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1 Introduction

The construction of efficient representations of multi-variate integral operators plays a crucial
role in higher dimensional problems arising in a wide range of modern applications in physics,
chemistry, financial mathematics, etc. Let us mention also multi-dimensional integral equations
and volume potentials of elliptic and parabolic partial differential operators in Rn, n ≥ 3.

By combining high-order semi-analytic cubature formulas for volume potentials with modern
methods of structured tensor product approximations we derive a method for approximating
volume potentials which is accurate and fast also in very high dimensions and provides approx-
imation formulas of high-order. The cubature formulas have been obtained by using the basis
functions introduced in the theory of approximate approximations proposed by V. Maz’ya ([10],
see also [11] and the reference therein). The development of separated representations (also
called tensor structured representations) is due to Beylkin and Mohlenkamp ([2], [3]).
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The action of volume potentials on the basis functions allows one-dimensional integral repre-
sentations with separable integrands, i.e. a product of functions depending only on one of the
variables. Then a separated representation of the density, combined with a suitable quadrature
rule, leads to a tensor product representation of the integral operator. Since only one-dimensional
operations are used, the resulting method is effective also in high-dimensional case.

The construction of approximation formulas for the potential of the advection-diffusion oper-
ator −∆+2b·∇+c with b ∈ Cn and c ∈ C over the full space under the condition Re(c+|b|2) ≥ 0
was considered in [7]. Harmonic potentials over half-spaces were studied in [8]. Cubature for-
mulas for advection-diffusion operators −∆ + c over boxes in Rn, when Re c ≥ 0, were studied
in [9]. In this paper we show how the method can be extended in order to treat the case
Re(c+ |b|2) < 0.

The outline is the following. In Section 2, after a brief introduction into cubature formulas
based on approximate approximations and their error behavior, we describe the alghoritm for
advection-diffusion potentials over the whole space. In Section 3, we derive the one dimensional
integral representations of the advection-diffusion operator over boxes for our basis functions.
In Section 4, for densities with separated representations, we describe a tensor product approx-
imations of the integral operator. We provide results of numerical experiments showing that
even for high space dimensions these approximations are accurate and preserve the predicted
convergence order.

2 Advection-diffusion potentials over Rn

We consider the volume potential of the advection-diffusion operator −∆+2b·∇+c with b ∈ Cn
and c ∈ C. We use the notation

〈x,y〉 =
n∑
j=1

xjyj and |x|2 = 〈x,x〉.

If λ2 = c+ |b|2 6= 0, then the fundamental solution can be given as

κλ(x) =
e〈b,x〉

(2π)n/2

(
|x|
λ

)1−n/2
Kn/2−1(λ|x|), λ ∈ C \ (−∞, 0], x = (x1, ..., xn) 6= 0

where Kν is the modified Bessel function of the second kind ([1, 9.6]). If λ2 = 0 then, for n ≥ 3

κ0(x) =
Γ(n/2− 1)

4πn/2
e〈b,x〉

|x|n−2
.

A solution in Rn of the equation

(−∆ + 2b · ∇+ c)u = f

is given by the volume potential

u(x) = Kf(x) =

∫
Rn

κλ(x− y)f(y) dy. (2.1)
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We construct an approximation of u if we replace the density f by functions with analytically
known advection-diffusion potentials. Specifically we approximate the density f ∈ CN0 (Rn) with
the approximate quasi-interpolant

Mh,Df(x) = D−n/2
∑

m∈Zn

f(hm)η

(
x− hm

h
√
D

)
(2.2)

where h and D are positive parameters and η is a smooth and rapidly decaying function. The
generating function η is chosen so that Kλη can be computed, analytically or efficiently numer-
ically. If the generating function η satisfies the moment condition of order N∫

Rn

xαη(x)dx = δ0,α, 0 ≤ |α| < N (2.3)

then ([11, p.21])

|f(x)−Mh,Df(x)| ≤ c(
√
Dh)N ||∇Nf ||L∞ +

N−1∑
k=0

εk(h
√
D)k|∇kf(x)|

with
εk ≤

∑
m∈Zn\{0}

|∇kFη(
√
Dm)|; lim

D→∞

∑
m∈Zn\{0}

|∇kFη(
√
Dm)| = 0.

Here Fη denotes the Fourier transform of η

Fη(y) =

∫
Rn

η(x)e−2iπx·ydx.

Hence, for any saturation error ε > 0, one can fix the parameter D so that

|f(x)−Mh,Df(x)| = O((
√
Dh)N + ε)||f ||WN

∞
(2.4)

where WN
∞ denotes the Sobolev space of L∞− functions whose generalized derivatives up to the

order N also belong to L∞. Then the linear combination

hn
∑

m∈Zn

f(hm)

∫
Rn

κλ(h
√
D
(

x− hm

h
√
D
− y

)
)η(y) dy, (2.5)

gives rise to a new class of semi-analytic cubature formulas with the property that, for any
prescribed accuracy ε > 0, one can fix the parameter D so that (2.5) differs in some uniform or
Lp−norm from the integral (2.1) by

O((
√
Dh)N + (

√
Dh)2ε) as h→ 0 (2.6)

where N is determined by (2.3).

