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Abstract—The gradual transition from a reactive to a radiative
regime is studied for leaky modes supported by multilayered
planar open waveguides. The so-called leaky cutoff condition, i.e.,
the frequency for which the leaky phase constant β equals the
leaky attenuation constant α, originally introduced for microstrip
lines and other printed structures, is investigated here with the
aim of providing detailed information on the relative amount
of reactive and radiative attenuation for leaky modes excited by
finite sources and propagating as cylindrical waves along general
planar waveguides. Analytical results are derived on the basis of
a lossy parallel-plate-waveguide model and are validated through
full-wave numerical simulations of two-dimensional leaky-wave
structures based on grounded slabs covered with lossless or lossy
partially reflecting surfaces (including, e.g., graphene layers) that
can be treated as homogenized sheets. An analysis of the complex
wave impedance of the considered leaky modes is also provided,
in order to assess the frequency ranges where a good input
matching can be expected for practical sources. In this regard,
an ad hoc impedance matching network is designed and full-
wave validated for a specific case to show that is indeed possible
to achieve a good impedance matching below cutoff in practical
designs.

Index Terms—Electromagnetic analysis, Fabry–Perot cavities,
frequency selective surfaces, graphene, leaky waves, planar
waveguides, terahertz radiation.

I. INTRODUCTION

LEAKY modes of open electromagnetic waveguides have
constituted an intriguing subject since their discovery

in the 1930s and the first theoretical assessments in the
1950s [1], thanks both to their unusual, often counter-intuitive
mathematical and physical properties and to their effective-
ness in modeling otherwise complicated radiative phenomena,
associated with partially guided propagation (see, e.g., [2]–[4]
and references therein).

Leaky modes have a complex wavenumber (say,
kz = β − jα) also in lossless open waveguides, since
the imaginary part of the wavenumber takes into account
both radiation losses and reactive effects (in addition to
material losses, if present). Furthermore, they often have an
improper nature, i.e., their modal field exponentially grows
at infinity in the transverse direction (we recall that forward,
i.e., β > 0 leaky modes retain an improper nature, whereas
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Fig. 1. (a) The evolution of the radiation pattern of a planar waveguide
based on a PRS, namely an FPC-LWA, below the leaky cutoff β = α. As
the frequency increases approaching the leaky cutoff, the power density at
broadside increases; this behavior can be interpreted as a consequence of
the transition from the reactive regime to the radiative regime. (b) Relevant
transverse equivalent network.

backward, i.e., β < 0 leaky modes retain a proper nature
[3]). These features do not allow for applying to leaky modes
many standard definitions and concepts applicable to bound
modes supported by open or closed waveguides. Referring
to, for instance, planar printed waveguides, such as striplines,
microstrip lines, slotlines, etc., non-standard definitions have
been introduced in order to extend to leaky regimes such
familiar concepts as the characteristic impedance [5], [6] or
the scattering matrix [7].

Indeed, the very basic concept of modal cutoff needs a
special consideration for a leaky mode. Among the few studies
on this aspect, in [8] the condition of leaky cutoff β = α was
first introduced for the fundamental leaky mode of a microstrip
line, as the boundary between a low-frequency, reactive regime
(where β < α) and a high-frequency, radiative regime (where
β > α). The same condition was also derived in [9] by
means of a simple effective-dielectric-constant approach, and
has been applied over the years to a number of cases, such
as microstrips operated on higher leaky modes [10], circular
dielectric rods and waveguides [11], [12], Goubau lines [13],
modified microstrip lines [14], etc.

Planar waveguides based on partially reflecting surfaces
(PRSs) (i.e., parallel-plate waveguides (PPWs) where the
upper plate is replaced with a PRS) also support leaky modes.
When excited by finite sources in the center, these modes
propagate along the structure cylindrical leaky waves and may
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produce useful radiative effects exploited, e.g., in Fabry–Perot
cavity leaky-wave antennas (FPC-LWAs) [3]. We note here
that with the term ‘FPC-LWAs’ we only refer to LWAs based
on homogenized PRS, i.e, uniform or quasi-uniform LWAs
that support the propagation of forward leaky modes only.

It is well known that, in the infinite aperture case [15] (the
finite case being analyzed in [16], [17]), cylindrical leaky
waves radiate a broadside beam as long as β ≤ α (see
Fig. 1). Therefore, the leaky cutoff condition β = α is also
called in this context beam-splitting condition. When β = α,
the radiated power density at broadside is maximized, hence
most of the studies on FPC-LWAs optimize and analyze the
structure to work at the leaky cutoff frequency, or above.

We should stress here that these radiating features only
apply to uniform or quasi-uniform LWAs, i.e., based on
homogenized PRS, and excited by 1-D bidirectional or 2-D
cylindrical leaky waves. Conversely, periodic LWAs (either
provided with 1-D unidirectional or 2-D cylindrical excitation)
designed to have the n = −1 space harmonic in the radiating
regime, generally support backward and forward leaky waves:
thus, a broadside beam is only radiated for |β| ≤ α provided
the open stopband is suitably suppressed [3], whereas for
|β| > α a dual-beam or a conical beam is created depending on
the source type (although for truncated structures a broadside
beam can exist also for |β| somewhat larger than α [16], [17]).

It is also known, however, that the beamwidth of FPC-
LWAs is minimized (and in turn the directivity is maximized)
when β ' 0.5176α [15], [17], thus motivating the interest in
designing FPC-LWAs working below the leaky cutoff. To the
Authors’ best knowledge, in the current literature, a clear and
general analysis of the transition region between the reactive
and the radiative behavior of cylindrical leaky waves below
cutoff, also including the effect of material losses, is still
lacking and is the object of the present analysis.

To this aim, we start by considering in Section II, the sim-
plest case of guided modes in lossy PPWs. The equivalent loss
tangent models here any kind of losses [15], [18]. Comparison
between the modes in lossy and lossless PPWs allows for
determining the transition between reactive attenuation and all
other kinds of losses. We here define useful figures of merit
and derive significant analytical results.

