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Abstract. We prove the existence of stationary turbulent flows with arbitrary positive

vortex circulation on non simply connected domains. Our construction yields solutions

for all real values of the inverse temperature with the exception of a quantized set, for
which blow-up phenomena may occur. Our results complete the analysis initiated in [21].

1. Introduction and main results

Motivated by the statistical mechanics description of turbulent 2D Euler flows in equilib-
rium, we are interested in the existence of solutions to the following problem:−∆u =λ

∫
[0,1]

αeαu P(dα)∫∫
[0,1]×Ω

eαu P(dα)dx
in Ω

u =0 on ∂Ω,

(∗)λ

where Ω ⊂ R2 is a smooth bounded domain, λ > 0 is a constant and P ∈ M([0, 1])
is a Borel probability measure. Problem (∗)λ was derived by Neri [17] within Onsager’s
pioneering framework [18], with the aim of including the case of variable vortex intensities.
More precisely, in [17] the following mean field equation is derived:−∆v =

∫
[−1,1]

re−βrv P(dr)∫∫
[−1,1]×Ω

e−βrv P(dr)dx
in Ω

v =0 on ∂Ω.

(1.1)

Here, v is the mean field stream function of an incompressible turbulent Euler flow, the
Borel probability measure P ∈ M([−1, 1]) describes the vortex intensity distribution and
β ∈ R is a constant related to the inverse temperature. The mean field equation (1.1) is
derived from the classical Kirchhoff-Routh Hamiltonian for the N -point vortex system:

HN (r1, . . . , rN , x1, . . . , xN ) =
∑
i 6=j

rirjG(xi, xj) +

N∑
i=1

r2
iH(xi, xi),

in the limit N → ∞, under the stochastic assumption that the ri’s are independent identi-
cally distributed random variables with distribution P. In the above formula, for x, y ∈ Ω,
x 6= y, G(x, y) denotes the Green’s function defined by{

−∆G(·, y) = δy in Ω

G(·, y) = 0 on ∂Ω

and H(x, y) denotes the regular part of G, i.e.

H(x, y) = G(x, y) +
1

2π
log |x− y|. (1.2)

Setting u := −βv and λ = −β, and assuming that

suppP ⊂ [0, 1], (1.3)
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problem (1.1) takes the form (∗)λ. We recall that

suppP := {α ∈ [−1, 1] : P(N) > 0 for any open neighborhood N of α}.

Assumption (1.3) corresponds to the case of physical interest where all vorticities have the
same orientation.

We observe that without loss of generality we may assume

1 ∈ suppP. (1.4)

Indeed, suppose that sup suppP = ᾱ ∈ (0, 1). Then, (∗)λ is equivalent to−∆u =λ

∫
[0,ᾱ]

αeαu P(dα)∫∫
[0,ᾱ]×Ω

eαu P(dα)dx
in Ω

u =0 on ∂Ω.

By the change of variables α = α′ᾱ, P̄(A) = P(ᾱA) for all Borel sets A ⊂ [0, 1], and setting
ū = ᾱu, we find that ū satisfies−∆ū =ᾱ2λ

∫
[0,1]

α′eα
′ū P̄(dα′)∫∫

[0,1]×Ω
eα′ū P̄(dα′)dx

in Ω

u =0 on ∂Ω,

which is nothing but (∗)ᾱ2λ, with P̄ satisfying (1.4). Henceforth, we always assume (1.4).
When P(dα) = δ1(dα) problem (∗)λ reduces to the standard mean field problem−∆u =λ

eu∫
Ω
eu dx

in Ω

u =0 on ∂Ω,

which has been extensively analyzed, see e.g. [13] and the references therein. In the context
of turbulence, the case P(dα) = δ1(dα) was developed in [5], see also [3].

Problem (∗)λ admits a variational formulation. Indeed, solutions to (∗)λ correspond to
critical points in H1

0 (Ω) for the functional

Jλ(u) =
1

2

∫
Ω

|∇u|2 dx− λ log
(∫∫

[0,1]×Ω

eαu P(dα)dx
)
. (1.5)

Whether or not the optimal value of λ such that Jλ is bounded from below depends on P
was raised as an open question in [26], p. 192, in relation to other apparently similar models
for which such a dependence holds true. However, it was noticed in [19] that, in fact, Jλ
may be viewed as a perturbation of the standard Moser-Trudinger functional [15, 27] and
that, under assumption (1.4), such an optimal value of λ is exactly 8π independently of P.
More precisely, it was already observed in [17] that Jλ is bounded from below on H1

0 (Ω) if
λ ≤ 8π. Consequently, the existence of minimizing solutions for (∗)λ was obtained in [17] in
the subcritical range λ ∈ (0, 8π). In [21] the existence of solutions to (∗)λ was obtained in
the supercritical range λ ∈ (8π, 16π) under the non-degeneracy assumption

P({1}) > 0. (1.6)

If (1.6) is satisfied, problem (∗)λ may be written in the form −∆u = ρf(u), with f(t) =
et + o(et) as t → +∞, ρ > 0, and thus it fits into the framework considered in [16, 28]. In
particular, if (1.6) is satisfied, the techniques in [16, 28] may be applied to obtain the mass
quantization of concentrating solution sequences. On the other hand, the case P({1}) = 0
requires extra care.

Thus, our aim in this note is to complete the existence result in [21] by establishing the
existence of solutions to (∗)λ in the supercritical regime, without assuming (1.6) and for all
values of λ for which compactness of solution sequences holds.

In order to state our results precisely, we recall that by the Brezis-Merle concentration
compactness theory [4], as adapted in [19], an L∞-unbounded sequence un of solutions to
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(∗)λn necessarily concentrates at a finite number of points in Ω, namely

λn

∫
[0,1]

αeαun P(dα)∫∫
[0,1]×Ω

eαun P(dα)dx

∗
⇀

m∑
i=1

niδpi(dx) + s(x) dx, (1.7)

weakly in the sense of M(Ω), for some m ∈ N, pi ∈ Ω, ni ≥ 4π, i = 1, 2, . . . ,m, and
s ∈ L1(Ω). Our first aim is to improve (1.7) by showing that, actually, there holds ni = 8π
for all i = 1, 2, . . . ,m, moreover s ≡ 0 and λ0 ∈ 8πN. Namely, we establish the following
mass quantization result.

Theorem 1.1. Assume that P satisfies (1.4). Let λn → λ0 and let un be a concentrating
sequence of solutions to (∗)λn . Then, there exist pi ∈ Ω, i = 1, 2, . . . ,m, such that, up to
subsequences,

λn
eαun P(dα)∫∫

[0,1]×Ω
eαun P(dα)dx

∗
⇀ 8π

m∑
i=1

δ1(dα)δpi(dx), (1.8)

weakly in the sense of M([0, 1]× Ω). In particular, λ0 ∈ 8πN.

In the non-degenerate case (1.6), Theorem 1.1 was established in [21], see also [20] for an
alternative proof.

Via Theorem 1.1 and a min-max construction, we shall then obtain the existence result
for solutions to (∗)λ. For the existence result we need to assume that Ω is topologically
non-trivial, namely that:

Ω is non-simply connected. (1.9)

Our existence result is the following.

Theorem 1.2. Assume that P satisfies (1.4). Assume that Ω satisfies (1.9). Then, for
every λ ∈ ∪k∈N(8πk, 8π(k + 1)) there exists a solution to problem (∗)λ.

