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The decay of an unstable system is usually described by an exponential law. Quantum mechanics predicts
strong deviations of the survival probability from the exponential: Indeed, the decay is initially quadratic,
while at very large times it follows a power law, with superimposed oscillations. The latter regime is
particularly elusive and difficult to observe. Here we employ arrays of single-mode optical waveguides,
fabricated by femtosecond laser direct inscription, to implement quantum systems where a discrete state is
coupled and can decay into a continuum. The optical modes correspond to distinct quantum states of the
photon, and the temporal evolution of the quantum system is mapped into the spatial propagation coordinate.
By injecting coherent light states in the fabricated photonic structures and by measuring a small scattered
fractionof such lightwith an unprecedented dynamic range,we are able to experimentally observe not only the
exponential decay regime, but also the quadratic Zeno region and the power-law decay at long evolution times.
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The exponential decay law is commonly associated with
the probability that a system, initially prepared in an
unstable state (such as an excited atomic level or an
unstable elementary particle), is observed in the same state
after some time [1,2]. Actually, for quantum mechanical
unstable states, decay can be only approximately expo-
nential [3–5]: At short times the survival probability is
quadratic, while at long times it is dominated by a power
law [see Fig. 1(a)]. The aforementioned features of quan-
tum evolution are consequences of first principles and
represent strong signatures of nonclassical behavior.
The initial quadratic behavior, also known as the Zeno
regime, stems directly from a short-time expansion of the
Schrödinger evolution, with the only hypotheses of normal-
izability of the wave function and finite energy fluctuations
of the initial state. The familiar exponential decay sets in at
intermediate times, and its derivation is always the conse-
quence of assumptions of some sort, such as weak coupling
or Markovianity. The long-time evolution is a consequence
of the boundedness from below of the Hamiltonian, an
indispensable condition from a physical perspective. Under
this hypothesis, a straightforward application of the Paley-
Wiener theorem on Fourier transforms yields long-time
power-law tails [6–8] (see, however, [9]).
The initial “Zeno” region [10] has been experimentally

confirmed in a variety of physical systems, including trapped

atoms [11–13], Bose-Einstein condensates [14,15], cavity
quantum electrodynamics [16,17], Rydberg atoms [18], and
optical waveguide arrays [19]. On the other hand, to the best
of our knowledge, a single experimental observation of the
power-law decay was reported, with the acquisition of the
temporal decay of the fluorescence signal of dissolved
organic molecules [20], although without an underlying
theoretical model that enables one to compute the power-law
decay from first principles. In general, power-law decay tails
are very elusive, since the preceding region of exponential
decay usually depletes the initial state at a point that makes
any subsequent observation extremely challenging.
Arrays of single-mode optical waveguides are a powerful

platform to experimentally investigate diverse quantum
dynamics. The optical modes represent distinct quantum
states of the photon that can be coupled with high control
by tuning the evanescent-field-mediated interaction between
waveguides. The time evolution of the Schrödinger equation
is mapped onto the longitudinal propagation in the wave-
guides, thus making it easy to investigate even fast dynamics
[21]. In addition, photons are almost immune to decoherence.
Exploiting such favorable features, several quantumphenom-
ena that are difficult to observe in solid state systems have
been successfully studied with photonic structures. These
include Bloch oscillations [22,23], Anderson localization
[24,25], and the Zeno decay regime mentioned above [19].
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Engineered waveguide arrays, excited with identical photon
pairs, have also allowed the experimental study of multi-
particle quantum decay processes [26].
In this work, we use optical waveguide arrays, fabricated

by femtosecond laser micromachining technology [22,
26,27], to implement quantum systems where a discrete
state is made unstable by its coupling to a continuum [28].
Different structures are fabricated, optimizing the param-
eters in such a way that different dynamical decay regimes
can be detected and scrutinized, when coherent laser light
is injected at the input. To probe the system evolution, we

acquire with a high dynamic range the light scattered from
the array. In this way, we are able to observe, within a single
experimental platform, the quadratic Zeno region, the tran-
sition to the exponential regime, the wave-function renorm-
alization, and the power-law decay at long evolution times.
The physical system investigated consists of a semi-

infinite linear array of single-mode optical waveguides,
which can be excited by light with fixed polarization. The
transverse optical modes correspond to localized quantum
states jni, with n ≥ 0 indexing the different waveguides.
Neighboring modes are coupled by evanescent-field inter-
action: The first one is coupled to the second one by a
coefficient κ0, while all others are coupled by a coefficient κ
[Fig. 1(b)]. The first waveguide is also characterized by a
propagation-constant detuning ε, which, from the quantum
evolution point of view, corresponds to the energy detuning
of the site; all other waveguides are identical. As shown in
Fig. 1(c), such a system actually consists in a discrete state
(the first site), coupled to a continuum band of width 4κ [29].
The dynamics of this quantum system is generated by the