We assume the generating function as tensor product of one-dimensional functions

η2M (x) =
n∏
j=1

η̃2M (xj); η̃2M (t) =
(−1)M−1

22M−1
√
π(M − 1)!

H2M−1(t)e−t
2

t
(2.7)
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where Hk are the Hermite polynomials

Hk(t) = (−1)ket
2

(
d

dt

)k
e−t

2
.

Under the condition Re(c+ |b|2) ≥ 0, the following theorem gives an integral representation
for the solution of

(−∆ + 2b · ∇+ c)u =

n∏
j=1

η̃2M (xj). (2.8)

Theorem 2.1. ([7, p.896]) Let Re(c+ |b|2) ≥ 0, n ≥ 3 and M ≥ 1. The solution of (2.8) can
be expressed by the one-dimensional integral

u(x) =
1

4

∞∫
0

e−c t/4
n∏
j=1

1√
π

e−(xj−tbj/2)2/(1+t)PM (t, xj −
t

2
bj)dt (2.9)

where

PM (t, x) =

M−1∑
k=0

(−1)k

4kk!

1

(1 + t)k+1/2
H2k

(
x√

1 + t

)
. (2.10)

If Re(c+ |b|2) > 0 then the representation (2.9) is valid for all n ≥ 1.

Remark 2.1. PM (t, x) are polynomials in x of degree 2M − 2. For M = 1, 2, 3, they are given
by

P1(t, x) =
1

(1 + t)1/2
, P2(t, x) = P1(t, x) +

1

2(1 + t)3/2
− x2

(1 + t)5/2
,

P3(t, x) = P2(t, x) +
3

8(1 + t)5/2
− 3x2

2(1 + t)7/2
+

x4

2(1 + t)9/2
,

P4(t, x) = P3(t, x)− x6

6(t+ 1)13/2
+

5x4

4(t+ 1)11/2
− 15x2

8(t+ 1)9/2
+

5

16(t+ 1)7/2
.

The computation of the cubature formula (2.5) on the uniform grid {hk} leads to the discrete
convolution

K(M)
h f(hk) =

∑
m∈Zn

a
(M)
k−mf(hm) (2.11)

where we set

a
(M)
k =

1

4(πD)n/2

∞∫
0

e−ct/4
n∏
j=1

e−(kj−tbj/(2h))2/(D(1+t/(h2D)))PM
(

t

h2D
,
kj√
D
− tbj

2h
√
D

)
dt.

(2.12)
For general functions f the most efficient summation methods for (2.11) are probably fast
convolutions based on multi-variate FFT. However, even for the space dimension n = 3, problems
of moderate size often exceed the capacity of computer systems. We propose a method which
reduces the computational effort.
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The computation of the sum (2.11) is very efficient for densities which allow a separated
representation, i.e., for given accuracy ε > 0, they can be represented as a sum of products of
vectors in dimension 1

f(x1, ..., xn) =
R∑
p=1

rp

n∏
j=1

f
(p)
j (xj) +O(ε). (2.13)

Suppose that also the vectors {a(M)
k } allow separated representations

a
(M)
k =

Q∑
q=1

sq

n∏
j=1

v
(q)
j (kj) +O(ε).

Then an approximate value of Kf(hk) can be computed by the sum of products of one-
dimensional convolutions

K(M)
h f(hk) ≈

R∑
p=1

rp

Q∑
q=1

sq

n∏
j=1

∑
mj∈Z

v
(q)
j (kj −mj)f

(p)
j (hmj).

Then the numerical computation of the integral does not require to perform an n−dimensional
discrete convolution, for example, instead one has to compute nRQ one-dimensional discrete
convolutions, which can lead to a considerable reduction of computing time and memory re-
quirements, and gives the possibility to treat real world problems.

Following [6], a separated representation of the one-dimensional integrals {a(M)
k } is obtained

by applying an accurate quadrature rule. So the problem is reduced to finding efficient quadra-
ture formulas for the parameter dependent integrals in (2.12). More precisely, one has to find
a certain quadrature rule with minimal number of summands which approximates the integrals
with prescribed error for the parameters (kj − mj)/

√
D within the range |kj − mj | ≤ K and

some given bound K.

It is well known that the classical trapezoidal rule is exponentially converging for certain
classes of integrands, for example periodic functions or rapidly decaying functions on the real
line. As it was first observed in [13], if the integrand has the decay rate

|f(u)| ≤ c exp(−a exp(|u|)) for |u| → ∞

referred to as doubly exponential decay, then the trapezoidal rule is optimal with respect to the
economy of the number of nodes.

