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Abstract. Small nonequilibrium systems in contact with a heat bath can be analyzed with

the framework of stochastic thermodynamics. In such systems, fluctuations, which are not

negligible, follow universal relations such as the fluctuation theorem. More recently, it has

been found that, for nonequilibrium stationary states, the full spectrum of fluctuations of any

thermodynamic current is bounded by the average rate of entropy production and the average

current. However, this bound does not apply to periodically driven systems,such as heat engines

driven by periodic variation of the temperature and artificial molecular pumps driven by an

external protocol. We obtain a universal bound on current fluctuations for periodically driven

systems. This bound is a generalization of the known bound for stationary states. In general, the

average rate that bounds fluctuations in periodically driven systems is different from the rate of

entropy production. We also obtain a local bound on fluctuations that leads to a trade-off relation

between speed and precision in periodically driven systems, which constitutes a generalization

to periodically driven systems of the so called thermodynamic uncertainty relation. From a

technical perspective, our results are obtained with the use of a recently developed theory for

2.5 large deviations for Markov jump processes with time-periodic transition rates.

1. Introduction

Thermodynamics [1] is a major branch of physics concerned with the limits of operation of

machines that transform heat into other forms of energy. This theory is limited to macroscopic

systems such as a steam engine. However, the way heat and temperature relate to other forms

of energy is also important for small nonequilibrium systems, such as molecular motors and

colloidal heat engines. For such systems, thermal fluctuations are relatively large and they

cannot be ignored.

Stochastic thermodynamics [2] generalizes thermodynamics to small nonequilibrium

systems. A major question that arises within this theoretical framework that takes fluctuations

into account is: What are the universal relations that rule fluctuations in small nonequilibrium

http://arxiv.org/abs/1806.07837v2


Bounds on current fluctuations in periodically driven systems 2

systems? The fluctuation theorem is one such relation [3–8], it is a constraint on the probability

distribution of entropy that generalizes the second law of thermodynamics.

A more recent universal relation associated with such fluctuations is the thermodynamic

uncertainty relation from [9]. This relation establishes that precision of a thermodynamic

current, such as the number of consumed ATP or the displacement of a molecular motor, has

a minimal universal energetic cost. Possible applications of the thermodynamic uncertainty

relation include the inference of enzymatic schemes in single molecule experiments [10],

a bound on the efficiency of molecular motors that depends only on fluctuations of the

displacement of the motor [11], a universal relation between power and efficiency for heat

engines in a stationary state [12], and design principles in nonequilibrium self-assembly [13].

The thermodynamic uncertainty relation is a consequence of a more general bound on

the full spectrum of current fluctuations [14, 15]. Using large deviation theory [16–19], this

bound is expressed as a parabola that is above the so called rate function, which quantifies the

rate of exponentially rare events. A key feature of this parabolic bound is that it depends solely

on the average entropy production and the average current, i.e., knowledge of the average

entropy production and the average current implies a bound on arbitrary fluctuations of any

thermodynamic current. There has been much recent work related to this universal principle

about current fluctuations [20–37].

The parabolic bound applies to stationary states of Markov processes with time-

independent transition rates. Physically, this situation corresponds to systems that are driven

by fixed thermodynamic forces, e.g., molecular motors driven by the free energy of ATP

hydrolisis. Another major class of thermodynamic systems away from equilibrium is that of

periodically driven systems, which can be described as Markov processes with time-periodic

transition rates. Two experimental realizations of periodically driven systems are Brownian

heat engines [38] and artificial molecular pumps [39].

There is a fundamental difference with respect to fluctuations between systems driven

by a fixed thermodynamic force and periodically driven systems. As shown in [40], for a

periodically driven system, the energetic cost of precision of a thermodynamic current can

be arbitrarily small, in stark contrast to systems driven by a fixed thermodynamic force,

for which this precision has a minimal universal cost, as determined by the thermodynamic

uncertainty relation. Hence, the parabolic bound from [14, 15] that depends on the average

rate of entropy production does not apply to periodically driven systems. For the particular

case of a time-symmetric protocol, a derivation of a thermodynamic uncertainty relation has

been proposed in [29]. The relation between these two classes of nonequilibrium systems is

also relevant for the mapping of artificial molecular machines, which are often driven by an

external periodic protocol (see [41] for a counter-example), onto biological molecular motors,

which are autonomous machines driven by ATP, as discussed in [42, 43].

In this paper, we obtain a universal bound on current fluctuations in periodically driven

systems that is also parabolic. For the particular case of a current with increments that do

not depend on time, such as internal net motion in a molecular pump, our bound depends

on a single average rate. However, this average rate is different from the entropy production.

For a constant protocol that leads to time-independent transition rates, our bound becomes an
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even more general bound than the known bound for stationary states from [14,15]. A relevant

technical aspect of our proof is as follows. The parabolic bound for stationary states has been

proved in [15]. This proof uses a remarkable result for large deviations in Markov processes,

i.e., the exact form of the rate function for 2.5 large deviations for stationary states [44–47].

More recently, the rate function of 2.5 large deviations for time-periodic transition rates has

been obtained in [48]. We use this result to prove our bounds.

Similar to the parabolic bound for stationary states that implies the thermodynamic

uncertainty relation, our global bound on large deviations leads to a trade-off relation between

speed and precision in periodically driven systems. We obtain a tighter local bound on the rate

function that leads to an improved trade-off relation between speed and precision. For the case

of stationary states, this bound is also tighter then the bound determined by the thermodynamic

uncertainty relation.

We also prove our results for the case of a cyclic stochastic protocol [40, 49, 50].

Such protocols are convenient to perform illustrative calculations with specific models.

Furthermore, the proofs for stochastic protocols are a generalization of our results for

deterministic protocols, since current fluctuations for a stochastic protocol with an infinitely

large number of jumps are equivalent to current fluctuations for a deterministic protocol [50].

The paper is organized in the following way. In Sec. 2 we define the basic mathematical

quantities and physical models. In Sec. 3, we introduce and illustrate our main results for the

case of currents with time-independent increments. The bounds are derived in Sec. 4. We

conclude in Sec. 5. Appendix A contains the proofs for the case of a stochastic protocol.

2. Mathematical preliminaries and physical models

2.1. Markov processes with time-periodic transition rates and fluctuating observables

We consider a Markov jump process with finite number of states Ω. The space of states is

written as {1, 2, . . . ,Ω}. The transition rate from state i to state j at time t is denoted by wi j (t).
Since we are interested in periodically driven systems, these transition rates have a period τ,

i.e., wi j(t) = wi j (t + τ). Furthermore, we assume that if wi j(t) , 0 then w ji(t) , 0.

