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Abstract
Modified principal component analysis techniques, specially those yielding sparse 
solutions, are attractive due to its usefulness for interpretation purposes, in particu-
lar, in high-dimensional data sets. Clustering and disjoint principal component anal-
ysis (CDPCA) is a constrained PCA that promotes sparsity in the loadings matrix. 
In particular, CDPCA seeks to describe the data in terms of disjoint (and possibly 
sparse) components and has, simultaneously, the particularity of identifying clusters 
of objects. Based on simulated and real gene expression data sets where the number 
of variables is higher than the number of the objects, we empirically compare the 
performance of two different heuristic iterative procedures, namely ALS and two-
step-SDP algorithms proposed in the specialized literature to perform CDPCA. To 
avoid possible effect of different variance values among the original variables, all 
the data was standardized. Although both procedures perform well, numerical tests 
highlight two main features that distinguish their performance, in particular related 
to the two-step-SDP algorithm: it provides faster results than ALS and, since it 
employs a clustering procedure (k-means) on the variables, outperforms ALS algo-
rithm in recovering the true variable partitioning unveiled by the generated data sets. 
Overall, both procedures produce satisfactory results in terms of solution precision, 
where ALS performs better, and in recovering the true object clusters, in which 
two-step-SDP outperforms ALS approach for data sets with lower sample size and 
more structure complexity (i.e., error level in the CDPCA model). The proportion of 
explained variance by the components estimated by both algorithms is affected by 
the data structure complexity (higher error level, the lower variance) and presents 
similar values for the two algorithms, except for data sets with two object clusters 
where the two-step-SDP approach yields higher variance. Moreover, experimen-
tal tests suggest that the two-step-SDP approach, in general, presents more ability 
to recover the true number of object clusters, while the ALS algorithm is better in 
terms of quality of object clustering with more homogeneous, compact and well-
separated clusters in the reduced space of the CDPCA components.
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1 Introduction

Ever-increasing problem size demands the development of novel techniques to per-
form statistical analysis. Clustering and dimensionality reduction techniques have 
been widely studied and applied on many real-life multivariate data and in various 
scientific areas, such as machine learning, pattern recognition, engineering, bioin-
formatics and image processing (Xu and Wunsch 2005). Clustering aims to find a 
meaningful assignment of objects into groups that are similar w.r.t. a set of issues 
or rules previously established. Dimensionality reduction based on principal com-
ponent analysis (PCA) is aimed at representing a high-dimensional data into a lower 
dimensional space, retaining the maximum variability of the original attributes. This 
projection to a low-dimensional space is provided by a new set of attributes called 
principal components (PCs), which are uncorrelated and defined by linear combi-
nations of the original attributes (Jolliffe 2002). Typically, the coefficients of these 
linear combinations, called (unit-)loadings by some authors, are nonzero, which 
may be cumbersome or even a shortcoming for the interpretation of the PCs. This 
is particularly relevant in computational biology where the number of variables is, 
in general, very large. In an attempt to construct more interpretable PCs, PCA-based 
methodologies providing components with zero loadings have been proposed in 
the literature. Regardless of the sparseness constraints, either ensuring the sparse-
ness in each component loadings or, less restrictive, in the loadings matrix (Adachi 
and Trendafilov 2016), high computational complexity is present in those method-
ologies. The simple PCA restricts the component loadings to be − 1, 0 or 1 (Vines 
2000). The maximal variance approach SCoTLASS, proposed by Jolliffe et  al. 
(2003), introduces a bound on the sum of absolute values of the loadings, and some 
become zero. Modified PCs with sparse loadings have been also constructed using, 
for instance, the LASSO (elastic net) regression method (Zou et al. 2006), convex 
semidefinite programming (SDP) relaxations (d’Aspremont et al. 2007), a variable 
projection solver (Erichson et al. 2018), and an iterative thresholding approach (Ma 
2013).

There exist also PCA approaches that involve partitioning of attributes, provid-
ing disjoint components which are expected to be of great importance for inter-
pretation purposes. It should be noticed that disjoint components lead to a sparsity 
level of, at least, 50% for the loading matrix since, in this case, the number of non-
zero elements in the loading matrix coincides with the number of variables. In this 
sense, approaches yielding disjoint components can be considered as sparse PCA. 
In Enki et al. (2013), the so-called interpretable PCs is proposed which are based on 
nonoverlapping components constructed from the correlation matrices of clustered 
attributes, maximizing the explained variance. In Vichi and Saporta (2009), a con-
strained PCA called clustering and disjoint principal component analysis (CDPCA) 
is proposed which partitions objects into nonoverlapping homogeneous clusters 
and, simultaneously, finds disjoint components with maximum variance, such that 
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the between cluster deviance in the reduced space of the components is maximized. 
This simultaneous action of CDPCA on objects and variables overcomes the draw-
back of the so-called “tandem analysis” where two reduction techniques are applied 
sequentially, in particular, when the reduction of the objects is obtained by apply-
ing a clustering method on the score matrix resulting from a PCA procedure using 
the first few principal components, which may mask the clustering structure of the 
data (DeSarbo et al. 1990). CDPCA is a two-mode methodology aimed to provid-
ing the clustering of objects on the reduced set of the CDPCA components. Basi-
cally, CDPCA intents to describe the data matrix by a reduced set of object centroids 
which were identified by k-means and a set of disjoint PCs provided by the applica-
tion of PCA on the set of centroids. Recently, a joint graphical representation of 
both the samples and the variables of a data matrix using the HJ-Biplot method with 
disjoint factorial axes were constructed based on the CDPCA methodology (Nieto-
Librero et al. 2017).

In this paper, we focus our attention on CDPCA applied on high-dimensional data 
namely, when the number of variables is much greater than the number of objects. 
We briefly review two recently proposed iterative heuristic procedures based on two 
steps for performing CDPCA on two-way data (Macedo 2015; Macedo and Freitas 
2015), both following the idea of the four-step alternating least-squares (ALS) algo-
rithm proposed in Vichi and Saporta (2009). One of these procedures was presented 
in Macedo and Freitas (2015), herein simply called ALS, and corresponds to a two-
step version of the original ALS, involving one step for the allocation of objects 
via k-means and another step for the reduction of the attribute space via applica-
tion of PCA on the resulting centroids. The other procedure uses an approximation 
algorithmic framework based on a semidefinite programming (SDP) approach and 
was called two-step-SDP (Macedo 2015), because two SDP problems are consid-
ered for clustering objects and attributes. This latter process can also be subdivided 
into two phases, involving a first phase where the clusters of objects and attributes 
are initially estimated using projections and SDP models, and a second phase where 
a rounding procedure based on k-means applied in the reduced space of centroids is 
executed in order to refine solutions. Both algorithms, ALS and two-step-SDP, were 
implemented and tested in R (Development Core 2019) on several data sets (Macedo 
2015).

Since the way the data decomposition parameters are estimated is different for 
the ALS and two-step-SDP algorithms, the purpose of this study is to compare the 
results obtained by the application of these two approaches and to check whether 
they provide substantially different outcomes when high-dimensional data are fit-
ted by CDPCA models. Additionally, outcomes provided by the standard and other 
sparse PCA and the k-means technique are subject to comparison. This paper 
contributes to the empirical literature on CDPCA in the sense that features of the 
CDPCA components, for a different number of attribute clusters, and features of the 
obtained object clusterings, in the reduced space of these components, are being 
investigated on high-dimensional data sets.