We make the substitutions

t = eξ, ξ = α(σ + eσ), σ = β(u− e−u) (2.14)

with certain positive constants α, β, proposed by Waldvogel in [14]. Then the integrals in (2.12)
are transformed to integrals over R with integrands decaying doubly exponentially in u.

After the substitution we have

a
(M)
k =

1

4(πD)n/2

∞∫
−∞

e−cΦ(u)/4Φ′(u)

×
n∏
j=1

e−(kj−Φ(u)bj/(2h))2/(D(1+Φ(u)/(h2D)))PM
(

Φ(u)

h2D
,
kj√
D
− Φ(u)bj

2h
√
D

)
du
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with

Φ(u) = exp(αβ(u− e−u) + α exp(β(u− e−u))),

Φ′(u) = Φ(u)αβ(1 + e−u)(1 + exp(β(u− e−u))).
(2.15)

Application of the trapezoidal rule with step size τ and N0, N1 large positive integers gives

a
(M)
k ≈ τ

4(πD)n/2

N1∑
s=−N0

e−cΦ(sτ)/4Φ′(sτ)

×
n∏
j=1

e−(kj−Φ(sτ)bj/(2h))2/(D(1+Φ(sτ)/(h2D)))PM
(

Φ(sτ)

h2D
,
kj√
D
− Φ(sτ)bj

2h
√
D

)
.

Assuming a separated representation (2.13) of the density we obtain the approximation of
the n-dimensional convolutional sum in (2.11) via one-dimensional discrete convolutions

K(M)
h f(hk) ≈ τ

4(πD)n/2

R∑
p=1

rp

N1∑
s=−N0

e−cΦ(sτ)/4Φ′(sτ)

×
n∏
j=1

∑
mj∈Z

e−(kj−mj−Φ(sτ)bj/(2h))2/(D(1+Φ(sτ)/(h2D)))PM
(

Φ(sτ)

h2D
,
kj −mj√
D

− Φ(sτ)bj

2h
√
D

)
f

(p)
j (hmj).

3 One dimensional integral representations

We consider the integrals

K[P,Q]f(x) =

∫
[P,Q]

κλ(x− y)f(y)dy (3.1)

taken over the hyper-rectangle

[P,Q] = {y = (y1, ..., yn) ∈ Rn : Pj ≤ yj ≤ Qj , j = 1, ..., n} =
n∏
j=1

[Pj , Qj ].

Here we use the notations P = (P1, ..., Pn) and Q = (Q1, ..., Qn).

The direct application of the method described in Section 2, which is based on replacing the
density by a quasi-interpolant Mh,Df and on the known values of K[P,Q]η, does not give good
approximations of (3.1). This is because the sum

Mh,Df(x) = D−n/2
∑

hm∈[P,Q]

f(hm)η

(
x− hm

h
√
D

)
approximates f only in a subdomain of [P,Q] with positive distance from the boundary.

This difficulty can be overcome if we extend f with preserved smoothness outside [P,Q] and
we approximate the extension f̃ with the quasi-interpolant (2.2). Since η is smooth and of rapid
decay, for any ε > 0 one can fix r > 0 and positive parameter D > 0 so that the quasi-interpolant

M(r)
h,Df̃(x) = D−n/2

∑
hm∈Ωrh

f̃(hm)η

(
x− hm

h
√
D

)
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with Ωrh =
∏n
j=1 Ij , Ij = (Pj − rh

√
D, Qj + rh

√
D), approximates f in [P,Q] with the error

estimate (2.4).

We assume the tensor product basis functions (2.7). We deduce that the sum

hn
∑

hm∈Ωrh

f̃(hm)

∫
[Pm,Qm]

κλ

(
h
√
D
(

x− hm

h
√
D
− y

)) n∏
j=1

η̃2M (yj) dy, (3.2)

with Pm = (P− hm)/(h
√
D) and Qm = (Q− hm)/(h

√
D), provides an approximation for

K[P,Q]f(x) of high-order.

We are interested in integral representations of the solution of the advection-diffusion equation

(−∆ + 2b · ∇+ c)u =
n∏
j=1

χ(pj ,qj)(xj) η̃2M (ajxj) . (3.3)

Here χ(pj ,qj) is the characteristic function of the interval (pj , qj) with −∞ ≤ pj < qj ≤ +∞,
j = 1, . . . , n. As mentioned above, one-dimensional integral representations for the solution of
(2.8) are known under the condition that Reλ2 = Re(c + |b|2) ≥ 0. The next Theorem allows
to treat also the case Reλ2 < 0.

