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1. Moduli space of Riemann surfaces

Let g ≥ 2 and denote by Mg the moduli space of compact connected Riemann

surfaces of genus g up to isomorphism.

The space Mg can be viewed as an orbifold (see for instance [1]). Indeed, if

x = [S] ∈ Mg represents the isomorphism class of the Riemann surface S, points

in a neighbourhood of x encode deformations of complex structures on S up to

isomorphism. It is well-known that such deformations are parametrized by an open

subset U of C3g−3 (see [6] or, for instance, the book [5]) and that the finite auto-

morphism group of S acts on U . As a consequence, a neighbourhood of x in Mg

looks like U/Aut(S) and so Mg can be given the structure of a complex-analytic

orbifold. From the algebraic point of view, Mg can be endowed with the structure

of smooth Deligne-Mumford stack [11]. In fact, it is well-known [19] that Mg is a

global quotient of a smooth complex quasi-projective variety M̃g by the action of

a finite group G. Hence, sheaves and sections of sheaves on Mg can be defined as

G-equivariant sheaves and sections on M̃g.

Analogous considerations hold for the moduli space Mg,k of compact connected

Riemann surfaces S with k distinct marked points p1, . . . , pk ∈ S, provided the

hyperbolicity condition 2g − 2 + k > 0 is satisfied and so all automorphism groups

Aut(S, p1, . . . , pk) are finite.
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1.1. On the cohomology of the moduli space of Riemann surfaces

Many papers are dedicated to the study of the singular cohomology of Mg.

In low degrees, genus-independent computations are due to Powell [45] and Harer

[20] for H1, to Harer [20] [23] for H2 and H3, to Edidin [14] and Polito [44] for H4

and g ≥ 8.

As for low-genera computations, de Rham cohomology is trivial for g = 2. A com-

plete calculation in genus 3 is due to Looijenga [32] and in genus 4 to Tommasi [49],

but the full determination of H∗dR(Mg) seems out of reach for g large. Further com-

putations are available for the moduli spaces Mg,k of surfaces with marked points.

Still due to Harer are the following two major results, which here we state in a

simplified version.

Theorem 1.1 ([22]). Let 2g − 2 + k > 0. Then Hd(M̃g,k;L) = 0 for every local

system L and every d > d(g, k), where

d(g, k) =


n− 3 if g = 0 and n ≥ 3

4g − 5 if g ≥ 2 and n = 0

4g − 4 + n if g ≥ 1 and n ≥ 1.

Hence, Hd
dR(Mg,k;V) = 0 for every C-local system V and every d > d(g, k).

Actually, Harer’s result is much more powerful. In particular, it implies that there

exists a G-invariant local system S on M̃g,k such that H
d(g,k)
dR (Mg,k;S) 6= 0 and so

that the bound is sharp.

Theorem 1.2 (Stability [21]). Fix a degree d > 0. Then there exists an integer

g(d) ≈ 3d such that Hd(Mg+1;Z) ∼= Hd(Mg;Z) for all g ≥ g(d).

The stability threshold was improved by Ivanov [27] to g(d) ≈ 2d and then by Bold-

sen [10] to the approximately optimal g(d) ≈ 3
2d. Moreover, the full rational stable

cohomology was determined by Madsen-Weiss [35].

Though very important, de Rham cohomology and even Hodge theory do not always

capture subtleties of the holomorphic geometry of a complex manifold, which are

encoded by Dolbeault cohomology: for instance, deformations of complex structures,

deformations of analytic coherent sheaves, deformation of holomorphic maps or of

holomorphic subvarieties and so on. On the other hand, since de Rham cohomology

is isomorphic to singular cohomology with rational coefficients, its computation can

benefit of a whole array of topological tools which are unavailable if one wishes to

work with Dolbeault cohomology.

We emphasize that most genus-independent results in de Rham cohomology ofMg

are obtained via purely transcendental methods. So is, for instance, for the deter-

mination of the orbifold Euler characteristic by Harer-Zagier [24], Penner [41] and

Kontsevich [30]. Even the most algebro-geometric approaches (for example [4]) seem
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to rely on the topological computations of H1 and H2 and on Theorem 1.1. Thus, it

is not surprising that Dolbeault cohomology of Mg remains almost completely un-

known. In particular, no analogue of Theorem 1.2 exists at present in the Dolbeault

setting, whereas Theorem 1.1 is replaced by the following.

Problem 1.3 (Looijenga). Show that, for every holomorphic vector bundle E on

Mg, we have H0,q

∂
(Mg;E) = 0 for q > g − 2.