The paper is organized as follows. In Sect. 2, we provide a brief overview of the 
CDPCA methodology, detailing the model behind each approach, ALS and two-
step-SDP. A description of the algorithms ALS and two-step-SDP is included and 
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some major differences between them are highlighted. In Sect. 2.5, specific details 
of the R implementations CDpca and TwostepSDPClust are referred. Section 3 
presents numerical experiments with the ALS and two-step-SDP algorithms applied 
on three real gene expression data sets with different number of classes of objects. 
An empirical comparison of performances is also presented. The main concluding 
remarks are made in Sect. 4.

2  A general overview of the CDPCA methodology

Given a (I × J) real data matrix � =
[
xij
]
 , the main idea of CDPCA methodology is 

to cluster the I objects into P nonempty and nonoverlapping clusters Cp, p = 1,… ,P , 
which are identified by theirs centroids, and, simultaneously, to partitioning the J 
attributes into Q disjoint components, PCq, q = 1,… ,Q . The assignment of objects 
into P clusters and the assignment of attributes into Q components can be stored in 
binary matrices, � =

[
uip

]
I×P

 and � =
[
vjq

]
J×Q

 , respectively, where

The (P × J) object cluster centroid matrix is �̄ =
(
�T�

)−1
�T� , where each row 

corresponds to its cluster centroid.

2.1  The CDPCA model

The CDPCA model describes the data matrix � as a result of applying PCA to the 
transformed data matrix ��̄ where each original object of � was replaced by its 
cluster centroid obtained from applying the k-means algorithm to the original data 
matrix � . Hence, the data matrix � would be fitted by the CDPCA model as follows 
(Vichi and Saporta 2009):

where � is the (J × Q) component loading matrix having a similar structure of � , 
with the nonzero elements on each column replaced by the loadings of each compo-
nent, �̄ ∶= �̄� is a (P × Q) object centroid matrix in the reduced space of the com-
ponents and � = �1 + �2 with �1,�2 the (I × J) error matrices arising from k-means 
and PCA, respectively.

The parameters �, �̄ and � can be estimated by minimizing the error associated 
to the model, that equivalently corresponds to maximizing the term non-associated 
to the error in the model (2) (Vichi and Saporta 2009). So, the CDPCA problem can 
be formulated as

(1)uip =

⎧⎪⎨⎪⎩

1, if object i ∈ Cp

0, otherwise

and vjq =

⎧⎪⎨⎪⎩

1, if attribute j ∈ PCq

0, otherwise

(2)

� =��̄ + �1 (k-means on �)

=��̄�T + �1 + �2 (PCA on ��̄)

=��̄�T + � (CDPCA model)
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subject to � being a binary and row stochastic matrix and � a columnwise orthonor-
mal matrix, i.e., �T� = � , where each row contributes to a single column (Vichi and 
Saporta 2009). Due to the binary characteristic of the assignment matrices � and � , 
the optimization problem (3) for obtaining the CDPCA decomposition is quite dif-
ficult to solve.

Moreover, the CDPCA is considered a constrained PCA methodology by Vichi 
and Saporta (2009), because it lies on several constraints on the optimization prob-
lem. It should be mentioned that this is slightly different of what is suggested in e.g., 
Hunter and Takane (2002) and Takane and Hunter (2001), since it is defined that 
a constrained PCA incorporates auxiliary information (internal and external) about 
the rows and columns of the data matrix. In CDPCA case, we have a constrained 
optimization problem in the form (3) and subject to specific constraints on the ele-
ments of the object assignment matrix � =

[
uip

]
 and the loading matrix � =

[
ajq

]
 

instead of the data matrix as follow

and

First group of two constraints ensures that each object belongs to a single group. 
The last group of two constraints ensures the columnwise orthonormal property of 
the matrix � and the disjoint property of the principal components in CDPCA.

2.2  Two‑step algorithms for CDPCA

2.2.1  ALS

Since �T� = � and �̄ = �̄� , then the objective function in the CDPCA problem (3) 
can be written in terms of �̄ . Indeed,

(3)max
�,�̄,�

‖��̄�T‖2
2
,

uip ∈ {0, 1}, i = 1, 2,… , I, p = 1, 2,… ,P,

P∑
p=1

u2
ip
= 1, i = 1, 2,… , I,

J∑
j=1

a2
jq
= 1, q = 1, 2,… ,Q,

J∑
j=1

(
ajqajr

)2
= 0, q = 1, 2,… ,Q − 1, r = q + 1,… ,Q.

‖��̄�T‖2
2
=tr

�
��̄�T��̄T�T

�
= tr

�
��̄

�
��̄

�T�

=‖��̄‖2
2
= ‖��̄�‖2

2
,
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which represents the between (object) cluster deviance in the reduced space of the 
components. It follows that the problem (3) can be rewritten as

In order to solve the problem (4), an alternating least-squares (ALS) algorithm, 
designed with four steps, was proposed in Vichi and Saporta (2009). Recently, in 
Macedo and Freitas (2015), we showed that each iteration of the ALS algorithm can 
be summarily described by two basic steps: the assignment of objects via k-means, 
and the reduction of the attribute space via application of PCA to the resulting cen-
troids. This simplified version of the ALS algorithm is detailed in Macedo and Frei-
tas (2015).

It is worth mentioning that, at the end of each iteration of ALS, a new loading 
matrix � is constructed and the (finite) objective function in (3) is updated. If the 
objective function increases with this uploading then the previous matrix of the 
loadings � is changed by this new one, otherwise the previous matrix � is preserved 
for the next iteration of the algorithm. This strategy guarantees the convergence of 
the sequence of objective function values to a stationary point, which is expected to 
be, at least, a local maximum of the problem (3), as mentioned in Vichi and Saporta 
(2009). This procedure can be considered as a heuristic and thus, to increase the pos-
sibility to achieve the global maximum, it has been suggested by Vichi and Saporta 
(2009) to run the algorithm several times for different initial assignment matrices � 
and � , randomly chosen at the beginning of each run.

2.2.2  Two‑step‑SDP

More recently, in Macedo (2015), a new algorithm that combines semidefinite pro-
gramming (SDP) models and the CDPCA methodology was proposed, motivated by 
Macedo and Freitas 2015, Peng and Wei 2007, Peng and Xia 2005, and Vichi and 
Saporta 2009. It was called two-step-SDP, since two clustering problems are con-
sidered, one for object and another for attribute partitions, both solved using SDP 
models.

Defining � ∶= �(�T�)−1�T the orthogonal projection matrix onto the column 
space of the assignment matrix � , then,

Thus, the optimization problem (3) can be then formulated as

subject to � being the orthogonal projection matrix onto the column space of � , and 
� a columnwise orthonormal matrix. Being � a projection matrix, it satisfies �2 = � 
and � = �T , and, therefore, � is positive semidefinite.

(4)max
�,�̄,�

‖��̄�‖2
2
,

‖��̄�T‖2
2
=‖����T‖2

2
= tr

�
����T��T�T�T

�

=tr
�
���(���)T

�
= ‖���‖2

2
.

