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A B S T R A C T   

Near-infrared (NIR) spectroscopy of fuels can suffer from scattering effects which may mask the signals corre
sponding to key analytes in the spectra. Therefore, scatter correction techniques are often used prior to any 
modelling so to remove scattering and improve predictive performances. However, different scatter correction 
techniques may carry complementary information so that, if jointly used, both model stability and performances 
could be improved. A solution to that is the fusion of complementary information from differently scatter cor
rected data. In the present work, the use of a preprocessing fusion approach called sequential preprocessing 
through orthogonalization (SPORT) is demonstrated for predicting key quality parameters in diesel fuels. In 
particular, the possibility of predicting four different key properties, i.e., boiling point (◦C), density (g/mL), 
aromatic mass (%) and viscosity (cSt), was considered. As a comparison, standard partial least-squares (PLS) 
regression modelling was performed on data pretreated by SNV and 2nd derivative (which is a widely used 
preprocessing combination). The results showed that the SPORT models, based on the fusion of scatter correction 
techniques, outperformed the standard PLS models in the prediction of all the four properties, suggesting that 
selection and use of a single scatter correction technique is often not sufficient. Up to complete bias removal with 
50% reduction in prediction error was obtained. The R2

P was increased by up to 8%. The sequential scatter fusion 
approach (SPORT) is not limited to NIR data but can be applied to any other spectral data where a preprocessing 
optimization step is required.   

1. Introduction 

Non-destructive estimation of fuels properties with near-infrared 
(NIR) spectroscopy is of key importance as it is a rapid and cost- 
effective option [1]. Applications of NIR spectroscopy range from pe
troleum profiling and characterization [2], source and type identifica
tion [3], adulteration detection [4], oxidative stability detection [5], 
production process monitoring [6] and estimation of physical and 
chemical properties [7]. 

NIR spectroscopy, as other optical techniques, may suffer from 
spurious sources of variability in the signal brought by additional un
wanted interactions of light with the samples [8]. These effects, the most 
relevant of which is light scattering, may mask the underlying spectral 
signal [9], so that scatter correction techniques are commonly used to 

try to remove them or, at least, reduce their impact [10]. In a traditional 
approach, a single scatter correction technique [11–13] is usually 
selected out of a shortlist of potential candidates. However, since the 
various scatter correction techniques operate differently from one 
another and, as a consequence, data preprocessed with different scatter 
correction techniques carry at least partially complementary informa
tion, the use of a single scatter correction method may lead to 
sub-optimal modelling [14,15]. Recently, Mishra et al. [14] showed that 
a fusion of complementary scatter correction techniques is the best so
lution as the information captured by differently scatter corrected data 
can be efficiently used. 

Recently, a preprocessing fusion approach called sequential pre
processing through orthogonalization (SPORT) was developed [16]. The 
SPORT approach exploits the chemometric concept of multi-block data 
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analysis [17] and, in particular, takes inspiration from sequential and 
orthogonalized partial least-squares (SO-PLS) [18]. In SPORT, data 
preprocessed by means of different techniques constitute a multi-block 
data set, which can then be analyzed using SO-PLS. Accordingly, the 
SPORT approach can be used for the fusion of complementary scatter 
correction techniques by preprocessing the same data with several 
scatter correction techniques and later performing multi-block calibra
tion (or classification, depending on the final aim of the study), as 
explained in detail in Ref. [14]. 

Starting from these considerations, the aim of the present work is to 
prove that NIR-based calibration models for predicting fuel properties 
can benefit from a complementary fusion of scatter correction tech
niques, in particular using the above-mentioned sequential approach 
called SPORT. In detail, a case study involving the use of NIR spec
troscopy for the prediction of four different key properties in diesel fuels, 
namely boiling point (◦C), density (g/mL), aromatic mass (%) and vis
cosity (cSt), was considered. To highlight the advantages resulting from 
the SPORT fusion approach, the outcomes were compared with those of 
standard PLS modelling on data pretreated by SNV followed by 2nd 
derivative (which is a common combination of spectral preprocessing 
for this kind of data). 