Evidence supporting Looijenga’s conjecture is basically of four types:

(1) it is confirmed for g ≤ 5 (by classical arguments for g = 2, 3 and by

Fontanari-Pascolutti [15] for g = 4, 5);

(2) it would imply Diaz’s result [13]: compact holomorphic subvarieties of Mg

have dimension at most g − 2;

(3) it would imply Looijenga’s vanishing [33] of tautological classes on Mg

beyond degree g − 2;

(4) it would imply Harer’s Theorem 1.1 through the Dolbeault-to-de Rham

spectral sequence H0,q

∂
(Mg; Ωp,0 ⊗ V) =⇒ Hp+q

dR (Mg;V).

For the (partially) compactified moduli space of Riemann surfaces, the analogous

of Looijenga’s vanishing is proven by Ionel [26] and Graber-Vakil [18], whereas an

analogous bound as in Theorem 1.1 is derived in [37]. A more detailed discussion

about the above results, the employed techniques, Looijenga’s problem and strati-

fication techniques can be found in [39].

Considerations analogous to those expressed about Dolbeault cohomology hold for

the cohomology of algebraic coherent sheaves on Mg.

2. Investigating the cohomological dimension

2.1. Basic properties

Let F be one of the following three categories:

(dR) F = dR the category of C-local systems of coefficients (i.e. flat complex

vector bundles) over the category C of smooth manifolds with smooth maps;

(Dol) F = Dol the category of holomorphic vector bundlesa over the category C

of complex manifolds with holomorphic maps;

(alg) F = alg the category of algebraic vector bundlesa over the category C of

complex algebraic varieties with algebraic maps.

For every object X of C, denote by FX the subcategory of F of sheaves on X.

aActually, more appropriate and functorial definitions require the category of analytic coherent
sheaves (Dol) and of algebraic coherent sheaves (alg).



April 19, 2016 0:31 WSPC/INSTRUCTION FILE
investigating-resubmitted-formatted

4 Gabriele Mondello

Definition 2.1. The F-cohomological dimension of X is the greatest integer d ≥ 0

for which there exists a sheaf F ∈ FX such that Hd(X;F) 6= 0. We denote it by

coh-dimF(X).

Since we will mostly focus on de Rham (dR) and Dolbeault (Dol) cohomological di-

mensions, we leave the algebraic (alg) cohomological dimension aside for a moment.

In the following table a few immediate properties of these invariants are displayed.

de Rham cohomology Dolbeault cohomology
X connected manifold X connected complex manifold

X compact ⇐⇒ dimR(X) = coh-dimdR(X) X compact ⇐⇒ dimC(X) = coh-dimDol(X)
X contractible =⇒ X acyclic X Stein =⇒ X acyclic

F → Y → X proper smooth submersion F → Y → X proper holomorphic submersion
coh-dimdR(Y ) = coh-dimdR(X) + coh-dimdR(F ) coh-dimDol(Y ) = coh-dimDol(X) + coh-dimDol(F )

Y → X unramified finite cover Y → X (unramified) finite cover
=⇒ coh-dimdR(Y ) = coh-dimdR(X) =⇒ coh-dimDol(Y ) = coh-dimDol(X)

As an example, we prove one such property which will have a special meaning.

Lemma 2.1. Let C be one of the three above categories and let π : Y → X be a

morphism in C, which is a finite surjective unramified cover. Then:

(a) for every G ∈ FY the push-foward π∗G belongs to FX ;

(b) for every F ∈ FX the pull-back π∗F belongs to FY ;

(c) coh-dimF(Y ) = coh-dimF(X).

Proof. Assertions (a) and (b) are clear, so we focus on property (c). Since π

is finite unramified and surjective, OX is a direct summand of π∗OY . Thus,

Hq(X;F) is a direct summand of Hq(X,F ⊗OX
π∗OY ) = Hq(Y, π∗F) and so

coh-dimF(X) ≤ coh-dimF(Y ). On the other hand, Hq(Y,G) = Hq(X,π∗G) implies

that coh-dimF(Y ) ≤ coh-dimF(X).

We remark that de Rham (resp. Dolbeault, or algebraic) cohomology can be defined

also for the category F of complex local systems on orbifolds (resp. of holomorphic

vector bundles on complex-analytic orbifolds, or of algebraically coherent locally

free sheaves on Deligne-Mumford stacks over C).

Remark 2.1. The above lemma shows that, if X = [Y/G] is a global quotient of

Y by the action of a finite group, then coh-dimF(X) = coh-dimF(Y ).