(5)max
�,�

‖���‖2
2
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It is shown in Macedo (2015) that the problem (5) can be solved using two sepa-
rate clustering problems, each one reformulated in the form of a nonlinear SDP-
based model: one for clustering objects with � as variable, and another for partition-
ing attributes with the orthogonal projection matrix onto the column space of the 
assignment matrix � , i.e., the matrix � ∶= �(�T�)−1�T , as variable that presents 
the same properties of matrix � . The objective function on each of the clustering 
problems is tr(��T�) and tr(�T��) , where tr is the trace of a matrix, respectively, 
for clustering objects and clustering attributes (Macedo 2015). Since these two 
clustering models ended up to be 0–1 SDP problems, relaxation has to be consid-
ered. Such clustering problems are then solved using a SDP-based approximation 
algorithmic framework (Macedo 2015): first, a SDP relaxed model is obtained and 
solved using a procedure based on the characterization of the sum of the largest 
eigenvalues of a symmetric matrix introduced in Overton and Womersley (1993), 
which provides almost optimal solutions (Macedo 2015); then, a rounding procedure 
is used to extract a feasible solution for the clustering of objects and attributes by 
performing the k-means algorithm in the reduced space of the components. Detailed 
of the two-step-SDP algorithm can be found in Macedo (2015).

2.3  ALS versus two‑step‑SDP

The ALS and two-step-SDP algorithms start from an initialization step and use iter-
ative schemes in the estimation of the matrices �,� and � . Both algorithm can be 
considered heuristic procedures.

The initialization step in ALS uses random matrices for � and � , while in the 
two-step-SDP algorithm, a SDP-based approximation algorithm introduced in Peng 
and Wei (2007) and Peng and Xia (2005) is used to construct the initial matrices 
� and � . This last fact is an advantage of the two-step-SDP algorithm in terms of 
computation time and sensitivity to the initial solutions, since these are expected 
to be solutions close to the optimal assignment (Macedo 2015). In contrast, based 
on numerical experiences on data sets with I > J , for the ALS algorithm has been 
recommended to run it at least 30 times, for different initial assignment matrices � 
and � randomly chosen at the beginning of each run, in order to increase the chance 
of finding the global optimum of (4), and consequently, to reduce the sensitivity of 
the ALS algorithm on the initial matrices � and � (Vichi and Saporta 2009). The 
ALS algorithm ensures an improvement of the solution in each iteration (Vichi and 
Saporta 2009).

In the ALS algorithm, in each iterative step, the matrices � and � are updated 
using an alternating procedure working row-by-row and column-by-column on these 
matrices, so that components obtained by PCA explain the largest variance, maxi-
mizing the between cluster deviance in the reduced space. Such alternating proce-
dure has to be performed JQ times at each iteration, and thus, it may be quite expen-
sive in terms of computation time and memory. Both matrices are simultaneously 
estimated.

In the two-step-SDP algorithm, the (almost optimal) initial � and � are refined 
at each iteration of the rounding procedure where the update of � requires only one 
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step. Here, the dimensionality reduction is done by finding a partition of the attrib-
utes specified by the matrix � , and then, the component loadings specified in � are 
computed for this particular partition. It follows that the dimensionality reduction 
provided by the two-step-SDP algorithm may not explain the largest variance.

Concerning the partition of the J variables in Q components, in the ALS algo-
rithm, this is defined by the Q disjoint components which are obtained from an itera-
tive procedure involving PCA method. Therefore, the partitioning of variables in the 
CDPCA model estimated by the ALS algorithm may not be appropriate to perceiv-
ing the clustering structure of the variable in the data set, but for selecting groups 
of original variables that provide higher explained variances. In opposite, when the 
parameters of the CDPCA model are estimated using the two-step-SDP approach, 
the partitioning of variables can capture a clustering structure since, at the end of the 
iterative procedure, a clustering method (k-means) in the reduced space of the com-
ponents is performed to get groups of variables forming the variable partition. This 
means that, concerning the partitioning of the variables, those two algorithms have 
different purposes, and hence, may produce different solutions for the problem (3).

Both algorithms, ALS and two-step-SDP, yield disjoint (and possibly sparse) 
principal components, and which should make the interpretability of the compo-
nents an easier task.

2.4  The choice of the numbers P and Q

Regardless the algorithm used, ALS or two-step-SDP, the choice of suitable num-
ber of both clusters of objects (P) and attributes (Q) is a preliminary step in any 
application of the CDPCA methodology. Although this issue is not the core of the 
present research, based on Rocci and Vichi (2008) a statistic to find an acceptable 
pair (P, Q) is briefly discussed which needs further investigation yet. For standard 
clustering techniques (one-mode methodologies), the selection of the number of 
clusters is not an easy task and is, in general, based on monitoring the behaviour of 
a few internal clustering validation measures (e.g., average silhouette width, Dunn 
index) [see, for instance, Charrad et al. (2014)]. For a two-mode methodology, Rocci 
and Vichi (2008) proposed to use the Calinski and Harabasz’ criterion (Calinski and 
Harabasz 1974) to select, simultaneously, the number of clusters of objects and the 
number of components. Therefore, herein, a similar index based on a pseudo-F sta-
tistic and given as follows might be suggested:

where dfB ( dfW ) denotes the degrees of freedom of the squared sum ‖��̄�T‖2
2
 

( ‖� − ��̄�T‖2
2
 , resp.) which corresponds to the reconstructed (by � = �� ) 

between-class (within-class, resp.) deviance of the partition given by � of the data 
matrix � (Vichi and Saporta 2009). The number dfB is the number of free elements 
that are necessary to estimate to calculate

pF =
‖��̄�T‖2

2
∕ dfB

‖� − ��̄�T‖2
2
∕dfW

,
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The matrix �̄ = [ȳpq] has P × Q elements without constraints. The loadings matrix � 
has J × Q elements, but there are J(Q − 1) + Q constraints: by row (J rows) there are 
Q − 1 elements that should be equal to zero, and by column (Q columns) there is one 
constraint, since each column of � has unit norm. Therefore,

Since I × J is the dimension of the data matrix, the degree of freedom of ‖�‖2
2
 is 

given by IJ − 1 . Finally, since

[see Vichi and Saporta (2009) for more details], then dfW = IJ − (PQ + J − Q).
The combination of numbers (P,  Q) corresponding to the highest value of 

pF should be chosen, since it indicates where there is low within-class and high 
between-class deviance. However, as emphasized in Rocci and Vichi (2008), the 
pseudo-F statistic pF may not give reliable indications when there are not quite dis-
tinct clusters. In practical situations, clusters completely distinguishable may be dif-
ficult to occur and a data-driven guide to adjust the selection of P and Q, provided 
by a complementary analysis of characteristics of the elements belonging to each 
object and variables clusters, might be useful.

Still, it may also happen that, for instance, due to the nature of the data, one of 
the numbers, P or Q, is known (e.g., for gene expression data sets, the samples may 
have been extracted from known groups of diseases, or the genes have been selected 
by a gene ontology level defining each group by the genes belonging to the same 
biological functional process). In this situation, we can proceed in a standard way by 
calculating internal clustering validation indexes (e.g., Dunn index). For instance, 
having prior knowledge on Q and using Dunn index, this index is calculated for dif-
ferent values of P, according to partitions provided by applications of CDPCA with 
P clusters of objects. Then, the number P that provides the highest observed value of 
the Dunn index should be selected.

2.5  Software

We have computationally developed two functions in the open-source software R 
(Development Core 2019) to apply CDPCA on standardized data using the above 
approaches, namely the function CDpca available in the R-based package biplot-
bootGUI (Nieto-Librero et  al. 2019) for performing ALS, and the function Two-
stepSDPClust, available in Supplementary Material, for performing two-step-
SDP. The previous normalization of the data is aimed at avoiding the influence of 
different variance values among the variables in the definition of the components 
(similarly to the standard PCA method). Both functions are user friendly with few 
arguments, as described in Table  1. Besides these standard arguments, the user 

‖��̄�T‖2
2
=

I�
i=1

J�
j=1

�
P�

p=1

Q�
q=1

uipȳpqajq

�2

dfB = PQ + JQ − (J(Q − 1) + Q) = PQ + J − Q

‖�‖2
2
= ‖� − ��̄�T‖2

2
+ ‖��̄�T‖2

2
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should also specify the number of runs (r) of the ALS algorithm for the final solu-
tion by the CDpca function. Both functions return estimated parameters for the 
CDPCA model: �,� , and �̄.