The master equation that governs the time-evolution of Pi(t), the probability to be in state

i at time t, reads

d

dt
Pi(t) =

∑
j,i

[
Pj(t)w ji(t) − Pi(t)wi j(t)

]
. (1)

In the long time limit, Pi(t) tends to an invariant time-periodic distribution πi(t) = πi(t + τ).
An important quantity in this paper is the average elementary current

Ji j(t) ≡ πi(t)wi j(t) − π j(t)w ji(t). (2)

Fluctuations can be analyzed if we consider stochastic variables that are defined as

functionals of a stochastic trajectory (at)0≤t≤mτ, where mτ is the final time and m is an integer

number. This trajectory is a sequence of jumps and waiting times. If a jump takes place at
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time t, the state of the system before and after the jump is denoted by a−
t and a+t , respectively.

Two basic fluctuating quantities are

ρ
(m)
i

(t) ≡ 1

m

m−1∑
k=0

δaτk+t,i (3)

and

C
(m)
i j

(t) ≡ 1

mdt

m−1∑
k=0

©
«

∑
t′∈[t,t+dt]

δa−
τk+t ′,i

δa+
τk+t ′, j

ª®
¬
, (4)

where dt is an infinitesimal time-interval and t ∈ [0, τ]. The empirical density ρ
(m)
i

(t) counts

the fraction of periods with the system in state i at time t. The empirical flow C
(m)
i j

(t) counts the

number of jumps per period from i to j at time t. Even though both quantities are functionals

of the stochastic trajectory, to simplify notation, we do not keep the explicit dependence on

(at)0≤t≤mτ. The fluctuating empirical current from state i to state j is given by

J
(m)
i j

(t) = C
(m)
i j

(t) − C
(m)
ji

(t). (5)

The average in Eq. (2) is

Ji j(t) = lim
m→∞

〈J(m)
i j

(t)〉, (6)

where the brackets denote an average over stochastic trajectories.

A generic current J
(m)
α is defined by its periodic increments αi j(t), which are anti-

symmetric, i.e., αi j(t) = −αji(t), as

J
(m)
α ≡ 1

τ

∫ τ

0

dt
∑
i< j

αi j(t)J(m)
i j

(t), (7)

where
∑

i< j represents a sum over all pairs of states (i, j)with i < j and with non-zero transition

rates. The current in Eq. (7) can also be written in the form

J
(m)
α =

1

mτ

∑
s∈[0,mτ]:

a−s,a+s

αa−s a+s
(s). (8)

In stochastic thermodynamics, physical observables such as heat fluxes and particle fluxes are

expressed as currents J
(m)
α . The average rate associated with J

(m)
α in the limit m → ∞ reads

Jα ≡ lim
m→∞

〈J(m)
α 〉 = 1

τ

∫ τ

0

dt
∑
i< j

αi j(t)Ji j(t). (9)

Furthermore, the diffusion coefficient associated with J
(m)
α is defined as

Dα ≡ lim
m→∞

mτ
〈(J(m)

α − Jα)2〉
2

. (10)

An important current in stochastic thermodynamics is the entropy increase of the

environment [2], which corresponds to the increments αi j(t) = ln
wi j(t)
w ji(t) . The average rate

of entropy production is then given by

σ ≡ 1

τ

∫ τ

0

dt
∑
i< j

ln
wi j(t)
w ji(t)

Ji j(t) =
1

τ

∫ τ

0

dt
∑
i< j

ln
πi(t)wi j(t)
π j(t)w ji(t)

Ji j(t). (11)
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The second equality follows from πi(t) = πi(t + τ) and from Eq. (1), which leads to

∂tπi +
∑

j,i Ji j = 0.

2.2. Large deviations

The rate function from large deviation theory quantifies exponentially rare events in the long

time limit [16–19]. It is defined through the relation

Prob(J(m)
α ≈ x) ∼ exp[−mτIα(x)], (12)

where the symbol ∼ means asymptotic equality in the limit m → ∞ and J
(m)
α ≈ x means

that J
(m)
α lies in an infinitesimal interval around x. Our main result is a parabola that bounds

Iα(x), which is a convex function, from above. This parabola depends on an average rate. For

the known parabolic bound for stationary states from [14, 15], this rate is the average rate of

entropy production σ in Eq. (11). In our bound for periodically driven systems, this rate is, in

general, different from σ.

Current fluctuations can also be characterized by the scaled cumulant generating function

λα(z) ≡ lim
m→∞

1

mτ
ln〈exp(mτJ

(m)
α z)〉, (13)

where z is a real number. The cumulants associated with J
(m)
α can be obtained as derivatives of

λα(z) at z = 0. The scaled current generating function λα(z) is a Legendre-Fenchel transform

of the rate function Iα(x), i.e.

λα(z) ≡ sup
x
{xz − Iα(x)}. (14)

If a parabola bounds Iα(x) from above then a corresponding parabola, which can be determined

from Eq. (14), bounds λα(z) from below. For illustrations of our results we perform

calculations of λα(z) using known methods [40, 50].

2.3. Stochastic protocol

We also consider the case of an external protocol that is stochastic [40, 49, 50]. In order to

mimick a deterministic periodic protocol, this stochastic protocol is cyclic and has N states.

The transition rate from state i to state j with the external protocol in state n = 0, 1, . . . , N − 1

is denoted by w
n
i j

. The transition rate for a change in the external protocol from state n to

state n + 1 mod N is γ, whereas the transition rate for the reversed transition is 0. Consider

a deterministic periodic protocol characterized by the rates wi j (t) and the period τ. If the

rates of the model with a stochastic protocol are w
n
i j
= wi j (t = nτ/N) and γ = N/τ, then in

the limit of N → ∞, current fluctuations for the stochastic protocol become equal to current

fluctuations for the deterministic protocol [50]. Hence, the deterministic protocol corresponds

to an asymptotic limit of a stochastic protocol. We point out that we do not consider the cost

of the external protocol [51].