Notice that, if M = BΓ for a virtually torsion-free discrete group Γ, then

coh-dimdR(M) coincides with the virtual cohomological dimension of Γ (see [7]).

In this language, Theorem 1.1 can be rephrased as follows.

Theorem 2.1 (Harer [22]). Coh-dimdR(Mg,k) = d(g, k).

Also Problem 1.3 has the following rephrasing.

Problem 2.2 (Looijenga). Show that coh-dimDol(Mg) ≤ g − 2.
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We remark that the Dolbeault-to-de Rham spectral sequence together with Harer’s

result coh-dimdR(Mg) = 4g − 5 already implies that coh-dimDol(Mg) ≥ g − 2.

Thus, Looijenga’s problem is equivalent to exactly determining the Dolbeault co-

homological dimension of Mg.

2.2. Strategies of attack

Suppose that we want to bound the de Rham cohomological dimension of a non-

compact manifold M . We review four basic ideas to attack this problem.

(1dR) Let U = {Ui}i∈I of M be a locally finite open cover such that

– for every nonempty finite subset I = {i0, . . . , ip} ⊆ I of cardinality

p+ 1, the de Rham cohomological dimension of UI := Ui0 ∩ · · · ∩ Uip
is at most d− p (and so in particular UI = ∅ for |I| > d+ 1).

Then the spectral sequence
⊕
|I|=pH

q
dR(UI ;V) =⇒ Hp+q

dR (M ;V) for every

C-local system V on M allows to conclude that coh-dimdR(M) ≤ d.

(2dR) Let M0 ∪M1 ∪ · · · ∪Mr be a stratification of M such that

(a) the closure of Mq is
⋃
i≥0M

q+i and each Mq+i has a neighbourhood

in Mq that retracts by deformation onto Mq+i;

(b) Mq is a locally closed smooth submanifold of M of codimension q;

(c) the de Rham cohomological dimension of Mq is at most d− q.
Then (a) allows to thicken each Mq to produce an open cover U =

{U0, . . . , Ur} of M in such a way that

(i) Uq contains Mq and it deformation retracts onto Mq;

(ii) for every q and 0 = i0 < i1 < · · · < ip, the open subset Uq∩Uq+i1∩· · ·∩
Uq+ip is homotopy equivalent to a fibration over Mq+ip with compact

fibers of dimension (i1 − 1) + (i2 − i1 − 1) + · · · + (ip − ip−1 − 1) =

ip − p, and so they have de Rham cohomological dimension at most

[d− (q + ip)] + (ip − p) ≤ d− p.
By (1dR), it follows that coh-dimdR(M) ≤ d.

(3dR) Assume thatM retracts by deformation onto a CW complexK of dimension

d. Using the isomorphism between de Rham and singular homology, one can

conclude that the de Rham cohomological dimension of M is at most d.

(4dR) Suppose that one can exhibit a C2 proper function ξ : M → R bounded

below (also known as exhaustion funtion) with isolated critical points and

such that the Hessian at its critical points is nondegenerate and of index

at most d. Then Morse theory tells us that M is homotopy equivalent to a

CW complex of dimension at most d and so coh-dimdR(M) ≤ d.

Suppose now that we have a complex manifold X and we would like to bound its

Dolbeault cohomological dimension. While strategy (1) can be translated word by

word in this setting, variant (2) needs much more care. We do not have a handy

analogue of (3) but approach (4) can be adapted as follows.
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(4Dol) Exhibit an exhaustion function ξ : X → R such that at every point x ∈ X
the complex Hessian i∂∂ξ restricts to a positive-definite Hermitian form on

a subspace Wx ⊂ TxX of codimension d (at least in a suitable distributional

sense). By Andreotti-Grauert [3], it follows that coh-dimDol(X) ≤ d.

We stress that, despite the formal analogies between (4dR) and (4Dol), the proof by

Andreotti-Grauert is not Morse-theoretic: it passes through producing a complete

Kähler metric on X with respect to which all but d eigenvalues of i∂∂ξ are 1 and

the remaining d eigenvalues of i∂∂ξ are greater than −ε, and then applying Bochner

technique [8]-[9] as in Kodaira-Akizuki-Nakano’s proof [29] [2]. See also the book

[12].

Similar considerations on strategies (1) and (2) hold for a complex algebraic variety

Y and its algebraic cohomological dimension, provided the cover U is open in the

Zariski topology. More specifically, a popular way to pursue these strategies in the

algebraic setting is the following (see also [46]).