3  Performance of CDPCA in high‑dimensional data

The performance and efficiency of the aforementioned algorithms, implemented 
in the R functions CDpca and TwostepSDPClust, were evaluated through an 
experimental comparative study involving simulated and three real gene expression 
data sets. The goals of our simulation studies were to get a better insight into the 
two procedures according to inherent complexity of data structure and to evaluate 
their sensitivity to the initial solutions randomly generated as input parameters in 
both algorithms. Using real data sets, our aim was to conduct a more detailed com-
parison of results when the ALS and the two-step-SDP algorithms are applied in 
CDPCA modelling. Notice that since both algorithms are executed on standardized 
data, the disjoint components will be constructed considering the correlation struc-
ture induced by such normalization.

3.1  Description of the computational experiments

The numerical experiments were carried out on a computer with an Intel Core 
i7-2630QM processor CPU@2.0 GHz, with Windows 7 (64 bits) and 12GB RAM, 
using R version 3.2.5. The input arguments tol, maxit and r of the R-functions 
mentioned in Sect.  2.5 were empirically chosen. Concretely, the tolerance value 
(tol) was set to 10−8 for the function TwostepSDPClust, and 10−5 for CDpca. 
The maximum number of iterations (maxit) was set to 1000 for both functions. For 
the function CDpca, to decrease the chance of missing the global optimum of (4), 
all the numerical tests were executed with r = 20, with the exception of one data set 
(SRBCT, see below), where only r = 10 runs were performed, because the computa-
tion time of the ALS algorithm increased in an unreasonable way in this case. This 
particular choice of input arguments leaded to the stability of our numerical results.

Table 1  Input arguments 
common to our implemented 
R-functions CDpca and 
TwostepSDPClust 

Input Description

data A ( I × J ) numeric data matrix
P The number of clusters of objects
Q The number of clusters of attributes
class A vector of length I containing an integer code iden-

tifying the true classification of objects, or NULL 
and 0 if no classification is known for CDpca and 
TwostepSDPClust, respectively

tol A small convergence tolerance value
maxit The maximum number of iterations
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To assess the quality of the overall fit of the CDPCA model estimated by the algo-
rithms ALS and two-step-SDP, and their sensitivity to the starting random solutions, 
some of the following measures were considered: the sum of the squared residuals 
of the model, the proportion of the variance explained by the components, the level 
of non-sparsity, and, in the reduced space of the components, the proportion of total 
variation between centroids of object clusters, i.e., the proportion of the between 
cluster deviance (bcd). To examine the quality of the object clustering provided by 
the final estimated CDPCA model, widely used clustering validation indexes were 
calculated using the R-function cluster.stats from the fpc package (Hen-
nig 2015): adjusted Rand index (ARI), Melia’s variation of information (VI), aver-
age silhouette width (ASW), and Dunn index. To evaluate the quality of the disjoint 
principal components induced by the data correlation structure, estimated by ALS 
and two-step-SDP algorithms, in recovering the true partition of the original vari-
ables, the ARI was measured on simulated data sets where the true partitioning of 
the variables was known. To analyze the computational efficiency, the running times 
of both algorithms were compared.

For the three real data sets analyzed in this study, the quality of the sparse prin-
cipal components rendered by ALS and two-step-SDP algorithms in CDPCA meth-
odology were also comparatively examined with outcomes of a different sparse PCA 
method (already available in R). Concretely, we chose the function robspca of 
the package sparsepca since it executes a (robust) sparse PCA which does not 
require that users previously know the level of sparsity of each principal compo-
nent (Erichson et al. 2018). For simplicity, this sparse PCA approach will be herein 
referred by robSPCA. The proportion of the variance explained by PCA and rob-
SPCA components and their sparsity were subject to comparison. To complement 
the analysis, the quality of the clustering obtained from CDPCA was compared with 
that obtained by two different procedures: k-means applied on the original attribute 
space and k-means applied on the reduced space of robSPCA components (which 
will depend on the number Q of components considered). Since k-means depends on 
an initial random solution, for these two clustering procedures, the values of cluster-
ing validation measures correspond to their average calculated over 100 runs. The 
value of coefficient of variation (cv) was also calculated.

3.2  Simulation study

Analogous to Vichi (2017), the simulation study carried out in the present work was 
based on data matrices generated such that model (2) is satisfied. These data are 
standardized when the ALS and two-step-SDP algorithms were executed. The per-
formance of both algorithms was assessed using the following six evaluation meas-
ures: the execution time, bcd, the squared Frobeniuos norm of the residual matrix 
in the CDPCA model (2) for the standardized data matrix ( ||E||2

2
 ), the proportion of 

variance explained by the first two CDPCA components (Var(%)), and the degree of 
agreement between the true and the estimated groups of both objects and standard-
ized variables using the ARI.
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3.2.1  Design

Data sets � were generated using the CDPCA model (2) and satisfying the following 
conditions:

• the binary matrices � and � were randomly generated;
• the object centroid matrix �̄ = [�1 … �Q] with �q ⌢ NP(�, 30

2�P);
• the loading matrix � coincides with � × � with each column orthonormalized, 

where the matrix � contains positive and negative values around the value 0.7, 
namely, � = diag(b1,… , bJ) , with bj = 0.7 × sign(�) + 0.05� and 𝛽 ⌢ N(0, 1) ; 
and

• the error matrix � =
[
�1 … �J

]
 with �j ⌢ NI(�, 𝜖

2�I) , where the constant � repre-
sents the error level of the CDPCA model on which the data was generated; the 
higher � , the more complex the data structure.

Different settings have been considered in the simulations: number of objects 
I = 10, 40 (small sample size), number of object clusters P = 2, 3, 4 , number of dis-
joint components Q = 2, 3, 4 , and three error levels: � = 0.1, 1, 2 corresponding to 
low, moderate and high complexity of the data structure, respectively. The meaning 
of the error levels is analogous to that illustrated in Cavicchia et  al. (2020) using 
heatmaps now on both the data matrix and the correlation matrix: the object clusters 
and the variable partitioning are visibly more evident when a small error � in the 
noise � is considered and tend to be less visible as � grows. The same high num-
ber of variables J = 1000 ( ≫ I ) was adopted in all settings. Thus, similar ratios I/J 
( = 0.01, 0.04 ) to those of the three real data sets considered in Sect. 3.3 were ana-
lyzed in the simulation studies. A few different numbers for these parameters had 
been chosen due to high computational effort involved in the execution of the ALS 
algorithm.

3.2.2  Numerical results

To assess the performance of both algorithms, a simulation study was carried out 
taking a total of 42 setting combinations in which each algorithm was applied on 
several simulated data sets. Concretely, for each setting, we generated 30 data sets 
� as mentioned above. For each generated data set, both algorithms were executed 
with random initial solutions and, each one of the six measures indicated above were 
calculated. The values displayed in Tables 2 and 3 are the average of those quantities 
over the 30 data sets generated in each setting.