In Section III, we examine the relevant case of planar
waveguides based on PRS, highlighting their connection to
lossy PPWs through a suitable definition of the equivalent
loss tangent [18]. The analytical results are here compared
with independent numerical simulations for several cases of
interest to show the accuracy and the range of validity of
the proposed analysis. An application to the analysis of
graphene planar waveguides (GPWs) operating in the THz
range is also presented to test the method for cases that lie
beyond the range of validity of the previous expressions. The
performance of the proposed antenna is validated through full-
wave simulations confirming that an FPC-LWA based on a
homogenized PRS reaches maximum directivity at broadside
below the cutoff frequency. For this specific case, an ad hoc
impedance matching network is designed to show that it is
possible to achieve a good realized gain even below the cutoff
frequency.

In Section IV, the wave impedance is also analyzed, and
more general considerations about potential impedance match-
ing issues at frequencies below cutoff are discussed. These
considerations find indeed confirmation in the specific case
analyzed in Section III-C. Finally, conclusions are drawn in
Section V.

II. REACTIVE ATTENUATION IN LOSSY PPW

This section analyzes the properties of the fundamental TE-
TM pair of guided modes supported by a lossy PPW. Results
in this section also applies to the fundamental TE-TM pair of
leaky modes supported by an FPC-LWA, as we will extensively
demonstrate in Section III through various accurate numerical
simulations.

From this standpoint, it follows that the results of this
section have full generality provided that the loss tangent
tan δ, here only modeling material losses, is replaced by an
equivalent loss tangent tan δeq [15], [18], modeling radiative
losses in addition to material losses. An accurate description
of tan δeq for PRS-based planar waveguides is given in [18]
and will be briefly commented in Section III for the reader’s
convenience.

In order to maintain the discussion as general as possible,
the results of Section II and III are expressed in terms of a
normalized frequency f̃ = f/f0, where f0 corresponds to the
cutoff frequency, i.e., the frequency for which β = α.

This Section is organized in three subsections. Subsec-
tions II-A and II-B introduce the lossy PPW model and a
figure of merit for the determination of reactive attenuation in
lossy PPWs, whereas in Subsection II-C, significant analytical
results are derived.

A. Lossy PPW model

The wavenumber dispersion of the TE-TM degenerate fun-
damental pair of guided modes supported by a lossy PPW has
the following well-known expression [19]:

kz/k0 = k̂z = β̂ − jα̂ =
√
ε′r

√
1− j tan δ − λ2

4h2ε′r
, (1)

where λ is the vacuum wavelength, εr = ε′r(1− j tan δ) is the
complex-valued dielectric permittivity of the material filling
the PPW (a nonmagnetic material is assumed for simplicity),
and h is the plate distance. We further assume that the
plate distance is set to h = hppw = λ0/2

√
ε′r to have the

cutoff condition (i.e., β = α), occurring exactly at the cutoff
frequency f0 = c/λ0 (c being the speed of light in vacuum,
and λ0 = λ|f=f0 ). With this assumption, Eq. (1) reads:

k̂z =
√
ε′r

√
1− j tan δ − f̃−2, (2)

Dispersion curves, i.e., β̂ and α̂ vs. f̃ for
10−4 ≤ tan δ ≤ 10−1 are reported in Fig. 2(a) (dispersion
curves shade from dark blue to light blue as tan δ ranges
from 10−4 to 10−1). The effect of the loss tangent is to raise
the value of α̂ (or equivalently β̂) at the cutoff frequency.
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Fig. 2. Results for lossy PPWs. (a) Dispersion curves β̂ (solid lines) and α̂ (dashed lines) vs. f̃ = f/f0 for 10−4 ≤ tan δeq ≤ 10−1 (color shade from
dark blue to light blue as tan δ increases). (b) The figure of merit ε (eq. (3)) vs. f̃ . A dashed and a dashed-dotted line mark the conditions ε = 0.5 and
ε = rD ' 0.1444. (c) The frequencies f̃t|t=1/2 and f̃D vs. tan δ calculated through (7) (dashed cyan curve) and (9) (dashed grey curve), and their numerical
evaluations (in solid black and blue curves, respectively).

B. Figure of Merit for Lossy PPWs

We recall that modal attenuation in PPWs can occur in two
independent ways: one is always present and is due to the
reactive attenuation experienced by modes below the cutoff
frequency, and the other one is due to the presence of losses,
if any. Therefore, in a lossless PPW, we only have reactive
attenuation that is completely determined by the imaginary
part of the modal wavenumber.

On the other hand, in order to determine the contribution of
the reactive attenuation in a lossy PPW, it is useful to consider
the wavenumber dispersion of a lossless PPW, obtained from
(2) for tan δ = 0 and reported in black solid and dashed lines
in Fig. 2(a). As discussed above, in the lossless case, for f̃ < 1,
the propagation wavenumber is purely imaginary k̂z,ppw =
−jα̂ppw and thus accounts only for reactive attenuation, as
opposed to the lossy case where k̂z is generally complex and
α̂ accounts for all kinds of losses.

At this point, it is convenient to define the following figure
of merit

ε =
α̂− α̂ppw

α̂
, (3)

which quantitatively isolate the portion of attenuation that is
not due to reactive phenomena. By definition 0 ≤ ε ≤ 1:
for ε → 0, reactive attenuation dominate over other losses,
and vice versa for ε → 1. In general, ε measures the portion
of the attenuation constant that is not contributing to reactive
attenuation. In Fig. 2(b) ε vs. f̃ is reported for the same cases
analyzed in Fig. 2(a). As expected, ε abruptly decreases as
f̃ < 1, and the rate of decrease depends on tan δ: the lower
is the tan δ the steeper is the transition.

We note here that ε is intimately related to the figure of
merit defined in [9, eq. (9)]; the connection between them
will be evident in the next subsection.

C. Analytical Results

The simple form of (2) allows for deriving certain interest-
ing results with a fully analytical approach. In particular, it is

convenient to define

α̂ppw := −Im{k̂z}|tan δ=0 =
√
ε′r

√
f̃−2 − 1, (4a)

α̂c0 := −Im{k̂z}|f̃=1 =
√
ε′r tan δ/2, (4b)

so as to recast (2) in the following compact form

α̂ = α̂ppw

√
1 +

√
1 + 4(α̂c0/α̂ppw)4

2
, (5)

where the frequency-dependent character of α̂ is now implicit
in the definition of α̂ppw.