We shall obtain the solutions as saddle-type critical points for the Euler-Lagrange func-
tional Jλ defined in (1.5), following the variational scheme introduced in [2], see also [8].
It will be clear from the proof that, alternatively, we could follow the variational approach
introduced in [10], see also [9].

The article is organized as follows. In Section 2 we recall some known results and we
establish some necessary lemmas. In Section 3 we obtain some blow-up results and we prove
Theorem 1.1. In Section 4 we set up the variational construction and we prove Theorem 1.2.
In the Appendix we show that a suitable rescaling yields a Liouville bubble profile in the
limit. This fact, although not needed in the variational construction, provides an intuitive
justification to the quantization of the values of λ for which blow-up may occur. In the
“degenerate” case P({1}) = 0, the appropriate rescaling parameters depend on P in a
non-trivial way.

Notation. We denote by C > 0 a general large constant whose actual value is allowed to
vary. We denote by N the set of positive integers. When the integration variable is clear
from the context we omit it. Henceforth, we denote I := [0, 1].

2. Preliminary results

For the sake of completeness, we collect in this section some preliminary results of various
nature which will be used in the sequel.

2.1. Concentration-compactness principle. We recall the Brezis-Merle blow-up theory
[4], as adapted to (∗)λ in [19]. Let us define the sequence of measures νn ∈M(Ω) by

νn(dx) := λn

∫
[0,1]

αeαun(x) P(dα)∫∫
[0,1]×Ω

eαun(x) P(dα)dx
dx.

Then, the following alternative holds true.

Lemma 2.1 (Brezis-Merle alternative). Let un be a sequence of solutions to (∗)λn with
λn → λ0. Then, up to subsequences, exactly one of the following alternatives holds:
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(i) (Compactness) There exists a solution u0 ∈ H1
0 (Ω) to (∗)λ0 such that un → u0 in

any relevant norm;
(ii) (Concentration) There exists a finite, non-empty blow-up set S = {p1, . . . , pm} ⊂ Ω

such that un ∈ L∞loc(Ω \ S) and

νn
∗
⇀

m∑
i=1

niδpi(dx) + s(x) dx (2.1)

for some ni ≥ 4π, i = 1, . . . ,m and for some s ∈ L1(Ω).

Proof. We first observe that, in view of the two-dimensional argument in [12] p. 223, there
exists ε > 0, depending only on Ω, such that un has no stationary point in an ε-neighborhood
of ∂Ω. Consequently, blow-up does not occur on the boundary ∂Ω.

We adapt Theorem 3, p. 1237 in [4] to our case. Let

Wn(x) := λn

∫
[0,1]

αe−(1−α)un P(dα)∫∫
[0,1]×Ω

eα′un P (dα′)
.

Then, problem (∗)λn takes the form{
−∆un =Wn(x)eun in Ω

un =0 on ∂Ω.

By the maximum principle, we have un ≥ 0 and hence,

0 ≤Wn(x) ≤ λn
|Ω|

∫
[0,1]

αP(dα) for all x ∈ Ω.

Moreover, ∫
Ω

Wn(x)eun dx ≤ λn. (2.2)

Therefore, assumptions (21)–(22) in [4], Theorem 3, are satisfied with the exponent p = +∞.
Consequently, it is readily seen that the proof of Theorem 3 in [4] may be adapted in order
to prove that either alternative (i) holds true, or there exists a finite set S ⊂ Ω such that,
up to subsequences, un is bounded in L∞loc(Ω \ S). In the latter case it follows that (2.1)
holds true, i.e., alternative (ii) is satisfied. �

Remark 2.2. In the statement of Theorem 3 in [4], a third assumption (23) is made on
the sequence un of solutions to (∗)λn , namely it is assumed that supn

∫
Ω
eun < +∞. Since

in our case we only have the weaker assumption (2.2), we cannot in general directly apply
the arguments in [4] to show that s = 0 in (2.1). However, if we assume P({1}) > 0, the

proof in [4] may be adapted. Indeed, (∗)λn and (2.1) imply that un → u0 weakly in W 1,q
0 (Ω),

strongly in Lq(Ω) for any 1 ≤ q < 2, and a.e., where

u0(x) ≥
m∑
i=1

ni
2π

(log
1

|x− pi|
+H(x, pi)), (2.3)

and where H is defined in (1.2). If P({1}) > 0 we may estimate∫∫
[0,1]×Ω

eαun(x) P(dα)dx ≥ P({1})
∫

Ω

eun dx.

By Fatou’s lemma, (2.3) and recalling that ni ≥ 4π,

lim inf
n→∞

∫
Ω

eun ≥
∫

Ω

eu0 = +∞

and consequently ∫∫
[0,1]×Ω

eαun(x) P(dα)dx→ +∞.

This implies s ≡ 0.
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2.2. Improved Moser-Trudinger inequality. We shall need an improved Moser-Trudinger
inequality for the functional (1.5) defined on the bounded domain Ω ⊂ R2.

We recall that the classical Moser-Trudinger sharp inequality [15, 27] states that

CMT := sup

{∫
Ω

e4πu2

: u ∈ H1
0 (Ω), ‖∇u‖2 ≤ 1

}
< +∞, (2.4)

where the constant 4π is best possible. Moreover, the embedding u ∈ H1
0 (Ω)→ eu ∈ L1(Ω)

is compact. For a proof, see, e.g., Theorem 2.46 p. 63 in [1].
In view of the elementary inequality

|u| ≤ ‖∇u‖
2
2

16π
+ 4π

u2

‖∇u‖22
,

we deduce from (2.4) that

log

(∫
Ω

e|u| dx

)
≤ 1

16π
‖∇u‖22 + log(CMT ), for any u ∈ H1

0 (Ω). (2.5)

In particular, the functional

Iλ(u) =
1

2
‖∇u‖22 − λ log

∫
Ω

eu dx

is bounded from below for all λ 6 8π, while it is not difficult to check that

inf
u∈H1

0 (Ω)
Iλ(u) = −∞ (2.6)

whenever λ > 8π. Indeed, evaluating the functional Iλ on the following adaptation of the
Liouville bubbles defined in (5.1) below:

uε(x) =

{
log

(ε2+r2
0)2

(ε2+|x−x0|2)2 , in Br0(x0)

0, in Ω \Br0(x0),

yields ∫
Ω

|∇uε|2 dx = 16π log
1

ε2
+O(1), log

∫
Ω

euε dx = log
1

ε2
+O(1)

so that

Iλ(uε) = (8π − λ) log
1

ε2
+O(1)→ −∞ as ε→ 0.

The arguments above imply that if (1.4) is satisfied, then analogous results hold for the
Neri’s functional Jλ. More precisely, we have

Lemma 2.3 (Moser-Trudinger inequality). Assume that P satisfies (1.4). Then

log

∫∫
I×Ω

eαu P(dα)dx ≤ 1

16π
‖∇u‖22 + logCMT for any u ∈ H1

0 (Ω), (2.7)

and the functional Jλ(u) is bounded from below on H1
0 (Ω), if and only if λ ≤ 8π.

Lemma 2.3 was established in [21] for functions u ∈ H1(M) satisfying
∫
M
u = 0, where

M is a two-dimensional compact Riemannian manifold. The proof for u ∈ H1
0 (Ω) is similar.