(1alg) Let Y be a smooth compactification of Y in which ∂Y := Y \ Y is a

divisor. Suppose that D0, . . . , Dd ⊂ Y are effective ample divisors such that⋂d
i=0Di ⊆ ∂Y . Then Y is union of d+ 1 affine subsets Y \D0, . . . , Y \Dd

and so coh-dimalg(Y ) ≤ d.

(2alg) Let Y 0 ⊃ · · · ⊃ Y d be a stratification of Y such that Y q =
⋃
i≥0 Y

q+i

and Yq has codimension q in Y . Suppose that each Y q is affine. Then

coh-dimalg(Y ) ≤ d.

Since affines are Stein, (1alg) implies (1Dol).

Finally, strategy (4) has the following incarnation in the algebraic setting.

(4alg) Exhibit a smooth compactification Y of Y and a holomorphic line bundle

L→ Y with a Hermitian metric h such that

(i) the added points at infinity ∂Y := Y \ Y form a Cartier divisor;

(ii) there exists a holomorphic section σ of L that vanishes exactly on ∂Y ;

(iii) at every point y ∈ Y the complex Hessian −i∂∂ log ‖s‖2h restricts to a

positive-definite Hermitian form on a subspace Wy ⊂ TyY of codimen-

sion d, where s is any non-vanishing holomorphic section of L defined

on a neighbourhood of y.

A suitable modification of the argument by Andreotti-Grauert [3] similar

to Girbau’s [16]-[17] (see Demailly [12]) implies that coh-dimalg(Y ) ≤ d.

By letting ξ := − log ‖σ‖2h, we easily see that (4alg) implies (4Dol).



April 19, 2016 0:31 WSPC/INSTRUCTION FILE
investigating-resubmitted-formatted

Investigating the cohomological dimension of Mg 7

3. Dolbeault cohomological dimension of Mg via exhaustion

functions

3.1. Hyperbolic surfaces

Suppose we want to bound the Dolbeault cohomological dimension of the mod-

uli space Mg of compact connected Riemann surfaces of genus g ≥ 2 by taking

approach (4Dol) described in Section 2.2. We have then to look for natural, and

possibly geometric, exhaustion functions on Mg.

Remark 3.1. Using the uniformization theorem [43], one can endow every compact

connected Riemann surface S of genus g ≥ 2 with its Poincaré hyperbolic metric.

Moreover, such a hyperbolic metric depends real-analytically on the complex struc-

ture on S.

Definition 3.1. For every non-trivial simple closed curve γ on S, we define `hypγ (S)

as the hyperbolic length of the unique geodesic on S freely homotopic to γ and the

systole `hypsys (S) as the hyperbolic length of the shortest non-trivial closed curve on

S.

Almost by definition, the variation of the hyperbolic length functions (which are

well-defined locally on Mg) real-analytically depends on the variation of complex

structure on the Riemann surface. Moreover, the following is rather easy to check.

Lemma 3.1. The function `hypsys :Mg → R is locally the minimum of finitely many

hyperbolic length functions. Hence, `hypsys is locally Lipschitz.

The following result is well-known.

Theorem 3.1 (Mumford [40]). For every ε > 0, the locus Mε
g of Mg consisting

of Riemann surfaces S such that their shortest non-trivial closed geodesic has length

`hypsys (S) ≥ ε is compact.

Thus, we are given a very natural and geometric exhaustion function.

Corollary 3.1. (`hypsys )−2 :Mg → R is an exhaustion function and it locally agrees

with the maximum of finitely many real-analytic functions of type (`hypγ )−2.

In order to pursue strategy (4Dol), we need to compute the complex Hessian of

(`hypsys )−2. Certainly, the fact that such a function is not C2 might require some

smoothing argument, but a big part of the calculation should boil down to compute

i∂∂(`hypγ )−2 for each fixed γ. This calculation has already been performed but the

upshot is not what we hoped for.

Theorem 3.2 (Wolpert [53]). The complex Hessian of the locally defined function

(`hypγ )−1 is strictly negative-definite.

Hence, i∂∂(`hypγ )−2 has positive index at most 1 and so using the hyperbolic systole

to pursue strategy (4Dol) is not possible. On the other hand, (4dR) turns out to be

not so easy to implement either (see [47], for instance): the attempt proved to be

successful in the case of M2,1 (see [48]).
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3.2. Flat surfaces

Being plurisuperharmonic (i.e. having negative-definite complex Hessian), hyper-

bolic length functions proved not so useful for (4Dol) but one can hope that flat

length functions work better.