Some patterns on the simulation results can be observed in Tables  2 and 3. 
Clearly, as expected, the two-step-SDP algorithm is faster than ALS algorithm in 
obtaining the estimated parameters of the CDPCA model. The strategies of both 
algorithms perform well in providing the maximization of the objective function of 
the CDPCA problem (3), with the ALS algorithm tending to yield higher deviance 
between the object clusters identified by itself than for the two-step-SDP case. The 
goodness of fit of the CDPCA model estimated by both algorithms shows to be sim-
ilar ( ||E||2

2,ALS
≈ ||E||2

2,SDP
 ), though the ALS algorithm performs slightly better in 
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settings with higher number of object clusters ( P = 3, 4 ). The complexity of the data 
structure influences the proportion of variance explained by the first two CDPCA 

Table 2  Average of six evaluation measures over randomly generated 30 data sets by setting with I = 10 
and J = 1000

(P, Q) � Time bcd ||E||2
2

Var(%) ARI

Objects Variables

(2, 2) 0.1 ALS 19.07 99.99 2.35 95.67 1.00 − 0.00
SDP 5.42 99.86 2.35 95.70 1.00 0.56

1 ALS 13.93 98.78 7.68 44.03 0.84 0.00
SDP 3.69 98.20 7.65 45.21 0.88 0.51

2 ALS 10.45 94.06 9.04 21.28 0.53 0.00
SDP 5.63 96.01 8.88 24.29 0.93 0.31

(2, 3) 0.1 ALS 28.61 99.97 2.70 67.90 1.00 0.00
SDP 5.58 99.15 2.70 79.69 1.00 0.40

1 ALS 25.56 95.74 7.40 30.04 0.94 0.00
SDP 5.62 91.29 7.38 39.22 0.97 0.34

2 ALS 18.24 93.67 8.69 19.39 0.72 0.00
SDP 5.71 92.92 8.53 27.47 1.00 0.26

(2, 4) 0.1 ALS 35.59 99.98 2.48 53.73 1.00 0.00
SDP 5.19 99.33 2.48 77.39 1.00 0.38

1 ALS 34.15 99.52 6.97 29.64 0.99 0.00
SDP 5.12 94.58 6.96 45.04 1.00 0.38

2 ALS 24.70 95.23 8.62 15.27 0.76 0.00
SDP 5.32 89.92 8.51 25.99 1.00 0.20

(3, 2) 0.1 ALS 41.44 99.99 1.72 97.58 1.00 0.89
SDP 4.09 92.57 2.76 97.44 0.84 0.96

1 ALS 68.05 99.71 6.70 60.50 0.93 0.47
SDP 5.27 98.13 6.86 59.01 0.89 0.76

2 ALS 84.61 99.17 8.19 36.55 0.74 0.11
SDP 5.45 98.19 8.36 33.60 0.81 0.49

(3, 3) 0.1 ALS 91.52 99.99 1.30 77.69 1.00 0.88
SDP 5.46 99.99 1.30 76.51 1.00 0.91

1 ALS 166.60 99.74 6.39 51.69 0.96 0.32
SDP 7.61 97.96 6.58 51.60 0.98 0.58

2 ALS 179.47 98.29 7.93 41.73 0.74 0.12
SDP 9.51 94.27 8.09 39.57 0.87 0.37

(3, 4) 0.1 ALS 133.46 99.99 1.20 62.75 1.00 0.83
SDP 6.23 99.19 1.47 60.49 0.97 0.91

1 ALS 233.32 99.82 5.87 48.83 1.00 0.57
SDP 10.58 97.33 6.23 47.57 0.92 0.61

2 ALS 241.20 98.37 7.70 29.83 0.81 0.13
SDP 15.79 94.69 7.98 30.87 0.91 0.35
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Table 3  Average of six evaluation measures over randomly generated 30 data sets by setting with I = 40 
and J = 1000

Scenario Time bcd ||E||2
2

Var(%) ARI

(P, Q) � Objects Variables

(2, 2) 0.1 ALS 79.60 99.95 1.41 89.11 1.00 0.00
SDP 5.42 99.64 1.41 89.24 1.00 0.60

1 ALS 79.47 98.63 4.03 34.46 0.94 0.00
SDP 5.52 98.80 4.03 34.76 0.97 0.71

2 ALS 69.73 97.32 4.61 15.26 0.73 0.00
SDP 5.42 96.25 4.60 16.01 0.98 0.54

(2, 3) 0.1 ALS 112.02 99.98 1.31 63.41 1.00 0.00
SDP 5.44 99.88 1.31 75.10 1.00 0.53

1 ALS 113.96 99.62 3.82 28.69 1.00 0.00
SDP 5.40 98.60 3.82 37.02 1.00 0.63

2 ALS 112.02 98.42 4.40 15.77 0.94 0.00
SDP 5.45 95.04 4.40 20.68 0.97 0.40

(2, 4) 0.1 ALS 128.92 99.98 1.28 48.61 1.00 0.00
SDP 5.29 99.78 1.28 71.58 1.00 0.39

1 ALS 133.31 99.52 3.75 23.11 1.00 0.00
SDP 5.29 97.17 3.75 35.55 1.00 0.52

2 ALS 134.31 98.07 4.40 12.32 0.97 0.00
SDP 5.37 93.65 4.39 19.80 1.00 0.42

(3, 2) 0.1 ALS 144.10 99.98 0.91 97.23 0.99 0.94
SDP 5.55 91.27 1.49 97.18 0.87 0.98

1 ALS 219.12 99.47 3.68 46.21 0.97 0.58
SDP 5.61 99.97 3.69 46.05 0.93 0.83

2 ALS 312.84 98.71 4.42 22.41 0.86 0.30
SDP 5.79 97.33 4.44 22.10 0.87 0.70

(3, 3) 0.1 ALS 291.03 99.99 0.72 69.44 1.00 0.89
SDP 7.79 93.02 1.32 68.81 0.86 0.94

1 ALS 498.07 99.16 3.49 41.47 0.93 0.33
SDP 9.35 96.55 3.56 41.14 0.91 0.87

2 ALS 626.92 98.89 4.28 22.21 0.94 0.40
SDP 6.61 97.09 4.38 21.76 0.81 0.58

(3, 4) 0.1 ALS 359.84 99.99 0.57 53.94 1.00 0.96
SDP 5.54 98.52 0.67 53.29 0.98 0.99

1 ALS 741.08 99.69 3.27 37.80 1.00 0.57
SDP 8.95 95.87 3.38 38.03 0.93 0.85

2 ALS 849.39 99.03 4.05 24.38 0.98 0.34
SDP 20.87 89.51 4.10 25.13 0.93 0.69
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components obtained by both algorithms: the proportion decreases when the error 
level ( � ) increases. Astonishingly, while the dimensionality reduction provided by 
the two-step-SDP algorithm may not explain the largest variance, this property 
seems to be innocuous in data sets with objects splitted in two clusters. In fact, in 
Tables 2 and 3, the proportion of variance explained by the first two CDPCA com-
ponents is higher when these components are estimated by two-step-SDP algorithm 
in data sets with two clusters of objects (Var(%)SDP > Var(%)ALS , for P = 2).

Concerning the ability of both algorithms in recovering the true object partition, 
both algorithms exhibit similar performance. However, the complexity of the data 
structure seems to influence this ability when the sample size is lower ( I = 10 ), 
in particular the two-step-SDP algorithm performs better in data sets having more 
complex structure ( � = 2 ), while the ALS algorithm in data sets with lower error 
level (see Table 2).