For the sake of completeness, we outline it below.
On the other hand, in the next Lemma we show that the constant 1

16π in (2.7) may be
lowered if the quantity ∫

I
eαu(x) P(dα)∫∫

I×Ω
eαu P(dα)dx

,

which may be interpreted as the mass of u, is suitably distributed. Namely, following ideas
of [1, 7], we prove:
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Lemma 2.4 (Improved Moser-Trudinger inequality). Assume that P satisfies (1.4). Let
d0 > 0, a0 ∈ (0, 1/2) and for a fixed positive integer `, let Ω1, . . . ,Ω`+1 be subsets of Ω
satisfying dist(Ωi,Ωj) ≥ d0, for all i 6= j. Then, for any ε > 0 there exists a constant
K = K(ε, d0, a0, `) > 0 such that if u ∈ H1

0 (Ω) satisfies∫∫
I×Ωi

eαuP(dα)dx∫∫
I×Ω

eαuP(dα)dx
≥ a0, i = 1, . . . , `+ 1, (2.8)

then it holds

log

(∫∫
I×Ω

eαuP(dα)dx

)
≤ 1

16(`+ 1)π − ε

∫
Ω

|∇u|2 dx+K. (2.9)

We begin by outlining the proof of Lemma 2.3.

Proof of Lemma 2.3. The “if” part is immediate and was already used in [17] in order to
obtain solutions to (∗)λ for all λ ∈ (0, 8π). Indeed, we have∫∫

I×Ω

eαuP(dα) dx ≤
∫

Ω

e|u| dx ≤ CMT e
1

16π ‖∇u‖
2
2 ,

for all u ∈ H1
0 (Ω). Therefore Jλ is bounded below if λ ≤ 8π. On the other hand the value

8π is also optimal, provided that 1 ∈ suppP. In order to show it one needs only to prove
that

inf
u∈H1

0 (Ω),
Jλ(u) = −∞, for any λ > 8π. (2.10)

Assume (1.4). Since the functional Iλ(u) is unbounded from below for λ > 8π, then also the
functional

Iλ(u)|u≥0
=

1

2
‖∇u‖22 − λ log

∫
Ω

eu dx, u ∈ H1
0 (Ω), u ≥ 0

is unbounded below for λ > 8π. At this point we observe that for every 0 < δ < 1 and
u ≥ 0, u ∈ H1

0 (Ω), we have:

Jλ(u) =
1

2
‖∇u‖22 − λ log

∫∫
I×Ω

eαuP(dα)dx ≤ 1

2
‖∇u‖22 − λ log

∫∫
[1−δ,1]×Ω

eαuP(dα)dx

≤ 1

2
‖∇u‖22 − λ log

∫
Ω

e(1−δ)udx− λ log(P([1− δ, 1]))

=
1

(1− δ)2

[
1

2
‖(1− δ)∇u‖22 − λ(1− δ)2 log

(∫
Ω

e(1−δ)udx

)]
− λ log(P([1− δ, 1]))

=
1

(1− δ)2
Iλ(1−δ)2 ((1− δ)u)− λ log(P([1− δ, 1])).

Hence, for λ(1−δ)2 > 8π, the right hand side of the last inequality is unbounded from below
in view of (2.6), and therefore

inf
u∈H1

0 (Ω)
Jλ(u) = −∞ for any λ >

8π

(1− δ)2
.

Since δ ∈ (0, 1) is arbitrary, (2.10) follows. �

In order to prove Lemma 2.4, we adapt some ideas contained in [7], Proposition 1.

Proof of Lemma 2.4. Let g1, . . . , g`+1 be smooth functions defined on Ω such that 0 6 gi ≤
1, gi ≡ 1 on Ωi, |∇gi| ≤ c(d0), for i = 1, . . . , `+ 1, and supp(gi) ∩ supp(gj) = ∅ if i 6= j. Up
to relabelling, we may assume that

‖g1∇u‖L2(Ω) ≤ ‖gi∇u‖L2(Ω) for any i = 2, . . . , `+ 1. (2.11)

For every t ∈ R we denote t+ = max{0, t}. We fix a > 0. In view of (2.5), applied to
g1(|u| − a)+, we have that∫

Ω

eg1(|u|−a)+

≤ CMT exp

{
1

16π
‖∇
[
g1(|u| − a)+

]
‖2L2(Ω)

}
. (2.12)
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Hence, in view of assumption (2.8) and of (2.12), using the elementary inequality (A+B)2 ≤
(1 + τ)A2 + c(τ)B2, for any τ > 0, we get∫∫

I×Ω

eαuP(dα)dx ≤ ea

a0

∫∫
I×Ω1

e(αu−a)+

P(dα)dx

≤ ea

a0

∫∫
I×Ω

eg1(αu−a)+

P(dα)dx 6
ea

a0

∫
Ω

eg1(|u|−a)+

dx

≤ C

a0
exp

{
1

16π
‖∇
[
g1(|u| − a)+

]
‖2L2(Ω) + a

}
≤ C

a0
exp

{
1

16π

[
(1 + τ)‖g1∇u‖2L2(Ω) + c(τ)‖(|u| − a)+∇g1‖2L2(Ω)

]
+ a

}
(2.11)

≤ C

a0
exp

{
1

16π(`+ 1)

[
(1 + τ)

`+1∑
i=1

‖gi∇u‖2L2(Ω) + c(τ, d0)‖(|u| − a)+‖2L2(Ω)

]
+ a

}

≤ C

a0
exp

{
1

16π(`+ 1)

[
(1 + τ)‖∇u‖2L2(Ω) + c(τ, d0)‖(|u| − a)+‖2L2(Ω)

]
+ a

}
,

where we used supp(gi) ∩ supp(gj) = ∅ to derive the last inequality and where C = CMT .
For a given real number η ∈ (0, |Ω|), let a be such that meas({x ∈ Ω : |u(x)| ≥ a}) = η.

Then, by the Hölder and Sobolev inequalities we have

‖(|u| − a)+‖2L2(Ω) = η1/2

(∫
{x∈Ω:|u|>a}

(|u| − a)4

)1/2

≤ η1/2C‖∇u‖22.

Using the Schwarz and Poincaré inequalities, we finally derive

aη ≤
∫
{x∈Ω:|u|≥a}

|u| ≤ |Ω|1/2
(∫

Ω

|u|2
)1/2

≤ C‖∇u‖2,

and therefore, for any small δ > 0,

a ≤ δ

2
‖∇u‖22 +

C2

2δη2
.

In conclusion, we have derived that∫∫
I×Ω

eαuP(dα)dx ≤ C

a0
exp

{
1

16π(`+ 1)

(
1 + τ + c(τ, d0)η

1
2C +

δ

2

)
‖∇u‖2L2(Ω) +

C2

2δη2

}
.

Let ε̃ = ε
16π(`+1)−ε . Fixing τ < ε̃

3 , η such that c(τ, d0)η
1
2C < ε̃

3 and δ such that δ
2 <

ε̃
3 , the

asserted improved Moser-Trudinger inequality (2.9) is completely established. �

Using Lemma 2.4 we can characterize the limiting behavior of sequences of measures on
Ω of the form ∫

I
eαunP(dα)dx∫∫

I×Ω
eαunP(dα)dx

, (2.13)

where the functions un are such that the functional Jλ attains arbitrarily large negative
values. Such a characterization will be used in an essential way in the variational scheme,
in particular in the proof of Proposition 4.3 below.

