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A B S T R A C T

Cardiorespiratory effects, quality of induction, depth of anaesthesia and quality of recovery were com-
pared in pigs anaesthetised with 8 mg/kg ketamine, 20 μg/kg dexmedetomidine and 0.2 mg/kg methadone
(KDM, n = 18) or 8 mg/kg tiletamine–zolazepam and 0.2 mg/kg methadone (TZM, n = 9). Anaesthesia with
KDM was partially reversed in nine animals with 0.2 mg/kg atipamezole (KDMat). Sedation was ob-
served earlier in the TZM group (47.2 ± 25.3 s) than the KDM group (91.5 ± 37.4 s). Sternal and lateral
recumbency were achieved earlier in the TZM group (76.3 ± 36.5 s and 132.1 ± 30.5 s, respectively) than
in the KDM group (149.1 ± 58.7 s and 249.2 ± 84.0 s, respectively). PaO2, SaO2 and PaO2:FiO2 were lower
in the TZM group (68.7 ± 4.1 mmHg, 93.4 ± 1.4% and 327.2 ± 19.9 mmHg, respectively) than in the KDM
group (80.4 ± 5.9 mmHg, 95.7 ± 1.0% and 380.4 ± 25.6 mmHg, respectively). Fshunt and P(A-a)O2 were higher
in the TZM group (24.0 ± 11.8% and 31.4 ± 3.8 mmHg, respectively) than in the KDM group (13.4 ± 3.2%
and 20.7 ± 7.4 mmHg, respectively). Times from drug injection to first head movements, sternal recum-
bency and standing/walking were significantly shorter in the KDM group (45.1 ± 10.5, 48.4 ± 12.6 and
54.4 ± 17.8 min, respectively) than in the TZM group (57.8 ± 11.4, 93.1 ± 14.2 and 165.7 ± 56.6 min, re-
spectively). The median recovery score was higher in the TZM group than in the KDMnoat and KDMat
subgroups. Both drug combinations provided adequate anaesthesia for minor procedures lasting about
30 min, but TZM was associated with a poor recovery and oxygenation.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Short-term anaesthesia of domestic pigs is often required in bio-
medical research for minor surgical or diagnostic procedures
(Hastings et al., 1982; Swindle et al., 1994; Nunes et al., 2007; Grasso
et al., 2009; Staffieri et al., 2012; Jordan et al., 2014). The ideal an-
aesthetic protocol in pigs should provide fast and reliable
immobilisation, minimal cardiovascular and respiratory depres-
sion, and adequate analgesia and muscle relaxation.

Pigs are difficult to handle and restrain due to their tempera-
ment and resistance to sedative drug combinations (Brodbelt and
Taylor, 1999; Heinonen et al., 2009; Lee et al., 2010; Linkenhoker
et al., 2010). Restraint for IM administration of drugs seems to be
less stressful than for intravenous (IV) injection (Henrikson et al.,
1995). The combination of two or more drugs (balanced anaesthe-
sia) targeting specific clinical effects (hypnosis, analgesia and muscle

relaxation) represents the current best standard for injectable IM
anaesthesia in pigs in terms of safety and efficacy (Nishimura et al.,
1992).

Cyclohexane anaesthetic drugs (ketamine and tiletamine) are
commonly used for sedation and anaesthesia in pigs, since they
produce rapid and reliable immobilisation after IM administra-
tion, with a high margin of safety and few cardiopulmonary side
effects (Lin et al., 1993; Boschert et al., 1996). These drugs produce
a state of dissociative anaesthesia resulting from an electrophysi-
ological dissociation between the limbic and cortical system, do not
usually depress the cardiovascular or respiratory systems and have
significant analgesic effects (Reves et al., 2005; Craven, 2007).
Tiletamine is more potent than ketamine and is commercially avail-
able in combination with the benzodiazepine tranquiliser zolazepam
(Telazol) in a 1:1 combination. The major collateral effects of dis-
sociative drugs are muscle rigidity, ataxia and excitatory effects
during recovery (Lin et al., 1993). To counteract these side effects,
α2 agonists (xylazine, detomidine and medetomidine) and opioids
(butorphanol and buprenorphine) are commonly combined with dis-
sociative drugs for short-term anaesthesia in pigs (Nishimura et al.,
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1992; Sakaguchi et al., 1992, 1995, 1996; Brodbelt and Taylor, 1999;
Heinonen et al., 2009; Lee and Kim, 2012; Santos González et al.,
2013). However, there are few reports of the use of dexmedetomidine
and methadone in this species (Hermansen et al., 1986; Sano et al.,
2010; Santos et al., 2015).