By a result by Troyanov [50], we can endow every Riemann surface (S, p) with one

marked point with a canonical flat metric h that forms a conical singularity of angle

(2g − 1)2π at p. Moreover, such h is unique up to rescaling.

Thus, if A(h) is the area and `sys(h) is the systole of h, then the quantity A(h) ·
`sys(h)−2 is invariant under rescaling and work [28] by Kerckhoff-Masur-Smillie

yields the following.

Corollary 3.2. (A · `−2sys) : Mg,1 −→ R is an exhaustion function and it locally

agrees with the maximum of finitely many real-analytic functions of type (A · `−2γ ).

Since i∂∂(eF ) = i eF
[
∂∂F + ∂F ∧ ∂F

]
, the index of positivity of i∂∂F is either the

same as that of i∂∂(eF ) or one less. Thus, analyzing the complex Hessian of A · `−2sys
is almost the same as treating i∂∂ log(A)− i∂∂ log(`2sys).

A natural way to locally study such functions is the following.

Consider a surface (S, p) ∈ Mg,1 and fix a universal cover π : S̃ → S and a point

p̃ ∈ P̃ := π−1(p). The canonical flat metric h lifts to a flat metric h̃ on S̃, with

conical singularities at all points in P̃ . Thus, there exists a holomorphic differential

ϕ̃ on S̃ with zeroes of order 2g − 2 at P̃ such that |ϕ̃|2 = h̃. Moreover, there exists

a holonomy representation ρ : π1(S) → U(1) such that an element α ∈ π1(S) acts

on S̃ via a biholomorphism τα : S̃ → S̃ that satisfies τ∗α(ϕ̃) = ρ(α)−1ϕ̃.

Given a 1-parameter holomorphic family ε 7→ (Sε, pε) ∈Mg,1 of 1-pointed Riemann

surfaces with (S0, p0) = (S, p), we can biholomorphically identify all universal covers

of Sε to the same S̃. Thus, there is a family of flat canonical metrics hε that lifts to h̃ε
on S̃ and so there are induced 1-parameter families of points P̃ε and of holomorphic

differentials ϕ̃ε on S̃, such that |ϕ̃ε|2 = h̃ε. Whereas the position of the points P̃ε
varies holomorphically with ε, we stress that h̃ε need not depend holomorphically

on ε, if ρε is not constantly equal to ρ.

Let γ be a shortest closed curve on S, which we may assume that starts and ends

at p but does not meet p elsewhere (otherwise it would not be shortest). It can be

lifted to a curve γ̃ between two distinct points p̃, p̃′ ∈ P̃ . Hence,

`γ(hε)
2 =

∣∣∣∣∣
∫ p̃′ε

p̃ε

ϕ̃ε

∣∣∣∣∣
2

and so ε 7→ `γ(hε)
2 is the squared norm of a holomorphic function, if the holonomy

representation ρε is independent of ε. In this latter case, ε 7→ log(`−2γ (hε)) is har-

monic and so ε 7→ log(`−2sys(hε)) is weakly subharmonic, because the maximum of

subharmonic functions is subharmonic.

In order to obtain more positivity from length functions, we can consider more
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curves instead of just the shortest one. The problem is that a flat geodesic γ for h

may not be smooth, that is it may pass through p, thus breaking into a union of

finitely many segments γ(k): in this case, the length function associated to the path

γ locally agrees with the sum of the length functions `γ(k) . Thus, even assuming that

ρε does not vary and so ε 7→ `γ(k)(hε) is locally the absolute value of a holomorphic

function, ε 7→ `−2γ (hε) is weakly subharmonic near ε = 0 if γ is smooth, but it need

not be if γ is not smooth.

A way to get around this latter problem is to consider the set B of 2g-ples B =

{γ1, . . . , γ2g} of simple closed curves on S based at p that generate H1(S, p;R) and

to define

`−2B = max
B∈B

`−2B , `−2B =
∑
γ∈B

`−2γ

For small ε, the value of `−2B (hε) is attained at finitely many bases B made of smooth

h-geodesics. Thus, ε 7→ `−2B (hε) is again subharmonic, if ρε does not vary.

A harder problem is to study the Laplacian of ε 7→ A(hε). Again, the situation is

simpler if the holonomy ρε does not vary: this computation was performed by Veech

[51]. The calculation for deformations that truly vary the holonomy is still missing.