In Appendix A, we derive bounds on current fluctuations for the case of a stochastic

protocol. These derivations are similar to the derivation in Sec. 4 for a deterministic periodic
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Figure 1. Case studies. (a) Biased random walk with time-periodic force F(t). (b) Model for

a molecular pump. The red square represents the energy E1, the blue hexagon represents the

energy E2, and the magenta circle represents the energy E3. The red solid bar represents the

energy barrier B1, the blue dashed bar represents the energy barrier B2, and the dotted magenta

bar represents the energy barrier B3. The green arrows represent transitions that change the

state of the protocol. (c) Representation of the network of states of the model with 4 states and

two independent thermodynamic forces that depend on the state of the external protocol n.

protocol. An advantage of models with a stochastic protocol is that they are Markov processes

with time-independent transition rates, which can simplify the exact evaluation of the scaled

cumulant generating function in Eq. (13), as explained in [40]. Whereas the expressions in the

main text are for the case of a deterministic protocol, the expressions for a stochastic protocol

can be obtained from these expressions for a deterministic protocol by making the substitution

τ−1
∫ τ

0
dt → N−1 ∑

n, as explained in Appendix A.

2.4. Case studies

2.4.1. Colloidal particle driven by a time-periodic field The first model in Fig. 1(a) is a biased

random walk on a ring with Ω states driven by a time-periodic force F(t) ≡ F0 cos(2πt/τ). A

physical realization of this model is a charged colloid on a ring subjected to a time-periodic

electrical field. We set Boltzmann constant kB and the temperature T to kBT = 1 throughout.

The transition rate for a jump in the clockwise direction is k+(t) ≡ keF(t)/Ω and the reversed

transition rate is k−(t) ≡ k. These transition rates satisfy the generalized detailed balance

relation [2]. The current we consider is the net number of jumps in the clockwise direction

per unit time. For this model, the scaled cumulant generating function in Eq. (13) can be

calculated exactly [50].

2.4.2. Molecular pump The other two models are driven by a stochastic protocol. The model

illustrated in Fig. 1(b) is a molecular pump with Ω = 3. This model has been introduced

in [40]. The external protocol changes energies and energy barriers between states, which

can lead to net rotation in the ring with three states. The number of states of the external
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protocol is N = 3. The states of the external protocol are denoted by 0, 1, 2, which correspond

respectively to the top left circle, the top right circle and the bottom circle in Fig. 1(b). In this

model, the energies and energy barriers are rotated in the clockwise direction by one step if a

jump (with rate γ ) that changes the state of the protocol takes place. The energies are denoted

by E1, E2, and E3, whereas the energy barriers are denoted by B1, B2, and B3. The internal

transition rates are given by

w
n
i j = eEi−n−Bj−n, (15)

for j = i + 1, and

w
n
i j = eEi−n−Bi−n, (16)

for j = i − 1, where we assume periodic boundary conditions. An important property of

molecular pumps is that the thermodynamic force is zero for any state n of the external

protocol. This physical condition is manifested in the following restriction on the transition

rates

w
n
12
w

n
23
w

n
31

w
n
21
w

n
32
w

n
13

= 1. (17)

The current we consider is the net number of jumps in the clockwise direction per unit time.

The scaled cumulant generating function in Eq. (13) associated with this current can be

calculated from the eigenvalue of a modified generator, as shown in [40].

2.4.3. Enzymatic reaction with stochastic substrate concentrations The model illustrated in

Fig. 1(c) is a model withΩ = 4 and two independent thermodynamic forces Fn
1

and Fn
2
, which

depend on the state of the external protocol n. This model can be interpreted as a enzyme

that can consume two different substrates and produces one product [9]. The two enzymatic

cycles are E + S1 → ES1 → EP → E + P and E + S2 → ES2 → EP → E + P, where

E is the enzyme, P is the product, S1 is one substrate, and S2 is another substrate. State 1

corresponds to the free enzyme E , state 2 corresponds to ES1, state 3 corresponds to ES2,

and state 4 corresponds to EP. The external control of the concentrations of the substrates S1

and S2 generate thermodynamic forces that depend on n. The number of states of the external

protocol is N = 2. The generalized detailed balance relation for this model reads

Fn
1 = ln

w
n
12
w

n
24
w

n
41

w
n
21
w

n
42
w

n
14

Fn
2 = ln

w
n
13
w

n
34
w

n
41

w
n
31
w

n
43
w

n
14

. (18)

The thermodynamic forces change between two values of the same modulus and different sign

stochastically, i.e., Fn
1

is given by F0
1
= F1 and F1

1
= −F1, whereas Fn

2
is given by F0

2
= F2 and

F1
2
= −F2.

The transition rate for a change of the external protocol is γ. The transitions rates are

set to w
n
12
= keFn

1
/2, wn

13
= keFn

2
/2, wn

14
= k, wn

21
= k, wn

24
= keFn

1
/2, wn

31
= k, wn

34
= keFn

2
/2,

w
n
41
= k, wn

42
= k, and w

n
43
= k. The current we consider is the elementary current from state

1 to state 2, which corresponds to the net number of S1 molecules that have been consumed

per unit time. As is the case of the previous model, the scaled cumulant generating function

in Eq. (13) can be calculated with the method explained in [40].
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Figure 2. Illustration of the bound. (a) The function λ̃α(z̃) in Eq. (24) for the models from

Fig. 1, as indicated in the legends, compared to the lower bound z̃(1 + z̃). The parameters

for the model represented in Fig 1(a) are set to F0/Ω = 2 and k = τ = 1. The parameters for

the model represented in Fig 1(b) are set to E1 = E3 = B1 = B2 = 0, E2 = 2, B3 = 5, and

γ = 1/10. The parameters for the model represented in Fig. 1(c) are set to F1 = 2, F2 = 1/2,

k = 1, and γ = 1/10. (b) Comparison between the rate of entropy production σ, the rate σ∗

and the rate σ̃, for the model in Fig. 1(b) with parameters E2 = 2, E3 = −5, B1 = −5, B2 = 2,

B3 = 0, and γ = e2. The parameter E1 is the variable in the horizontal axis.

3. Main results

In this Section we discuss our main results for currents with time-independent increments

αi j(t) = αi j , which include the case of currents generated in a molecular pump. For time-

independent increments, the results acquire a simpler form with a more direct physical

interpretation. In Sec. 4, we present proofs of more general results, which, inter alia,

also hold for currents with time-dependent increments. Physical examples of currents with

time-dependent increments include the heat and work currents in heat engines (see [49] for

general definitions of these currents). The general features of our main results presented in

this Section are the same irrespective of whether the protocol is deterministic or stochastic,

which is discussed in Appendix A.

3.1. Global bound

The parabolic bound on the rate function is

Iα(x) ≤
σ∗

4J 2
α

(x − Jα)2, (19)

where

σ∗ ≡ 1

τ

∫ τ

0

∑
i< j

(J̄i j)2

Ji j(t)
ln
πi(t)wi j(t)
π j(t)w ji(t)

dt, (20)

and

J̄i j ≡
1

τ

∫ τ

0

Ji j(t)dt . (21)
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Figure 3. Illustration of the trade-off relation. (a) The ratio Rα ≡ J 2
α
/(2Dασ

∗) ≤ 1/2 as a

function of the rate γ for jump of the protocol. We have analyzed the model illustrated in Fig.

