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Cardiac cycle does not affect motor evoked potential variability: A real-
time EKG-EMG study
Motor evoked potentials (MEPs) elicited by transcranial mag-
netic stimulation (TMS) of the primary motor cortex (M1) are high-
ly variable, reflecting physiological fluctuations in the corticospinal
excitability. Besides changes in coil 3D-orientation, MEP variability
also depends on several physiological factors related to the state of
the stimulated cortex [1,2]. Another factor, poorly investigated so
far, is the physical brain displacement secondary to fluctuations
in intracranial pressure (ICP). ICP fluctuations are mostly related
to forward-travelling arterial blood pressure pulses secondary to
the cardiac cycle [3]. A magnetic resonance imaging (MRI) study
estimated a brain displacement secondary to the cardiac cycle of
z0.2 mm in the frontal lobe in young subjects, with a time to
peak of z500 ms from the R-wave of electrocardiogram (EKG) [4].

Recent MRI-based modelling demonstrated that slight changes
in TMS-induced currents’ direction influence the electric field
voltage at the axon hillock [5], thus eliciting different patterns of
corticospinal neurons activation. Therefore, a physical displace-
ment of the brain parenchyma might lead to variations in the angle
between the TMS-induced electric field and the stimulated fibers
and, in turn, affect MEP variability. Few studies have previously
tested this hypothesis by evaluating the relationship between the
cardiac cycle and MEP amplitude variability [6e8]. However, the
cohorts included a limited number of participants. Moreover,
MEPs were gated only to a single period of the cardiac cycle [6],
the cycle was split into a few intervals [7], or the relationship be-
tween specific cardiac phase and MEP amplitude was explored
only by post-acquisition analyses [8]. Finally, none have verified
possible changes in MEPs inter-trial variability in the various car-
diac cycle phases.

We here readdressed this issue by examining possible changes
in MEP amplitudes during several phases of the cardiac cycle
through a real-time EKG-EMG co-registration approach in a large
sample of subjects. Also, as a measure of inter-trial variability of
MEP, we calculated the coefficient of variation (CV) of MEP ampli-
tude at each EKG or cardiac phase.

We enrolled 30 participants (13 females, mean age 24.7 ± 2.7)
with no history of neuropsychiatric or cardiac diseases. TMS pulses
were delivered through a Magstim 2002 (Magstim Company Ltd)
connected to a figure-of-eight coil with postero-anterior orienta-
tion. The hotspot of the right first dorsal interosseous muscle
(FDI) and the intensity for evoking z1 mV MEPs (MT1mV) were
identified [1]. EMG activity from FDI and the EKG (lead I according
to standard methods) were recorded using surface electrodes. The
EMG and EKG raw signals were amplified and band-pass filtered
(20Hz-1kHz and 0.5e40Hz, respectively), digitalized and stored
for off-line analyses. Heart rate (HR) was calculated from the
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average R-R interval duration during the recording through offline
EKG track analysis.

TMS pulses were synchronized with EKG signal using the R-
wave peak as a trigger through a custom-made script on Signal soft-
ware (Cambridge Electronic Design). Twenty single pulses at
MT1mV (inter-stimulus interval: 4.5e5.5 ms) were randomly deliv-
ered at 0,100, 200, 300, 400, 500, and 600ms after the R-wave peak
(T1-T7; 140 total pulses) (Fig.1A). Peak-to-peakMEP amplitudewas
averaged for each time-point. Systole and diastole duration was
estimated as a function of HR and the amplitude of MEPs evoked
during systole or diastole was averaged. To investigate possible
changes of MEP amplitude across the different EKG (T1-T7) or car-
diac phases (systole, diastole), we compared the averaged MEP
amplitude for each tested time-point against the overall average
(i.e. average of the 140 trials considering all time-points together).
We also calculated the CV of MEP amplitude (CV% ¼ SD/mean*100)
at each time-point, a measure of inter-trial variability in the various
EKG intervals and/or cardiac phases. Two repeated-measure
ANOVAs were performed on MEP amplitude and CV% with the fac-
tor “time-point” (levels: T1-T7). Paired t-tests were used to
compare MEP amplitude and CV% between systole and diastole.
The level of statistical significance was set at p < 0.05.

None of the subjects reported side-effects during the study. Four
subjects were excluded from the analyses since they had HR > 100
bpm, implying a cardiac cycle lasting <600 ms and thus precluding
MEP recordings at T7. Repeated-measure ANOVA showed a non-
significant effect of the factor “time-point” on MEP amplitude
(F6,150 ¼ 0.80, p ¼ 0.57) and CV% (F6,150 ¼ 1.71, p ¼ 0.12). Similarly,
MEP amplitude (t ¼ 1.44, p ¼ 0.16) and CV% (t ¼ �1.28, p ¼ 0.21)
were comparable between the two phases of the cardiac cycle
(Fig. 1BeE).

We designed this experiment following the hypothesis that the
minimal brain displacement secondary to the cardiac cycle would
determine subtle changes in the geometrical disposition of
neuronal elements within M1 in relation to the orientation of the
TMS-induced electric field. Accordingly, the specific pattern of cor-
ticospinal activation would slightly change in the various phases of
the cardiac cycle, resulting in different MEP amplitudes. This phys-
iological phenomenonwould therefore contribute to the variability
of MEPs [6]. Our results showing comparable MEP amplitude and
CV% between the 7 different intervals of EKG and between the sys-
tolic and diastolic phases suggest a non-significant effect of cardiac
cycle-related brain displacement. Several arguments may explain
our negative findings. First, the amount of brain parenchyma
displacement due to the cardiac cycle [4] would cause a variation
between the geometrical disposition of M1 neurons and the TMS-
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Fig. 1. Panel A: EKG and EMG recording during a TMS pulse given at T6 (500 ms after the R-wave peak). When the R-wave reached the threshold line (black arrow) the TMS pulse
was triggered. All the time points (T1-T7) and systolic and diastolic phase estimates are shown. Panels BeC: Normalized MEP amplitude at T1-T7 (panel B) and at systolic and
diastolic phases (panel C). Panels DeE: CV% at T1-T7 (panel D) and at systolic and diastolic phases (panel E). No difference occurred across the various time-points or different
phases of the cardiac cycle.
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induced electric field not sufficient in modifying the physiological
pattern of corticospinal activation. Second, the young age of sub-
jects would have contributed to further reduce the effect of this
displacement. Despite ultrasound evidence of increased brain tis-
sue pulsatility [9], younger people have more trophic brains than
older adults. Accordingly, the cardiac cycle-related brain displace-
ment would be dampened in younger subjects and, in turn, MEP
amplitude less variable. Finally, the non-linear coupling of the elec-
tric cardiac cycle and ICP wave peak would have also contributed to
our findings. The initial phase of the ICP pulse wave is primarily
generated by the forward-travelling arterial blood pressure pulse
traversing the intracranial compartment [2,10]. The physiological
and structural properties of arterial vessels, along with the vascular
regulatorymechanismsmake ICP not linearly coupled with the EKG
activity [10]. Thus, the EKG recording would not be sensible enough
to monitor the association between cardiac cycle and MEP
variability.
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