It is worth to mention here that eq. (7) in [9] is but
the first-order McLaurin approximation of (5) with respect
to (α̂c0/α̂ppw)2. (Note that the definitions of α̂ppw and
α̂c0 in (4a)–(4b) correspond to

√
|Er| and

√
Ei/2, with

E = Er − jEi = k̂2z in [9].) We should also stress that in
the present work we are particularly interested in the role
of reactive attenuation close to the cutoff condition where
α̂ppw ' α̂c0 and thus the formulas in [9] would lead to
inaccurate results (although the approximation error goes as
O(α̂4

c0/α̂
4
ppw), and thus rapidly decays far from the cutoff

f0).
Using (5) in (3) we get an analytical expression for ε as a

function of f̃ . Such an expression allows for easily calculating
the normalized frequency f̃t for which ε|f̃=f̃t = t, being t a
fixed threshold. After algebraic manipulations, an analytical
expression for f̃t as a function of t is found

f̃t =

√
1

1 + tan δ/(2T )
, T =

1

(1− t)2
√
t(2− t). (6)

If one is interested to find the normalized frequency for which
the reactive attenuation is 50% of the total attenuation (see the
intersections between the colored curves and the black dashed
line in Fig. 2(b)), one has to set t = 1/2, for which T = 2

√
3

and thus (6) reduces to

f̃t|t=1/2 =

√
1

1 + tan δ/(4
√

3)
. (7)

This expression is reported in Fig. 2(c) where the analytical re-
sults (solid lines) are compared with numerical results (dashed



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. XX, NO. Y, MONTH YEAR 4

lines) obtained from a numerical search of the intersection
points in Fig. 2(b).

Equation (5) and (6) can also be profitably used to determine
the normalized frequency at which an FPC-LWA is supposed
to have maximum directivity at broadside D0,max [15]. (We
recall here that the connection between lossy PPWs and
FPC-LWAs will be clear in Section III, as mentioned in the
premise to this Section II). As shown in [15], D0,max occurs
at a normalized frequency f̃D for which β̂/α̂ = rD with
rD = (

√
3 − 1)/

√
2 ' 0.5176. Taking the real part of k̂2z ,

and exploiting the definition of α̂c0 (cf. (4b)), we obtain from
(2) the hyperbolic relation β̂α̂ = α̂2

c0 [15] which yields

α̂|f̃=f̃D = α̂c0/
√
rD ' 1.3899α̂c0. (8)

This last relation (8) can be used in (5) to find f̃D. A few
algebra yields:

f̃D =
1√

1 + tan δ/
√

2
. (9)

Interestingly, comparison between (6) and (9) suggests that a
threshold value t = tD exists for which f̃t = f̃D. Indeed,
equating the two expressions, the following equation is found:

t4D − 4t3D + 8t2D − 8tD + 1 = 0, (10)

whose only real root is tD ' 0.1444. Therefore, the condition
for achieving maximum directivity at broadside in an FPC-
LWA always occurs at a frequency point for which ε ' 0.1444
(see dashed-dotted black line in Fig. 2(b)). It is worth noting
that this result holds for any choice of tan δ and ε′r, in the limit
that the lossy PPW approximation holds. For the sake of com-
pleteness, analytical results for f̃t (solid lines) are compared
with numerical results (dashed lines) in Fig. 2(c). (Note that
analytical results refer to the direct implementation of (7) and
(9), whereas numerical results refer to the numerical search
of the corresponding frequencies from results of Fig. 2(a) and
(b).)

We emphasize that in the cases analyzed here (and also in
practical cases) tan δ � 1, thus (6), (7), and (9) are well
approximated by their first-order McLaurin expansions:

f̃t = 1− tan δ

4T
, f̃t|t=1/2 = 1− tan δ

8
√

3
, f̃D = 1− tan δ

2
√

2
.

(11)
The simple form of (11) highlights that f̃D and in general f̃t
are close to the cutoff: and the lower the losses, the closer to
the cutoff they are.

The analytical results of this subsection are open to different
interpretations. From the definition of ε, it does not seem
convenient to operate at f̃D, because in that region reactive
attenuation may prevail on other losses mechanisms. On the
other hand, a low value of ε is not strictly connected to
the structure performance. Therefore, it is worth to further
investigate what should be the minimum threshold t for ε.
In this regard, the results of Section IV will show that f̃D
(thus t = tD ' 0.1444) sets a lower-bound to the normalized
frequency for which a good matching can theoretically be
achieved.

III. REACTIVE ATTENUATION IN PRS-BASED PLANAR
WAVEGUIDES

This Section specializes the general results of the pre-
vious Section II to the relevant case of PRS-based planar
waveguides. Three subsections are considered: the connection
between FPC-LWAs and lossy PPWs is highlighted in Subsec-
tion III-A, whereas the numerical validation of the analytical
results of the previous sections is reported in Subsection III-B
for several cases of PRS-based FPC-LWAs, and in Subsec-
tion III-C for the relevant case of GPWs.

A. Connection to Lossy PPWs

We refer here to a class of PRS-based planar waveguides
used as basic constituents of FPC-LWAs. As shown in Fig. 1,
a scalar shunt admittance Ys is used to fully characterize
the electromagnetic behavior of a PRS placed on top of the
cavity. It should be stressed that, in spite of its simplicity,
this approach has been proven to be rather accurate for the
modeling of various kinds of PRSs in the homogenized regime
[20]–[22], and even for λ0/4 superstrate dielectric layer or
distributed Bragg reflectors [18], [23].