A simple way to ensure that the holonomy is constant in ε is to require that ρε
takes values at torsion points of U(1) for every ε.

Remark 3.2. Notice that a flat metric with r-torsion linear holonomy is of type

|ψ| 2r = (ψψ̄)
1
r , where ψ is a non-zero holomorphic section of K⊗rS . In particular, flat

surfaces with trivial linear holonomy, namely couples (S, ϕ) with 0 6= ϕ ∈ H1,0(S),

are also called “translation surfaces”.

It will be clear in the next section that the locus of pointed surfaces (S, p) ∈ Mg,1

such that the canonical flat metric h has trivial holonomy is a closed complex alge-

braic subvariety of codimension g − 1.

One can study flat surfaces with more than one singularity in a similar fashion,

again using Troyanov’s result, which here we state more formally.

Theorem 3.3 (Troyanov [50]). Let m = (m1, . . . ,mk) be a positive vector such

that m1 + · · · + mk = 2g − 2. Every (S, p1, . . . , pk) ∈ Mg,k can be endowed with a

conformal flat metric h with conical singularity of angle 2π(mi + 1) at pi and such

a metric is unique up to rescaling. Moreover, the metric h with unit area depends

real-analytically on the complex structure of (S, p1, . . . , pk).

Analogously, the locus of flat surfaces with torsion or trivial holonomy plays a special

role.

Definition 3.2. Let m = (m1, . . . ,mk) be a positive integral vector such that m1+

· · ·+mk = 2g− 2. The moduli space of translation surfaces of genus g with marked

singularities of type m is the space ΩMg,k(m) that parametrizes triples (S, P, ϕ),
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where (S, P = {p1, . . . , pk}) ∈ Mg,k and ϕ is a non-zero Abelian differential on S

that vanishes to order mi at pi.

If we consider non-zero Abelian differentials ϕ up to rescaling, we obtain the moduli

space of projective translation surfaces PΩMg,k(m). We remark that PΩMg,k(m)

agrees with the locus insideMg,k of pointed surfaces whose associated flat metric h

has trivial holonomy. Indeed, for (S, P, ϕ) ∈ ΩMg,k(m) the flat metric is recovered

as h = |ϕ|2 and so its area is simply

A(h) =
i

2

∫
S

ϕ ∧ ϕ

It might then be a bit more clear why the computation of the complex Hessian of

A is easier in this case.

3.3. Translation surfaces with prescribed singularities

Fix a string m = (m1, . . . ,mk) of positive integers such that
∑
imi = 2g − 2. The

moduli spaces ΩMg,k(m) are not connected in general.

Theorem 3.4 (Kontsevich-Zorich [31]). Let g ≥ 2. The moduli space

ΩMg,k(m) is the disjoint union of ΩMhyp
g,k (m) and ΩMnon−hyp

g,k (m).

(a) The only non-empty hyperelliptic components are ΩMhyp
g,1 (2g − 2) and

ΩMhyp
g,2 (g − 1, g − 1) and they consist entirely of hyperelliptic curves. The

locus ΩMnon−hyp
g,k (m) is made of components which are generally made of

non-hyperelliptic curves. Clearly, there are no non-hyperelliptic components

in genus 2.

(b) Let g ≥ 3 and suppose that the integral vector m is not divisible by 2. Then

ΩMnon−hyp
g,k (m) is non-empty and connected.

(c) Let m = 2n, where n = (n1, . . . , nk) is integral. For every (S, P, ϕ) ∈
ΩMnon−hyp

g,k (m), let L = OS(n1p1 + · · · + nkpk) be the holomorphic line

bundle on S such that L⊗2 ∼= KS.

(c1) For g = 3 the space ΩMnon−hyp
g,k (m) = ΩModd

g,k (m) is non-empty and

connected.

(c2) For g ≥ 4 the space ΩMnon−hyp
g,k (m) has two connected components:

ΩModd
g,k (m) and ΩMeven

g,k (m). The former consists of (S, P, ϕ) such

that h0(S,L) is odd; the latter consists of (S, P, ϕ) such that h0(S,L)

is even.

Really, if we want to apply strategy (4Dol) to estimate the Dolbeault cohomological

dimension of PΩMg,k(m), connectedness is not so important (equivalently, we can

work with each connected component separately, if we prefer).

Certainly, smoothness of the space is important. The following well-known result

was proven in different ways by Hubbard-Masur [25], Veech [51] and Möller [36].
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Theorem 3.5 ([25], [51], [36]). The moduli space ΩMg,k(m) is smooth of dimen-

sion 2g − 1 + k.