Dexmedetomidine is the latest α2 adrenoceptor agonist avail-
able for veterinary use; it is an enantiomer of medetomidine and
provides sedative and analgesic effects (Pypendop et al., 2011). α2
agonists exert their sedative effects through stimulation of α2
adrenoceptors in the brain, decreasing release of noradrenaline (nor-
epinephrine). Sedation results from decreased activity of ascending
neural projections to the cerebral cortex and limbic system (Stenberg,
1986). Analgesia appears to be the result of both cerebral and spinal
effects, possibly in part mediated by serotonin and the descending
endogenous analgesia system (Sinclair, 2003).

Methadone is a synthetic μ opioid agonist with potent and short
acting (about 4 h) analgesic and sedative effects (Lamont and
Mathews, 2007). Methadone has pharmacological properties quali-
tatively similar to those of morphine, the prototypical opioid
analgesic, but possessing additional antagonistic affinity for
N-methyl-D-aspartate (NMDA) receptors, thus contributing to an-
algesia by minimising central nervous system sensitisation (Ebert
et al., 1995).

Considering the unique and advantageous characteristics of
dexmedetomidine and methadone, the aim of this study was to eval-
uate the physiological effects of an anaesthesia protocol that includes
these drugs in comparison with a traditional protocol to produce
short-term anaesthesia in pigs undergoing skin and mucosal biopsies.
Ketamine–dexmedetomidine–methadone and tiletamine–zolazepam–
methadone combinations were evaluated in terms of quality of
induction, depth of anaesthesia, quality of recovery, and cardiovas-
cular and respiratory effects. The study did not consider situations
in which pigs are intended for food production, since only ketamine
is licensed for food producing animals among the drugs tested.1

Materials and methods

Animals

Twenty-seven Landrace × Large white pigs (22 female, 5 male) were used in this
study. Food was withheld for 24 h and water was withheld for 2 h before the ad-
ministration of drugs to prevent any possible adverse effects, such as vomiting during
the anaesthetic or recovery periods. The study protocol was approved by the Ethics
Committee of the University of Perugia (approval number 2013-027R; date of ap-
proval 6 September 2013). Pigs were involved in another experimental study in which
four skin biopsies (dorsal thoracic area) and two mucosal biopsies (ventral aspect
of the tongue) were collected with a cutaneous punch (0.6 mm diameter) under
general anaesthesia. The aim of the surgical study was to compare the quality of
incisions and degree of thermal injury produced by different surgical instruments
and their effects on reepithelialisation. The number and allocation of the pigs among
groups were based on the main surgical experimental study. Physical examination
carried out the day before the experiment, including measurement of rectal tem-
perature (T, °C), heart rate (HR, beats/min) and respiratory rate (RR, breaths/min),
had shown the pigs were healthy. The experiments were carried out at room tem-
perature (18–20 °C). The mean body weights (TZM 41.0 ± 6.1 kg; KDM 40.5 ± 6.6 kg)
and ages (TZM 86.6 ± 7.4 days; KDM 85.2 ± 6.6 days) were similar in both groups.

Study design

Eighteen animals (KDM group) were anaesthetised IM with a combination of
ketamine (8 mg/kg; Ketavet 100, 100 mg/mL, Intervet), dexmedetomidine (20 μg/kg;
Dexdomitor, 0.5 mg/mL, Elanco Animal Health) and methadone (0.2 mg/kg; Eptadone,
10 mg/mL, Molteni Farmaceutici). Nine animals (TZM group) received a combina-
tion of tiletamine–zolazepam (8 mg/kg; Zoletil 100, 100 mg/mL, Virbac) and
methadone (0.2 mg/kg) IM. Pigs in the KDM group were further divided in two sub-
groups of nine animals each based on the administration (KDMat) or not (KDMnoat)
of atipamezole (0.2 mg/kg; Antisedan, 5 mg/mL, Elanco Animal Health) during
recovery. All animals were injected into the neck muscles caudal to the base of the

ear (splenius and brachiocephalic muscles). Randomisation of pigs among treat-
ment groups was performed using Research Randomizer.2