The application of the transverse resonance technique [19],
[24] to the transverse equivalent network depicted in Fig. 1(b)
yields the following dispersion equations for TE and TM
polarizations, respectively:

k̂x0 + Ȳs − jk̂xε cot(k0hk̂xε) = 0, (12a)

k̂−1x0 + Ȳs − jεrk̂−1xε cot(k0hk̂xε) = 0, (12b)

where k̂x0 =

√
1− k̂2z and k̂xε =

√
εr − k̂2z are the normal-

ized vertical wavenumbers in free-space and in the dielectric,
respectively, and Ȳs = Ysη0 = Ḡs + jB̄s is the (generally
complex) admittance normalized to the free-space impedance
η0 ' 377 Ω. The fundamental TE and TM leaky mode pair is
found searching for the complex improper (i.e., Im{kx0} > 0)
roots of (12a) and (12b). Although the dispersion curves of
the TE and TM leaky modes are generally different (as a
consequence of the different expression of their respective
dispersion equations), they can accurately be represented by
the wavenumber dispersion in (1) provided that the PRS is
sufficiently reflective (i.e., B̄s � 1 and Ḡs � B̄s). It is
manifest that, in the limit of |Ys| → ∞, both (12a) and (12b)
recover (2), for h = hppw. Conversely, for finite values of
Ȳs, the cutoff of the TE-TM leaky mode pair is frequency-
shifted in amounts that mainly depend on |B̄s| [22]. However,
the cavity thickness h can be adjusted to an equivalent cavity
height heq to have the TE-TM cutoffs at f0. This can easily
be obtained from either (12a) or (12b) in the limit k̂z → 0
(and in turn k̂x0 → 1, k̂xε →

√
εr) and yields:

heq = hppw

{
1± Re

[
1

π
arccot

(
|B̄s| ∓ j(Ḡs + 1)

√
εr

)]}
,

(13)
where the choice of the ± and ∓ signs depend on the sign of
B̄s (the upper/lower choice for positive/negative B̄s). At this
point, in order to have a complete analogy with the guided
modes of a lossy PPW, we only need to model the losses
(of either radiative or ohmic nature) introduced by the PRS
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Fig. 3. Equivalent loss tangent (in logarithmic scale) as a function of Ḡs and
B̄s, assuming εr = 2.3. A nonzero dielectric loss tangent would shift the
color scale.

through the definition of an equivalent loss tangent tan δeq.
An accurate model for tan δeq has been proposed in [18] and
is reported here for the reader’s convenience:

tan δeq = tan δ+
2
√
ε′r

π(1 + B̄2
s )

[
1 +

Ḡs(B̄
2
s − 1− Ḡs)

B̄2
s + (1 + Ḡs)2

]
(14)

Typical values of tan δeq for various choices of Ḡs and B̄s

are reported in Fig. 3 as a contour plot, assuming ε′r = 2.3
and tan δ = 0 without loss of generality (different values of
ε′r and tan δ would simply change the dynamic range of the
colormap [18]).

With these equations at hand, one can conclude that the
TE-TM leaky modes of a PRS-based FPC-LWA of thickness
heq given by (13) can accurately be characterized by the
wavenumber dispersion in (2), provided that the materials
constituting the structure (i.e., the complex-valued quantities
εr and Ȳs) are modeled through the equivalent loss tangent in
(14). The accuracy of the model will be validated in the next
Subsection.

B. Numerical Validation

The dispersion curves for the fundamental TE-TM leaky
mode pair of an FPC-LWA with cavity height heq given by
(13) have been obtained in Fig. 4(a) and (e) by numerically
solving for the complex improper roots of (12a)–(12b) (the
Padé algorithm is employed for the numerical results [25])
assuming a lossless case (see Fig. 4(a)), i.e., with εr = 2.3
and Ȳs = −jB̄s and a lossy case (see Fig. 4(e)), i.e., with
εr = 2.3(1− j0.01) and Ȳs = 5− jB̄s for 5 ≤ B̄s ≤ 30. This
range of variation is consistent with the typical impedance
values shown by conventional homogenized PRS constituted
by either cermet-like (e.g., patches) or fishnet-like (e.g., strip
gratings) topologies (see, e.g., [20], [22]).

The color of the TE (TM) dispersion curves shade from blue
(red) to cyan (yellow) as B̄s ranges from 30 (high reflectivity)
to 5 (low reflectivity). As expected, the TE and TM dispersion
curves are always almost overlapped (the bluish curves are
barely distinguishable from the reddish ones) except for very

TABLE I
VALUES OF tan δeq FOR CASES DISCUSSED IN SUBSECTION III-B.

Case tan δeq

Ȳs = −j30, εr = 2.3 0.001072

Ȳs = −j5, εr = 2.3 0.037134

Ȳs = 5− j30, εr = 2.3(1− j0.01) 0.016188

Ȳs = 5− j5, εr = 2.3(1− j0.01) 0.104965

low values of B̄s for which the lossy PPW is no longer
expected to provide for an accurate approximation because
of the poor reflectivity of the PRS. For B̄s = Ḡs = 5,
corresponding to the brightest cyan and yellow curves in
Fig. 4(e), we are indeed far from the hypotheses B̄s � 1
and Ḡs < B̄s.

Nevertheless, the analytical wavenumber dispersion pro-
vided in (2) (upon replacing tan δ with tan δeq given in (14))
furnishes a very good approximation of the numerical TE and
TM dispersion curves over the whole considered range, as can
be intuitively inferred by comparing Fig. 4(a) and (e) with
Fig. 2 with the aid of Table I. (We preferred not to overlap
the analytical results in Fig. 4 for the sake of clarity; such a
comparison will be provided in the next subsection III-C.) It
is also worth noting that the cutoff condition occurs exactly
at f0 for ‘large’ B̄s and in its close proximity for ‘small’ B̄s,
thus validating (13).

