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Abstract. This paper deals with the identification of the weight of a train in motion, based on
the measurement of the time-history of the response in terms of strains at the foot of the rail.
The direct problem is initially addressed: the response of a rail modelled as a one-dimensional
Euler-Bernoulli beam with constant properties, resting on a linear elastic foundation with vis-
cous damping and subjected to a Dirac delta load travelling at constant speed is considered. For
the model described, a closed-form expression of the solution can be obtained, which permits to
investigate the sensitivity of the response to the main mechanical parameters. Analytical strains
are compared to their experimental counterpart, showing their practical ability to describe the
real phenomenon. As a second step, the inverse problem consisting in the identification of the
loads for a given time-history of measured strains is addressed. The solution of the inverse
problem is set up as a minimization problem whose objective function is based on the difference
between experimental and model time-histories of strains. This inverse problem is nonlinear,
and its solution can be pursued by the Newton method, which requires recursive application of
a linearized expression for the evaluation of the optimal parameters. The Bayesian formulation
enables to investigate identifiability of parameters and minimum number of measurements, and
leads to conclude that the identification process must begin with an improving of the interpre-
tative model. This model updating can be achieved by evaluating the model parameters, using
the time-history of a train whose weight is known. After that, the actual identification of the
loads can be performed. The procedure proposed is applied to experimental strains recorded at
the foot of a rail on a stretch of line run by a locomotor moving at a low constant speed. The
identified loads were in good agreement with the expected value, with errors smaller than 4%.
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1 INTRODUCTION

Increased standards of safety in railway transport require awareness of the loads actually

travelling on railway lines, in particular when freight trains running. This enables to timely

schedule maintenance and monitor rail wear, as well as to check unbalanced loads which can

affect vehicle safety, and requires the development of methods for the identification of travelling

loads. This paper deals with the identification of the weight of a train in motion, based on the

measurement of the time-history of the response in terms of strains at the foot of the rail.

To solve this inverse problem, it is first useful to address the direct problem. Here, the rail is

modelled as a one-dimensional Euler-Bernoulli beam with constant geometrical and mechan-

ical properties, resting on a linear elastic foundation with viscous damping and subjected to a

Dirac delta load travelling at constant speed. The same model was used in the past to describe

the response of rocket test tracks [1] and train tracks [2]. This model has proved its ability

to describe the real experimental response and, since it enables obtaining a closed-form solu-

tion, it is used here as a reference model, enabling to investigate the response sentitivity to the

main mechanical parameters. More complex models involving 2D descriptions of the elastic

foundation were also proposed [3], but they seem not suitable for this inverse problem.

On accepting the simplified modelling of the travelling load as a Dirac delta, its identifica-

tion involves the evaluation of its amplitude only. We approach this inverse problem using an

estimator which minimizes the difference between the experimental response and the response

provided by the described mechanical model of the rail. An overview of the different approaches

presented in the literature for the solution of load identification problems can be found in the

work by Ouyang [4]. Among these, it is worth citing the approach proposed by Trujillo and

Busby [5], based on dynamic programming, not only the forcing term which provides the best

match is sought, but also that which has a certain degree of smoothness according to Tikhonov’s

regularization. An application of dynamic programming to train load identification is presented

by Zhu et al. [7]. Among other possible approaches, Ronasi et al. [6] calculate the minimum

of an objective function measuring the distance between experimental and analytical data. In

the framework of an algebraic solution, Meli and Pugi [8] made hypotheses to simplify the

load time-histories and adopted a multibody model for the railway vehicle. We develop here

a load identification procedure within the framework of a Bayesian approach, also addressing

problems of optimal choice of parameters and measurements [9, 10, 11]. Based on the results

obtained from the investigation of the Fisher matrix, we were able to conclude that the load

identification problem can be better formulated in two steps. The first step consists in a model

updating performed on the grounds of the knowledge of the response to a known load. The

second step is the actual load identification.

Experimental tests were used for validation: they consist of field measurements of the rail

strain time-histories due to the transit of a two-axis locomotor at low speed.

2 DIRECT PROBLEM

The rail is represented as a plane beam with constant geometrical and mechanical properties

resting on a linearly elastic foundation with viscous damping, and subjected to a Dirac delta

load of amplitude P moving at constant speed v. On settingE the Young’s modulus of the cross

section, I its moment of inertia, the solution to this problem in terms of transverse displacement

w as a function of time t and space z can be written in closed form:
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w(z, t) =

⎧⎨⎩
P
EI

(
e(z−vt)k3

(k3−k4)(k3−k1)(k3−k2)
+ e(z−vt)k2

(k2−k4)(k2−k1)(k2−k3)

)
z ≤ 0

− P
EI

(
e(z−vt)k4

(k4−k3)(k4−k2)(k4−k1)
+ e(z−vt)k1

(k1−k3)(k1−k2)(k4−k1)

)
z > 0.