The times from injection of drugs to the first signs of sedation, and to sternal
and lateral recumbency, were recorded. The quality of induction was assessed using
a descriptive score ranging from 1 (excellent) to 4 (poor; see Appendix: Supplementary
Table S1). Ten minutes after administration of drugs, pigs with inadequate induc-
tion (scores 3–4; one pig in the KDM group) received an additional dose of ketamine
(1 mg/kg, IV; KDM group) or tiletamine–zolazepam (1 mg/kg, IV; TZM group); these
animals were excluded from the study. When the induction was adequate (scores
1–2), pigs were approached, blindfolded and placed in left lateral recumbency; animals
were not intubated and breathed room air (fraction of inspired oxygen, FiO2 0.21).

Depth of anaesthesia (anaesthesia score) (Laricchiuta et al., 2012) was as-
sessed by checking palpebral, pedal, auricular and anal reflexes, jaw tone, presence
of voluntary movements and reaction to painful stimuli (blood sampling, ear notch-
ing), scored from 1 (deep anaesthesia) to 6 (very light sedation; see Appendix:
Supplementary Table S2). If the anaesthesia score was 5–6 (one pig in TZM group),
pigs received an additional dose of ketamine (1 mg/kg, IV; KDM group) or tiletamine–
zolazepam (1 mg/kg, IV; TZM group) and these animals were excluded from the study.

Monitoring and data collection

Heart rate, RR, T, oxygen haemoglobin saturation (SpO2, %), non-invasive sys-
tolic, diastolic and mean arterial pressures (SAP, DAP, MAP, respectively, mmHg; HB100
multiparametric monitor, Foschi) and depth of anaesthesia were recorded at the time
of the first approach (T0) and after 10 (T10), 20 (T20) and 30 (T30) min. Skin and
tongue biopsies were collected between T10 and T30; no other surgical interven-
tions were performed. An arterial (femoral artery) blood sample was collected at
T20 (3 mL BD Preset syringe, BD). Arterial samples were analysed immediately using
a portable blood gas analyser (i-STAT Portable Clinical Analyzer, Abbott). The mea-
sured and calculated parameters were pH, partial arterial pressure of carbon dioxide
(PaCO2, mmHg), partial arterial pressure of oxygen (PaO2, mmHg), base excess
(BE, mmol/L), haematocrit (Hct, %), bicarbonate concentration (HCO3

−, mmol/L), hae-
moglobin concentration (tHb, g/dL), oxygen haemoglobin saturation (SaO2,%),
concentrations of Na+, K+ and Ca2+ (mmol/L), arterial CO2 (TCO2, vol%), and concen-
tration of glucose (mg/dL). The alveolar to arterial oxygen gradient [P(A-a)O2], PaO2:FiO2

ratio (mmHg) and estimated shunt fraction (Fshunt,%) were calculated (Araos et al.,
2012). All parameters were corrected for the rectal temperature measured at the
time of sampling.

The P(A-a)O2 was calculated as:

P O P PH O FiO PaCO R PaOA a B−( ) = −[ ]× −( ) −2 2 2 2 2

where PB is the barometric pressure, PH2O is the water vapour pressure, FiO2 is the
inspired oxygen fraction and R is the respiratory exchange ratio, assumed to be 0.9
(Cohen et al., 1995). The PH2O was corrected for the rectal temperature recorded
at the time of arterial blood collection (Mackenzie, 1963).

The Fshunt was calculated as:

Fshunt Cc O CaO Cc O CaO mL dL: .′ −[ ] ′ − +[ ]( ) ×2 2 2 2 3 5 100

where Cc’O2 is the pulmonary end-capillary oxygen content, CaO2 is the arterial oxygen
content and 3.5 mL/dL is an approximate fixed value of the arterial-to-mixed venous
oxygen content difference.

The Cc’O2 and CaO2 were calculated as follows:

Cc O Hb Sc O Pc O′ = × × ′ + × ′2 2 21 31 0 0031. .

CaO Hb SaO PaO2 2 21 31 0 0031= × × + ×. .

where Hb is the haemoglobin concentration (g/dL), 1.31 is the oxygen-carrying ca-
pacity of haemoglobin (mL/g) (Larimer, 1959), Sc’O2 is the pulmonary end-
capillary oxygen saturation, 0.0031 is the solubility coefficient of oxygen in porcine
plasma and Pc’O2 is the pulmonary end capillary partial pressure of oxygen (mmHg).