Theorem 3.1. Let ϑ ∈ C, ϑ 6= 0, be so that Reϑ ≥ 0 and Re(λ2ϑ) ≥ 0. If n ≥ 3 the solution
of the advection-diffusion equation (3.3) in Rn can be expressed by the one-dimensional integral

u(x) =
ϑ

4

∞∫
0

e−ϑct/4
n∏
j=1

(ΨM (aj(xj −
bjϑt

2
), a2

jϑt, ajpj)−ΨM (aj(xj −
bjϑt

2
), a2

jϑt, ajqj))dt (3.4)

where

ΨM (x, t, y) =
1

2
√
π

e−x
2/(1+t)

(
PM (t, x) erfc(F (t, x, y))− e−F

2(t,x,y)

√
π

QM (t, x, y)

)
with PM defined in (2.10),

F (t, x, y) =

√
1 + t

t

(
y − x

1 + t

)
,

Q1(t, x, y) = 0,

QM (t, x, y) = 2

M−1∑
k=1

(−1)k

k! 4k

2k∑
`=1

(−1)`

t`/2

(
H2k−`(y)H`−1

(y − x√
t

)
−
(2k
`

)
H2k−`

( x√
1 + t

)H`−1

(
F (t, x, y)

)
(1 + t)k+1/2

)
, M > 1. (3.5)

If Re(λ2ϑ) > 0, then representation (3.4) is valid for all n ≥ 1.

Proof. To treat the more general case Reϑ(c+ |b|2) ≥ 0 we multiply (3.3) by ϑ and look for the
solution of

(−ϑ∆ + 2ϑb · ∇+ ϑc)u = ϑ

n∏
j=1

χ(pj ,qj)(xj) η̃2M (ajxj) . (3.6)
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If u satisfies (3.6) then v = u e−〈b,x〉 is solution of

(−ϑ∆ + ϑλ2) v = ϑe−〈b,x〉
n∏
j=1

χ(pj ,qj)(xj) η̃2M (ajxj) . (3.7)

We can obtain v by solving the Cauchy problem for the parabolic equation in Rn

∂tw − ϑ∆w + ϑλ2w = 0 , t > 0, w(x, 0) = ϑe−〈b,x〉
n∏
j=1

χ(pj ,qj)(xj) η̃2M (ajxj) . (3.8)

Integrating in t we derive

w(x, T )− w(x, 0)− ϑ(∆− λ2)

T∫
0

w(x, t) dt = 0 .

Hence the solution of (3.7) can be expressed as the one-dimensional integral

v(x) =

∞∫
0

w(x, t) dt (3.9)

provided the improper integral (3.9) exists. Obviously, if w solves (3.8), then z = weϑλ
2t is the

solution of the initial value problem for the heat equation

∂tz − ϑ∆z = 0 , z(x, 0) = ϑe−〈b,x〉
n∏
j=1

χ(pj ,qj)(xj) η̃2M (ajxj) . (3.10)

Because Reϑ ≥ 0, by Poisson’s formula [5, p.209] the solution of (3.10) is for any t > 0

z(x, t) =
ϑ

(4πϑt)n/2

∫
[p,q]

e−|x−y|
2/(4ϑt)e−〈b,y〉

n∏
j=1

η̃2M (ajyj) dy (3.11)

where [p,q] is the Cartesian product of the intervals [pj , qj ]. Hence, if Reλ2ϑ > 0, then the

integral (3.9) with w = ze−ϑλ
2t exists for any n ≥ 1, whereas for Reλ2ϑ = 0 it exists due to the

decay t−n/2 only if n ≥ 3. Using the relation [11, p.55]

η̃2M (ajxj) =
1√
π

M−1∑
k=0

(−1)k

k! 4ka2k
j

d2k

dx2k
j

e−(ajxj)2

we can express the integral (3.11), i.e. the solution of (3.10), as

z(x, t) =
ϑeϑt|b|

2−〈b,x〉

(4π2ϑt)n/2

n∏
j=1

M−1∑
k=0

(−1)k

k! 4ka2k
j

qj∫
pj

e−(xj−2bjϑt−yj)2/(4ϑt) d2k

dy2k
j

e−(ajyj)2 dyj .
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Denoting by

Ik =

qj∫
pj

e−(xj−2bjϑt−yj)2/(4ϑt) d2k

dy2k
j

e−(ajyj)2 dyj ,

integration by parts leads to

Ik =
∂2k

∂x2k
j

I0 +
2k−1∑
`=0

(−1)`
∂`

∂y`j
e−(xj−2bjϑt−yj)2/(4ϑt) ∂

2k−`−1

∂y2k−`−1
j

e−(ajyj)2

∣∣∣∣∣
yj=qj

yj=pj

.

The definition of Hermite polynomials gives

∂2k−`−1

∂y2k−`−1
j

e−(ajyj)2 = (−1)2k−`−1a2k−`−1
j e−(ajyj)2H2k−`−1(ajyj) ,

∂`

∂y`j
e−(xj−2bjϑt−yj)2/(4ϑt) =

(−1)`e−(xj−2bjϑt−yj)2/(4ϑt)

(4ϑt)`/2
H`

(yj − xj + 2bjϑt

(4ϑt)1/2

)
.