(1)

where k1, k2, k3 and k4 are wavenumbers. The time-history of the response at z = 0 for P = 1 N

resulting from Equation (1) is represented in terms of curvatures χ(z, t) = ∂2w/∂z2 in Figure 1,

for different speeds and damping. Curvature is the observed quantity, since in the experimental

tests we will measure the strain at the foot of the rail, which is tied to the curvature by the linear

relation ε = hGχ, valid under the hypothesis of small displacements, with hG distance between

the center of mass of the cross-section and the foot of the rail. Figure 1a shows that, for speeds

of 28 km/h, approximately corresponding to 0.1 of the critical speed vcr, the dependence of the

maximum amplitude on damping is very limited. The critical speed vcr = (4kEI/(ρA)2)1/4,

with k stiffness of the soil, ρ mass density, and A area of the cross-section, is the lowest speed

at which a free wave can propagate in the rail [1]. When the speed increases, the response is

no longer symmetric, and the maximum amplitude more and more depends on the train speed

(Figure 1b). When the speed equals the critical velocity, a resonance occurs: the maximum

response increases and strongly depends on damping (Figure 1c).

Figure 2a shows the analytical time-history of the strains due to a series of ten Dirac loads

with P=78400 N, which is approximately the load insisting on one wheel of an unalden ETR324,

obtained using Equation 1 for a travelling speed of 28 km/h. Figure 2 b reports, for compari-

son, the experimental time-history of an ETR324, travelling at around 30 km/h. The pattern of

the time-history obtained from the model satisfactorily agrees with the time-history observed

experimentally.

a b c

Figure 1: Time-histories of curvatures for different values of damping and speed: 28 km/h=0.1vcr (a), 140

km/h=0.5vcr (b), 280 km/h=vcr (c). ccr = 2(kρA)1/2

3 INVERSE PROBLEM

The goal of the solution of the inverse problem consists in the identification of the amplitude

of the Dirac deltas representing train loads. It must be considered that the model contains several

parameters, whose values may be more or less uncertain, and that have an influence on the result

of the load identification. Some parameters are mechanical and geometrical characteristics of

the model, that is ρA, EI , k, c, while others concern the load: P and v. We will be dealing with

recordings made at low speed, therefore we will assume c = 0, and, also, that v is known, since

it is easily measurable. The vector of unknown parameters will be x = {ρA,EI, k, P}T .

Let us call ε(x) the vector of observed quantities as a function of the vector of parameters x,

and z the vector of corresponding measured quantities, that is, the time-discretized experimental
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a) b)

Figure 2: Analytical (a) and experimental (b) microstrain time-histories of an ETR324.

response at a given location. The vector of observed quantities is an m-element vector ε(x) =
{ε1(x), ...εm(x)}, whose i-th element represents the strain at a given abscissa and at the i-th
time instant.

Within a Bayesian approach, parameters are random variables, and measured quantities sat-

isfy the relationship

z = ε(x) + n (2)

where n is a vector of stochastic noise, independent of x. Assuming a multivariate normal

distrubution for x and n, and being Sx and Sn the covariance matrices of the initial estimate of

the parameters and of the noise, respectively, the maximum of the probability p(x|z) is attained

for the optimal x̂ of x which minimizes the objective function:

l(x) =
1

2
[z− ε(x)]TS−1

n [z− ε(x)] +
1

2
(x− x0)

TS−1
x (x− x0). (3)

Assuming that the initial estimate x0 is not too far from x̂, a linearization of the relationship

between observed quantities and parameters provides a recursive formula whose iterative appli-

cation enables to reach the minimum of the objective function:

x̂ = x0 + (HTS−1
n H+ S−1

x )−1HTS−1
n (z− ε(x0)), (4)

where H is the sensitivity matrix whose components areHij = ∂εi/∂xj , and S = (HTS−1
n H+

S−1
x )−1 is the a posteriori covariance matrix. Within this linearized framewok, the Hessian

matrix associated to l(x) is He = HTS−1
n H+S−1

x , whose first term is the Fisher or information

matrix A = HTS−1
n H.

Figure 3a reports the time-history of the change of the curvature for a 10% variation of each

of the three model parameters EI , ρA and k. These time-histories are, in practice, the columns

of the sensitivity matrix each multiplied by the variation of the related parameter, and divided by

hG. Figure 3a shows that the parameters which play the most important role areEI and k, while

ρA has a scarce influence. Identifiability is the actual possibility to determine a single set of

optimal parameters x̂ such that the objective function is at a minimum. Some information about

it is provided by H, whose rank indicates the maximum number of identifiable parameters: in
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our case, the rank of H is 3, independently of the number of time samples, which are as many

as the rows of the sensitivity matrix.

More precise information on the choice of parameters and measurements is provided by the

Fisher matrix, which must be invertible for the solution (4) to be calculated. The list of its eigen-

values can put the parameters, or more often, their linear combination, in order of importance.