Lemma 2.5 (Concentration property). Assume that P satisfies (1.4). Let λ ∈ (8kπ, 8(k +
1)π), k ≥ 1, and let {un} ⊂ H1

0 (Ω) be a sequence of functions satisfying Jλ(un)→ −∞. For
any ε > 0 and for any r > 0, there exists a subsequence {unj} (depending only on ε and r)

and ` points, ` ∈ {1, . . . , k}, p1, . . . , p` ∈ Ω (which do not depend on j) such that∫∫
I×(Ω\∪`i=1Br(pi))

eαunjP(dα)dx∫∫
I×Ω

eαunjP(dα)dx
< ε for any i ∈ {1, . . . , `} and for any j (2.14)
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and

lim
j→+∞

(∫∫
I×(Br(pi)\∪i−1

h=1Br(ph))
eαunjP(dα)dx∫∫

I×Ω
eαunjP(dα)dx

)
= βi > 0 for any i ∈ {1, . . . , `},

(2.15)

with
∑`
i=1 βi = 1.

Proof. The proof is a direct consequence of some general concentration properties of L1-
functions, as obtained in Lemma 3.3 in [14] and Lemma 2.4 in [2], applied to the functions
(2.13). �

2.3. Properties of some Vandermonde-type maps. Finally, we collect some results
from [2] concerning Vandermonde-type maps. Such properties will be needed in order to
perform the variational scheme in the proof of Theorem 1.2, and in particular to prove
Proposition 4.3 below.

Henceforth, for k ∈ N, we denote by zk the vector zk = (z1, . . . , zk) ∈ Ck. In particular
we denote by 0k ∈ Ck the null vector, i.e., the vector whose entries are all equal to 0 ∈ C.

Let Dk be the open unit ball of Ck, namely

Dk = {zk ∈ Ck | |z1|2 + . . .+ |zk|2 < 1}.
Let Φk : Ck 7→ Ck be the continuous map defined as

Φk(zk) :=



z1 |z1| + z2 |z2| + · · · + zk |zk|
z2

1 + z2
2 + · · · + z2

k
...

...
...

z2
1( z1
|z1| )

j−2 + z2
2( z2
|z2| )

j−2 + · · · + z2
k( zk
|zk| )

j−2

...
...

...
z2

1( z1
|z1| )

k−2 + z2
2( z2
|z2| )

k−2 + · · · + z2
k( zk
|zk| )

k−2


. (2.16)

In [2], Lemma 4.1, the degree of Φk was considered and the following was established.

Lemma 2.6. If k ∈ N, then
deg (Φk, ∂Dk, 0k) 6= 0.

Next we recall another useful result obtained in [2], Lemma 3.3.

Lemma 2.7. Let ` ∈ N and β
`
∈ R` such that βi > 0 for any i ∈ {1, . . . , `}. Suppose that

z` ∈ C` is a solution to 
β1z1 + β2z2 + . . .+ β`z` = y1

β1z
2
1 + β2z

2
2 + . . .+ β`z

2
` = y2

. . . . . .
β1z

`
1 + β2z

`
2 + . . .+ β`z

`
` = y`

where y
`
∈ C`. Then z` → 0` as y

`
→ 0`.

3. Blow-up analysis and proof of Theorem 1.1

Let un be a concentrating sequence of solutions to (∗)λn . In order to prove Theorem 1.1,
we define the sequence of measures µn ∈M([0, 1]× Ω) on the product space [0, 1]× Ω:

µn(dαdx) := λn
eαun(x)∫∫

[0,1]×Ω
eαun(x) P(dα)dx

P(dα)dx.

Clearly, µn([0, 1] × Ω) = λn, therefore there exists a measure µ ∈ M([0, 1] × Ω) such that,

up to subsequences, µn
∗
⇀ µ weakly in M([0, 1] × Ω). In view of the Brezis-Merle theory

[4], as adapted in Lemma 2.1, there exists a finite set S = {p1, p2, . . . , pm} ⊂ Ω such that
the singular part of µ is supported on [0, 1] × S. It follows that there exist ζi ∈ M([0, 1]),
i = 1, . . . ,m, and r ∈ L1([0, 1]× Ω) such that the limit measure µ is of the form:

µ(dαdx) =

m∑
i=1

ζi(dα)δpi(dx) + r(α, x)P(dα)dx. (3.1)
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With this notation, the main ingredient in the proof of Theorem 1.1 is the following result.

Proposition 3.1. Assume (1.4). Let un be a sequence of solutions to (∗)λn with λn → λ0

and suppose that S 6= ∅. Then,

(i) ζi(dα) = 8πδ1(dα), for all i = 1, 2, . . . ,m.
(ii) r ≡ 0.

In order to establish Proposition 3.1, we first show that the measures ζi(dα) are concen-
trated at 1 (see Lemma 3.2 below), namely that ζi(dα) = niδ1(dα) for some ni > 0. Next we
provide a quadratic identity for the blow up measures ζi (see Lemma 3.3 below), which will
involve that ni = 8π for any i = 1, . . . ,m. In turn, even without the additional assumption
P({1}) > 0, the argument outlined in Remark 2.2, to show that s ≡ 0 (where s is defined
in (2.1)), will allow us to conclude that r ≡ 0.

Let us state and prove two preliminary lemmas.
Fix ε > 0. For every α ∈ [0, 1− ε) we define for x ∈ Ω

fα(x) :=
λeαu∫∫

I×Ω
eα′u P(dα′)dx

.

Lemma 3.2. Assume (1.4). For every α ∈ [0, 1− ε) the following estimate holds:∫
Ω

f (1−ε)/α
α dx ≤

(
λ

P([1− ε, 1])|Ω|

)(1−ε)/α

|Ω|.

Proof. By definition,∫
Ω

f (1−ε)/α
α dx =

( λ∫∫
I×Ω

eα′u P(dα′)dx

)(1−ε)/α ∫
Ω

e(1−ε)u dx. (3.2)

We observe that, since u ≥ 0 by the maximum principle, we have 1 ≤ e(1−ε)u ≤ eα
′u, and

therefore ∫
Ω

e(1−ε)u dx ≤ 1

P([1− ε, 1])

∫∫
[1−ε,1]×Ω

eα
′uP(dα′)dx. (3.3)

We also obtain that ∫∫
[1−ε,1]×Ω

eα
′u P(dα′)dx ≥ P([1− ε, 1])|Ω|

and consequently, recalling that (1− ε)/α > 1,(
1

P([1− ε, 1])|Ω|

∫∫
[1−ε,1]×Ω

eα
′u P(dα′)dx

)(1−ε)/α

≥ 1

P([1− ε, 1])|Ω|

∫∫
[1−ε,1]×Ω

eα
′u P(dα′)dx.

In turn, we derive that(
1∫∫

[0,1]×Ω
eα′u P(dα′)dx

)(1−ε)/α

≤

(
1∫∫

[1−ε,1]×Ω
eα′u P(dα′)dx

)(1−ε)/α

≤ (P([1− ε, 1])|Ω|)1− 1−ε
α∫∫

[1−ε,1]×Ω
eα′u P(dα′)dx

.

(3.4)

Inserting (3.3) and (3.4) into (3.2), we obtain∫
Ω

f (1−ε)/α
α dx ≤ λ(1−ε)/α (P([1− ε, 1])|Ω|)1− 1−ε

α∫∫
[1−ε,1]×Ω

eα′u P(dα′)dx
· 1

P([1− ε, 1])

∫∫
[1−ε,1]×Ω

eα
′u P(dα′)dx

=

(
λ

P([1− ε, 1])|Ω|

)(1−ε)/α

|Ω|,

as asserted. �
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Lemma 3.3. For every i = 1, . . . ,m the following identity holds:

8π

∫
[0,1]

ζi(dα) =
[ ∫

[0,1]

α ζi(dα)
]2
. (3.5)

Proof. See [19], Theorem 2.2, where (3.5) is derived in a more general context by using a
symmetry argument introduced in [23]. Alternatively, (3.5) may be derived from the classical
Pohozaev identity, see, e.g., [13]. �

Now we can prove Proposition 3.1.