Pulmonary end-capillary partial pressure of oxygen was assumed to be equal
to PAO2 (alveolar partial pressure of oxygen); for PAO2 > 100 mmHg, pulmonary end
capillary oxygen saturation was assumed to be 100% (i.e. 1), whereas for PAO2

≤100 mmHg, pulmonary end capillary oxygen saturation was calculated from the
actual PAO2 via the same method. FiO2 was always assumed to be 0.21 because pigs
were breathing room air.

Recovery from anaesthesia

At T30, pigs were moved to a recovery box to observe recovery from anaesthe-
sia; pigs in the KDMat subgroup received 0.2 mg/kg atipamezole IM. Times between
injection of anaesthetic drugs and the first head movements, sternal recumbency
and standing/walking were recorded. Times between atipamezole administration

1 See: http://ec.europa.eu/health/files/eudralex/vol-5/reg_2010_37/reg_2010
_37_en.pdf (accessed 28 December 2014). 2 See: http://www.randomizer.org (accessed 28 December 2014).
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and the first head movements, sternal recumbency and standing/walking were also
recorded in the KDMat subgroup. Quality of recovery was assessed using a scoring
system from 1 (excellent) to 4 (poor; see Appendix: Supplementary Table S3). Any
side effects noted during the procedure and during the following 24 h were recorded.

Statistical analysis

Data were tested for normal distribution with the Kolmogorov–Smirnov test, and
the means, standard deviations (SDs) and ranges (parametric data: physiological,
blood gas and haematological parameters) or median values and ranges (non-
parametric data: induction, anaesthesia and recovery scores) were calculated.
Parametric physiological data were compared among study times (T0, T10, T20 and
T30) and groups using one-way analysis of variance (ANOVA) for repeated mea-
sures, while non-parametric data were compared using the Kruskal–Wallis test,
followed by Dunn’s test (significant at P < 0.05, MedCalc Software).

Results

The study was completed without any major complication in all
pigs. Two pigs were excluded from the study; one case in the KDM
group was excluded because of a non-adequate induction (score 3–4)
and one case in the TZM group was excluded because of inade-
quate anaesthesia (score 5–6). The first signs of sedation after
injection of drugs were observed significantly earlier in the TZM
group (47.2 ± 25.3 s) than the KDM group (91.5 ± 37.4 s; P < 0.01).
Sternal and lateral recumbency were achieved earlier in the TZM
group (76.3 ± 36.5 s and 132.1 ± 30.5 s, respectively) than the KDM

group (149.1 ± 58.7 s and 249.2 ± 84.0 s, respectively; P < 0.01). The
median induction scores were similar in both groups (KDM score
1, range 1–3; TZM score 1, range 1–1; P = 0.15).

The mean time required to approach the animal after injection
was significantly shorter in the TZM group (3.08 ± 1.15 min) than
the KDM group (7.3 ± 3.3 min; P < 0.01).

The mean values of HR, RR, SAP, DAP, MAP, SpO2 and T, and the
median anaesthesia scores, are presented in Table 1. The mean values
of T and SpO2 were lower (P = 0.004) in the TZM group than the KDM
from T10 to T30.

The mean values of pH, PaO2, PaCO2, SaO2, P(A-a)O2, Fshunt,
PaO2:FiO2, tHb, HCO3

−, BE, glucose, TCO2, Hct, Na+, K+ and Ca2+ are
shown in Table 2. The PaO2 (P < 0.01), SaO2 (P < 0.01) and PaO2:FiO2

(P < 0.01) were lower and the P(A-a)O2 (P < 0.01) and Fshunt (P < 0.01)
were higher in the TZM group than the KDM group. Animals did
not show any evident motor reaction during the biopsies under
either protocol.