Therefore

Ik =
∂2k

∂x2k
j

I0 + a2k
j

2k−1∑
`=0

(−1)`+1

(4ϑt)`/2a`+1
j

H̃`

(yj − xj + 2bjϑt

(4ϑt)1/2

)
H̃2k−`−1(ajyj)

∣∣∣∣∣
yj=qj

yj=pj

,

where we use the abbreviation

H̃`(y) = e−y
2
H`(y) . (3.12)

We have

I0 =
e−a

2
j (xj−2bjϑt)

2/(1+4a2jϑt)

2

√
4πϑt

1 + 4a2
jϑt

(
erfc(fj(pj))− erfc(fj(qj))

)
,

where we denote
fj(y) = F (4a2

jϑt, aj(xj − 2bjϑt), ajy). (3.13)

In view of
d`

dz`
erfc(z) =

2√
π

(−1)`e−z
2
H`−1(z) =

2√
π

(−1)`H̃`−1(z), ` ≥ 1 ,

one gets for ` < 2k

∂2k−`

∂x2k−`
j

erfc(fj(y)) =
(−1)2k−`

(4ϑt(1 + 4a2
jϑt))

k−`/2

[
d2k−`

dz2k−` erfc(z)

]
z=fj(y)

=
2H̃2k−`−1(fj(y))

√
π(4ϑt(1 + 4a2

jϑt))
k−`/2 .

Therefore, since

∂`

∂x`j
e−a

2
j (xj−2bjϑt)

2/(1+4a2jϑt) =
(−1)`a`j

(1 + 4a2
jϑt)

`/2
H̃`

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

)
,

9



we obtain

1√
πϑt

∂2k

∂x2k
j

I0 =
a2k
j

(1 + 4a2
jϑt)

k+1/2
H̃2k

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

)
erfc(fj(y))

∣∣∣∣∣
y=pj

y=qj

− 2
√
π(1 + 4a2

jϑt)
k+1/2

2k−1∑
`=0

(2k
`

) (−1)`a`j

(4ϑt)k−`/2
H̃`

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

)
H̃2k−`−1(fj(y))

∣∣∣∣∣
y=qj

y=pj

.

Hence, z(x, t) can be written in the form

z(x, t) =
ϑeϑt|b|

2−〈b,x〉

πn/2

n∏
j=1

(
1

2
erfc(fj(y))

∣∣∣∣∣
y=pj

y=qj

M−1∑
k=0

(−1)k

k! 4k(1 + 4a2
jϑt)

k+1/2
H̃2k

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

)

+
1√
π

M−1∑
k=1

(−1)k

k! 4k

2k−1∑
`=0

(−1)`

(4a2
jϑt)

k−`/2

(
H̃`(ajy)H̃2k−`−1

(y − xj + 2bjϑt√
4ϑt

)
−
(2k
`

)
H̃`

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

) H̃2k−`−1(fj(y))

(1 + 4a2
jϑt)

k+1/2

)∣∣∣∣∣
y=qj

y=pj

)
.

From (3.12) we have

H̃2k

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

)
= e−(a2j (xj−2bjϑt)

2)/(1+4a2jϑt)H2k

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

)
;

H̃`(ajy)H̃2k−`−1

(y − xj + 2bjϑt√
4ϑt

)
= e−f

2
j (y)e−(a2j (xj−2bjϑt)

2)/(1+4a2jϑt)H`(ajy)H2k−`−1

(y − xj + 2bjϑt√
4ϑt

)
.

Thus we obtain

u(x) =

∞∫
0

e−ϑλ
2te 〈b,x〉z(x, t) dt =

∞∫
0

ϑe−ϑλ
2teϑt|b|

2
n∏
j=1

e−(a2j (xj−2bjϑt)
2)/(1+4a2jϑt)

√
π

×

(
1

2
erfc(fj(y))

∣∣∣∣y=pj

y=qj

M−1∑
k=0

(−1)k

k! 4k(1 + 4a2
jϑt)

k+1/2
H2k

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

)
+

e−f
2
j (y)

√
π

M−1∑
k=1

(−1)k

k! 4k

2k∑
`=1

(−1)`

(4a2
jϑt)

`/2

(
H2k−`(ajy)H`−1

(y − xj + 2bjϑt

(4ϑt)1/2

)
−
(2k
`

)
H2k−`

(aj(xj − 2bjϑt)

(1 + 4a2
jϑt)

1/2

) H`−1(fj(y))

(1 + 4a2
jϑt)

k+1/2

)∣∣∣∣y=qj

y=pj

)
dt.

Therefore, keeping in mind (3.13), (2.10) and (3.5), we find

u(x) =

∞∫
0

ϑe−ϑct
n∏
j=1

e−a
2
j (xj−2bjϑt)

2/(1+4a2jϑt)

2
√
π

×

(
PM (4a2

jϑt, aj(xj − 2bjϑt)) erfc(fj(y))− e−f
2
j (y)

√
π
QM (4a2

jϑt, aj(xj − 2bjϑt), ajy)

)∣∣∣∣y=pj

y=qj

dt
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and the assertion follows.