Hamiltonian

H ¼ H0 þH1 þHint; ð1Þ

with

H0 ¼ εj0ih0j; ð2Þ

H1 ¼ κ
X
n≥1

ðjnihnþ 1j þ jnþ 1ihnjÞ

þ q
X
n≥1

ðjnihnþ 2j þ jnþ 2ihnjÞ; ð3Þ

Hint ¼ κ0ðj0ih1j þ j1ih0jÞ þ q0ðj0ih2j þ j2ih0jÞ: ð4Þ

Note that we have also included a next-nearest-neighbor
hopping term, characterized by a coupling coefficient q (q0
for the first waveguide). This additional interaction is
unavoidable in our experimental setting, and its effects
are typically small [30] but can become quantitatively
relevant in the high-depletion (long-time) regimes; we will
assume for simplicity q0 ¼ q in the numerical simulations.
We consider the system initialized at t ¼ 0 in the first site

of the array, jψ0i ¼ j0i. The quantity typically chosen to
investigate the temporal behavior of the system is the
survival probability, defined (with ℏ ¼ 1) as

pðtÞ ¼ jaðtÞj2; aðtÞ ¼ hψ0jψðtÞi ¼ hψ0je−itHjψ0i:
ð5Þ

The initial state is unstable, i.e., pðtÞ → 0 as t → ∞, if
λ2 < 1 − jεj=2κ [31], being λ ¼ κ0=κ. The survival prob-
ability amplitude is the sum of two terms [31]:

aðtÞ ¼ Ze−iEPt þ acutðtÞ; ð6Þ

(a)

×

(b)

(c)

(d)

FIG. 1. (a) Typical decay of a quantum state coupled to a
continuum, showing the peculiar features of the survival prob-
ability pðtÞ. The initial region is quadratic, with the curvature at
t ¼ 0 characterized by the Zeno time τZ. At intermediate times, a
familiar exponential decay sets in, with a lifetime τ ¼ Oðλ−2Þ,
where λ is the coupling constant, and a “wave-function renorm-
alization” Z ¼ 1þOðλ2Þ, which represents the value of its
extrapolation back to t ¼ 0. At very large times, when the
survival probability is reduced to Oðλ10Þ, a power-law regime
is observed, with superimposed oscillations. In particular, we
refer to the system represented in (b): An optical mode with
detuning ε is coupled, by a coupling constant κ0, to a chain of
optical modes with relative coupling κ. (c) Level scheme of such a
system: The states of the chain make up a continuum with
bandwidth 4κ (as in a tight-binding one-dimensional lattice).
(d) Experimentally, we study this system with an array of single-
mode optical waveguides.
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where EP is the pole of the propagatorGðzÞ ¼ ðz −HÞ−1 in
the second Riemann sheet [28], whose imaginary compo-
nent yields the decay rate. The exponential law is normally
dominant at intermediate decay times. Z is called the
wave-function renormalization and can be determined by
extrapolating the exponential probability back to t ¼ 0:

Z ¼ jZj2 ¼ 1þ λ2

1 − λ2
1 − 3

4
λ2 − ð ε

2κÞ2
1 − λ2 − ð ε

2κÞ2
: ð7Þ

It is possible to check that, whenever the imaginary part
of EP is nonvanishing, the value of Z provided by the
above equation is strictly larger than one. The term acutðtÞ
accounts for all deviations from the exponential and
dominates at short and long times. In general, interference
between the pole and cut terms also generates oscillations
in the survival probability.
The survival probability at short times can be extracted

by a Taylor expansion of the evolution operator e−itH,
resulting in

pðtÞ ¼ 1 −
�

t
τZ

�
2

þOðt4Þ: ð8Þ

The survival probability is thus quadratic at very short
times, with curvature determined by the Zeno time

τZ ¼ ðhψ0jH2jψ0i − hψ0jHjψ0i2Þ−1=2 ¼
1

κ0
: ð9Þ

At long times, the contribution of acutðtÞ becomes
dominant over the exponential term, accounting for the
power-law behavior. In our case, the survival probability at
long times reads

pðtÞ ≃ jacutðtÞj2 ¼
�
CðtÞ
t

�
3

f1þ αðtÞ cos½4κtþ φðtÞ�g;