1(b) with parameters E1 = 1, B1 = 5, and E2 = E3 = B2 = B3 = 0, and the model illustrated

in Fig. 1(c) with parameters F1 = F2 = k = 1. (b) The ratio Rα ≡ J 2
α
/(2Dασ

∗) ≤ 1/2 as a

function of F1 Fig. 1(c) with parameters k = γ = 1 and two values of F2.

The inequality σ∗ ≥ 0 comes from the fact that for fixed t every term in the sum
∑

i< j in Eq.

(20) is not negative. In general, the average rate σ∗ is different from the thermodynamic rate

of entropy production σ in Eq. (11). Furthermore, there is no simple inequality relating both

quantities, as illustrated in Fig. 2(b).

For the case of time-independent transition rates wi j (t) = wi j , σ
∗
= σ and the bound (19)

becomes

Iα(x) ≤
σ

4J 2
α

(x − Jα)2. (22)

This bound is the known parabolic bound for time-independent transition rates proved in [15].

Hence, Eq. (19) constitutes a generalization of this parabolic bound to periodically driven

systems.

In terms of the scaled cumulant generating function, the bound in Eq. (19) is written as

λα(z) ≥ zJα(1 + Jαz/σ∗), (23)

where we used Eq. (14). The universality of our result is illustrated in Fig. 2(a). There we

compare the function

λ̃α(z̃) ≡ λα(z)/σ∗
= λα(z̃σ∗/Jα)/σ∗ ≥ z̃(1 + z̃), (24)

where z̃ ≡ zJα/σ∗, for the models in Fig. 1, with the lower bound z̃(1+ z̃). This bound, or the

bound in Eq. (19), is a particular case of two bounds, one derived in Sec. 4.1 and the other

derived in Sec. 4.5.
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3.2. Trade-off between speed and precision

Taking the second derivative of Iα(x) at x = Jα, we obtain the diffusion coefficient Dα defined

in Eq. (10) as

I′′(Jα) =
1

2Dα

. (25)

The inequality in Eq. (19) and the fact that this inequality is saturated at x = Jα, leads to the

following bound on Dα,

Dα ≥ J 2
α

σ∗ . (26)

In Sec. 4.3, we derive a local quadratic bound on Iα(x), which is valid for x close to the

average Jα. This local bound together with Eq. (25), gives a tighter bound on Dα that reads

Dα ≥ J 2
α

σ̃
≥ J 2

α

σ∗ , (27)

where

σ̃ ≡ 1

τ

∫ τ

0

dt
∑
i< j

2(J̄i j)2

πi(t)wi j(t) + π j (t)w ji(t)
. (28)

The second inequality in Eq. (27) is a consequence of σ∗ ≥ σ̃, which follows from the

inequality

(a − b) ln
a

b
≥ 2(a − b)2

a + b
, (29)

where a and b are positive. An inequality similar to σ∗ ≥ σ̃ has been considered in [52]. We

point out that there is no general inequality between the entropy production σ and the rate σ̃,

as illustrated in Fig. 2(b).

Rearranging the terms in Eq. (27), we write the following universal trade-off relation

between speed and precision for periodically driven systems,

F−1
α Jα ≤ σ̃

2
≤ σ∗

2
(30)

where Fα ≡ 2Dα/Jα is the Fano factor. The Fano factor characterizes the precision associated

with J
(m)
α , whereas Jα quantifies the speed. In periodically driven systems, a current with

small fluctuations, as characterized by a small Fano factor Fα, can only be as fast as σ̃Fα/2.

This trade-off relation is a generalization of the thermodynamic uncertainty relation to

periodically driven systems. In particular, for the case of time-independent transition rates

wi j (t) = wi j , inequality (30) implies the thermodynamic uncertainty relation F−1
α Jα ≤ σ/2,

since σ∗
= σ for this case. Furthermore, the inequality F−1

α Jα ≤ σ̃/2, for time-independent

transition rates, provides an even tighter bound than the thermodynamic uncertainty relation.

This result is relevant for the mapping between an artificial molecular pump and a system

driven by a fixed thermodynamic force such as a biological molecular motor, which is modelled

with time-independent transition rates that lead to a nonequilibrium stationary state, proposed

in [42]. With this mapping, one can construct a molecular pump that mimicks a stationary

state and vice-versa, in the sense that both the average rate of entropy production and the
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average elementary currents between a pair of states are conserved. However, a mapping of a

molecular pump onto a stationary state that also preserves fluctuations is not always possible,

since a molecular pump may not fulfill the relation J 2
α /(2Dασ) ≤ 1/2, as shown in [40],

whereas a system that reaches a nonequilibrium stationary state must fulfill this relation.

Our trade-off relations do not imply the generalization of the thermodynamic uncertainty

relation from [29] for the case of periodic protocols that are symmetric, i.e., w(τ/2 + ∆t) =
w(τ/2 − ∆t), where 0 ≤ ∆t ≤ τ/2. The trade-off relation from this reference involves the

thermodynamic entropy production σ and for symmetric protocols the rate σ is, in general,

different from the rates σ∗ and σ̃.

3.3. Discussion of the bounds

In Fig. 3(a), we show plots of Rα ≡ J 2
α/(2Dασ

∗) ≤ 1/2 as a function of the rate γ, which

quantifies the speed of the protocol, for the models illustrated in Fig. 1(b) and in Fig. 1(c). For

the first model, which is a molecular pump, we find that this bound is saturated if the transitions

of the protocol are much slower than the internal transition rates associated with changes of

the state of the system. For this model, in this limit the bound is saturated independent of the

values of the energies and energy barriers. However, for the second model the bound is not

saturated in this limit.

In Fig. 3(b), we show plots of Rα ≡ J 2
α/(2Dασ

∗) ≤ 1/2 for the model illustrated

in Fig. 1(c). The quantity in the horizontal axis is the thermodynamic force F1. For this

model, the bound is saturated for F1 small and the other thermodynamic force F2 = 0. This

saturation of the bound is similar to the saturation of the bound for stationary states known as

thermodynamic uncertainty relation, which happens in the linear response regime [9].

Let us comment on the rate σ∗ that we have introduced here. Its physical interpretation

is that σ∗, and not the rate of entropy production σ, provides a bound on the whole spectrum

of fluctuations for any current (with time-independent increments) in a generic periodically

driven system arbitrarily far from equilibrium. In terms of the trade-off relation from Eq. (30),

σ∗ (and also σ̃) provides a limit on how precise and fast a thermodynamic current can be.