2. Materials and methods 

2.1. Data set 

The data set used in the study is a benchmark data set for NIR-based 
calibration and consists of NIR spectra of diesel fuels along with the 
reference values of various properties of the samples. The data were 
obtained at SoutWest Research Institute (SWRI) and made available on 
the official website of Eigenvector, Inc, where they can be accessed at 
http://eigenvector.com/data/SWRI/index.html. The data set has been 
used as benchmark for testing various chemometric approaches, in 
particular for variable selection: for instance, the data have been 
analyzed to evaluate the performances of a newly defined criterion for 
variable importance [19] or of approaches such as spectral 
clustering-based interval partition (SCIP) [20], 
moving-window-improved Monte Carlo uninformative variable elimi
nation (MC-UVE-PLS) [21], genetic inverse least squares (GILS) [22]. On 
the other hand, the same data set has also been used to evaluate the 
performances of regression approaches other than standard partial least 
squares, e.g., extreme learning machine (ELM) [23] or wavelet packet 
consensus interval partial least squares (WpCo-iPLS) [24]. Lastly, the 
problems connected to preprocessing have only been addressed by 
investigating the effect of a strategy based on the calculation of frac
tional order derivatives [25], so that the present study is the first to 
systematically evaluate how combining multiple preprocessing strate
gies into a fused approach could improve the quality of calibration 

models. 
A total of 395 samples were analyzed and the spectra were collected 

in the range 750–1550 nm. Four different properties were considered in 
this study, i.e, boiling point (◦C), density (g/mL), aromatic mass (%) and 
viscosity (cSt). The boiling point was measured at 50% recovery using 
ASTM D86 approach. The density was measured at 15 ◦C using the 
ASTM D4052 approach. The total aromatic mass was measured using the 
ASTM D5186. The viscosity was measured at 40 ◦C. The samples were 
further portioned into calibration (60%) and test (40%) set using the 
Kennard-Stone algorithm [26]. A summary of the data is further pro
vided in Table 1. 

2.2. Data analysis 

2.2.1. Scatter correction methods 
Four different scatter correction methods were considered to pretreat 

the data prior to SPORT fusion. The first method was multiplicative 
scatter correction (MSC), which models the spectra as a mixture of 
scattering and absorbance [27]. The second method was the standard 
normal variate (SNV) [28] transform in which, for a given spectrum, 
offset correction is achieved by subtracting the mean intensity while 
reducing the multiplicative effect is achieved by division by the standard 
deviation. The third method was variables sorting for normalization 
(VSN) [29] which assumes that not all the bands are equally altered by 
the unwanted effects and, consequently, assigns to each variable a 
weight in the range [0,1] corresponding to its probability of being 
affected only by scattering. VSN calculates the weights based on random 
consensus (RANSAC) algorithm which estimates to what extent a 
wavelength is affected by size effects (additive and multiplicative off
sets) rather than by shape effects (features ascribable to chemically 
relevant contributions). In this way, variables that are strongly related 
to chemical constituents have a low weight and negligible role in the 
calculation of the size effect. The main benefit of the VSN approach in 
comparison to MSC is that it does not require any reference spectrum to 
estimate the weights. In the present work, the weights estimated by VSN 
(assuming a multiplicative effect and a constant offset and automatically 
optimizing the RANSAC tolerance based on the maximum variance of 
the weights criterior described in Ref. [29]) were integrated in SNV 
leading to a weighted SNV. The fourth method was the calculation of 
2nd derivative, which is commonly used to remove both additive and 
multiplicative effects [10]. Numerical differentiation, i.e, calculation of 
the second derivative, was performed using the Savitzky-Golay 
approach (2nd order polynomial + 21-point window). All the 
pre-processing methods were implemented in MATLAB 2018b (The 
Mathworks, Natick, MA, USA) using the MBA-GUI [30]. 

2.2.2. Partial least-squares (PLS) regression 
PLS regression is a common latent space-based chemometric method 

[31] widely used for NIR data modelling [32]. PLS deals with the mul
ticollinearity in the NIR data by projecting the data onto a subspace of 
latent variables (LVs) which are extracted so to have maximum covari
ance with the response(s). This guarantees that the scores are at the 
same time explanatory of the variance in NIR data, and relevant for 
predicting the response variables. In the study, PLS models have been 
calculated by means of MATLAB’s built-in function ‘plsregress’, com
bined with a 10-fold cross validation procedure to select the optimal 
number of latent variables (LVs). 

2.2.3. Sequential preprocessing through orthogonalization (SPORT) 
SPORT is a preprocessing fusion approach directly inspired by 

sequential and orthogonalized partial least squares (SO-PLS) modelling, 
and it consists in building a multi-block data set made of different ver
sions of the experimental NIR data, each one pretreated according to a 
specific preprocessing approach, and then using this multi-block data to 
build a calibration model for the prediction of the property(-ies) of in
terest by means of SO-PLS [16]. A schematic illustration of the SPORT 

Table 1 
A summary of the spectroscopic data sets used in this study.  