Remark 3.1. If M > 1, QM are polynomials in x of degree 2M − 3. For example, for M = 2, 3

Q2(t, x, p) =

√
t

(1 + t)

( x

1 + t
+ p
)
,

Q3(t, x, p) = −
√
t

4(1 + t)

( 2x3

(1 + t)3
+

2px2 − 5x

(1 + t)2
+

(2p2 − 5)x− 3p

1 + t
+ p(2p2 − 7)

)
.

4 Tensor product cubature formulas and numerical results

We compute the cubature formula (3.2) using the integral representation of Theorem 3.1. At
the grid points {hk} we obtain

K[P,Q]f(hk) ≈
∑

hm∈Ωrh

c
(M)
k,mf̃(hm) (4.1)

where we set

c
(M)
k,m = hn

∫
[Pm,Qm]

κλ

(
h
√
D
(

x− hm

h
√
D
− y

)) n∏
j=1

η̃2M (yj) dy

=
ϑ

4Dn/2

∞∫
0

e−ϑct/4
n∏
j=1

(
(ΨM

(
kj −mj√
D

− bjϑt

2h
√
D
,
ϑt

h2D
,
Pj − hmj

h
√
D

)

−ΨM

(
kj −mj√
D

− bjϑt

2h
√
D
,
ϑt

h2D
,
Qj − hmj

h
√
D

))
dt.

We can speed up the computation of (4.1) if we use the approximation ([9, p.175])

ΨM (x, t, p)−ΨM (x, t, q) ≈
{

0 , p, q ≥ r or p, q ≤ −r ,
e−x

2/(1+t)PM (t, x), p ≤ −r and q ≥ r ,

with the error O(e−r
2
). Similarly, if q − p ≥ 2r, then

ΨM (x, t, p)−ΨM (x, t, q) ≈
{

ΨM (x, t, p) , −r < p < r ,

e−x
2/(1+t)PM (t, x)−ΨM (x, t, q), −r < q < r .

Therefore, for appropriately chosen r > 0 we can set, within a given accuracy, if p − hm ≤
−rh
√
D,

ΨM

(
k√
D
− bϑt

2h
√
D
,
tϑ

h2D
,
p− hm
h
√
D

)
= e−(k−bϑt/(2h))2/(D(1+t/(h2D))PM

(
tϑ

h2D
,
k√
D
− bϑt

2h
√
D

)
,

whereas, for q − hm ≥ rh
√
D,

ΨM

(
k√
D
− bϑt

2h
√
D
,
tϑ

h2D
,
q − hm
h
√
D

)
= 0.
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We deduce that we can split the sum (4.1) into

K[P,Q]f(hk) ≈
∑

hm∈Ω̃rh

b
(M)
k−mf(hm) +

∑
hm∈Ωrh\Ω̃rh

c
(M)
k,mf̃(hm) (4.2)

where Ω̃rh =
∏n
j=1 Ĩj , Ĩj = (Pj + rh

√
D, Qj − rh

√
D) and

b
(M)
k =

ϑ

4(πD)n/2

∞∫
0

e−ϑct/4e−(kj−tϑbj/(2h))2/(D(1+tϑ/(h2D)))PM
(
tϑ

h2D
,
kj√
D
− tϑbj

2h
√
D

)
dt.

The one-dimensional integrals of b
(M)
k−m and c

(M)
k,m are transformed to integrals over the real line

with integrands decaying doubly exponentially by making the substitution (2.15). The quadra-
ture rule with step τ gives

b
(M)
k ≈ τϑ

4(πD)n/2
×

N1∑
s=−N0

e−ϑcΦ(sτ)/4Φ′(sτ)e−(kj−Φ(sτ)ϑbj/(2h))2/(D(1+Φ(sτ)ϑ/(h2D)))PM
(

Φ(sτ)ϑ

h2D
,
kj√
D
− Φ(sτ)ϑbj

2h
√
D

)
;

c
(M)
k,m ≈

τϑ

4Dn/2
N1∑

s=−N0

e−ϑcΦ(sτ)/4Φ′(sτ)
n∏
j=1

(
ΨM

(
kj −mj√
D

− bjϑΦ(sτ)

2h
√
D

,
ϑΦ(sτ)

h2D
,
Pj − hmj

h
√
D

)

−ΨM

(
kj −mj√
D

− bjϑΦ(sτ)

2h
√
D

,
ϑΦ(sτ)

h2D
,
Qj − hmj

h
√
D

))
.

Let us assume a separated representation (2.13) of the density f ∈ CN ([P,Q]). An extension of

f
(p)
j (xj) outside the interval [Pj , Qj ], with preserved smoothness, can be obtained by using the

following formula proposed by Hestenes ([4], see also [12, p.19])

f̃
(p)
j (xj) =



N∑
s=1

csf
(p)
j (−as(xj −Qj) +Qj), Qj < xj ≤ Qj +

Qj − Pj
A

f
(p)
j (xj), Pj ≤ xj ≤ Qj

N∑
s=1

csf
(p)
j (−as(xj − Pj) + Pj), Pj −

Qj − Pj
A

≤ xj < Pj

with {as}, s = 1, ..., N + 1, different positive constants, A = max1≤s≤N+1 as and the coefficients
{cs} are solutions of the system

N+1∑
s=1

cs(−as)k = 1, k = 0, ..., N.