The ability of both algorithms to recover the true variable partitioning is quite 
different. Clearly, the two-step-SDP algorithm performs better in recovering the true 
variable partition under all the simulated data structure (ARISDP > ARIALS for vari-
able partition, in Tables 2, 3). Taking into account the algorithmic steps of the two-
step-SDP procedure, this fact may be not odd and might be explained as follows. 
The (final) partitioning of the variables, obtained by the two-step-SDP algorithm, 
is given by performing a clustering algorithm (k-means), and therefore, a clustering 
of variables would be expected. Otherwise, since the partitioning of variables by 
ALS algorithm is obtained via PCA, applied several times during an extensive itera-
tive process, the CDPCA components will be constructed taking into account the 
highest explained variance. Thus, under ALS procedure, CDPCA may be considered 
as a variable selection technique where the original variables included in the first 
CDPCA components might be selected for describing the data.

Table 3  (continued)

Scenario Time bcd ||E||2
2

Var(%) ARI

(P, Q) � Objects Variables

(4, 2) 0.1 ALS 140.58 99.99 0.56 98.86 1.00 1.00

SDP 5.56 98.57 0.73 99.86 0.93 1.00

1 ALS 246.91 99.84 3.32 56.48 0.98 0.82

SDP 5.46 97.02 3.38 56.16 0.86 0.99

2 ALS 354.97 99.13 4.32 25.94 0.92 0.62

SDP 6.65 95.41 4.36 25.58 0.82 0.84
(4, 3) 0.1 ALS 243.01 99.91 0.58 69.34 0.98 1.00

SDP 5.50 96.62 0.91 69.34 0.87 1.00
1 ALS 382.71 99.89 3.09 48.36 1.00 0.87

SDP 5.44 93.31 3.27 47.78 0.86 1.00
2 ALS 898.04 99.25 4.22 23.32 0.97 0.51

SDP 7.39 97.08 4.26 23.31 0.90 0.79
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Furthermore, in both algorithms, the ability for recovering the variable partition-
ing is affected by the shape of the data. In fact, in Tables  2 and 3, for simulated 
data sets with a higher number of object clusters ( P = 3, 4 ) and having less complex 
structure ( � = 0.1 ), both algorithms show similar ability in recovering of the true 
variable partition, exhibiting considerable quality (ARI ≥ 0.88 ) and remaining stable 
when the sample size increases ( I = 10, 40 ); however, increasing the error level ( � ), 
both algorithms tend to reduce their ability in recovering the true partition. In set-
tings with lower number of object clusters ( P = 2 ), the simulation results revealed 
that the ALS algorithm is not appropriate for the detection of the true variable parti-
tion (ARIALS ≈ 0).

Another issue that deserve further investigation using simulations and explored 
in this study was the sensitivity of ALS and two-step-SDP algorithms to the ran-
dom initial solutions � and � . We carried out other simulation study where each 
algorithm, with random starting solutions, was applied on the same data set sev-
eral times. Concretely, we considered six different settings as depicted on Table 4, 
which combine low and moderate error levels ( � = 0.1, 1 ): two settings with 
I = 10,P = Q = 2 ; two others ones with I = 40,P = Q = 2 ; and more two with 
I = 40 and P = Q = 3 . For each setting, we have generated 10 data sets � as men-
tioned above. For each generated data set, we executed 30 times each algorithm 
starting with randomly generated initial solutions, and then, we calculated the mean 
and the standard deviation for the same evaluation measures previously used. The 
ten values obtained (mean and standard deviation) by measure were synthesized by 
the arithmetic mean. In Table  4 are depicted the averaged values of the standard 
deviation to evaluate the variability of the results of both algorithm on the same data 
set (non-aggregated results for each generated data set are available in Supplemen-
tary Material). Low or very low values for the averaged standard deviations of the 
evaluation measures exhibited on Table 4 demonstrate that the quality of the solu-
tions provided by both algorithms is not affected by using random initial solutions 
for all settings.

Table 4  Averaged values of the standard deviation of measures calculated from 30 executions of CDPCA 
on 10 data sets randomly generated for each scenario with J = 1000 and P = Q

Scenario bcd ||E||2
2

Var(%) ARI

Objects Variables

(I, P) � ALS SDP ALS SDP ALS SDP ALS SDP ALS SDP

(10, 2) 0.1 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
1 0.05 0.05 0.01 0.00 0.11 0.02 0.02 0.00 0.00 0.00

(40, 2) 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.44 0.03 0.01 0.00 0.04 0.01 0.03 0.00 0.00 0.00

(40, 3) 0.1 0.00 8.97 0.00 0.61 0.00 1.58 0.00 0.16 0.00 0.01
1 0.11 6.87 0.02 0.13 0.34 0.58 0.06 0.18 0.05 0.02
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3.3  Empirical analysis on real data sets

In order to compare the behaviour of the ALS and two-step-SDP algorithms in 
CDPCA modelling, we analyzed, in detail, the results of the application of both pro-
cedures on three real data sets.

3.3.1  Data sets

The data sets used in the present study are characterized to have more attributes 
(genes) than objects (samples) and to have objects naturally clustered by P = 2, 3, 4 
disjoint groups, namely:

• leukemia—available in the R package plsgenomics (Boulesteix et al. 2015); 
contains J = 3051 genes and I = 38 samples extracted from P = 2 types of tumor 
(dimension of each type-group: 11/27).

• lymphoma—available in the R package spls (Chung et  al. 2013); contains 
J = 4026 genes and I = 62 samples extracted from P = 3 types of cancer 
(dimension of each type-group: 42/9/11).

• SRBCT—available in the R package plsgenomics; contains J = 2308 genes 
and I = 83 samples extracted from P = 4 different groups representing four small 
round blue cell tumor variants (dimension of each type-group: 29/11/18/25).

3.3.2  Numerical results

We considered the fitting of each data set by CDPCA models with Q = 2, 3, 4 sparse 
and disjoint PCs. For each choice of Q, the parameters of the CDPCA model were 
estimated using both ALS and SDP approaches. Summarized results of several sta-
tistical measures used to compare the fitted models in our experiments are displayed 
on Tables 5, 6, 7, 8 and 9.

Table 5  Numerical results using the ALS algorithm with different choices for Q 

Data set Q Time (s) Iter bcd ||E||2
2

CDPCA components

Non-sparsity (%) Explained variance (%)

Leukemia (P = 2) 2 3388.2 5 78.4 8.43 51.1/48.9 7.75/7.23
3 2920.4 3 79.7 8.44 34.3/33.6/32.1 4.98/4.96/4.68
4 2786.9 5 77.7 8.43 26.2/25.3/24.3/24.3 4.10/3.92/3.57/3.51

Lymphoma (P = 3) 2 43,614.5 12 87.7 7.12 51.3/48.7 12.82/12.50
3 49,893.2 19 85.7 7.08 39.5/36.1/24.3 13.30/9.57/4.25
4 66,769.9 15 85.0 7.05 31.3/29.7/19.0/20.0 10.30/10.23/3.91/3.55

SRBCT (P = 4) 2 12,786.9 15 90.4 4.90 56.4/43.6 8.75/6.37
3 25,831.4 32 89.9 4.87 34.6/34.1/31.3 5.93/5.54/5.27
4 28,566.7 12 81.3 4.92 31.2/24.6/22.9/21.3 5.89/4.86/4.40/4.25
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Similar patterns highlighted and reported previously in the simulation studies on 
the ALS and two-step-SDP are also observed on the real data sets under analysis.

Regarding the computation time, it is clearly observed that the SDP algorithm is 
faster (Tables 5, 6).