Fuel 
properties 

Calibration set Test set 

Spectroscopic 
data (samples ×
variables) 

Reference 
values 
(mean ±
std) 

Spectroscopic 
data (samples ×
variables) 

Reference 
values 
(mean ±
std) 

Boiling 
point 
(◦C) 

237 × 401 257 ± 23 158 × 401 260 ± 16 

Density 
(g/mL) 

237 × 401 0.84 ± 0.01 158 × 401 0.84 ± 0.01 

Aromatic 
mass 
(%) 

237 × 401 30 ± 7 158 × 401 31 ± 5 

Viscosity 
(cSt) 

237 × 401 2.53 ± 0.58 158 × 401 2.49 ± 0.42  
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approach is presented in Fig. 1. Initially, a PLS regression model is fitted 
between the Y and the first pre-processed block, obtaining, among other 
information, the scores for the first block (T1). Then, the second block is 
orthogonalized with respect to the scores (T1) of the first regression and 
the residuals of Y are fitted to the orthogonalized second block. The 
procedure is continued for as many blocks as there are pretreatments. 
The number of LVs to be extracted from each block is usually optimized 
in cross-validation using a global approach; all possible combinations of 
LVs are tested and the optimal one is the one resulting in the lowest 
RMSECV. In the present work, the preprocessing order used for the 
sequential fusion was 2nd derivative, VSN, SNV, MSC and then raw data 
(resulting in a total of 5 blocks of predictors), and the SPORT was 
implemented using the freely available MBA-GUI [30]. 

3. Results 

3.1. PLSR modelling vs SPORT 

The results from PLS and SPORT modelling are graphically summa
rized in Fig. 2. For all the four properties, the SPORT approach attained a 
higher R2

p compared to the standard PLS modelling. In the case of 
boiling point, the improvement was mainly noted in the value of the 
RMSEP, which was reduced by 14%; on the other hand, as far as density 
is concerned, the RMSEP was decreased by 50% and the R2

p was 
improved by 3%. For the prediction of the aromatic mass, the RMSEP 

was reduced by 26%, the R2
p was increased by 2% and the bias was 

completely removed. Lastly, when considering the viscosity, the RMSEP 
was reduced by 20%, the R2

p was increased by 8% and the bias was 
reduced by 71%. 

3.2. Complementary information captured by SPORT 

By examining more in detail the characteristics of the models, it is 
apparent how the better performances observed when applying the 
SPORT approach, compared to “standard” PLS calibration, can very 
likely be ascribed to the fusion of complementary information from 
differently scatter-corrected data. Indeed, since the orthogonalization 
steps removes redundancies among the blocks, complementarity is 
associated to the fact that more than a single block contribute to the final 
model with a non-zero number of latent variables. In particular, the 

Fig. 1. Schematic illustration of the SPORT approach for sequential fusion of preprocessings. T1 to T5 represent the scores extracted from each block of data. Y and Y′

correspond to the measured and predicted responses, respectively. 

Fig. 2. Graphical representation of the performances of PLS (upper panel) and SPORT (lower panel) on the test set samples for the prediction of the four fuel 
properties considered in the present study: (A) and (E) boiling point (◦C); (B) and (F) density (g/mL); (C) and (G) aromatic mass (%); (D) and (H) viscosity (cSt). 

Table 2 
A summary of the optimal number of latent variables extracted from differently 
scatter-corrected data by SPORT.  

Fuel properties 2nd derivative VSN SNV MSC Raw 

Boiling point 3 5 0 0 0 
Density 0 8 0 10 0 
Aromatic mass 7 1 0 0 0 
Viscosity 0 0 4 0 3  
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number of LVs from each block corresponding to the optimal models for 
the prediction of the four diesel fuel properties is shown in Table 2. By 
looking at the table, it is immediately evident how, for all the properties, 
the optimal models were obtained by using information extracted from 
at least two scatter correction techniques: 2nd derivative and VSN in the 
case of boiling point and aromatic mass, VSN and MSC for density. In the 
case of viscosity, prediction was anyway improved by integrating the 
raw data with SNV only. 

Such complementarity can also be observed when inspecting the 
regression vectors of the four SPORT models built for the prediction of 
the individual fuel properties, which are displayed in Fig. 3. At a first 
glance, indeed, it can be noted that, for each SPORT model, the 
regression vectors associated to the individual preprocessing blocks (of 
course, only those with non-zero LVs) are different both in magnitude 
and in shape: when comparing the different regression vector for the 
prediction of a particular property, there are regions with non-zero co
efficients only for a preprocessing and not for the other, and there are 
also wavelength intervals where the regression vectors have similar 
shape but are slightly shifted. Similar pattern for complementary 
regression vectors was also noticed by Mishra et al., 2020 [14]. 