This is displayed by the shape of the eigenvectors, which enables to point out possible coupling

between parameters. Observing the eigenvectors of the Fisher matrix, which are reported in

Figure 3b, it can finally be concluded that the parameters EI and k are coupled, while ρA is

an independent parameter with scarce influence on the response, in fact, it is associated with

the smallest eigenvalue and the related eigenvector has only the first component different from

zero. In such situation, it seems to be appropriate to obtain the solution of the inverse problem

in two steps: first the optimal parameters EI and k are sought using the response to a known

load, then the updated model is used to determine the amplitude P , the real unknown of the

problem.

The Fisher matrix also provides information on the choice of measurements by means of

its Fisher inflow, which is the value of the terms on the principal diagonal as a function of the

number of measurements. In fact, on assuming that Sn is a diagonal matrix, that is the noise is

uncorrelated, the terms on the principal diagonal can be written as: Aii =
∑

k(σ
4
k)

−1(∂εk/∂xi)
2.

Since the summation occurs over the time instants, in the limit of the time instant between two

samples tending to zero, it is obtained Aij = (1/T )
∫ T

0
(σ4)−1(∂ε/∂xi)

2dt, where T is the du-

ration of the phenomenon. The terms on the principal diagonal of the Fisher matrix provide

then an approximation of this integral, and tend to stabilize when the sampling frequency is

sufficient, indicating that further samples do not provide further information. This is shown in

Figure 4 a and b, where also the trace of A is reported, showing that a number of 40 measure-

ments will provide a stable estimate of the covariance matrix, for our purposes, with a variation

smaller than 5% for an increase of the number of measurements.

ba

Figure 3: Time-histories of the change of curvature for a 10% variation of mechanical parameters (a) and eigen-

values of the Fisher matrix (b).

As proposed, we proceed to the identification of EI and k using 40 samples of a pseudo-

experimental time-history generated by a known load. In the absence of noise and starting

from initial parameters with a 30% error, we obtain convergence to the exact values within five

iterative applications of Equation 4, according to the Newton method. The objective function is

smooth and has a unique minimum, as it is shown in Figure 5. Using the identified parameters, if

we proceed to the identification of the load, we obtain the exact value with a single application

of Equation (4), in fact, since the dependence of the response on P is linear, Equation (4)
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a b

A[i,i] A[i,i]

Figure 4: Fisher inflow and trace of the Fisher matrix (a), and % variation of their values (b) as a function of the

number of samples.

does not constitute an approximation when the unknown parameter is P . It is instead an exact

relationship, which does not requires iterations.

Figure 5: Contourplot of the objective function for pseudo-experimental data in the absence of error.

4 EXPERIMENTAL RESULTS

The procedure proposed is applied to experimental strains recorded at the foot of a rail on a

stretch of line run by a locomotor moving at low constant speed. The weight of the locomotor

is known and equal to 154.22 kN, so that two time-histories are firstly used to identify the

soil stiffness. The resulting objective function is reported in Figure 6a, showing a distinct

minimum. Then, a total of 10 locomotor transits with different constant speeds in the range

5-25 km/h were investigated. The updated model was used to identify the loads considered, at

this stage, as unknowns, and the resulting identified values are reported in Table 1. These loads

are in good agreement with the expected ones, with a mean error of 3.82%. The dispersion of

errors, varying from -10.3 to 3.6%, can be ascribed to the simple interpretative model and to the

the fact that experimental measurements were performed on one rail only, disregarding possible

unbalance of the load. Figure 6b shows the comparison between the experimental time-histories

of strains and those obtained from the updated model and the identified loads.
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transit 1 2 3 4 5

weight 154.68 144.29 138.28 155.35 154.44

error [%] 0.3 -6.4 -10.3 0.7 0.14

transit 6 7 8 9 10

weight 155.46 144.63 157.71 142.73 159.73

error [%] 0.8 -6.2 2.3 -7.5 3.6

Table 1: Identified weights [kN] in the different transits and related error.

a b

Figure 6: Objective function (a) and comparison between experimental and numerical time-histories of strains (b).

5 CONCLUSIONS

• We applied an approach for the identification of travelling loads of freight trains based

on the minimization of the difference between the experimental time-history of strains at

the base of the rail and their analytical counterpart. The model describing the response

is a one-dimensional Euler-Bernoulli beam resting on a linearly elastic soil. The load is

modelled as a Dirac delta load travelling at constant speed, whose amplitude is unknown

and is the final goal of the identification procedure.

• As a result of a sensitivity analysis, among the model parameters, the soil and the beam

stiffness resulted to be the most relevant, while damping was proved to be not significant

for an appropriate description of the response in range of speeds away from the critical

value. The procedure of identification is then performed in two steps, first updating the

model using the response to a known load, then identifying the intensity of travelling

loads.

• Experimental field tests were performed, in which the strains at the foot of the rail due

to the transit of a locomotor at low speed were recorded. Making reference to the known

loads, the model was updated by identifying the optimal value of the soil stiffness and,

afterwards, used as interpretative model to identify the weight of the locomotor, now

assumed as unknown. The loads were then identified with satisfactory accuracy, with a

mean error smaller than 4%.
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