Evaluating the quality of the fitting, both algorithms show similar behav-
iour: in terms of the estimated model (norm) error, very similar values were pro-
duced by both algorithms with a tendency of the error to become lower for ALS 
( 0 ≤ ||E||2

ALS
− ||E||2

SDP
≤ 0.1).

Considering now the ability of the Q CDPCA components to explain the vari-
ability of the data, the ALS algorithm exhibited better performance, in particular, 
on data sets with higher number P of object clusters. In fact, the results show that, 
in general, the between cluster deviance (bcd), i.e., the total variance of the data in 
the reduced space, is higher for the ALS algorithm than for two-step-SDP, where 

Table 6  Numerical results using the two-step-SDP algorithm with different choices for Q 

Data set Q Time (s) Iter bcd ||E||2
2

CDPCA components

Non-sparsity (%) Explained variance (%)

Leukemia(P = 2) 2 60.78 2 75.9 8.43 55.0/45.0 7.83/7.63
3 156.62 2 66.6 8.44 38.9/32.4/28.7 7.94/5.19/4.37
4 157.99 12 61.4 8.43 29.4/27.6/24.9/18.1 6.92/6.28/2.98/2.95

Lymphoma(P = 3) 2 373.08 3 92.8 7.22 53.4/46.6 10.90/10.72
3 376.10 46 85.2 7.18 47.6/26.5/26.0 10.74/7.96/5.76
4 425.40 134 81.1 7.15 28.4/26.9/23.3/21.5 7.49/6.70/6.35/6.13

SRBCT (P = 4) 2 28.97 2 86.2 4.99 56.0/44.0 6.28/5.63
3 74.99 21 79.7 4.95 40.0/33.5/26.5 5.53/4.96/4.75
4 70.59 3 77.3 4.92 34.5/27.8/21.3/16.5 5.36/4.93/4.62/2.06

Table 7  Results for the Q components constructed by the CDPCA (using both algorithms ALS and two-
step-SDP), the standard PCA, and the robSPCA methodology

Data set Q Explained variance (%) robSPCA components

ALS SDP PCA robSPCA Non-sparsity (%)

Leukemia(J = 3051) 2 15.0 15.5 25.0 23.9 24.1/19.0
3 14.6 17.5 34.9 30.2 20.4/15.2/11.8
4 15.1 19.1 40.9 35.7 17.4/12.3/9.9/10.3

Lymphoma(J = 4026) 2 25.3 21.6 29.9 28.3 22.3/14.7
3 27.1 24.5 35.8 33.6 17.9/11.0/9.7
4 28.0 26.7 41.0 38.3 15.4/9.3/7.7/5.8

SRBCT ( J = 2308) 2 15.1 11.9 18.6 17.9 93.1/93.1
3 17.0 15.2 26.5 25.4 93.3/93.1/93.2
4 19.4 17.0 32.0 30.8 22.7/18.5/17.5/15.5
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Table 8  Clustering validation statistics for the CDPCA using the algorithms ALS and two-step-SDP, the 
robSPCA followed by k-means and the k-mean technique

Measure Data set Q CDPCA k-mean on robSPCA k-means

ALS SDP Mean (cv) Mean (cv)

ARI Leukemia (P = 2) 2 0.115 0.455 0.219 (0.929) 0.543 (0.625)
3 0.115 0.115 0.265 (1.165)
4 0.115 0.115 0.251 (0.893)

Lymphoma (P = 3) 2 0.445 0.388 0.504 (0.266) 0.394 (0.356)
3 0.420 0.430 0.459 (0.250)
4 0.408 0.408 0.481 (0.386)

SRBCT  ( P = 4) 2 0.102 0.032 0.077 (0.481) 0.113 (0.742)
3 0.100 0.026 0.076 (0.505)
4 0.069 0.042 0.057 (0.504)

 VI Leukemia ( P = 2) 2 1.051 0.667 0.911 (0.230) 0.539 (0.511)
3 1.051 1.051 0.867 (0.305)
4 1.051 1.051 0.835 (0.225)

Lymphoma ( P = 3) 2 0.812 0.821 0.796 (0.189) 0.810 (0.295)
3 0.797 0.918 0.787 (0.184)
4 0.894 0.894 0.772 (0.319)

SRBCT ( P = 4) 2 2.114 2.409 2.202 (0.045) 1.963 (0.161)
3 2.114 2.442 2.386 (0.004)
4 2.254 2.394 2.323 (0.052)

 ASW Leukemia ( P = 2) 2 0.688 0.686 0.375 (0.068) 0.098 (0.124)
3 0.684 0.562 0.344 (0.147)
4 0.071 0.502 0.270 (0.024)

Lymphoma ( P = 3) 2 0.609 0.584 0.506 (0.021) 0.132 (0.065)
3 0.626 0.521 0.385 (0.037)
4 0.616 0.494 0.333 (0.083)

SRBCT(P = 4) 2 0.667 0.447 0.438 (0.073) 0.086 (0.265)
3  0.670 0.531 0.441 (0.040)
4 0.554 0.545 0.368 (0.067)

 Dunn Leukemia ( P = 2) 2 0.312 0.386 0.085 (0.213) 0.645 (0.083)
3 0.314 0.308 0.107 (0.283)
4 0.582 0.341 0.143 (0.173)

Lymphoma ( P = 3) 2 0.273 0.059 0.125 (0.112) 0.646 (0.038)
3 0.359 0.240 0.155 (0.062)
4 0.311 0.165 0.158 (0.056)

SRBCT ( P = 4) 2 0.339 0.021 0.112 (0.110) 0.338 (0.040)
3 0.431 0.251 0.169 (0.029)
4 0.216 0.288 0.118 (0.105)
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the value of bcd decreases as the number Q of components increases (Tables 5, 6). 
Analyzing the variability of the data in the original space, Tables 5 and 6 also show 
that the value of variance associated to the first CDPCA component constructed by 
the two-step-SDP algorithm is higher than that constructed using the ALS algorithm 
only for the leukemia data set (case P = 2 ). For the remaining data sets ( P = 3, 4 ), 
the ALS algorithm presented the highest values. For all data sets, these highest val-
ues of variance decrease as the number Q of components increases. Comparing the 
total variance of the Q components, similar relationships are depicted in Table 7, 
namely, the two-step-SDP provides higher values for the case P = 2 (leukemia), 
while ALS yielded better results for P = 3, 4 (lymphoma and SRBCT).

Comparing with other dimensionality reduction techniques, both CDPCA (inde-
pendently of the heuristic used) and robSPCA components present lower proportion 
of explained variance than that obtained by standard PCA (with normalized data), 
as expected, due to the existence of zero loadings into the first two cases (Table 7). 
Furthermore, the robSPCA method outperforms CDPCA providing higher propor-
tion of explained variance even presenting higher sparsity levels (cf. the last two col-
umns of Tables 5, 6 with Table 7). These differences of proportions become smaller 
as Q increases. It is worthwhile mentioning that both R-functions provide the output 
of the Q CDPCA components sorted in descending order of their variances.

Considering the proportion of original attributes included in each CDPCA com-
ponent, i.e., its level of non-sparsity, both algorithm performs as expected: the lower 
the sparsity of a component is, the higher the percentage of variance explained is 
(see Tables 5, 6). Notice that, by definition of CDPCA, each original attribute (gene) 
has been included in only one CDPCA component. This does not hold for the rob-
SPCA methodology. Results from Table 7 show that, for all the nine explored cases, 
the total level of non-sparsity of the robSPCA components either is lower than 100% 
(meaning that some genes are not included in any component) or is greater than 
100% (meaning that there are genes included in more than one component), and in 
the latter case, it may be a drawback for interpretation purposes.