ð10Þ

where CðtÞ, αðtÞ, and φðtÞ become constant at sufficiently
long times. This result is to be expected from first principles
[6–8]. An exponential behavior at all times would imply
a Lorentzian energy density distribution, with support on
all (positive and negative) energies, i.e., an unbounded
Hamiltonian. Instead, if the spectrum is bounded from
below, with a finite ground-state energy, the Paley-Wiener
theorem states that the function ½lnpðtÞ�=ð1þ t2Þ is inte-
grable, and thus pðtÞ must be slower than exponential at
long enough times. In general, the power law appearing in
Eq. (10) is related to the structure of the coupling and the
behavior of the density of states at energies close to the
edge(s) of the continuum. The oscillatory behavior, with
angular frequency 4κ, is due to the interference between the
contributions from the two band edges. Finally, notice that
the exact expression of the Zeno time (9) is left unchanged
by the introduction of next-to-nearest-neighbor couplings,

as well as the form of the long-time survival probability (10),
provided q is real and jq=κj < 1=4.
In our experiments, waveguides were fabricated in a

fused silica substrate by femtosecond laser direct inscrip-
tion [32]. We used the second harmonic (520 nm wave-
length) of an ytterbium femtosecond laser (HighQ
femtoREGEN), producing ≃400 fs duration pulses at
20 kHz repetition rate. In our experiments, laser pulses
with 350 nJ energy were focused, by means of a 0.45 NA
microscope objective, 170 μm below the glass surface, and
the substrate was translated with respect to the laser beam at
a constant speed comprised between 20 and 34 mm=s.
Waveguides fabricated with these irradiation parameters
yield single-mode behavior for the 633 nm wavelength and
propagation losses of 0.6 dB=cm.
To investigate the light propagation in waveguide arrays,

we injected horizontally polarized light from a He:Ne
laser source in the first waveguide (which corresponds to
initializing the system in state j0i) and imaged the structure
from above, acquiring the scattered light at each point.
The scattered signal is indeed locally proportional to the
intensity of the propagating light.
As mentioned in the preceding analysis, we are mainly

interested in retrieving the population of the first wave-
guide. This is not easy, because such a quantity spans a few
orders of magnitude: At its entrance (i.e., at t ¼ 0), the first
waveguide (namely, state j0i) is fully populated, but at later
times, when the interesting power-law dynamics sets in, it
may be heavily depleted. To perform the measurement, we
developed a microscope assembly operating as a high-
dynamic-range image scanner [33]. The assembly is moved
along the propagation coordinate by a computer-controlled
motorized stage, with synchronized image acquisition by a
CCD. To enhance the dynamic range of the measurement,
pictures taken at different exposure times are combined
and analyzed together. The experimental survival proba-
bility pðtÞ is retrieved as the ratio between the optical
power scattered from the first waveguide and the global
scattered power at each t. In this way, propagation losses of
the waveguides, which are uniform in the array, are also
normalized out and do not affect our results.
The coupling coefficients κ, κ0, and q depend on the

relative distance between the waveguides, while the detun-
ing ε can be controlled by varying the writing speed [32].
These quantities have been calibrated in independent
experiments, where we fabricated several couples of
identical parallel waveguides at different relative distances
and other couples of parallel waveguides that differ in
writing speed. By observing the periodicity of the bouncing
of coherent light between the coupled waveguides [34],
it is possible to measure the coupling coefficients and the
propagation-constant detuning, thus retrieving their depend-
ence on the inscription parameters.
We realized arrays characterized by different geometrical

parameters, each containing 40 waveguides. To avoid boun-
dary effects, we always chose coupling conditions in which
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light does not reach the last waveguide of the array within
the propagation length (<9 cm, the size of our glass samples)
[35]. In such conditions, the system dynamics is well
explained by the semi-infinite model discussed above.
Table I displays the relevant physical parameters of three
structures, which have been tailored in order to observe
different dynamical regimes.
The transition between the initial Zeno region and the

exponential decay is evident for systems in which state j0i
is weakly coupled to the continuum. In Fig. 2, we report the
experimental decay of a system designed with λ ≃ 0.37,
whose parameters are listed in line A in Table I. Figure 2(a)
shows, in linear scale, the full evolution analyzed in the
experiment. An initial quadratic region is manifest at early

times. The subsequent exponential behavior is plainly
revealed in Fig. 2(b), where the same data are plotted in
a semilogarithmic graph: A linear fit, corresponding to an
exponential decay in the linear scale, is also plotted. By
enlarging the propagation region below 20 mm [Fig. 2(c)],
one can see that the intercept of this straight line, corre-
sponding to the wave-function renormalization parameter
Z in Eq. (7), falls above 1. Although the fitted value
Z ≃ 1.23 is slightly larger than expected, the experimental
outcomes confirm the theoretical prediction Z > 1 for the
analyzed dynamics, independent of the specific values of
the parameters.
The large-time behavior predicted in Eq. (10), consisting

