (y, t)| dy

≤
4

|x|2

∫

Γt

n
∑

i

|ρNi (y, t)| dy =
4

|x|2

∫

Γ0

n
∑

i

|ρNi (y, 0)| dy

≤
C

|x|2
Nβ(3−α)

(2.9)

by the spatial cutoff Nβ, the conservation of mass (that is, the L1 norm of
each ρNi ), and the initial decay (1.5). The same holds for ΦN (x, t)),

|ΦN (x, t)| ≤

∫

|ρN (y, t)|
1

|x− y|
dy ≤

C

|x|
Nβ(3−α). (2.10)

Therefore, since the surface of integration grows as R2, the surface integral
in (2.7) goes to zero for R → ∞, choosing R > N2β(3−α).

Proposition 2.

EN (t) ≤ CN3β. (2.11)

6



Proof. First of all we have

EN (t) =
1

2

∫

dx

∫

dv |v|2fN(x, v, t) +
1

2

∫

dx |EN (x, t)|2

= EN (0) ≤ CNβ(3−α) +
1

2

∫

dx |EN (x, 0)|2
(2.12)

as we obtain again by using in the kinetic energy the decreasing property of
the initial density (1.5) and the spatial cutoff Nβ introduced in (2.1).

The potential energy in EN (0) is bounded by

∫

x∈R3

dx |EN (x, 0)|2 ≤

∫

x∈R3

dx

[

∫

|y|≤Nβ

dy
C

(1 + |y|)α
1

|x− y|2

]2

, (2.13)

and
∫

|y|≤Nβ

dy
C

(1 + |y|)α
1

|x− y|2
≤

2

|x|2
χ{|x|≥2Nβ}(x)

∫

|y|≤Nβ

dy
C

(1 + |y|)α

+ χ{|x|≤2Nβ}(x)

∫

|y|≤Nβ

dy
C

(1 + |y|)α
1

|x− y|2
.

(2.14)

The first term on the right hand side of (2.14) is bounded by

C

|x|2
Nβ(3−α) χ{|x|≥2Nβ}(x), (2.15)

while for the second one we proceed as follows,

∫

|y|≤Nβ

dy
C

(1 + |y|)α
1

|x− y|2
≤

∫

R3

dy
C

(1 + |y|)α
1

|x− y|2
≤

∫

|x−y|≤1
dy

C

(1 + |y|)α
1

|x− y|2
+

∫

|x−y|>1
dy

C

(1 + |y|)α
1

|x− y|2

(2.16)

and, by Hölder inequality,

∫

|x−y|≤1
dy

C

(1 + |y|)α
1

|x− y|2
≤

[

∫

|x−y|≤1
dy

(

C

(1 + |y|)α

)p
]1/p [

∫

|x−y|≤1
dy

(

1

|x− y|2

)q
]1/q

≤ const

(2.17)

by choosing q < 3
2 and p > 3, whereas, using again Hölder inequality with
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different exponents,
∫

|x−y|>1
dy

C

(1 + |y|)α
1

|x− y|2
≤

[

∫

|x−y|>1
dy

(

C

(1 + |y|)α

)p
]1/p [

∫

|x−y|>1
dy

(

1

|x− y|2

)q
]1/q

≤

[
∫

R3

dy

(

C

(1 + |y|)α

)p]1/p
[

∫

|x−y|>1
dy

(

1

|x− y|2

)q
]1/q

≤ const

(2.18)

by choosing q > 3
2 and p < 3, but in such a way that αp > 3 (that is possible

since α > 1).
Coming back to (2.13) we have obtained

|EN (x, 0)| ≤
C

|x|2
Nβ(3−α) χ{|x|≥2Nβ}(x) + C χ{|x|≤2Nβ}(x), (2.19)

and for the corresponding integral of |EN (x, 0)|2,
∫

x∈R3

dx |EN (x, 0)|2 ≤ CN2β(3−α) 1

Nβ(1−ν)

∫

R3

dx
1

|x|3+ν
+ CN3β ≤

CN5β−2βα+βν + CN3β ≤ CN3β,

(2.20)

taking 0 < ν < min{1, 2α − 2}. Inserting the last estimate in (2.12) we
obtain Proposition 2.