Times from drug injection to first head movements (P < 0.01),
sternal recumbency (P < 0.01) and standing/walking (deambulation)
(P < 0.01) were significantly shorter in the KDM group (45.1 ± 10.5,
48.4 ± 12.6 and 54.4 ± 17.8 min, respectively) than the TZM group
(57.8 ± 11.4, 93.1 ± 14.2 and 165.7 ± 56.6 min, respectively). Pigs that
received atipamezole during recovery (KDMat subgroup) had sig-
nificantly shorter times for first head movement, sternal recumbency

Table 1
Physiological parameters (means ± standard deviation) and anaesthesia scores (medians and ranges) in pigs anaesthetised intramuscularly with ketamine (8 mg/kg),
dexmedetomidine (20 μg/kg) and methadone (0.2 mg/kg) (KDM group; n = 17 pigs) or with tiletamine–zolazepam (8 mg/kg) and methadone (0.2 mg/kg) (TZM group; n = 8
pigs).

Parameters Groups Time points in the study

T0 T10 T20 T30

HR KDM 101.2 ± 12.1 94.6 ± 14.2 86.0 ± 14.8 81.0 ± 14.2
TZM 117.2 ± 22.7 95.0 ± 26.6 85.2 ± 23.3 77.8 ± 17.1

RR KDM 41.3 ± 15.5 44.0 ± 15.0 43.6 ± 20.0 49.2 ± 16.5
TZM 28.3 ± 13.9 31.4 ± 13.9 33.2 ± 15.9 34.2 ± 17.7

SAP KDM 158.0 ± 31.3 149.2 ± 19.9 144.3 ± 18.0 143.6 ± 23.8
TZM 147.3 ± 22.8 148.7 ± 4.5 157.5 ± 31.4 141.0 ± 12.1

MAP KDM 114.4 ± 22.0 111.5 ± 17.4 111.0 ± 18.8 115.0 ± 19.7
TZM 112.7 ± 16.6 110.3 ± 20.3 124.7 ± 37.8 118.3 ± 14.4

DAP KDM 91.8 ± 23.9 92.5 ± 15.1 90.4 ± 18.8 91.3 ± 21.3
TZM 86.3 ± 16.6 81.1 ± 21.6 106.7 ± 42.7 98.0 ± 20.1

SpO2 KDM 92.3 ± 3.9 92.9 ± 2.2 94.3 ± 2.5 95.7 ± 3.2
TZM 89.6 ± 2.8 89.8 ± 2.7* 90.5 ± 3.6* 90.6 ± 3.6*

T KDM 38.2 ± 0.7 38.0 ± 0.6 37.7 ± 0.6 37.3 ± 0.8
TZM 37.0 ± 0.7 36.6 ± 0.94* 36.3 ± 0.8* 36.1 ± 0.6*

AS KDM 2 (2-6) 2 (2-4) 3 (2-5) 3 (2-5)
TZM 2 (2-3) 2 (2-3) 2 (2-5) 2 (2-5)

T0, time between drug administration and approach to the animal; T10, 10 min after T0; T20, 20 min after T0; T30, 30 min after T0; HR, heart rate (beats/min); RR, respi-
ratory rate (breaths/min); SAP, systolic arterial pressure (mmHg); MAP mean arterial pressure (mmHg); DAP diastolic arterial pressure (mmHg); SpO2, saturation of haemoglobin
with oxygen (%); T, rectal temperature (°C); AS, anaesthesia score (median and range).

* Significant statistical differences between groups (P < 0.05).

Table 2
Blood gas analysis (T20) and calculated oxygenation indexes (means ± standard deviations) in pigs anaesthetised intramuscularly with ketamine (8 mg/kg), dexmedetomidine
(20 μg/kg) and methadone (0.2 mg/kg) (KDM group; n = 17 pigs) or with tiletamine–zolazepam (8 mg/kg) and methadone (0.2 mg/kg) in TZM group (8 pigs).

Groups Parameters

pH PaO2 PaCO2 SaO2 P(A-a)O2 Fshunt PaO2:FiO2 tHb

KDM 7.4 ± 0.0 80.4 ± 5.9 48.2 ± 2.8 95.7 ± 1.0 20.7 ± 7.4 13.4 ± 3.2 380.4 ± 25.6 9.8 ± 0.3
TZM 7.4 ± 0.0 68.7 ± 4.1* 49.8 ± 2.1 93.4 ± 1.4* 31.4 ± 3.8* 24.0 ± 11.8* 327.2 ± 19.9* 13.51 ± 9.0