We are now interested in addressing the consistency of (9),
i.e, the analytical formula for the frequency f̃D at which the
broadside directivity D0 is maximized, for the same cases
presented in Fig. 4(b) and (f). To this aim, we first evaluated
D0 vs. f̃ , in the range 0.9 ≤ f̃ < 1, i.e., below cutoff, (see
Fig. 4(b) and (f)) calculating D0 as [26]:

D0 = π2/
(
∆θE∆θH

)
, (15)

where ∆θE(∆θH) is the half-power beamwidth on the princi-
pal E-(H-) plane, whose general expression for β̂ < α̂ is [15],
[17]:

∆θ = 2 arcsin

√
β̂2 − α̂2 +

√
2(β̂4 + α̂4), (16)

using the value of α in the TE (TM) case for ∆θE(∆θH).
In Fig. 4(b) and (f) D0 is numerically evaluated from (15)

and (16) using the values of β and provided in Fig. 4(a) and
(e) for the TE and the TM case (in Fig. 4(b) and (f) the color
of the curves shade from black to green as B̄s ranges from
30 to 5). The maximum directivity condition D0,max is then
numerically evaluated (see the colored circles) and compared
with the analytical results given by (15) and (16) using the
values of β and α given by (2). The excellent agreement
between analytical and numerical results further confirms the
accuracy of the proposed lossy PPW model.

The frequency f̃D vs. B̄s is then retrieved from the nu-
merical evaluation of D0,max and is reported in Fig. 4(c) and
(g) (see dashed green curve) where it is compared with (9)
(see solid black curve). For the sake of completeness, we
reported the curves that would have been obtained considering
the theoretical D0,max condition, i.e., the frequency at which
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Fig. 4. Results for PRS-based FPC-LWAs with ε′r = 2.3 and 5 ≤ B̄s ≤ 30, for (a)–(d) a lossless case (viz., tan δ = 0, Ḡs = 0), and (e)–(h) a lossy case
(viz., tan δ = 0.01, Ḡs = 5). In (a) and (e) the TE and TM dispersion curves β̂ (solid lines) and α̂ (dashed lines) vs. f̃ for 5 ≤ B̄s ≤ 30 (color shade from
dark blue (red) to light blue (yellow) as B̄s decreases in the TE (TM) case). In (b) and (f) the directivity vs. f̃ is numerically evaluated (solid curves) through
(15) and (16) for 5 ≤ B̄s ≤ 30 (the color shades from green to black as B̄s increases). The maximum directivity condition is evaluated either numerically
(colored circles) or analytically (colored crosses) according to the procedure described in the text. In (c) and (g) f̃D vs. B̄s is numerically evaluated (green
dashed curve) and compared with the analytical result of (9) (black solid curve). Results obtained from the numerical search of the maximum directivity
condition (i.e., β̂/α̂ = rD) from the TE and TM dispersion curves are also reported as dotted blue and red curves, respectively. In (d) and (h) ε vs. f̃ is
calculated either numerically (solid colored lines) or analytically (colored dots) for 5 ≤ B̄s ≤ 30 (the color shades from green to black as B̄s increases).

β̂/α̂ = rD for both the TE and TM case (see dotted blue
and red curves, respectively). Indeed, the theoretical D0,max

condition assumes that B̄s � 1 for which the TE-TM dise-
qualization is negligible. However, the agreement between all
curves even for small values of B̄s confirm that the proposed
model is remarkably accurate, even under operating conditions
where it is not supposed to work well. It is also worth noting
that the TM curve is almost overlapped to both the analytical
and the numerical curve, whereas the TE curve is slightly
different, especially for low B̄s. This is also in agreement with
the results of Fig. 4(a) and (e) where it is seen that the TE-
TM disequalization is more prominent for low B̄s and f̃ < 1.
(In this range, the approximation k̂x0 → 1 used to derive (13)
and (14) is more critical for TE modes where the dispersion
equation has a kx0 term [cf. (12a)], rather than for TM modes
where the dispersion equation has a 1/kx0 term [cf. (12b)].)

To complete the picture, ε is calculated in Fig. 4(d) and (h).
Numerical results (colored solid lines) refer to the evaluation
of (3) using the average between the TE and TM values of
α̂ (i.e., α̂ := (α̂TE + α̂TM)/2) reported in Fig. 4(a) and
(d), whereas the analytical results (colored dots) refer to the
evaluation of (3) using eqs. (4a) and (4b) replacing tan δ with
tan δeq. From the comparison between either Fig. 4(c) and (d)
or Fig. 4(g) and (h), it can be inferred that ε ' 0.1444 for f̃D,
as we derived at the end of subsection II-C.

C. Application to GPWs

In the previous subsection we have numerically validated
all the analytical results derived in Section II to demonstrate
the consistency and accuracy of the lossy PPW model for

Fig. 5. (Top) A pictorial representation of a waveguide-fed GPW radiating a
pencil beam at broadside and the details of the matching network (consisting
of two symmetric capacitive irises) embedded in the waveguide feed to obtain
impedance matching below cutoff. The waveguide feed is a standard WM-
200 [27] (details in the text). (Bottom) |S11| vs. f of the considered structure
with (light blue solid line) and without (black solid line) the matching network
depicted above.

the analysis of planar waveguides based on PRSs. The PRSs
were modeled as scalar shunt complex-valued admittances
with normalized susceptances and conductances ranging from
5 to 30 and from 0 to 5, respectively. We now want to use a
more realistic model for the PRS in order to apply our results
to cases with practical applications.

Specifically, we discuss the case of a GPW operating in the
THz range similar to those analyzed in [18], [28]. The structure
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Fig. 6. Results for GPWs for (a)–(d) a lossless, nondispersive case (viz., Ȳg = −jB̄g|f=f0 ), and (e)–(h) a lossy, dispersive case (viz., Ȳg(f) = Ḡg(f)−
jB̄g(f)). In (a) and (e) the TE (in red) and TM (in blue) dispersion curves β̂ (solid lines) and α̂ vs. f are compared with the lossless PPW exact dispersion
curve (in black) and the lossy PPW approximate dispersion curve (in green). The cutoff and D0,max conditions are highlighted with a black circle and a black
square, respectively. In (b) and (f) the directivity patterns vs. θ along the principal planes have been calculated at f0 (solid red and blue curves for the H- and
E-plane, respectively) and at fD (dashed red and blue curves for the H- and E-plane, respectively). In (f) full-wave results for the structure depicted in Fig.5
are reported in small colored circles (for f = f0) and squares (for f = fD). In (c) and (g) the directivity at broadside D0 vs. f is numerically evaluated.
The cutoff and D0,max conditions are highlighted with a black circle and a black square, respectively. In (g) CST full-wave results for the structure depicted
in Fig. 5 are reported as green asterisks. The inset shows the realized gain GR vs. f obtained from full-wave simulations. In (d) and (h) ε vs. f is calculated
either numerically (solid black line) or analytically (dashed green line). The D0,max condition as per numerical or analytical evaluation is highlighted with
a black circle or a black cross.