4. Conclusions 

The work proves that the fusion of different complementary scatter 
correction techniques is essential for building optimal models for pre
dicting fuel properties with NIR spectroscopy. In particular, as demon
strated in this study, the SPORT approach allows automatic extraction of 
the complementary information and, therefore, in the future, its use in 
NIR modelling is highly recommended to the scientific community. A 
complementary fusion of scatter correction techniques with SPORT also 
has the benefit that it takes the user out of the loop of identifying the best 
preprocessing by developing several models, each based on a candidate 
option, and then selecting the optimal one, thus, allowing to save time 
and resources. On the other hand, a drawback of the SPORT approach is 
that its performances or optimization may be affected by the order in 
which the preprocessing blocks are arranged. However, in this context it 
should also be pointed out that while the order of the blocks may in
fluence the selected preprocessings and, in general, the number of latent 
variables extracted from each matrix, on the other hand, the predictive 

performances have been shown not to be influenced relevantly [18]. To 
achieve optimal performances, it is recommended that powerful scatter 
correction methods such as VSN, SNV, 2nd derivative and MSC should 
be given priority. If time is a constraint, then user may arrange the faster 
and model-free approaches such as SNV or 2nd derivative as the first 
ones, leaving model-based methods such as VSN or MSC to a later stage. 
Anyway, it is worth to be pointed out that the SPORT approach is not 
limited to NIR data, but it can be used integrate multiple preprocessing 
technique with any spectroscopic (or even instrumental) data. 

CRediT authorship contribution statement 

Puneet Mishra: Conceptualization, Data curation, Investigation. 
Federico Marini: Formal analysis, Software, Visualization. Alessandra 
Biancolillo: Formal analysis, Methodology, Software. Jean-Michel 
Roger: Software, Writing - review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] Z.S. Baird, V. Oja, Predicting fuel properties using chemometrics: a review and an 
extension to temperature dependent physical properties by using infrared 
spectroscopy to predict density, Chemometr. Intell. Lab. Syst. 158 (2016) 41–47. 

[2] B.P.O. Lovatti, S.R.C. Silva, N.d.A. Portela, C.M.S. Sad, K.P. Rainha, J.T.C. Rocha, 
W. Romão, E.V.R. Castro, P.R. Filgueiras, Identification of petroleum profiles by 
infrared spectroscopy and chemometrics, Fuel 254 (2019) 115670. 

[3] R.M. Balabin, R.Z. Safieva, Gasoline classification by source and type based on near 
infrared (NIR) spectroscopy data, Fuel 87 (2008) 1096–1101. 

[4] E.M. Paiva, J.J.R. Rohwedder, C. Pasquini, M.F. Pimentel, C.F. Pereira, 
Quantification of biodiesel and adulteration with vegetable oils in diesel/biodiesel 
blends using portable near-infrared spectrometer, Fuel 160 (2015) 57–63. 

[5] F.S. Vieira, C. Pasquini, Determination of the oxidative stability of biodiesel using 
near infrared emission spectroscopy, Fuel 117 (2014) 1004–1009. 

[6] R. Sales, N.C. da Silva, J.P. da Silva, H.H. França, M.F. Pimentel, L. Stragevitch, 
Handheld near-infrared spectrometer for on-line monitoring of biodiesel 
production in a continuous process, Fuel 254 (2019) 115680. 

Fig. 3. Regression vectors from SPORT. (A) Boiling point (2nd derivative in blue and VSN in red), (B) density (VSN in red and MSC in green), (C) aromatic mass (2nd 
derivative in blue and VSN in red), and (D) viscosity (SNV in yellow and raw data in cyan). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

P. Mishra et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0039-9140(20)30984-X/sref1
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref1
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref1
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref2
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref2
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref2
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref3
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref3
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref4
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref4
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref4
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref5
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref5
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref6
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref6
http://refhub.elsevier.com/S0039-9140(20)30984-X/sref6


Talanta 223 (2021) 121693

5

[7] C.L. Cunha, A.R. Torres, A.S. Luna, Multivariate regression models obtained from 
near-infrared spectroscopy data for prediction of the physical properties of 
biodiesel and its blends, Fuel 261 (2020) 116344. 

[8] C. Pasquini, Near infrared spectroscopy: a mature analytical technique with new 
perspectives – a review, Anal. Chim. Acta 1026 (2018) 8–36. 

[9] H. Martens, J.P. Nielsen, S.B. Engelsen, Light scattering and light absorbance 
separated by extended multiplicative signal correction. Application to near- 
infrared transmission analysis of powder mixtures, Anal. Chem. 75 (2003) 
394–404. 

[10] J.-M. Roger, J.-C. Boulet, M. Zeaiter, D.N. Rutledge, Pre-processing methods, in: S. 
D. Brown, R. Tauler, B. Walczak (Eds.), Comprehensive Chemometrics, vol. 3, 
Elsevier, Oxford, UK, 2020, pp. 1–75. 
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