HCO3
− BE Glucose TCO2 Hct Na+ K+ Ca2+

KDM 33.5 ± 3.3 9.3 ± 3.9 111.8 ± 20.0 35.6 ± 3.9 28.9 ± 1.0 140.9 ± 1.78 3.7 ± 0.1 1.3 ± 0.0
TZM 32.9 ± 2.1 7.1 ± 2.4 95.8 ± 12.0 34.2 ± 2.2 29.3 ± 1.6 141.0 ± 0.6 3.83 ± 0.1 1.35 ± 0.0

T20, 20 min after the animal approach; PaO2, partial arterial pressure of oxygen (mmHg); PaCO2, partial arterial pressure of carbon dioxide (mmHg); SaO2, oxygen haemo-
globin saturation (%); P(A-a)O2, alveolar to arterial oxygen gradient (mmHg), Fshunt, estimated shunt fraction (%); PaO2:FiO2, ratio of partial pressure arterial oxygen and
fraction of inspired oxygen (mmHg); tHb, haemoglobin concentration (g/dL); HCO3

−, bicarbonate concentration (mmol/L); BE, base excess (mmol/L); TCO2, total carbon dioxide
content (vol%); Hct, haematocrit (%).

* Statistical differences between groups at given time points (P < 0.05).
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and standing/walking (39.1 ± 6.0, 40.2 ± 6.2 and 42.5 ± 6.3 min) com-
pared with the TZM group and KDMnoat subgroup (51.7 ± 9.6,
58.6 ± 8.9 and 68.8 ± 14.9 min, respectively). In the KDMat, after
atipamezole administration (37.5 ± 6.0 min), the mean time to first
head movement was 90.3 ± 64.7 s, to sternal recumbency was
157.4 ± 86.3 s and to standing/walking was 4.7 ± 2.6 min. The median
recovery score was higher (P < 0.01) in the TZM group (median 3,
range 2–4) than in the KDMnoat (median 2, range 1–2) and KDMat
(median 1, range 1–3) subgroups. The quality of recovery was similar
between the KDMnoat and KDMat subgroups.

Discussion

The results of this study suggest that the combinations of
tiletamine–zolazepam–methadone and ketamine–dexmedetomidine–
methadone, with or without atipamezole, are both suitable protocols
for providing short-term anaesthesia for minor surgical procedures
in pigs. The TZM combination provided shorter induction times, but
also caused a greater derangement of gas exchange and poorer re-
covery quality than the KDM protocol. Administration of atipamezole
at the end of the procedure, in animals receiving dexmedetomidine,
shortened the recovery time.

The time for induction of anaesthesia may play a critical role for
the quality of the anaesthesia in domestic pigs, since they are ‘easy
to stress’ and become restless if the lapse of time between injec-
tion of intramuscular drugs and induction of anaesthesia is too long
(Henrikson et al., 1995). The increase in sympathetic tone that occurs
in this phase may interfere with the onset of the sedative effect of
the drugs administered (Fournier et al., 1995; Sweitzer et al., 1997;
Caulkett and Arnemo, 2007). The protocols tested in this study pro-
vided reasonable (within 5 min) induction times (Lu et al., 2010;
Lee and Kim, 2012), but the TZM combination was superior, since
it produced lateral recumbency in almost half the time compared
to the KDM group. As a consequence, the time to approach the
animal was shorter, making this combination more suitable for frac-
tious animals.

The quality of induction of anaesthesia was good in both groups,
with the animals making from one to three attempts to lie in sternal
or lateral recumbency, with or without mild signs of excitement (in-
duction scores 1 or 2; see Appendix: Supplementary Table S1). In
one case, the KDM protocol failed to produce adequate induction
and an extra dose of ketamine was required in order to continue
with the procedure. Misplacement of the needle or a different in-
dividual sensitivity to the drug could have been responsible for an
abnormal effect in this animal.

The depth of anaesthesia was adequate (anaesthesia scores 4–5;
see Appendix: Supplementary Table S2) during the period of ob-
servation in both groups. In all pigs, skin and mucosal biopsies were
collected without any complications. Experimental subjects did not
show any sign of nociception, indicating that the combinations of
tiletamine and methadone in the TZM group, and of ketamine,
dexmedetomidine and methadone in the KDM group, provided an
adequate level of analgesia for cutaneous or mucosal biopsy.