The above result can be made more precise by describing special holomorphic charts,

known as period coordinates. These will be very useful in the computation of the

complex Hessian of log(A · `−2B ).

Let U be an open subset of ΩMg,k(m). By the universal property of ΩMg,k(m),

there is an induced holomorphic family S → U of Riemann surfaces of genus g

together with disjoint sections p1, . . . ,pk : U → S.

Suppose now that U is contractible. Then the family S → U can be smoothly

(but not holomorphically!) trivialized so that f : S
∼=−→ S × U and the section

pi : U → S ∼= S × U is constantly equal to a fixed point pi ∈ S. Thus, every

point u in U corresponds to a couple (Ju, ϕu), where Ju is a complex structure

on S and ϕu is a Ju-holomorphic differential 1-form on S that vanishes to order

mi at pi. In particular, ϕu is closed and so it defines a relative cohomology class

(ϕu) ∈ H1(S, P ;C), where P = {p1, . . . , pk}. Hence, there is an induced local period

map

P : U −→ H1(S, P ;C)

defined as P(u) := (ϕu). Theorem 3.5 can be then made more precise as follows.

Theorem 3.6 ([25], [51], [36]). The map P is a local biholomorphism. A different

choice of the trivialization f corresponds to a post-composition of P with an integral

automorphism of H1(S, P ;C).

By the analysis done in the previous section, the function `−2B : ΩMg,k(m)→ R is

strongly plurisubharmonic, since the maximum is ranging over the set B of certain

R-bases of H1(S, P ;R). Moreover, i∂∂ log(`−2B ) is strictly positive in any direction

different from the ray along which the differential ϕ is rescaled.

On the other hand, the area function A : ΩMg,k(m) → R is now easy to study.

Indeed, in local period coordinates it can be expressed as

A(u) =
i

2

∫
S

ϕu ∧ ϕu

and so it is a Hermitian quadratic form on H1(S, P ;C). Hence, by identifying

T(ϕb)H
1(S, P ;C) to H1(S, P ;C), the complex Hessian i∂∂A can be identified to

A itself. Now notice that

i

2

∫
S

ψ ∧ ψ ≥ 0 for ψ closed 1-form such that ψ0,1 is exact

where ψ0,1 is the (0, 1)-component of ψ with respect to the Ju-holomorphic struc-

ture.

We conclude that the Hermitian form A : H1(S, P ;C) → R has positivity g, nega-

tivity g and nullity k − 1, and in particular we obtain the following.

Lemma 3.2. The function A (resp. `−2B ) satisfies the following weak (resp. strong)

(?)-property:
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(?) its complex Hessian is non-negative (resp. strictly positive) along deforma-

tions ε 7→ (Jε, ϕ + εϕ̇) such that the (0, 1)-component (with respect to J0)

of ϕ̇ is exact.

Deformations involved in property (?) describe a complex subspace of codimension

g of the tangent space.

Hence, strategy (4Dol) applied to PΩMg,k(m) and the function ξm := A · `−2B gives

the following estimate.

Corollary 3.3 ([38]). The complex Hessian of the exhaustion function ξm :

PΩMg,k(m) → R is strictly positive (in the distributional sense) along a

smooth distribution of complex codimension g of the tangent bundle. Hence,

coh-dimDol(PΩMg,k(m)) ≤ g.

A more careful computation shows that there exist points (S, P, [ϕ]) ∈ PΩMg,k(m)

at which the complex Hessian of ξm has indeed index of negativity exactly g, and

so this function can provide no better bound for the cohomological dimension. On

the other hand, we know that such an estimate is not optimal.

Proposition 3.1. The following components of the moduli spaces of projective

translation surfaces are affine:

(a) PΩMhyp
g,1 (2g − 2) and PΩMhyp

g,2 (g − 1, g − 1);

(b) PΩModd
3,1 (4) and PΩM3,2(3, 1);

(c) PΩModd
4,1 (6), PΩMeven

4,1 (6) and PΩMeven
5,1 (8).

Hence, both their algebraic and Dolbeault cohomological dimensions are zero.

As hyperelliptic curves are branched double covers of CP1, part (a) can be con-

sidered classical. Almost as classical is part (b), which relies on the esplicit de-

scription of non-hyperelliptic smooth Riemann surfaces of genus 3 as plane quar-

tics (see, for instance, [32] and [34]). During conversations on this topic with Ed-

uard Looijenga, he pointed out that works of Pinkham [42] and Vitulli [52] on

deformations of affine monomial curves imply that certain components of type

PΩModd
g,1 (2g − 2),PΩMeven

g,1 (2g − 2) are the complement of a discriminant hyper-

surface inside a complete intersection in a weighted projective space, which implies

part (c) of the above proposition.