The rate of entropy production σ quantifies the energetic cost of sustaining the operation of

the nonequilibrium system. Interestingly, for time-independent transition rates corresponding

to a system driven by a fixed thermodynamic force, σ∗
= σ is a rate that has both physical

properties, i.e., it bounds current fluctuations and quantifies energetic cost.

3.4. σ∗ as the entropy production of a nonequilibrium stationary state

The rate σ∗ of the original periodically driven system can be interpreted as the rate of entropy

production associated with the stationary state of an auxiliary Markov process with time-

independent transition rates that are determined by time-averaged quantities associated with

the original system. These time-averaged quantities are J̄i j , defined in Eq. (21), and

θi j ≡
1

τ

∫ τ

0

J̄i j

Ji j(t)
ln
πi(t)wi j(t)
π j(t)w ji(t)

dt . (31)
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Both quantities are anti-symmetric, i.e., J̄i j = −J̄ ji and θi j = −θ ji . Moreover, from the

definition in Eq. (31), J̄i j and θi j have the same sign. We assume without loss of generality

that J̄i j and θi j are non-negative .

From Eq. (20), σ∗ can be written as σ∗
=

∑
i< j J̄i jθi j . The transition rates associated

with this auxiliary process are denoted by ri j and the stationary distribution associated with

this process is denoted by pi. The stationary probability currents of this auxiliary process are

the time-averaged currents J̄i j , hence, we have the constraint

piri j − p jr ji = J̄i j . (32)

Furthermore, if we impose

ri j

r ji

= eθi j, (33)

then the rate of entropy production of the auxiliary process isσ∗, i.e., σ∗
=

∑
i< j J̄i j ln(ri j/r ji).

From the conditions in Eq. (32) and Eq. (33), we obtain

ri j =
J̄i je

θi j

eθi j pi − p j

. (34)

The reversed rate r ji is then given by

r ji =
J̄i j

eθi j pi − p j

. (35)

Equation (34) defines a class of stationary states that have entropy production σ∗. Since

transition rates are non-negative, the stationary probability must satisfy the constraint

eθi j pi − p j ≥ 0. One possible stationary probability that fulfills this constraint for any model

is the uniform distribution pi = 1/Ω for i = 1, 2, . . . ,Ω, since θi j ≥ 0.

We can now provide the following physical interpretation for σ∗. This rate quantifies the

thermodynamic cost to maintain a non-equilibrium stationary state that is determined by the

transition rates in Eq. (34). There are different stationary probabilities that fulfill Eq. (34),

hence, this non-equilibrium stationary state is not unique but rather a class of nonequilibrium

stationary states. The network topology of this class of nonequilibrium stationary states is the

same as the network topology of of the periodically driven system, furthermore, the stationary

currents are the same as the time-averaged currents of the periodically driven system. As

an example, consider a colloidal particle driven by an external periodic protocol, such as

the model represented in Fig. 1(b). For such molecular pump we can think of a colloidal

particle driven by a fixed force that reaches a nonequilibrium stationary state. The force that

drives this particle and the specific transition rates that determine its dynamics are obtained

from time-averaged quantitative associated with the original molecular pump. The rate σ∗

quantifies the energetic cost of driving the colloidal particle with such fixed force.

4. General bounds

In this Section we derive the bounds that imply the results discussed in Sec. 3. We obtain two

global bounds that imply the global bound in Eq. (19), the first one is given in Eq. (52) and
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the second one is given in Eq. (72). We also derive a local bound that leads to the inequality

in Eq. (61), which generalizes the trade-off relation in Eq. (30).

4.1. First global bound

In our proof we use the theory for 2.5 large deviations for periodically driven systems developed

in [48]. At the level 2.5 the joint distribution of all empirical densities defined in Eq. (3)

and all empirical currents defined in Eq. (5) is considered. In our notation ρ(t) represents a

vector with the empirical densities that has dimensionΩ and J(t) is a vector with the empirical

currents that has dimension M , where M is the number of unordered pairs of states with

non-zero transition rates. The advantage of considering this level of large deviations is that

the rate function can be calculated exactly as

Icur
2.5

[
(J(t))t∈[0,τ], (ρ(t))t∈[0,τ]

]
=

1

τ

∫ τ

0

dt
∑
i< j

ψ
(
Ji j(t),Gi j (t), ai j(t)

)
, (36)

where

Gi j(t) ≡ ρi(t)wi j(t) − ρ j(t)w ji(t), (37)

ai j(t) ≡ 2

√
ρi(t)ρ j(t)wi j (t)w ji(t), (38)

and

ψ(J,G, a) =
√

G2
+ a2 −

√
J2
+ a2

+ J[sinh−1(J/a) − sinh−1(G/a)]. (39)

Note that the quantities G and a depend on the empirical density ρ. The empirical density and

current in Eq. (36) fulfill the constraint

d

dt
ρi(t) +

∑
j,i

Ji j(t) = 0, (40)

for all states i. To simplify the notation we write Icur
2.5

[J(t), ρ(t)] instead of the l.h.s. of Eq.

(36).

The name level 2.5 large deviations can also refer to the rate function associated with the

joint probability of the empirical density and the empirical flow defined in Eq. (4). The rate

function with the empirical current can be obtained from the rate function with the empirical

flow [48].

An important technique in large deviation theory is the so called contraction [16–19], for

which the rate function associated with a coarse-graining of the number of variables can be

obtained from the original rate function. Hence, the rate function for an arbitrary current Jα

can be obtained from a contraction of Icur
2.5

[J(t), ρ(t)], which leads to the expression

Iα(x) = inf
J(t),ρ(t)

Icur
2.5 [J(t), ρ(t)] , (41)

where J(t) and ρ(t) are such that they fulfill Eq. (40) and the relation

1

τ

∫ τ

0

dt
∑
i< j

αi j(t)Ji j(t) = x. (42)
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In particular, this relation leads to the inequality

Iα(x) ≤ Icur
2.5 [J̃(t), ρ̃(t)] =

1

τ

∫ τ

0

dt
∑
i< j

ψ
(
J̃i j(t), G̃i j (t), ãi j(t)

)
, (43)

where G̃ and ã are functions of ρ̃ as in (37) and (38). This inequality is valid for any pair of

vectors that fulfill the constraints
d

dt
ρ̃i(t) +

∑
j,i

J̃i j(t) = 0, (44)

for all states i, and

1

τ

∫ τ

0

dt
∑
i< j

J̃i j(t)αi j(t) = x. (45)