Many factors are responsible for decreases in body tempera-
ture during general anaesthesia (Díaz and Becker, 2010). Agitation
and stress during induction of anaesthesia may contribute to the
development of hyperthermia (Parrott and Lloyd, 1995). In our study,
pigs in the TZM group had a lower rectal temperature than pigs in
the KDM group from T10 to T30. The main factors that could have
contributed to the better maintenance of body temperature in the
KDM group are the longer induction time (which could have in-
creased the body temperature of the animals) and the peripheral
vasoconstriction induced by dexmedetomidine, which reduces pe-
ripheral heat loss (Sinclair, 2003).

Blood pressure was high (mean MAP > 110 mmHg) with both pro-
tocols from T0 to T30. Dissociative anaesthetic drugs cause central

activation of the sympathetic nervous systemic, an increase in blood
pressure and cardiac inotropism (Wong and Jenkins, 1974). α2
agonist drugs induce a transitory initial phase of peripheral vaso-
constriction that usually results in systemic hypertension (Sinclair,
2003). We speculate that the effects of the dissociative drugs were
mainly responsible for the hypertension observed in our pigs. More-
over, it seems that dexmedetomidine did not have an additive effect
on haemodynamic conditions, since there was no significant dif-
ference in blood pressures between the KDM and TZM groups.

PaO2:FiO2 and Fshunt are two common indicators of venous ad-
mixture (Araos et al., 2012). There was a moderate degree of
impairment of oxygenation and ventilation with both protocols, but
the impairment was greater in the TZM group. PaO2 and the
PaO2:FiO2 were lower than physiological ranges (90–100 mmHg and
400–500 mmHg, respectively) in room air (Haskins et al., 2005;
McDonnel and Kerr, 2007), particularly in the TZM group, where
most pigs had PaO2 values < 70 mmHg, PaO2:FiO2 < 350 mmHg and
Fshunt values higher than those in the KDM group. We assume that
the TZM combination induced a greater impairment of gas ex-
change due to a greater amount of intrapulmonary shunt fraction.
The SaO2 was lower in TZM than the KDM group, but it was never
<90% in both protocols. However, it is strongly recommended to
provide oxygen supplementation (e.g. flow-by, nasal cannula, face
mask) to compensate for the mild derangement of lung function
induced by these protocols (Haskins, 1992).

Ketamine and, to a greater extent, tiletamine, as well as
dexmedetomidine, increase the pressure of the pulmonary circu-
lation (Lagutchik et al., 1991; Sano et al., 2010; Pypendop et al., 2011).
Pulmonary hypertension may also have influenced gas exchange in
our animals, but we did not measure this parameter. In the TZM
and KDM groups, a moderate degree of hypoventilation was ob-
served, indicated by increased values of PaCO2 (>45 mmHg) and
respiratory rates (>30 breaths/min). Dissociative anaesthetic drugs,
as well as α2 agonists, have minor respiratory effects (Sinclair, 2003;
Craven, 2007); the hypoventilation observed in this study might be
attributed to the effects of methadone.

The results of this study demonstrated that the TZM protocol was
associated with longer recovery times than the KDM protocol; more-
over, administration of atipamezole at the end of the surgical
procedure further shortened the recovery in the KDMat protocol.
Atipamezole did not affect the recovery score in the KDMat sub-
group compared to the KDMnoat subgroup. This result could be
related to the low number of animals and/or because atipamezole
was administered at a time (30–40 min after dexmedetomidine ad-
ministration) when the sedative effects of the α2 agonist had almost
disappeared. Times for sternal recumbency and standing/walking
were almost doubled in the TZM group compared with the KDM
group, suggesting that, despite a similar time of immobilisation, the
TZM protocol produced a prolonged recovery. Moreover, the quality
of recovery was worse in the TZM group, with the pigs making nu-
merous attempts and frequent transitions from lateral to sternal
recumbency and severe ataxia. These findings may be related to the
longer duration of action of tiletamine and zolazepam compared
to ketamine (Kumar et al., 2006; Lin, 2007).

Conclusions

The results of this study suggest that TZM and KDM produce ad-
equate anaesthesia for minor surgical procedures in domestic pigs
for about 30 min. However, the KDM protocol appeared to be su-
perior to the TZM protocol, which, although producing faster
immobilisation, resulted in a more prolonged and poorer quality
of recovery, and a greater impairment of lung function. In animals
treated with the KDM protocol, administration of atipamezole
30–40 min after anaesthetic drugs shortened the recovery time, but
did not affect the quality of recovery.
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