The extension f̃ preserves smoothness and

||f̃ ||WN
∞(Ωrh) ≤ C||f ||WN

∞([P,Q]), C > 0.
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Then the linear combination (4.2) approximates (3.1) with the asymptotic error (2.6).

We derive the approximation of the convolutional sum in (4.2) via one-dimensional discrete
convolutions∑

hm∈Ω̃rh

b
(M)
k−mf(hm) ≈ τϑ

4(πD)n/2

R∑
p=1

rp

N1∑
s=−N0

e−ϑcΦ(sτ)/4Φ′(sτ)
n∏
j=1

∑
hmj∈Ĩj

f
(p)
j (hmj)×

e−(kj−mj−Φ(sτ)ϑbj/(2h))2/(D(1+Φ(sτ)ϑ/(h2D)))PM
(

Φ(sτ)ϑ

h2D
,
kj −mj√
D

− bjϑΦ(sτ)

2h
√
D

)
and the approximation of the second sum in (4.2) using one dimensional operations

∑
hm∈Ωrh\Ω̃rh

c
(M)
k,mf̃(hm) ≈ τϑ

4Dn/2
R∑
p=1

rp

N1∑
s=−N0

e−ϑcΦ(sτ)/4Φ′(sτ)

×
n∏
j=1

∑
hmj∈Ij\Ĩj

f̃
(p)
j (hmj)ΨM

(
kj −mj√
D

− bjϑΦ(sτ)

2h
√
D

,
ϑΦ(sτ)

h2D
,
X

h
√
D

) ∣∣∣∣X=Pj−hmj

X=Qj−hmj

.

We have tested the approximation of the potential (2.1) with b = 0, the exact solution
u(x) =

∏n
j=1 v(xj) and the density

f(x) = (−∆ + c)
n∏
j=1

v(xj) =
n∑
p=1

n∏
j=1

f
(p)
j (xj), x ∈ [−1, 1]n ,

where f
(p)
j (x) = v(x) if j 6= p , f

(p)
j (x) = −v′′(x) +

c

n
v(x) if j = p.

(4.3)

We assumed D = 4 in order to have the saturation error comparable with the double precision
rounding errors. We choose the parameters α = 2, β = 2 in (2.14) and τ = 0.005, N0 = 200,
N1 = 300 in the trapezoidal rule.

In Table 1 we compare exact and approximate values for Kf at some points (x1, 0, ..., 0) for
space dimensions n = 3, 30, 300, 3000, 30000, with v(x) = ex(1− x2)2, c = e2iπ/3 and ϑ = e−iπ/3.
We choose M = 3 and h = 0.0125, We provide results for the Hestenes extension corresponding

to as = 1/s. The numerical results coincide with those if using f̃
(p)
j = f

(p)
j or other two

Hestenes extensions with as = 1/2s or as = s. The computational time on a 2 cpu Xeon
Quad-Core processor with 2.4 Ghz is 3.6 seconds for any space dimension n. It does not depend
on n because of the special choice (4.3), which requires the computation of 2(N0 + N1) one-
dimensional convolutions and summations. For general f in (2.13), the approximation of the
potential requires to compute nR(N0 + N1) of those one-dimensional operations. Thus the
computational time scales linearly in the space dimension n.

In Tables 2 and 3 we report on the absolute error and the approximation rates for (2.1) when
c = −1 + 4i, in dimension n = 3, 10, 102, 104, 105. We used the approximation formulas of order

2, 4, 6. We provide results when f is given in (4.3) with v(x) = cos2(πx/2) and f̃
(p)
j = f

(p)
j

(Table 2), and with v(x) = ex(1− x2)2 and the Hestenes extension corresponding to as = 1/2s

(Table 3). For very high dimensional case the second order formula fails but the 6 − th order
formula approximates with the predicted approximation rate.
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dimension x1 exact value approximation absolute error

0.0 1.0000000000000000 0.99999999994469568 0.566E-09
0.2 1.1256447819204123 1.1256447819202458 0.586E-09

n = 3 0.4 1.0526315066556802 1.0526315066750866 0.597E-09
0.6 0.74633986063995228 0.74633986062252122 0.592E-09
0.8 0.28843010433262362 0.28843010422945359 0.576E-09

0.0 1.0000000000000000 1.0000000057417306 0.574E-08
0.2 1.1256447819204123 1.1256447884781275 0.656E-08

n = 30 0.4 1.0526315066556802 1.0526315129819730 0.633E-08
0.6 0.74633986063995228 0.74633986550526243 0.487E-08
0.8 0.28843010433262362 0.28843010690023407 0.257E-08