Proof of Proposition 3.1. Proof of (i). In view of Lemma 3.2, for any ε > 0 we have∫∫
[0,1−ε]×Ω

(
λeαun∫∫

I×Ω
eα′unP(dα′)dx

)(1−ε/2)/(1−ε)

P(dα)dx

=

∫
[0,1−ε]

P(dα)

∫
Ω

f (1−ε/2)/(1−ε)
α dx

≤
∫

[0,1−ε]

(∫
Ω

f (1−ε/2)/α
α dx

)α/(1−ε)
|Ω|1−α/(1−ε) P(dα)

≤

{(
λ

P([1− ε, 1])|Ω|

)(1−ε/2)/α

|Ω|

}α/(1−ε)
|Ω|1−α/(1−ε)

≤
(

λ

P([1− ε, 1])|Ω|

)(1−ε/2)/(1−ε)

|Ω|.

It follows that the sequence of functions

µn(α, x) =
λeαun∫∫

I×Ω
eα′unP(dα′)dx

is uniformly bounded in L(1−ε/2)/(1−ε)([0, 1 − ε) × Ω). Therefore, for all i = 1, . . . ,m we
have µ(dαdx)|[0,1−ε)×Ω ≡ 0 and supp(ζi) ⊂ [1 − ε, 1] for any ε > 0. This implies that

ζi(dα) = niδ1(dα) for some ni > 0. In turn, from Lemma 3.3 we find 8πni = (n2
i ) and

therefore ni = 8π.
Proof of (ii). We have, for any sufficiently small ε > 0:∫∫

[0,1]×Ω

eαun P(dα)dx ≥ P([1− ε, 1])

∫
Ω

e(1−ε)un dx.

On the other hand, up to subsequences, un → u0 in W 1,q
0 (Ω) for any q ∈ [1, 2), where in

view of (2.3) and Part (i) there holds

u0(x) ≥ 4

m∑
i=1

(
log

1

|x− pi|
+H(x, pi)

)
, in Ω \ S.

In particular,

e(1−ε)u0(x) ≥
m∏
i=1

c0
|x− pi|4(1−ε) ,

and therefore
∫

Ω
e(1−ε)u0 = +∞. Hence, by Fatou’s lemma we conclude that∫∫

[0,1]×Ω

eαun P(dα)dx→ +∞ (3.6)

along a blow-up sequence. Since by Lemma 2.1 un ∈ L∞loc(Ω \ S)), (3.6) implies r ≡ 0 in
[0, 1]× Ω. �

Proof of Theorem 1.1. In view of Proposition 3.1, the limit (1.8) holds true. We are only
left to check the quantization property λ0 ∈ 8πN. This fact readily follows from (1.8). �
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4. The min-max scheme and the proof of Theorem 1.2

Finally, in this section we complete the proof of Theorem 1.2. In view of assumption (1.9)
there exists a simple, closed, smooth, non-contractible curve Γ ⊂ Ω. Moreover, by the
Jordan-Schoenflies Theorem [22], there exists a diffeomorphism

χ : R2 → C

such that χ(Γ) = ∂B1(0) and such that the bounded component of R2\Γ is mapped in B1(0).
Clearly, there exists a point z0 ∈ B1(0) ⊂ C and a radius ρ > 0 such that B2ρ(z0)∩χ(Ω) = ∅.
Without loss of generality we may assume that z0 = 0, so that in conclusion we have

∂B1(0) = χ(Γ) ⊂ χ(Ω), while B2ρ(0) ∩ χ(Ω) = ∅. (4.1)

Via χ, we may also define a simple, regular parametrization of Γ:

γ : [0, 2π)→ Γ, γ(θ) = χ−1(eiθ).

For u ∈ H1
0 (Ω) and j ∈ N, let mj : H1

0 (Ω)→ C be defined by

mj(u) =

∫∫
I×Ω

(χ(x))jeαu(x) P(dα)dx∫∫
I×Ω

eα′u(x) P(dα′)dx
=

∫
Ω

(χ(x))jdµ(u),

where

dµ(u) =

∫
I
eαu(x) P(dα)∫∫

I×Ω
eα′u(x) P(dα′)dx

.

For k ∈ N, let m : H1
0 (Ω)→ Ck be the vectorial map

m(u) = (m1(u),m2(u), . . . ,mk(u)).

We now define, for k ∈ N, the class of functions which will be used in the min-max argument:

Fλ =

h ∈ C(Dk, H
1
0 (Ω)) |

(i) Jλ(h(zk))→ −∞ as zk → ∂Dk,
(ii) m ◦ h can be extended continuously to Dk

(iii)m ◦ h : ∂Dk → Ck has non zero degree

 . (4.2)

Proposition 4.1. Assume (1.4) and let k ∈ N. For any λ ∈ (8kπ, 8(k + 1)π) the set Fλ is
non-empty.

In order to prove Proposition 4.1, we define a suitable test function. Let ε0 > 0 such that
Bε0(γ(θ)) ⊂ Ω for any θ ∈ [0, 2π) and for (r, θ) ∈ [0, 1)× [0, 2π) let

vr,θ(x) =


0 if x ∈ Ω \Bε0(γ(θ))
4 log( ε0

|x−γ(θ)| ) if x ∈ Bε0(γ(θ)) \Bε0(1−r)(γ(θ))

4 log( 1
1−r ) if x ∈ Bε0(1−r)(γ(θ)).

Let us consider, for k ∈ N, the following family of probability measures, known in the
literature as the set of formal barycenters of Γ of order k:

Γk := {
k∑
i=1

tiδγ(θi) : ti ∈ [0, 1],

k∑
i=1

ti = 1, θi ∈ [0, 2π)}.

Let us fix α̃ ∈ I satisfying

α̃ ∈ (
3

4
, 1) and (2α̃− 1)λ > 8kπ. (4.3)

Then, given σ ∈ Γk, σ =
∑k
i=1 tiδγ(θi) and r ∈ [0, 1), we define the function ur,σ ∈ H1

0 (Ω)
by

ur,σ(x) =
1

α̃
log

(
k∑
i=1

tie
α̃vr,θi

)
. (4.4)

It is readily checked that ur,σ depends continuously on r ∈ [0, 1) and σ ∈ Γk.
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Lemma 4.2. Assume (1.4). For λ ∈ (8kπ, 8(k + 1)π), r ∈ [0, 1) and σ ∈ Γk, then

Jλ(ur,σ) −→ −∞ as r → 1, uniformly for σ ∈ Γk. (4.5)

and

dµ(ur,σ) =

∫
I
eαur,σP(dα)∫∫

I×Ω
eαur,σP(dα)dx

∗
⇀ σ as r → 1, uniformly for σ ∈ Γk, (4.6)

where the function ur,σ is defined in (4.4) with α̃ satisfying (4.3).