The inequality [15]

ψ
(
Ji j,Gi j, ai j

)
≤ 1

4

[Ji j − Gi j]2

Gi j

ln
ρiwi j

ρ jw ji

(46)

together with Eq. (43), leads to

Iα(x) ≤
1

τ

∫ τ

0

dt
∑
i< j

1

4

[J̃i j(t) − G̃i j(t)]2

G̃i j(t)
ln
ρ̃i(t)wi j (t)
ρ̃ j(t)w ji(t)

. (47)

We are now left with the problem of finding a judicious choice of
(
J̃(t), ρ̃(t)

)
that fulfills

the constraints in Eq. (44) and in Eq. (45). One such choice is

ρ̃i(t) = πi(t) (48)

J̃i j(t) = Ji j(t) +
(x − Jα)Ki j∑
i′< j ′ Ki′ j ′ᾱi′ j ′

, (49)

where

ᾱi j ≡
1

τ

∫ τ

0

αi j(t)dt . (50)

The time-independent parameters Ki j are antisymmetric, i.e., Ki j = −K ji , and satisfy∑
j,i

Ki j = 0, (51)

for all states i. Using this choice in Eq. (47), we obtain

Iα(x) ≤
σ∗

K

4J 2
K

(x − Jα)2, (52)

where

JK ≡
∑
i< j

Ki j ᾱi j, (53)

and

σ∗
K ≡ 1

τ

∫ τ

0

∑
i< j

(Ki j)2

Ji j(t)
ln
πi(t)wi j(t)
π j(t)w ji(t)

dt . (54)

The global bound in Eq. (52), together with Eq. (25), leads to

Dα ≥
J 2

K

σ∗
K

. (55)
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4.2. Role of the parameter K

4.2.1. Generic choice for K Due to the constraint in Eq. (51), Ki j can be seen as the current

of some auxiliary Markov process with time-independent transition rates in the stationary

state. A natural choice of Ki j is to consider the time-integrated probability current, as defined

in Eq. (21), i.e.,

Ki j ≡ J̄i j . (56)

For this choice

JK =

∑
i< j

J̄i j ᾱi j, (57)

and σ∗
K
= σ∗, where σ∗ is defined in Eq. (20). For currents with time-independent increments

αi j(t) = αi j , we obtain
∑

i< j J̄i j ᾱi j = Jα, where Jα is given by Eq. (9), and the bound in Eq.

(52) becomes the bound in Eq. (19). For currents with time-dependent increments, which

include the rate of extracted work and the rate of heat flow in a heat engine driven by periodic

temperature variation, the rate JK in Eq. (57) is, in general, different from the average current

Jα.

4.2.2. Other possible choices for K The freedom of choice for the parameter K depends on

the network of states of the Markov process, with Eq. (51) limiting the number of independent

currents Ki j [53]. For instance, for the unicyclic model in Fig. 1(a), there is just one

independent current and Ki j is the same for all pairs of states. In this case, the ratio σ∗
K
/J 2

K

becomes independent of K and, therefore, there is only one bound in Eq. (52) regardless of the

value of Ki j . We note that the same argument about the freedom of choice for the parameter

K applies to stochastic protocols, as is the case of the model in Fig.1(b)

If we consider a model with the network of states shown in Fig. 1(c), then there are two

independent Ki j and different choices for these parameters can lead to different bounds in Eq.

(52). Two particularly appealing choices for the parameter K are the choices that conserve the

rate of entropy production or the average current in Eq. (52). The first choice corresponds to

a K that fulfills the relation σ∗
K
= σ and the second choice corresponds to a K that fulfills the

relation JK = Jα. Whether it is possible to set K in such a way that one of these relations is

fulfilled is a question that depends on the model (or class of models) at hand.

4.3. Local bound

We now derive a local quadratic bound on Iα(x) that leads to the first inequality in Eq. (27).

For a and G fixed, a Taylor expansion of the function ψ(J,G, a) for J around the value G,

leads to

ψ(J,G, a) = (J − G)2

2
√

G2
+ a2

+ o(|J − G |2). (58)

Applying this Taylor expansion to Eq. (43) with ρ̃ and J̃ given by (48) and (49), respectively,

we obtain the local bound

Iα(x) ≤
σ̃K

4J 2
K

(x − Jα)2 + o(|x − Jα |2), (59)
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where JK is defined in Eq. (53) and

σ̃K ≡ 1

τ

∫ τ

0

dt
∑
i< j

2(Ki j)2

πi(t)wi j(t) + π j (t)w ji(t)
. (60)

The local bound in Eq. (59) together with Eq. (25) leads to

Dα ≥
J 2

K

σ̃K

(61)

A generic model-independent choice for K is the one given in Eq. (56), i.e., Ki j = J̄i j . If, in

addition, the increments are time-independent, the bound in Eq. (61) becomes the trade-off

relation between speed and precision in Eq. (30). We recall that from Eq. (29), σ∗
K
≥ σ̃K ,

thus, the bound in Eq. (61) is stronger than the bound in Eq. (55).

4.4. Bounds for time-independent transition rates

Here, we stress that the bounds for time-periodic transition rates derived above imply new

bounds for the case of time-independent transition rates that lead to a non-equilibrium

stationary state. For time-independent transition rates, and for currents with time-independent

increments, the terms in Eq. (52) become

JK ≡
∑
i< j

Ki jαi j, (62)

and

σ∗
K ≡

∑
i< j

(Ki j )2

Ji j

ln
πiwi j

π jw ji

. (63)

Hence, from Eq. (52) we have the bound

Iα(x) ≤
σ∗

K

4J 2
K

(x − Jα)2. (64)

For Ki j = Ji j , Eq. (64) becomes the known parabolic bound for stationary states from [14,15].

Furthermore, for time-independent transition rates Eq. (61) becomes

Dα ≥
J 2

K

σ̃K

, (65)

where

σ̃K ≡
∑
i< j

2(Ki j)2

πiwi j + π jw ji

. (66)

This bound is tighter then the bound on the diffusion coefficient that follows from Eq. (64).