is designed to ‘resonate’ at f0 = 1 THz and consists of a GDS
made of TOPAS (ε′r = 2.3, tan δ = 0.004 [29]), covered with
a uniform graphene sheet biased at µc = 1 eV. Application of
(13) for the case analyzed here fixes the substrate thickness
to around 92µm (the normalized surface admittance of the
graphene sheet is provided next). The structure is excited from
the back by etching a quasi-resonant slot 200µm × 100µm,
around λ0/3 × 2λ0/3 at f0 = 1 THz, which is equivalent to
a horizontal magnetic dipole-like source that excites both the
TE and TM leaky modes required to radiate a pencil beam at
broadside [30]. The slot is then fed through a standard WM-
200 rectangular waveguide [27], that has the same dimensions
of the slot and operates in the range 0.9− 1.4 THz.

Due to the resonant character of the cavity, impedance
matching can be difficult, especially below cutoff where the
wave impedance exhibits a predominantly reactive behavior
[31] (see next Section IV). As a consequence, an ad hoc
impedance matching network is usually required. In this
regard, we recall that networks consisting of capacitive irises
have been proven to be effective for matching waveguide
feeds in FPC-LWAs radiating beyond the cutoff frequency
[32]–[36]. Here, we use a technique similar to that presented
in [32], obtaining a good impedance matching below cutoff
by optimizing the distance and the geometric features of
two capacitive irises [37] (optimized design parameters are
provided in Fig. 5), as shown by the CST full-wave results
[38] reported in Fig. 5 for the reflection coefficient of the
structure with and without the optimized matching network.

It is worth to point out that, since we were interested

in analyzing the radiation performance close to the cutoff
condition, we preferred to drive the full-wave optimization to
achieve a lower reflection coefficient (lower than −10 dB) over
a narrower fractional bandwidth (around 2%). Nevertheless, a
wider impedance matching can be achieved still respecting
the Bode-Fano criterion [39], [40]. Here, the choice we made
also accounted for the fabrication tolerances of large-area
photolithographic processes that limits the smallest detail (here
dictated by the iris gap that is around 10µm) to be not lower
than 3µm [41].

There are several reasons for the choice of a graphene sheet
as a homogenized PRS that are worthy to be commented. First,
graphene is a lossy PRS whose normalized surface admittance
Ȳg = Ḡg + jB̄g is known in closed-form [42]. (Specifically,
we modeled graphene using Kubo formula for µc = 1 eV,
τ = 3 ps, T = 300 K as in [28], [43], [44]).

Even more interestingly, in the low THz regime, graphene
shows the same Drude-like expression for both TE and TM
polarizations, exhibits negligible TE-TM modal coupling and
negligible spatial dispersion (the dependence from the prop-
agation wavenumber) [43], [45], thus the dyadic expression
that would arise from the application of the generalized
sheet transition conditions [46] reduces to a single frequency-
dependent scalar expression. Furthermore, the behavior of
graphene at THz and for µc = 1 eV (as modeled here) is
more reactive than resistive (i.e., B̄g > Ḡg), thus the value of
Ȳg(f) at f0 (Ȳg0 = Ȳg(f0) = 0.37− j7.04) is fully within the
range of the cases analyzed in III-B. We note that, although
the model proposed in III-A does not account for the inherent
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frequency-dispersive behavior of Ȳg(f), the dispersion and
radiation features of the leaky modes propagating in a GPW
are mainly determined by the value of Ȳg0 [18].

For this purpose, we here analyze the structure described
above under two circumstances. In the first case, numerical
results are obtained ignoring dielectric losses (i.e., tan δ = 0)
and modeling graphene as a lossless, nondispersive PRS, i.e.,
replacing Ȳs with jB̄g0. In this situation, results are a particular
case of those reported in Figs. 4(a)–(d). In the second case,
numerical and CST full-wave results are obtained accounting
for all kinds of losses and modeling graphene as a lossy,
dispersive PRS, i.e., replacing Ȳs with Ȳg. This case allows us
to determine in what extent the frequency-dispersive character
of a PRS affects our approximation.

Results for the first and the second case are shown in
Figs. 6(a)–(d) and Figs. 6(e)–(h), respectively. In Fig. 6(a) and
(e) the dispersion curves for the TE and TM modes (in red
and blue, respectively) are now compared with the analytical
results for an equivalent lossless PPW (in black) and a lossy
PPW (in green). As is manifest, the lossy PPW model is
remarkably accurate in both cases. A black circle and a black
square identify the cutoff α̂(f0) and the maximum broadside
directivity conditions α̂(fD), as predicted by the analytical
formulas provided in Section II. The directivity patterns along
the principal planes evaluated at f0 and fD (calculated by
taking advantage of the closed-form asymptotic expressions
for the leaky radiation patterns, see, e.g., [15]) are reported
in Fig. 6(b) and (f), whereas the variation of the broadside
directivity D0 vs. f is reported in Fig. 6(c) and (g). These
results confirm that D0 is actually enhanced for f = fD.