Proof. Recalling that

Jλ(ur,σ) =
1

2

∫
Ω

|∇ur,σ|2dx− λ log

(∫∫
I×Ω

eαur,σP(dα)dx

)
,

property (4.5) will follow from the following two estimates:∫
Ω

|∇ur,σ|2dx ≤ 32kπ log
1

1− r
+O(1), (4.7)

log

(∫∫
I×Ω

eαur,σP(dα)dx

)
= (4α̃− 2) log

1

1− r
+ log(P([α̃, 1])) +O(1). (4.8)

We note that P([α̃, 1]) > 0 in view of assumption 1.4. Indeed, from (4.7)–(4.8) and recalling
(4.3), it follows that

Jλ(ur,σ) ≤ 2(8kπ − (2α̃− 1)λ) log
1

1− r
− λ log(P([α̃, 1])) +O(1)→ −∞ as r → 1.

Proof of (4.7). By definition of vr,θi , ur,σ as in (4)–(4.4), we have

∇ur,σ(x) =

∑k
i=1 tie

α̃vr,θi (x)∇vr,θi(x)∑k
i=1 tie

α̃vr,θi (x)
,

and

|∇vr,θi | =
{ 4
|x−γ(θi)| x ∈ Bε0(γ(θi)) \Bε0(1−r)(γ(θi))

0 otherwise.

Therefore, if x ∈ Ω \ ∪kj=1Bε0(1−r)(γ(θj)), then

|∇ur,σ(x)| ≤
∑k
i=1 tie

α̃vr,θi (x) 4
|x−γ(θi)|∑k

i=1 tie
α̃vr,θi (x)

≤ 4

mini=1,2,...,k |x− γ(θi)|
.

From the estimate above we also deduce that, for any x ∈ Ω,

|∇ur,σ(x)| ≤ 4

ε0(1− r)
.

Then setting Ai = {y ∈ Ω : |y − γ(θi)| = minj |y − γ(θj)|}, we have∫
Ω

|∇ur,σ(x)|2dx
(4)

≤
k∑
i=1

∫
Bε0(1−r)(γ(θi))

|∇ur,σ(x)|2 dx+

∫
Ω\∪kj=1Bε0(1−r)(γ(θj))

16

(mini |x− γ(θi)|)2
dx

(4)

≤O(1) +

k∑
i=1

∫
Ai\∪kj=1Bε0(1−r)(γ(θj))

16

|x− γ(θi)|2
dx

≤O(1) +

k∑
i=1

∫
Ai\Bε0(1−r)(γ(θi))

16

|x− γ(θi)|2
dx

≤O(1) + 16k

∫
Bdiam(Ω)(γ(θi))\Bε0(1−r)(γ(θi))

dx

|x− γ(θi)|2

≤O(1) + 32kπ log
1

1− r
,

so that (4.7) is proved.
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Proof of (4.8). It is readily checked that

log

(∫∫
I×Ω

eαur,σP(dα)dx

)
≥ log

(∫∫
[α̃,1]×Ω

eα̃ur,σP(dα)dx

)

= log

(∫
Ω

eα̃ur,σdx

)
+ log(P([α̃, 1])).

(4.9)

Then, recalling that in view of (4.3) we have α̃ > 1
2 ,

∫
Ω

eα̃ur,σdx =

∫
Ω

k∑
i=1

tie
α̃vr,θidx

=

k∑
i=1

ti

[∫
Bε0(1−r)(γ(θi))

dx

(1− r)4α̃
+

∫
Bε0 (γ(θi))\Bε0(1−r)(γ(θi))

(
ε0

|x− γ(θi)|

)4α̃

dx

+

∫
Ω\Bε0 (γ(θi))

dx

]

=

k∑
i=1

ti

[
πε2

0(1− r)2−4α̃ + 2πε4α̃
0

∫ ε0

ε0(1−r)

dρ

ρ4α̃−1
+ |Ω| − πε2

0

]

=
C

(1− r)4α̃−2
+O(1). (4.10)

Finally, combining (4.9) and (4.10) we obtain (4.8). Hence, (4.5) is completely established.
Proof of (4.6). Let ε0 > 0 be such that Bε0(γ(θ)) ⊂ Ω for any θ ∈ [0, 2π) and let

σ =
∑k
i=1 tiδγ(θi). Without loss of generality we may assume that there exists m = m(σ) ≤ k

such that ti > 0 for any i = 1, . . . ,m and ti = 0 for i > m.
In order to prove (4.6) it suffices to show that for every ε ∈ (0, ε0)

lim
r→1

∫
∪mi=1Bε(γ(θi))

dµ(ur,σ) = 1 uniformly with respect to σ ∈ Γk. (4.11)

Let us fix ε ∈ (0, ε0), let δ = δ(ε) ∈ (0, 1) such that Bδ(0) ⊂ ϕθ(Bε(γ(θ))), where

ϕθ(x) = x−γ(θ)
ε0

.
We write ∫

∪mi=1Bε(γ(θi))

dµ(ur,σ) =
A+B

A+ C
(4.12)

where

A =

∫∫
I×∪mi=1ϕ

−1
θi

(Bδ(0))

eαur,σP(dα)dx,

and

B =

∫∫
I×(∪mi=1(Bε(γ(θi))\ϕ−1

θi
(Bδ(0))))

eαur,σP(dα)dx,

C =

∫∫
I×(Ω\∪mi=1ϕ

−1
θi

(Bδ(0)))

eαur,σP(dα)dx.

We claim that, as r → 1,

A→ +∞, B = O(1), C = O(1). (4.13)
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In view of assumption (1.4), we have P([α̃, 1]) > 0. Then, for any r > 1− δ we have

A ≥
∫ 1

α̃

∫
∪mi=1ϕ

−1
θi

(Bδ(0))

eαur,σP(dα)dx

≥ P([α̃, 1])

∫
∪mi=1ϕ

−1
θi

(Bδ(0))

eα̃ur,σdx

= P([α̃, 1])

∫
∪mi=1ϕ

−1
θi

(Bδ(0))

m∑
j=1

tje
α̃vr,θj dx

≥ P([α̃, 1])

m∑
j=1

tj

∫
ϕ−1
θj

(Bδ(0))

eα̃vr,θj dx

= ε2
0P([α̃, 1])

m∑
j=1

tj

[∫
B1−r(0)

dy

(1− r)4α̃
+

∫
Bδ(0)\B1−r(0)

dy

|y|4α̃

]

= πε2
0P([α̃, 1])

[
(1− r)2−4α̃ +

1

2α̃− 1
((1− r)2−4α̃ − δ2−4α̃)

]
→ +∞ uniformly for σ ∈ Γk.

In the last line we have used that
∑m
j=1 tj = 1 and that α̃ > 1

2 .
Moreover

0 ≤ B ≤ C ≤ |Ω|+
∫
∪mi=1(Bε0 (γ(θi))\ϕ−1

θi
(Bδ(0)))

(

m∑
j=1

tje
α̃vr,θj )1/α̃ dx

≤ |Ω|+
∫
∪mi=1(Bε0 (γ(θi))\ϕ−1

θi
(Bδ(0)))

(

m∑
j=1

tj
δ4α̃

)1/α̃ dx

≤ |Ω|+ kπ
ε2

0

δ4
.

Hence, (4.13) is established. Letting r → 1 in (4.12), we obtain (4.11) and, in turn, (4.6).
This concludes the proof. �

Proof of Proposition 4.1. Let us consider a continuous function η : [0, 1] → [0, 1] such that
η([0, 1

3 ]) = 0 and η([ 2
3 , 1]) = 1 and let us introduce the map h : Dk → H1

0 (Ω) as

h(zk) = η(|zk|)u|zk|2,σ(zk), (4.14)

where σ(zk) =
∑k
i=1 |zi|

2δγ(θi)

|zk|2
and zk = (z1, . . . , zk) = (|z1|eiθ1 , . . . , |zk|eiθk).