For the case Ki j = Ji j , Eq. (65) becomes an even stronger bound than the thermodynamic

uncertainty relation, as discussed in Sec. 3.
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4.5. Second global bound

We can obtain a bound different from the global bound in Eq. (52) by considering a choice for

J̃i j(t) that is different from the one in Eq. (49). We write the stationary distribution of a master

equation with frozen transition rates wi j (t) as µi(t). This quantity is known as accompanying

density [54]. Due to the periodicity of wi j (t) we have µi(t) = µi(t + τ). We consider the bound

in Eq. (47) with ρ̃i(t) = πi(t) and

J̃i j ≡ Ji j(t) + c1(t)Mi j(t) + c2(t)Ki j , (67)

where c1(t) and c2(t) are time-periodic functions, Ki, j is antisymmetric and fulfill the relation

in Eq. (51), and

Mi j(t) ≡ µi(t)wi j (t) − µ j(t)w ji(t) . (68)

Since
∑

j,i Mi j(t) = 0, which comes from the definition of the accompanying density µi(t),
this choice fulfills the constraint in Eq. (44). Setting Ki j = J̄i j , c1(t) = c1, and c2(t) = c2, the

constraint in Eq. (45) applied to the choice in Eq. (67), leads to

c1 = (x − Jα) qJ −1
µ (69)

c2 = (x − Jα) (1 − q)
(∑

i< j

J̄i j ᾱi j

)−1

. (70)

where q is an arbitrary real number and

Jµ ≡
1

τ

∫ τ

0

∑
i< j

αi j(t)Mi j(t)dt . (71)

The bound in Eq. (47) then becomes

Iα(x) ≤
(x − Jα)2

4τ

∫ τ

0

∑
i< j

(
Mi j(t)qJ −1

µ + (1 − q)
(∑

i< j J̄i j ᾱi j

)−1

J̄i j

)2

Ji j(t)
log

πi(t)wi j(t)
π j(t)w ji(t)

dt

(72)

Minimization over the single parameter q gives the tightest bound on the large deviation

function. For q = 0 we obtain the bound in Eq. (52) with Ki j = J̄i j . However, for q = 1 we

obtain a bound that cannot be obtained from Eq. (52), which reads

Iα(x) ≤
σ∗
µ

4J 2
µ

(x − Jα)2 (73)

where

σ∗
µ =

1

τ

∫ τ

0

∑
i< j

(
Mi j(t)

)2

Ji j(t)
log

πi(t)wi j(t)
π j(t)w ji(t)

dt . (74)
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5. Conclusion

The thermodynamic uncertainty relation and the parabolic bound on current fluctuations that

generalizes it, constitute major recent developments in stochastic thermodynamics that are

valid for Markov processes with time-independent transition rates that reach a stationary state,

which describes a system driven by fixed thermodynamic forces. We have generalized these

bounds to periodically driven systems. Similar to the bound for stationary states, we obtained

a bound that depends on the single average rate σ∗ and on the average current. However, for

periodically driven systems this average rate is, in general, different from the thermodynamic

entropy production σ. These rates have two essential physical properties: while σ quantifies

the energetic cost of maintaining the system out of equilibrium, σ∗ provides a generic limit to

current fluctuations.

The quite high degree of universality of our results are encouraging with respect to

possible applications. For instance, we have found a trade-off relation between speed and

precision in periodically driven systems for currents that have time-independent increments.

Physically, such relation tells us that if one wants to generate net motion in a artificial molecular

pump driven by an external periodic protocol, there is a universal limit on how fast and precise

this net motion can be.

For the case of the thermodynamic uncertainty relation for stationary states, several

applications have been proposed [10–13]. Figuring out how to extend these applications

to periodically driven systems is an interesting direction for future work. One particular

instance would be to extend the universal relation between power, efficiency and fluctuations

from [12] to periodically driven heat engines. The more general bounds derived in Sec. 4 that

apply to time-dependent increments, might be important for these applications. Finally, good

candidates for an experimental observation of the bounds we have derived here are periodically

driven colloidal particles and artificial molecular pumps.

Appendix A. Stochastic Protocol

Appendix A.1. Mathematical definitions

The master equation for the model with a stochastic protocol reads

d

dt
Pn

i =

∑
j,i

(
Pn

j w
n
ji − Pn

i w
n
i j

)
+ γ(Pn−1

i − Pn
i ), (A.1)

where n − 1 = N − 1 for n = 0 and Pn
i

is the time-dependent distribution. The stationary

distribution of state (i, n) is denoted by πn
i
. The stationary distribution of the state n of the

protocol is given by πn ≡ ∑
i π

n
i
= 1/N , which comes from the solution of the master equation

(A.1) for the stationary distribution. The conditional probability for the system to be in state

i given that the protocol is in state n is written as π(i |n) = πn
i
/πn
= Nπn

i
. Consider a time-

periodic Markov process with rates wi j (t) and period τ. If the transition rates fulfill the relation

w
n
i j
= wi j (t = nτ/N) and γ = N/τ, then, in the limit N → ∞, π(i |n) → πi(t) [40], where
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n = [tN/τ] and [·] denotes the integer part. Therefore, if we consider the average elementary

current J n
i j
≡ πn

i
w

n
i j
− πn

j
w

n
ji

in the limit of N → ∞, we obtain

NJ n
i j → Ji j(t), (A.2)

where n = [tN/τ]. This relation is important for the connection between the cases of a

deterministic and stochastic protocols.

A stochastic trajectory is denoted by (bt)0≤t≤t f , where t f is the final time. Note that a state

of the Markov process here is specified by the variable that determines the state of the system

i and the variable that determines the state of the protocol n. The stochastic trajectory has a

fluctuating number of jumps N f , the time interval between two jumps is denoted ∆tk , with

k = 0, 1, . . . , N f , and the state of the Markov process during the time-interval ∆tk is denoted

bk .

The empirical density of state (i, n), which is the fraction of time spent in this state, is

defined as

ρn
i =

1

t f

Nf∑
k=0

∆tkδbk,(i,n), (A.3)

δbk,(i,n) is the Kronecker delta between the state of the trajectory bk and the state (i, n). The

notation here in the appendix is different from the notation in the main text for the case of a

deterministic protocol. If we compare Eq. (A.3) with Eq. (3), we see that here the upper index

in ρn
i

refers to the state of the stochastic protocol and is equivalent to t in ρ
(m)
i

(t), for which

the upper index m refers to the time interval of the stochastic trajectory. For a more compact

notation we do not keep the dependence of the fluctuating quantities on the time interval t f .

The empirical current from state (i, n) to state ( j, n) reads

Jn
i j =

1

t f

Nf∑
k=1

(
δbk−1,(i,n)δbk,( j,n) − δbk−1,( j,n)δbk,(i,n)

)
. (A.4)

For the case of a stochastic protocol, we also consider the empirical flow (or unidirectional

current) from state (i, n) to state (i, n + 1), where n + 1 = 0 for n = N − 1, which is defined as

Cn
i =

1

t f

Nf∑
k=1

δbk−1,(i,n)δbk,(i,n+1). (A.5)

The average of this empirical flow in the stationary state is Cn
i
≡ 〈Cn

i
〉 = γπn

i
.