For the second case only, i.e., in the lossy, frequency-
dispersive case, full-wave results of the entire structure de-
picted in Fig. 5 are overlapped to those obtained through
the asymptotic expressions in Fig. 6(f) and (g). Comparison
between full-wave and asymptotic results reveals an excellent
agreement for the radiation patterns, where a 1-dB directivity
enhancement at fD is manifest with respect to the directivity
at f0. A poor agreement is instead observed for frequencies
far from the cutoff, but this is fully compatible with the fact
that radiation at these frequencies is no longer dominated by
the leaky-wave pattern [47], [48], and the directivity patterns
obtained through the full-wave simulations are not accurate
due to the negligible amount of radiated power. In this regard,
we have also verified (see the inset of Fig. 6(g)) that far from
cutoff, approximately for f/f0 < 0.96, the total efficiency
abruptly decreases and in turn the realized gain GR drops
to values as low as few dB, thus compromising the antenna
performance in this frequency range. It is worth noting that
the maximum realized gain is around 2 dB smaller than
the maximum directivity, in good agreement with the total
efficiency that is predicted by the formulas in [18] (based on
the equivalent tangent model) which yields 64% (around 61%
from full-wave simulations).

Furthermore, it is worth to comment on the effects of
the lateral truncation. As a matter of fact, the condition for
maximizing directivity at broadside is derived for an infinite
structure [15], whereas the one simulated here has a diameter
of L = 10λ0 which leads to an aperture efficiency of around

TABLE II
VALUES OF fD FOR THE CASES DISCUSSED IN SUBSECTION III-C.

Method lossless, nondisp. lossy, nondisp. lossy, disp.

f̃D, Eq. (9) 0.99331 0.98963 0.98963

f̃D (Num.) 0.99320 0.98946 0.98998

f̃D (Num. TE) 0.99256 0.98830 0.98916

f̃D (Num. TM) 0.99346 0.98980 0.99052

99.99% through the formula η = 1−exp(−αL) [3]. We noted
that when we set the lateral truncation to have η = 90% as
recommended in reference books on LWAs [49]–[51] the full-
wave simulation returned a broadside directivity that is no
longer maximized at fD but at f0. This result is related to
two different aspects. On one hand, the antenna finite size has
effects on the radiation pattern that may lead to results that
differ from those predicted by the theory, as shown for 1-D
bidirectional LWAs [16], [17]. On the other hand, the full-wave
simulation does not account for the presence of an absorber
at the lateral edge, and thus spurious unwanted reflections
affect the radiation patterns (the interested reader can find
more details about the effect of the lateral edge truncation
in [52], [53]). Therefore, for the correct full-wave analysis of
this class of antennas it is important to set a lateral truncation
larger than that recommended in classical books [49]–[51]. For
the case analyzed here we noted that η > 99.99% is usually
sufficient to provide for accurate results.

The figure of merit ε is finally shown in Fig. 6(d) and
(h). As expected, the numerical (in solid black line) and
analytical (in dashed green line) results are overlapped over
the shown frequency range for the lossless, nondispersive case
(see Fig. 6(d)) and are just barely different for f̃ far from
cutoff, in the lossy, dispersive case (see Fig. 6(h)). In order
to better understand what is the sole effect of the frequency
dispersion, we have also analyzed a lossy, nondispersive case
(not shown for brevity) for which we report some relevant
numerical results in Table II. There, results labeled as ‘Num.
TE/TM’, refer to the numerical evaluation of f̃D from the
TE/TM dispersion curves, searching for the frequency point
for which β̂/α̂ = rD. The slight difference between the two
values are due to the TE-TM disequalization. Remarkably,
from Table II we note that the analytical formula for the
prediction of f̃D is accurate up to the third decimal place in
all cases, thus the frequency-dispersive character of the PRS
is negligible.

IV. IMPEDANCE MATCHING CONSIDERATIONS

The theoretical results analytically derived in Section II
and numerically validated in Section III revealed that the
condition for achieving maximum broadside directivity occurs
in a region where the reactive effects are supposed to prevail on
radiative effects. On one hand, a low value of ε corresponds to
a wave impedance Zw with a rather reactive behavior which
may hinder the impedance matching of a structure. On the
other hand, although requiring ad hoc impedance matching
networks, a structure operating in a regime exhibiting a low
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Fig. 7. Grayscale maps displaying rZ over the complex z∗-plane for (a) |z∗| ≤ 1, (b) |z∗| ≤ 10 (large arguments), and (c) |z∗| ≤ 0.1 (small arguments),
assuming ρs = λ0/2 at f0 = 1THz. The dashed blue lines highlight the β̂/α̂ = rD trajectory, whereas the dashed magenta and white lines highlight the
rZ = 1 and rZ = 0 trajectories, respectively. In (a) the dashed green hyperbola represents the approximate dispersion curve of the GPW (i.e., the green curve
in Fig. 6(e)); a green circle and a green square highlight the cutoff and D0,max conditions on the curve.

ε can still work properly as demonstrated in subsection III-C.
However, the results obtained in subsection III-C are a par-
ticular case, whereas it would be interesting to derive more
general results that do not depend on the type of the feed,
neither on the PRS.

For this purpose, we are interested here to determine a
practical lower bound to ε on the basis of a rigorous evaluation
of the wave impedance ratio rZ = |Im[Zw]|/|Re[Zw]|, a
figure of merit that has been introduced in [31, Sec. 5.3,
p. 211] to define the gradual cutoff of higher-order guided
modes (thus characterized by real wavenumbers) in radial
waveguides, and that has been recently extended to leaky
modes (thus characterized by complex wavenumbers) in PRS-
based planar waveguides [54]. However, [54] only discusses
higher-order cylindrical leaky modes, i.e., leaky modes show-
ing an azimuthal phase variation of the kind exp(−j`φ), `
being the nonzero azimuthal integer order. Conversely, we
are here interested in zeroth-order cylindrical leaky modes.
Specifically, we want to find conditions for which rZ = 0
(resistive impedance) and rZ = 1 (reactive impedance), when
the zeroth-order leaky modes supported by a PRS-based planar
waveguides are excited by an elementary source feed of radius
ρs.