0.0 1.0000000000000000 1.0000000574634069 0.575E-07
0.2 1.1256447819204123 1.1256448466982212 0.648E-07

n = 300 0.4 1.0526315066556802 1.0526315674272828 0.608E-07
0.6 0.74633986063995228 0.74633990412891404 0.435E-07
0.8 0.28843010433262362 0.28843012197182266 0.176E-07

0.0 1.0000000000000000 1.0000005744371889 0.574E-06
0.2 1.1256447819204123 1.1256454286274939 0.647E-06

n = 3000 0.4 1.0526315066556802 1.0526321116120156 0.605E-06
0.6 0.74633986063995228 0.74634028996878954 0.429E-06
0.8 0.28843010433262362 0.28843027108409619 0.167E-06

0.0 1.0000000000000000 1.0000057444699280 0.574E-05
0.2 1.1256447819204123 1.1256512482478720 0.647E-05

n = 30000 0.4 1.0526315066556802 1.0526375537513712 0.605E-05
0.6 0.74633986063995228 0.74634414857030773 0.429E-05
0.8 0.28843010433262362 0.28843176227718131 0.166E-05

Table 1: Exact and approximated values of Kf(x1, 0, ..., 0) and the absolute error using (4.2)
with M = 3 and h = 0.0125. The density f is given in (4.3) with v(x) = ex(1− x2)2.
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h−1 error rate error rate error rate error rate error rate
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20 0.177E-03 3.93 0.680E-03 3.92 0.736E-02 3.78 0.388E+00 0.36 0.500E+00 0.00
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M = 3

n 3 10 102 104 105

h−1 error rate error rate error rate error rate error rate

10 0.879E-04 0.338E-03 0.367E-02 0.262E+00 0.500E+00
20 0.145E-05 5.92 0.558E-05 5.92 0.608E-04 5.92 0.611E-02 5.42 0.578E-01 3.11
40 0.230E-07 5.98 0.884E-07 5.98 0.964E-06 5.98 0.973E-04 5.97 0.973E-03 5.89
80 0.361E-09 5.99 0.139E-08 5.99 0.151E-07 5.99 0.153E-05 5.99 0.153E-04 5.99

160 0.565E-11 5.99 0.217E-10 5.99 0.236E-09 5.99 0.239E-07 5.99 0.238E-06 5.99
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M = 1

n 3 10 102 104 105

h−1 error rate error rate error rate error rate error rate

10 0.288E+00 0.375E+00 0.112E+01 0.118E+01 0.118E+01
20 0.737E-01 1.97 0.106E+00 1.82 0.629E+00 0.84 0.118E+01 0.00 0.118E+01 0.00
40 0.185E-01 1.99 0.274E-01 1.95 0.204E+00 1.62 0.118E+01 0.00 0.118E+01 0.00
80 0.464E-02 1.99 0.689E-02 1.99 0.548E-01 1.90 0.117E+01 0.01 0.118E+01 0.00

160 0.116E-02 1.99 0.173E-02 1.99 0.139E-01 1.97 0.812E+00 0.52 0.118E+01 0.00

M = 2

n 3 10 102 104 105

h−1 error rate error rate error rate error rate error rate

10 0.107E-01 0.564E-02 0.239E-01 0.921E+00 0.118E+01
20 0.668E-03 4.00 0.295E-03 4.26 0.926E-03 4.68 0.544E-01 4.08 0.442E+00 1.41
40 0.416E-04 4.00 0.175E-04 4.07 0.490E-04 4.24 0.261E-02 4.38 0.256E-01 4.10
80 0.260E-05 4.00 0.108E-05 4.02 0.293E-05 4.06 0.150E-03 4.12 0.148E-02 4.11

160 0.162E-06 4.00 0.674E-07 4.00 0.181E-06 4.02 0.914E-05 4.03 0.906E-04 4.03

M = 3

n 3 10 102 104 105

h−1 error rate error rate error rate error rate error rate

10 0.272E-03 0.708E-03 0.629E-02 0.806E+00
20 0.420E-05 6.01 0.108E-04 6.03 0.952E-04 6.04 0.935E-02 6.43 0.969E-01
40 0.654E-07 6.00 0.168E-06 6.00 0.148E-05 6.01 0.145E-03 6.02 0.145E-02 6.06
80 0.105E-08 5.97 0.261E-08 6.00 0.230E-07 6.00 0.225E-05 6.00 0.225E-04 6.00

160 0.142E-10 6.20 0.413E-10 5.98 0.360E-09 6.00 0.352E-07 6.00 0.352E-06 5.99

Table 3: Absolute errors and approximation rates for Kf(0.3, 0.4, 0, ..., 0) using (4.2) and f
given in (4.3) with v(x) = ex(1− x2)2 and the Hestenes extension corresponding to as = 1/2s ,
c = −1 + 4i.
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