Question 3.1. Are the spaces PΩMg(m) affine?

We will see below that a positive answer would have consequences on the cohomo-

logical dimension of Mg.

3.4. Hodge bundle

Translation surfaces of genus g without marked points and with no fixed pattern

of zeroes are determined by couples (S, ϕ), where S ∈ Mg and 0 6= ϕ ∈ H1,0(S).
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Hence, they are naturally parametrized by the space ΩMg, an algebraic (Cg \
{0})-bundle over Mg whose fiber over S is exactly H1,0(S) \ {0}. Thus, projective

translation surfaces without marked points and with no fixed pattern of zeroes are

parametrized by the projectivization PΩMg, which is an algebraic CPg−1-bundle

over Mg, and so coh-dimF(Mg) = coh-dimF(PΩMg)− (g − 1) for F = Dol, alg.

For every m = (m1, . . . ,mk) string of positive integers with m1 + · · ·+mk = 2g−2,

the map PΩMg,k(m) → PΩMg that forgets the marked points is finite over its

image, which we denote by PΩMg(m).

We want to estimate the Dolbeault cohomological dimension of PΩMg, which is

stratified by subvarieties PΩMg(m) of codimension 2g − 2− k.

Remark 3.3. The stratum PΩMg(m) is affine if and only if PΩMg,k(m) is. If

Question 3.1 has a positive answer, then (2alg) implies that coh-dimalg(PΩMg) ≤
2g − 3 and so coh-dimalg(Mg) ≤ (2g − 3)− (g − 1) = g − 2.

Unfortunately, dealing with Dolbeault cohomology, we cannot invoke the line of

proof (2alg) but we need to use strategy (1Dol). Having already an inspiring strati-

fication of PΩMg, the rough idea is to proceed as follows:

(i) thicken each stratum PΩMg(m) to an open subset Um in such a way that

Um and Um′ intersect if and only if one stratum is contained in the closure

of the other;

(ii) for every m, extend ξm to Um so that i∂∂ξm is non-negative along a

(2g − 2− k)-codimensional distribution that complements TPΩMg(m);

(iii) define ζm : Um → R with the following properties:

(a) ζm is non-negative and it vanishes on on PΩMg(m),

(b) there exists a constant c > 0 independent of m such that

lim inf(C,P,[ϕ]) ζm ≥ c > 0 for every (C,P, [ϕ]) ∈ Um \ PΩMg(m),

(c) the complex Hessian of ζm is strictly positive in the directions trans-

verse to PΩMg(m);

(iv) define a smaller open neighbourhood Vm = {ζm < c′} ⊂ Um of PΩMg(m)

for a suitable c′ ∈ (0, c);

(v) consider the function ξ̂m := ξm + χ ◦ ζm, where χ > 0 satisfies χ(0) = 1,

χ′ > 0 and χ′′ > 0.

Suppose that the above steps are accomplished. It follows that ξ̂m : Vm → R is

an exhaustion function and a quick computation shows that the i∂∂ξ̂m satisfies a

suitable phrasing of the strong (?) property.

Consider now the open cover V = {Vm} of PΩMg. Every intersection of open sets

in V is of type Vm0∩· · ·∩Vml , where PΩMg(m
h) is in the closure of PΩMg(m

h−1)

for h = 1, . . . , l. Observe finally that:

(a) ξ̂m0 + · · ·+ ξ̂ml is an exhaustion function on Vm0 ∩ · · · ∩ Vml that satisfies

strong (?) and so coh-dimDol(Vm0 ∩ · · · ∩ Vml) ≤ g;

(b) a non-empty intersection of open sets in V involves at most 2g−2 elements.
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Hence, (1Dol) allows to conclude as follows.

Theorem 3.7 ([38]). coh-dimDol(PΩMg) ≤ 3g − 3.

Recalling that PΩMg →Mg is a holomorphic CPg−1-fibration, we have the follow-

ing estimate.

Corollary 3.4 ([38]). coh-dimDol(Mg) ≤ 2g − 2.

We underline that, analogously to the case of those affine strata (see Proposition

3.1) for which Corollary 3.3 provided a non-optimal upper bound to the Dolbeault

cohomological dimension, forMg too the above result remains g steps off a positive

solution to Looijenga’s problem.
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