We claim that h ∈ Fλ. Indeed, by means of (4.5)–(4.6) it is immediate to see that h
satisfies property (4.2)–(i). Moreover,

dµ(h(zk))→ |z1|2δγ(θ1) + . . .+ |zk|2δγ(θk) as zk → ∂Dk,

which in turn this implies that

m ◦ h(zk)→ Ψ̃k(zk) as zk → ∂Dk,

where Φ is defined in (2.16), so that (4.2)–(ii) is also fulfilled. Finally, by Lemma 2.6, we
also deduce property (4.2)–(iii). �

We are now ready to define, for λ ∈ (8kπ, 8(k + 1)π), the min-max value:

cλ = inf
h∈Fλ

sup
u∈h(Dk)

Jλ(u). (4.15)

In view of Proposition 4.1, we have cλ < +∞. The following lower bound relies in an
essential way on the non-contractibility of Ω as assumed in (1.9).

Proposition 4.3. Assume (1.4)–(1.9). Let k ∈ N and λ ∈ (8kπ, 8(k+1)π), then cλ > −∞.
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Proof. The case k = 1 has been treated in [21], while the case k > 1 can be worked out
following [2] with minor modifications. We prove it for reader’s convenience.

We assume by contradiction that for any n ∈ N there exists hn ∈ Fλ such that

sup
u∈hn(Dk)

Jλ(u) ≤ −n.

In view of property (4.2)–(iii) in the definition of F , for any n ∈ N we can find un ∈
hn(Dk) ⊂ H1

0 (Ω) such that

Jλ(un) ≤ −n, and m(un) = 0k.

Next we can apply Lemma 2.5 with r and ε to be chosen later in a convenient way.
Denoting by ` the positive integer (less or equal than k) found in the above mentioned
Lemma, for any j ∈ {1, . . . , `}

0 = mj(un) =

∫
Ω

(χ(x))jdµ(un) =

∫
∪`i=1Br(pi)

(χ(x))jdµ(un) +

∫
Ω\∪`i=1Br(pi)

(χ(x))jdµ(un)

=
∑̀
i=1

∫
Br(pi)\∪i−1

h=1Br(ph)

(χ(x))jdµ(un) +

∫
Ω\∪`i=1Br(pi)

(χ(x))jdµ(un)

=
∑̀
i=1

βi(χ(pi))
j −Rj,n(r) (4.16)

where βi and pi are obtained via Lemma 2.5 and Rj,n(r), up to a subsequence, can be
estimated as follows:

|Rj,n(r)| =

∣∣∣∣∣∑̀
i=1

(∫
Br(pi)\∪i−1

h=1Br(ph)

(χ(x))jdµ(un)− (χ(pi))
jβi

)
+

∫
Ω\∪`i=1Br(pi)

(χ(x))jdµ(un)

∣∣∣∣∣
(2.15)+(2.14)

≤
∑̀
i=1

∫
Br(pi)\∪i−1

h=1Br(ph)

∣∣(χ(x))j − (χ(pi))
j
∣∣ dµ(un) + on(1) + ε

≤
∑̀
i=1

∫
Br(pi)\∪i−1

h=1Br(ph)

|χ(x)− χ(pi)|

(
j−1∑
h=0

|χ(x)|j−1−h |χ(pi)|h
)
dµ(un) + on(1) + ε

≤
∑̀
i=1

j dj−1

∫
Br(pi)\∪i−1

h=1Br(ph)

|χ(x)− χ(pi)| dµ(un) + on(1) + ε

≤
∑̀
i=1

` dj−1 Cχ r βi + on(1) + ε = ` dj−1 Cχ r + on(1) + ε.

In the above chain of inequalities d := max
x∈Ω
|χ(x)| and Cχ = max

x1,x2∈Ω

|χ(x1)−χ(x2)|
|x1−x2| . Denoting

by zi := χ(pi) ∈ C, for i ∈ {1, . . . , `}, we get, by virtue of (4.16), that the zi’s satisfy
β1z1 + β2z2 + . . .+ β`z` = R1,n(r)
β1z

2
1 + β2z

2
2 + . . .+ β`z

2
` = R2,n(r)

. . . . . .
β1z

`
1 + β2z

`
2 + . . .+ β`z

`
` = R`,n(r).

(4.17)

By our choice of χ, see (4.1), there exists ρ > 0 such that χ(Ω) ∩B2ρ(0) = ∅, then

2ρ ≤ |χ(pi)| = |zi|. (4.18)

On the other hand, by applying Lemma 2.7 to system (4.17), we obtain that there exists
δ > 0 such that if

|Rj,n(r)| ≤ δ for some n ∈ N and for any j ∈ {1, . . . , `}, (4.19)

then |zi| ≤ ρ, which would be a contradiction against (4.18). Finally, it is immediate to see
that choosing r = δ

2`dj−1Cχ
, ε = δ

2 and n sufficiently large condition (4.19) is fulfilled for any

j ∈ {1, . . . , `}. The proof is thereby complete. �
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Finally, we are able to prove the existence result.

Proof of Theorem 1.2. By the definition (1.5) of Jλ, it is readily checked that if λ′ ≤ λ, then
Fλ′ ⊂ Fλ and Jλ′(u) ≥ Jλ(u) for all u ∈ H1

0 (Ω). Consequently, cλ′ ≥ cλ, where cλ is the min-
max value defined in (4.15). In particular, the mapping λ→ cλ is monotone, and therefore
the derivative c′λ exists for almost every λ ∈ (8kπ, 8(k + 1)π). We fix λ ∈ (8kπ, 8(k + 1)π)
such that c′λ is well-defined. By the well-known Struwe Monotonicity Trick [24], a bounded
Palais-Smale sequence, whose bounds depend on |c′λ|, may be constructed at level cλ. The
details of this construction in the context of mean field equations may be found in [25], see
also [21] for the specific context of (∗)λ. By compactness of the Moser-Trudinger embedding,
we obtain from the bounded Palais-Smale sequence a solution to (∗)λ. In this way, we obtain
a solution to (∗)λ for almost every λ ∈ (8kπ, 8(k + 1)π). Now we fix λ0 ∈ (8kπ, 8(k + 1)π).
Let λn → λ0 be such that (∗)λn admits a solution un for all n. In view of Theorem 1.1, we
conclude that the sequence un is compact, and consequently there exists a solution u0 to
(∗)λ0 such that un → u0. In particular, we obtain a solution for (∗)λ0 . We conclude that
solutions to (∗)λ exist for all values λ ∈ (8kπ, 8(k + 1)π), as asserted. �

5. Appendix: Liouville bubble limit profiles

In view of the mass quantization property, as stated in Theorem 1.1, it is natural to
expect that, upon rescaling, a concentrating sequence un of solutions to (∗)λn should yield
a Liouville bubble profile, namely a profile of the form

Uδ,ξ(x) = log
8δ2

(δ2 + |x− ξ|2)2
, δ > 0, ξ ∈ R2. (5.1)

This is indeed the case, as we show in this Appendix. However, it turns out that the usual
rescaling yields the desired profile only in the “non-degenerate” case where P({1}) > 0. On
the other hand, if P({1}) = 0, such a rescaling yields a trivial profile in the limit, and some
extra care is needed in order to capture the Liouville bubble profile.