To this aim and without loss of generality, we consider
the expression of the TM wave impedance of a zeroth-order
leaky mode (rZ is equal for the TE and TM case [31], [54]),
which is proportional to the ratio between a = −jzH2

0 (z)

and b = H
(2)′

0 (z), where H(2)
0 (H(2)′

0 ) are the (derivative of
the) zeroth-order Hankel function of the second kind and
z = 2πk̂zρs/λ. With this expression at hand, it can be shown
[54] that the rZ = 0 and rZ = 1 conditions yield,

rZ = 0 for 6 a− 6 b = ±mπ, (17a)
rZ = 1 for 6 a− 6 b = ±π/4±mπ/2, m ∈ Z. (17b)

While (17a) and (17b) generally require a numerical evaluation
that is reported in Fig. 7(a) as a contour plot over the complex
z∗-plane (the conjugate is taken to be consistent with the
definition of α̂ = Im[z]) for |z| ≤ 1, approximate analytical

results can be found in the asymptotic limit of z → 0
(electrically small feed) and z → ∞ (electrically large feed),
taking advantage of the asymptotic expansions of small and
large arguments for Hankel functions.

For large arguments, the asymptotics of H(2)
` (z) is the same

for any ` (except for an irrelevant phase term), thus the results
obtained for ` > 0 in [54] also hold for this case. The eval-
uation of rZ for |z| ≤ 10 is reported in Fig. 7(b) and reveals
that the condition for achieving maximum D0 α̂/β̂ = 1/rD
(marked as a dashed blue line) lies well beyond the rZ = 1
condition (marked as a dashed magenta line). Indeed, for large
arguments it has been found [54] that the rZ = 1 loci lies on
the trajectory 6 z∗ = π/4, whereas the trajectory of maximum
D0 corresponds to 6 z∗ = π/2− arctan(rD) ' 62.6◦.

Conversely, for small arguments, results of [54] cannot be
extended to ` = 0 due to the different asymptotic behavior
of the Hankel functions [55]. After few steps and using that
H

(2)
0 (z) ∼ 1 − 2j ln z/π (note the presence of the constant

term as opposed to the conventional small argument approxi-
mation that only retains the leading term [56, eq. (9.1.8)]) we
get that the loci of rZ = 0 and rZ = 1 are implicitly defined
by the following equations:

rZ = 0 for
cot(2 6 z)

π/2 + 6 z
=

1

ln |z|
, (18a)

rZ = 1 for
cot(2 6 z ± (2m+ 1)π/4)

π/2 + 6 z
=

1

ln |z|
. (18b)

The trajectories given by these two equations (marked as
dashed magenta and white lines, respectively) are reported
in Fig. 7(c) where rZ is evaluated for |z| < 0.1. From both
(18a) and (18b) and Fig. 7(c), it can be inferred that for very
small |z|, the trajectories of rZ = 0 and rZ = 1 converge
to 6 z∗ = π/4 and 6 z∗ = π/8, 3π/8, respectively, thus
recovering the results obtained for ` 6= 0 (and that would
be obtained here by neglecting the constant term in the small
argument asymptotic expansion of H(2)

0 (z)).
Interestingly, the trajectory of maximum D0, viz.,

6 z∗ ' 62.6◦ now lies slightly below the rZ = 1 condition,
viz., 6 z∗ ' 67.5◦, thus revealing that in this region reactive
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effects are slightly lower than resistive effects, and thus
impedance matching, although difficult, is not impractical.

Just to give an example, we reported in Fig. 7(a) the
dispersion curve (in green dashed line) of the GPW studied
in III-C over the z∗-plane assuming ρs = λ0/2 = 150 µm
(at f0 = 1 THz) which is the average of the waveguide feed
dimensions. The maximum D0 and cutoff conditions have
been highlighted with a green square and a green circle.
As expected, the wavenumber dispersion defines a hyperbolic
curve over the z∗-plane [15], and f̃D and f̃0 lie along the
6 z∗ ' 62.6◦ and 6 z∗ ' 45◦ trajectories, respectively.
As can be seen, for this choice of ρs, Fig. 7(a) predicts a
poor impedance matching in spite of the satisfactory results
obtained in subsection III-C (see Fig. 5).

Nonetheless, we should admit that while we have been
able to easily match the antenna beyond the cutoff frequency
(results are not shown for the sake of conciseness), the
configuration provided in subsection III-C and capable of pro-
viding matching below the cutoff frequency, resulted from an
extensive optimization of the design parameters. In particular,
we noted that matching below cutoff required highly capacitive
irises (thus very small iris gaps) in order to compensate for
the predominantly reactive character of the wave impedance.

However, while a general criterion cannot be formulated
from the analysis of rZ solely, it can still be concluded that
any operating frequency fop in the range fD < fop < f0
offers a good compromise between the radiating performance
(optimized for fop closer to fD) and the impedance matching
(easier for fop closer to f0).

V. CONCLUSION

In this work, we have carefully analyzed the role of reactive
attenuation close to the cutoff condition for leaky modes
propagating in planar open waveguides based on partially
reflecting surfaces, which are also the basic constituents of
Fabry–Perot cavity leaky-wave antennas. In particular, we have
exploited the analogy between the leaky modes supported by
such structures and the guided modes propagating in lossy
parallel-plate waveguides and to derive useful approximate
analytical formulas.

Specific emphasis has been given to the region below the
cutoff condition where a significant figure of merit has been
introduced to quantitatively assess the contribution of reactive
attenuation and that of attenuation due to losses (either mate-
rial or radiation losses). Taking advantage of this definition, it
has been shown that the condition for maximixing directivity
at broadside occurs in a region where reactive effects may be
comparable to radiative effects.

In order to fully understand what kind of radiating per-
formance one can expect for structures operating below (but
close to) the cutoff frequency, we have also studied the wave
impedance of leaky modes propagating in lossy parallel-plate
waveguides. It turned out that, at the frequency for which
directivity at broadside is maximized the wave impedance
is slightly more resistive rather than reactive (meaning that
impedance matching is still practical), provided that the feed
is electrically small. Nevertheless, we have shown through full-
wave simulations that even in the case of quasi-resonant feeds,

for which a poor matching would be expected, it is possible
to design an hoc impedance matching network to have the
antenna efficiently radiating below cutoff.

All theoretical results and analytical formulas have been
validated through various numerical examples considering
different models. Full-wave results have been provided for the
relevant case study of a graphene planar waveguide operating
in the terahertz range to show the consistency and accuracy
of the proposed formulas in a realistic scenario.
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