We remark again that the positivity of the potential energy is an essential
fact in the proof of Theorem 1, in light of our present technique for many-
species plasmas with infinite total mass (pointed out also in [10]). In fact in
previous papers (as [4, 5, 7, 9, 10, 11]) the energy of a region of size

RN (t) = 1 +

∫ t

0
VN (s) ds

(the maximum displacement), was defined as

WN (µ,RN (t), t) =
1

2

∫

dx

∫

dv ϕµ,RN (t)(x)|v|2fN (x, v, t)+

1

2

∫

dx ϕµ,RN (t)(x)ρN (x, t)

∫

dy
ρN (y, t)

|x− y|
,

(2.21)

where ϕ is a mollifier function, that is, for any vector µ ∈ R
3 and any R > 0,

it is defined as

ϕµ,R(x) = ϕ

(

|x− µ|

R

)

(2.22)
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with ϕ a smooth function such that

ϕ(r) = 1 if r ∈ [0, 1] (2.23)

ϕ(r) = 0 if r ∈ [2,+∞) (2.24)

− 2 ≤ ϕ′(r) ≤ 0. (2.25)

Moreover
QN (RN (t), t) = sup

µ∈R3

WN (µ,RN (t), t),

and it turned out that QN (RN (t), t) was controlled by the energy of a region
of larger size at time zero, property which cannot be employed in the present
situation (since its proof fails). We are forced to use conservation of energy,
as exposed above.

Anyway the estimates which bring to the proof of the result contained
in ([11]), which concerns the dynamics of a single-species plasma in a frame
analogous to the present one, are fulfilled also here, in particular the needed
bound for the energy, contained in Corollary 2.8 of [11],

QN (RN (t), t) ≤ CN1−ǫ, ǫ >
1

15
,

is here achieved by taking 0 < 3β < 14
15 . Hence the rest of the proof of

Theorem 1 proceed now in complete analogy to that in [11].

3 Comments in presence of a magnetic shield

In this section we want to mention an improvement of a previous result
contained in [10], in which it was stated an existence and uniqueness result
for the solution to the Vlasov-Poisson system in a region of the physical
space consisting in the exterior of a torus, idealized as a spaceship to be
protected from the solar wind (a non-relativistic plasma). The protection of
the torus Γ, parametrized as































x1 = (R+ r cosα) cos θ

x2 = (R+ r cosα) sin θ

x3 = r sinα

0 ≤ α < 2π, 0 ≤ θ < 2π

0 ≤ r ≤ r0

(3.1)

with R > r0 > 0, was obtained by a suitable magnetic field diverging on the
border of the torus, ∂Γ (a magnetic shield). The result, stated in [10] for a
plasma with many species of different charge signs and finite total mass, can
be generalized, on the basis of the present technique, to the infinite mass
case, as follows.
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We denote by Λi the spatial support of fi,0(x, v) for any i = 1, . . . , n, and
Γc = R

3 \ Γ.

Theorem 2. Let us fix an arbitrary positive time T. Consider the initial
data fi,0 ∈ L∞ such that Λi ⊂ Γc \ ∂Γ, with a distance between Λi and Γ
greater than d0 > 0. Let fi,0 also satisfy the following hypotheses:

0 ≤ fi,0(x, v) ≤ C4 e
−λ|v|q 1

(1 + |x|)α
, q >

18

7
(3.2)

with α > 1, being λ and C4 positive constants. Then ∀(x, v) there exists a
solution to equations (1.2) on [0, T ] such that X(t) ∈ Γc \ ∂Γ.

Moreover there exist positive constants C5 and λ′ such that

0 ≤ fi(x, v, t) ≤ C5 e
−λ′|v|q 1

(1 + |x|)α
. (3.3)

This solution is unique in the class of those satisfying (3.3).

We do not discuss the proof, which can be obtained by a straightforward
combination of the techniques in [10] with the present ones. We remark that
the assumption on the super-gaussian decay of the velocities (3.2) is related
to the fact that the magnetic lines are not straight lines (due to the curvature
of ∂Γ). When studying unbounded regions (for instance a cylinder) with
straight magnetic lines, we can obtain a stronger result, including initial
data with a gaussian (Maxwell-Boltzmann) decay in the initial velocities.

Acknowledgments. Work performed under the auspices of GNFM-
INDAM and the Italian Ministry of the University (MIUR).
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