Comparing the quality of the clustering solution predicted by CDPCA model 
for each of three data sets, while both algorithms have exhibited low ability to 
recover the real object clustering on each three data sets, there is no consensus 
about which algorithm produces better estimates on the object clustering struc-
ture. The ALS algorithm, in general, produced better object clustering in terms 
of between cluster deviance and silhouette and Dunn indexes, suggesting the 
identification of more homogenous, compact and well-separated groups. In fact, 
results from Table 9 show that the ALS approach offered often better results in 
terms of the goodness of clustering structure, when measured by ASW and Dunn 
indexes, and in terms of the similarity of the estimated classification with the real 
cluster membership, when measured by ARI. Using VI index, the two-step-SDP 
algorithm was better, in particular, for the SRBCT data set ( P = 4 ). Moreover, 
comparatively with the quality of the k-means clustering constructed in the orig-
inal attributte space, both ALS and two-step-SDP algorithms for CDPCA pre-
sented a similar trend, namely, higher values of ARI for lymphoma ( P = 3 ), and 
higher values of VI and ASW for the three data sets. Regarding the clustering 
obtained in the reduced space of the robSPCA components, although different 
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performances have been detected, in particular, for SRBCT ( P = 4 ), where ALS 
yielded clusters with higher (lower, resp.) values of ARI (VI, resp.) in opposition 
to two-step-SDP, both algorithms revealed, in general, higher values of ASW and 
Dunn for the three data sets. Regardless of the data set, the variabilities of the 
four clustering validation measures were lower in the reduced space of the rob-
SPCA components than in the the original attribute space, except for the Dunn 
index.

At the end, we analyzed whether there are differences in recovering the ‘true’ 
number P of object clusters between the two existing algorithms for CDPCA. 
Since the number of object clusters is known for our data sets, we fix one param-
eter (Q) and consider the selection of P as mentioned in Sect. 2.4. In particular, 
based on the four clustering validation measures and fixing Q = 2 , the problem of 
determining P for the leukemia and SRBCT data sets is here presented (Fig. 1). 
For the first data set, two-step-SDP and the k-means technique tended to get the 
correct answer ( P = 2 ) using ARI, ASW and Dunn indexes, but, for SRBCT data, 
the number of object clusters was only correctly detected ( P = 4 ) when the VI 
index on the two-step-SDP algorithm was examined. Therefore, it was not pos-
sible to identify a single measure that leads to the correct cluster solution on 
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Fig. 1  Measures of quality of the clustering for leukemia (on the top) and SBCRT  (on the bottom) for 
P = 2, 3, 4, 5 object clusters and Q = 2 components given by CDPCA and given by the k-means tech-
nique

Table 9  Values of the pseudo-F 
statistic pF for leukemia data set

ALS SDP

Q = 2 Q = 3 Q = 4 Q = 2 Q = 3 Q = 4

P = 2 4.155 4.160 4.152 4.731 4.772 4.571
P = 3 5.920 6.538 6.922 5.737 6.460 6.614
P = 4 6.896 7.524 7.737 6.326 7.533 7.690



 A. Freitas et al.

1 3

different data sets. Nevertheless, CDPCA involves the choice of both the number 
of object clusters and variable partition. Thus, based on the pF index, a choice of 
the pair (P, Q) might be suggested. For instance, for the leukemia data set, vary-
ing P and Q between 2 and 4, both algorithms agree that the pair (P, Q), corre-
sponding to the highest value of the statistic pseudo-F, will be taking P = Q = 4 
(Table 9) but in fact P = 2 . Restricting to the case P = 2 , the value of pF indi-
cates Q = 3 as the suitable number for variable partition for both algorithms. Fix-
ing Q = 2 as above, pF suggests Q = 4 as the suitable number of components. 
This lack of ability of all those measures in providing the correct answer, in par-
ticular, for the ALS heuristic, shows that further investigation should focus on a 
new statistics that allows to select the suitable number of P and Q for practical 
applications of the CDPCA method.

4  Conclusions

CDPCA is a two-mode methodology where the data is described by disjoint com-
ponents with the objects classified by clusters. The disjoint component loadings 
make easier the interpretation of the components when compared to the standard 
PCA, and induce a proportion of sparsity equal to (Q − 1)∕Q ( ≥ 0.5,∀Q ≥ 2 ) in 
the ( J × Q ) component loading matrix. In this sense, CDPCA can be considered a 
sparse PCA with the advantage that it does not depend on a prior knowledge on the 
level of sparsity of its components.

In this paper, the behaviour of two heuristic procedures proposed in the literature 
to estimate the parameters of the CDPCA models when fitted to high-dimensional 
data is explored. We started by briefly describing those procedures for performing 
CDPCA on two-way data. Then, we proceeded with a comparative analysis of the 
results provided by the two algorithms side-by-side and on simulated and real data 
sets. Three real data sets with different number of clusters of objects were chosen. 
We chose different number of components and discussed the results on applying the 
R functions for CDPCA: CDpca and TwostepSDPClust.

Although the number of clusters and components, and the diversity of settings 
concerning the sample size and the number of variables considered in this study 
have been limited due to the computational effort involving with the ALS algo-
rithm, our findings show interesting patterns. From our computational tests we can 
conclude:

• Both algorithms are not affected by randomly generated initial solutions, when-
ever a sufficient number of runs (r) in the ALS algorithm is considered. From 
our experience, it is recommended to run at least 10 times (r ≥ 10 ) for high 
dimensional data sets;

• Regardless the number of object clusters and the number of sparse and disjoint 
components provided by the estimated model, the two-step-SDP algorithm 
(using the R function TwostepSDPClust) shows a significant improvement in 
terms of computational time when compared with the ALS algorithm (using the 
R-function CDpca);
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• The ALS algorithm tends to provide slightly better estimated models in terms of 
solution precision, when measured using the Frobenius norm of the error in the 
CDPCA model;

• The algorithm two-step-SDP outperforms ALS in terms of proportion of vari-
ance explained by the disjoint components when P = 2 , while in other cases they 
yield similar values;

• While both algorithms present good performance to recover the true object clus-
ters, the two-step-SDP is better for lower sample size and higher error level in 
the CDPCA model ( � = 2);

• In general, the complexity of the original data structure tends to decrease the 
proportion of variance explained by the disjoint components induced by the cor-
relation structure of the data and the ability of these components to recover the 
true variable partition;

• In general, ALS procedure provides the identification of more homogenous, 
compact and well-separated groups of objects;

• Although there was no single quality measure consensual for the three data sets, 
results suggest the two-step-SDP algorithm presents more ability to recover the 
true number of object clusters;

• Concerning the partitioning of the variables, the two algorithms have different 
purposes, and then may produce quite different estimates in CDPCA modelling;

• The two-step-SDP algorithm performs better in recovering the true variable par-
tition;

• The ALS algorithm may be less suitable to perceiving the clustering structure 
of the variables, in particular, when there are two object clusters in the data set 
( P = 2).

In conclusion, based on the presented experiments, the two-step-SDP approach 
seems to be a major tool in terms of getting results faster and with a great ability to 
recover the true number of object clusters, while the ALS algorithm outperforms by 
providing more accurate results in the reduced space of the components, identifying 
more clearly homogeneous, compact and well-separated clusters.
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