A generic fluctuating current is written as

Jα ≡
N−1∑
n=0

∑
i< j

αn
i j Jn

i j, (A.6)

where αn
i j
= −αn

ji
are the increments. If we compare this expression with Eq. (7), which is

the expression for a deterministic protocol, we see that an integral over a period divided by

the period τ for a deterministic protocol becomes a sum over n divided by the total number

of states of the protocol N for a stochastic protocol. Note that the factor 1/N does not appear
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in front of the sum in the r.h.s of Eq. (A.6) due to Eq. (A.2). The average current in the

stationary state reads

Jα ≡ 〈Jα〉 =
N−1∑
n=0

∑
i< j

αn
i jJ

n
i j . (A.7)

The rate function associated with Jα is defined as

Prob(Jα ≈ x) ∼ exp[−t f Iα(x)], (A.8)

where ∼ means asymptotic equality in the limit t f → ∞. The scaled cumulant generating

function for a stochastic protocol is defined as

λα(z) ≡ lim
t f→∞

1

t f

ln〈exp(t f Jαz)〉. (A.9)

These two quantities are related by a Legendre-Fenchel transform, as in Eq. (14).

Similar to Eq. (21) and Eq. (50) for a deterministic protocol, we define

J̄i j ≡
N−1∑
n=0

J n
i j (A.10)

and

ᾱi j ≡
1

N

N−1∑
n=0

αn
i j, (A.11)

respectively. Furthermore, we define

JK ≡
∑
i< j

Ki j ᾱi j, (A.12)

which is equivalent to (53),

σ∗
K ≡ 1

N2

N−1∑
n=0

∑
i< j

(Ki j)2

J n
i j

ln
πn

i
w

n
i j

πn
j
w

n
ji

, (A.13)

which is equivalent to Eq. (54), and

σ̃K ≡ 1

N2

N−1∑
n=0

∑
i< j

2(Ki j )2

πn
i
w

n
i j
+ πn

j
w

n
ji

, (A.14)

which is equivalent to Eq. (60). The parameter Ki j in these equations is anti-symmetric, i.e.,

Ki j = −K ji , and thus fulfill
∑

j,i Ki j = 0 for all i.

Appendix A.2. Proofs of the bounds

We now consider the joint distribution of the vector of empirical densities ρ, the vector of

empirical currents J, and the vector of the empirical flow C. The level 2.5 rate function [46]

for this Markov process reads

I2.5[J,C, ρ] =
N−1∑
n=0

∑
i< j

ψ
(
Jn

i j,G
n
i j, a

n
i j

)
+

N−1∑
n=0

∑
i

(
Cn

i ln
Cn

i

ρn
i
γ
+ γρn

i − Cn
i

)
,(A.15)
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where

Gn
i j ≡ ρn

i w
n
i j − ρn

jw
n
ji, (A.16)

and

an
i j ≡ 2

√
ρn

i
ρn

j
w

n
i j
w

n
ji
. (A.17)

The quantities in this rate function fulfill the constraint

(Cn
i − Cn−1

i ) +
∑
j,i

Jn
i j = 0, (A.18)

for all i and n.

Applying a contraction to obtain Iα(x) from I2.5[J,C, ρ], as in Eq. (41) for a deterministic

protocol, and setting ρn
i
= πn

i
and Cn

i
= γπn

i
, we obtain

Iα(x) ≤
N−1∑
n=0

∑
i< j

ψ
(
J̃n

i j,J
n

i j, 2
√
πn

i
πn

j
w

n
i j
w

n
ji

)
, (A.19)

where J̃n
i j

fulfill the constraints

N−1∑
n=0

∑
i< j

J̃n
i jα

n
i j = x (A.20)

and

γ(πn
i − πn−1

i ) +
∑
j,i

J̃n
i j = 0, (A.21)

for all i and n.

The global bound on large deviations is obtained by setting

J̃n
i j = J n

i j +
(x − Jα)Ki j∑

i< j Ki j ᾱi j

. (A.22)

and by using the inequality in Eq. (46). With these operations, Eq. (A.19) becomes

Iα(x) ≤
σ∗

K

4(J̄K)2
(x − Jα)2, (A.23)

which is the global bound for a stochastic protocol.

The choice in Eq. (A.22) and the Taylor expansion in Eq. (58), together with Eq. (A.19)

lead to the local bound

Iα(x) ≤
σ̃K

4J 2
K

(x − Jα)2 + o(|x − Jα |2). (A.24)

Using the relation (25) for the diffusion coefficient we obtain the bound

Dα ≥
J 2

K

σ̃K

. (A.25)

The choice Ki j = J̄i j for a stochastic protocol leads to bounds similar to the bounds discussed

in Sec. 4.2.1 for a deterministic protocol.
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A bound similar to the bound in Eq. (72) for a stochastic protocol can be obtained by

setting ρ̃n
i
= πn

i
and

J̃n
i j ≡ J n

i j + c1Mn
i j + c2J̄i j , (A.26)

where

Mn
i j ≡ µn

i w
n
i j − µn

jw
n
ji , (A.27)

and µn
i

is the solution of the stationary master equation
∑

j,i

(
µn

i
w

n
i j
− µn

j
w

n
ji

)
= 0. Defining

Jµ ≡
1

N

∑
n

∑
i< j

αn
i j M

n
i j, (A.28)

and setting

c1 = (x − Jα) qJ −1
µ (A.29)

c2 = (x − Jα) (1 − q)
(∑

i< j

J̄i j ᾱi j

)−1

, (A.30)

leads to the fulfillment of the constraint in Eq. (A.20). With this choice for ρ̃n
i

and J̃n
i j

, the

bound in Eq. (A.19) becomes

Iα(x) ≤
(x − Jα)2

4

1

N2

∑
n

∑
i< j

(
Mn

i j
qJ −1

µ + (1 − q)
(∑

i< j J̄i j ᾱi j

)−1

J̄i j

)2

J n
i j

log
πn

i
w

n
i j

πn
j
w

n
ji

. (A.31)

In particular, for q = 1 we obtain

Iα(x) ≤
(x − Jα)2σ∗

µ

4J 2
µ

(A.32)

where

σ∗
µ =

1

N2

∑
n

∑
i< j

(
Mn

i j

)2

J n
i j

log
πn

i
w

n
i j

πn
j
w

n
ji

. (A.33)
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