More precisely, let un be a concentrating sequence of solutions to (∗)λn . It is convenient
to set

In =

∫∫
[0,1]×Ω

eα
′un P(dα′)dx.

We recall that by the maximum principle In ≥ |Ω|, and along a concentrating sequence we
have In → +∞. Then, problem (∗)λn takes the form−∆un =

λn
In

∫
[0,1]

αeαun P(dα) in Ω

un =0 on ∂Ω.

We assume that λn → λ0 and that

un(xn) = max
Ω

un → +∞ as n→∞.

In view of [12] (see the proof of Lemma 2.1), we know that xn stays well-away from ∂Ω.

5.1. The “non-degenerate case” P({1}) > 0. Throughout this subsection we assume
that

1 ∈ suppP and P({1}) > 0.

We define

wn(x) := un(x)− log In.
Then, wn(xn) = maxwn and wn satisfies

−∆wn =
λn
In

∫
[0,1]

αeαun P(dα) = λnP({1})ewn + ρn,

where

ρn(x) :=
λn
In

∫
[0,1)

αeαun P(dα).
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Moreover, ∫
Ω

ewn dx =

∫
Ω

eun−log In dx =

∫
Ω

eun dx∫∫
[0,1]×Ω

eα′un P(dα′)dx

=P({1})−1

∫∫
{1}×Ω

eα
′un P(dα′)dx∫∫

[0,1]×Ω
eα′un P(dα′)dx

≤P({1})−1.

In order to rescale, we set:

σn := e−wn(xn)/2 Ω̃n :=
Ω− xn
σn

and

w̃n(y) := wn(xn + σny) + 2 log σn, y ∈ Ω̃n.

Since xn stays well-away from the boundary of Ω, the rescaled domain Ω̃n invades the whole
space R2.

Then, w̃n satisfies 
−∆w̃n = λnP({1})ew̃n + λnρ̃n in Ω̃n

w̃n(y) ≤ w̃n(0) = 0∫
Ω̃n
ew̃n =

∫
Ω
ewn ≤ P({1})−1

where

ρ̃n(y) :=
σ2
n

In

∫
[0,1)

αeαun(xn+σny) P(dα).

We claim that

‖ρ̃n‖L∞(Ω̃n) → 0 as n→∞. (5.2)

Indeed, given ε > 0, let η > 0 be sufficiently small so that P([1− η, 1)) < ε. Let n0 ∈ N be
sufficiently large so that (σ2

n/In)η < ε for all n ≥ n0. We estimate, for all n ≥ n0:

ρ̃n(y) =

∫
[0,1)

αeαw̃n(y)

(
σ2
n

In

)1−α

P(dα)
w̃n(y)≤0

≤
∫

[0,1)

(
σ2
n

In

)1−α

P(dα)

=

∫
[0,1−η)

(
σ2
n

In

)1−α

P(dα) +

∫
[1−η,1)

(
σ2
n

In

)1−α

P(dα)

≤
(
σ2
n

In

)η
+ P([1− η, 1)) < 2ε.

Hence, (5.2) is established.
We conclude that there exists a solution w̃ ∈ C2

loc(R2) to the problem
−∆w̃ = λ0P({1})ew̃ in R2

w̃(y) ≤ w̃(0) = 0∫
R2 e

w̃ ≤ P({1})−1

such that, up to subsequences, w̃n → w̃ in C2
loc(R2). In view of Chen-Li’s classification

result [6], the function w̃ + log(λ0P({1})) is of the form (5.1). The asserted limit profile is
thus established in the case P({1}) > 0.

5.2. The “degenerate case” P({1}) = 0. Throughout this section, we assume

1 ∈ suppP and P({1}) = 0. (5.3)

We show the following.

Proposition 5.1. Assume (5.3). There exist a rescaling of un of the form

w̃n(y) = αnun(xn + σny)− log In, y ∈ Ω̃n =
Ω− xn
σn
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where, as n→∞, αn → 1, σ2
n = e−αnun(xn)+log In → 0, and a solution w̃ to the problem

−∆w̃ = λ0e
w̃ in R2∫

R2 e
w̃ dx < +∞

w̃(y) ≤ w̃(0) = 0,

such that, up to subsequences, w̃n → w̃ in C2
loc(R2). In particular, w̃+log λ0 is of the desired

form (5.1).

We define αn ∈ [0, 1] and the functions wn, Vn by setting:

eαnun(xn) :=

∫
[0,1]

αeαun(xn) P(dα)

wn := αnun − log In

Vn :=
αnλn
In

∫
[0,1]

αeαun P(dα) e−wn .

With this notation, we have:

Lemma 5.2. Assume (5.3). The following facts hold true:

(i) αn → 1.
(ii) Vn(xn) = αnλn → λ0

(iii) ‖Vn‖L∞(Ω) ≤ αnλn(
∫

[0,1]
αP(dα) + 1)

(iv)
∫

Ω
Vne

wn dx ≤ αnλn.

Proof. Proof of (i). There holds:

eαn =

(∫
[0,1]

αeαun(xn) P(dα)

)1/un(xn)

= ‖αeα‖Lun(xn)(I,P) → ‖αeα‖L∞(I,P) = e.

Hence, αn → 1.
Proof of (ii). By definition of αn and wn, we have

Vn(xn) =
αnλn
In

∫
[0,1]

αeαun(xn) P(dα) e−wn(xn) =
αnλn
In

eαnun(xn)e−wn(xn) = αnλn.

Proof of (iii). By definition, we have

Vn = αnλn

∫
[0,1]

αe(α−αn)un P(dα).

Since un ≥ 0, we estimate:∫
[0,1]

αe(α−αn)un P(dα) =

∫
α<αn

αe(α−αn)un P(dα) +

∫
α≥αn

αe(α−αn)un P(dα)

≤
∫
α<αn

αP(dα) +

∫
α≥αn

αe(α−αn)un(xn) P(dα)

≤
∫

[0,1]

αP(dα) +

∫
[0,1]

αe(α−αn)un(xn) P(dα)

=

∫
[0,1]

αP(dα) + 1.

The asserted estimate follows.
Proof of (iv). By definition of In, Vn, we have∫

Ω

Vne
wn =

αnλn
In

∫∫
I×Ω

αeαun P(dα) ≤ αnλn.

The asserted estimates are established. �

Now, we can prove Proposition 5.1.
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Proof of Proposition 5.1. We define the rescaling:

σn := ewn(xn)/2, w̃n(y) := wn(xn + σny) + 2 log σn, Ṽn(y) = Vn(xn + σny).

The function w̃n satisfies 
−∆w̃n = Ṽne

w̃n in Ω̃n∫
Ω̃n
Ṽne

w̃n ≤ C
w̃n(y) ≤ w̃n(0) = 0

‖Ṽn‖L∞(Ω̃n) ≤ C,

where, as above, Ω̃n invades the whole space R2. In view of the estimates in Lemma 5.2,
there exists a solution w̃ to the problem

−∆w̃ = λ0e
w̃∫

R2 e
w̃ < +∞

w̃(y) ≤ w̃(0) = 0.

such that a subsequence, still denoted w̃n, satisfies w̃n → w̃ locally uniformly on R2. In
view of the classification in [6], the function w̃ + log λ0 is of the form (5.1).

Hence, Proposition 5.1 is established. �

In view of Proposition 5.1, we expect that concentrating solutions to (∗)λ may be con-
structed by the approach in [11].
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