in a t−3 power-law tail with superimposed oscillations, can
be better appreciated in systems with stronger couplings.
Figure 3 shows the measured decay for two systems,
corresponding to cases B and C in Table I and featuring
λ ≃ 0.89 and λ ≃ 1.16, respectively. In case C, the energy
detuning of the system is zero (waveguides are written with
the same propagation constant) and oscillations are more
pronounced, while in case B, where the detuning is relevant
(ε ≃ κ), oscillations are almost suppressed.
In case B, the experimentally observed decay follows

with good approximation the theoretical (solid green) line,
which, at t ≃ 40 mm, relaxes towards the asymptotic power
law pðtÞ ≃ ðC∞=tÞ3 [see Eq. (10)], with C∞ ¼ 9.48 mm.
Thus, the dynamics of case B features a pure power-law
behavior at times which are long but still within reach of
the experiment. It must be noted that the choice of the
parameters has allowed the observation of the onset of
such a regime when the state was not heavily depleted
yet [pðt ¼ 40 mmÞ ∼ 10−2]. Even for case C, theoretical
simulations show that the power law takes place at
sufficiently long times, but here such times are far beyond
the experimental reach by an order of magnitude.
Therefore, the behavior observed in Fig. 3(b), although
subexponential, cannot be described by a single power law.
The most interesting feature of the time evolution in case
C is the presence of oscillations with period π=ð2κÞ [see
Eq. (10)], which are due to the coupling with a bounded
continuum,with bandwidth 4κ. Such oscillations are entirely
due to the cut contributions to the survival amplitude and
cannot be described by any Markovian approximation.

TABLE I. Relevant physical parameters of the three waveguide arrays (A, B, and C). d0 is the distance between the first and the second
waveguide, and d the distance between all other neighboring waveguides. v0 is the writing speed of the first waveguide, and v the writing
speed of all the other ones. κ0, κ, ε, and q have the same meaning as in Eq. (5); the reported values for each array are the nominal ones,
estimated on the basis of the preliminary calibration experiments. Errors correspond to standard deviations and are due to tolerances in
the waveguide inscription process; they are also estimated by means of the calibration experiments. Where not written explicitly,
uncertainty is indicated by the number of significant digits used.

d0 d v0 v κ0 κ ε q

A 12.0 μm 17.0 μm 31.30 mm=s 30.00 mm=s 0.045� 0.001 mm−1 0.119� 0.004 mm−1 −0.08� 0.09 mm−1 0.005 mm−1

B 15.5 μm 15.0 μm 30.00 mm=s 31.30 mm=s 0.118� 0.004 mm−1 0.132� 0.004 mm−1 0.10� 0.09 mm−1 0.01 mm−1

C 14.0 μm 15.0 μm 30.00 mm=s 30.00 mm=s 0.183� 0.006 mm−1 0.158� 0.005 mm−1 0.0 mm−1 0.01 mm−1

(a)

(b) (c)

FIG. 2. Experimental survival probability in a weakly coupled
system (array A in Table I). Experimental points (black dots) are
reported in linear (a) and semilogarithmic plots (b),(c). Exper-
imental errors are shown in the linear plot as a gray area around the
points. The green continuous line in (a) is the theoretical prediction,
obtained by solving Eq. (5) with the nominal data (κ0, κ, ε, q) of
array A. The orange dotted line in (a) is the parabolic trend
1 − ðt=τzÞ2 with τz ¼ 1=κ0. The red continuous line in (b) and
(c) is a linear fit performed on the semilogarithmic plot, considering
the data between the two dashed red lines in (b).
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We have reported the experimental observation of differ-
ent decay regimes, typical of genuinely quantum dynamics,
using photons propagating in waveguide arrays. The
femtosecond laser writing technology allowed us to define
with high control the relevant physical properties of the
system. We adopted a multiexposure acquisition technique
to extend the available dynamic range beyond the 8-bit
limit of the camera, allowing us to compare intensity levels
which differ by a factor larger than 104. In this way, we
have been able to characterize power-law decay tails, which
are generally very elusive to experimental observation. We
believe that these results open novel perspectives in the
study of quantum decay dynamics, as well as in the
investigation of the interaction between a system and its
environment, including noise-enhanced transport phenom-
ena or non-Markovian processes.
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