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Abstract. The Level-0 muon trigger system of the ATLAS experiment will un-
dergo a full upgrade for the High Luminosity LHC to stand the challenging re-
quirements imposed by the increase in instantaneous luminosity. The upgraded
trigger system will send raw hit data to off-detector processors, where trigger
algorithms run on a new generation of FPGAs. To exploit the flexibility pro-
vided by the FPGA systems, ATLAS is developing novel precision deep neural
network architectures based on trained ternary quantisation, optimised to run on
FPGAs for efficient reconstruction and identification of muons in the ATLAS
"Level-0" trigger. Physics performance in terms of efficiency and fake rates
and FPGA logic resource occupancy and timing obtained with the developed
algorithms are discussed.

1 Introduction

The high-luminosity phase of the Large Hadron Collider (HL-LHC) at CERN is expected to
start operation in 2027, to ultimately reach a peak instantaneous luminosity of L = 7.5 × 1034

cm−2 s−1, corresponding to approximately 200 inelastic proton-proton collisions per bunch
crossing, which delivers to the ATLAS experiment [1] more than ten times the total integrated
luminosity collected in all previous LHC runs. Meeting these requirements poses significant
challenges to the ATLAS trigger and DAQ systems to fully exploit the physics potential of
the machine. To be able to handle the amount of data produced at peak luminosity by the
HL-LHC the detectors of the ATLAS experiment will undergo a full upgrade. In particular,
the Level-0 muon barrel trigger will be improved with the addition of a Resistive Plate Cham-
ber (RPC) station (BI chamber) in the innermost radius of the Muon Spectrometer [2], and
by moving the trigger logic off-detector, where flexible algorithms run on latest generation
Field Programmable Gate Array (FPGA) processors [3]. Classification and regression meth-
ods based on modern Machine Learning (ML) are well suited to solve the limitations in terms
of performance and flexibility of the conventional algorithms, and they can be a promising
and viable solution to exploit the flexibility of FPGAs for real-time applications in the LHC
detector triggers. In this work, we explore the implementation of deep convolutional neural
networks in FPGAs based on trained ternary quantisation networks [4, 5], optimised to cope
with the tight requirements in terms of resource usage (O(30%)) and latency (O(1µs)) im-
posed by the FPGA architecture and trigger constraints. We demonstrate that it is possible to
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Figure 1. Sketch of a transverse section of the barrel region representing one of the sectors that contain
a barrel toroid coil and its support structures. The four groups of RPC chambers (red) are shown as
well as the MDT chambers (green and cyan) on the BI, BM, and BO stations. The three dashed lines
represent muon trajectories traversing different combinations of RPC chambers [3].

reach state-of-the-art performance in muon reconstruction and identification in the ATLAS
Level-0 muon trigger with microsecond latency.

1.1 Related work

ML inference on FPGAs has received increasing interest in recent years [6, 7], and several
studies have been recently presented in the context of high energy physics (see for exam-
ple: [8–10]). In this work, we get inspiration from these and other studies but follow an
approach more oriented in achieving a robust and working implementation for a specific
deep neural network architecture. In particular a ternary convolutional neural network with
performance matching the requirements of the ATLAS Phase-II Level-0 muon trigger.

2 Conventional RPC-based trigger algorithm

A conventional Phase-II RPC-based trigger algorithm ("Standard Algorithm" in the follow-
ing) has been implemented in the ATLAS simulation [3], and it is a direct extension of what
has been used before the upgrade with the additional BI RPC station (see Figure 1). It op-
erates as a pattern-finding algorithm, as illustrated in Figure 2. For each hit found in a pre-
defined detector layer (usually the innermost layer), a coincidence window is opened toward
the adjacent layer. The dimension of the window is inversely proportional to the transverse
momentum (pT) threshold of the trigger so that if the muon pT is not high enough, the mag-
netic field will curve the particle outside the coincidence window of the next layer. If a new
hit is found, the process is recursively repeated until all the layers are analysed. If the number
of hits is greater than a given threshold, then the event is triggered. To compare performance
with the deep neural network algorithm, the configuration which requires at least three hits
out of four RPC stations is required. The Standard Algorithm is reliable and fast. However,
some limitations in terms of robustness are observed. The geometrical acceptance of the
coincidence window and configuration logic set an upper limit on the maximum efficiency.
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Figure 2. Illustration of the conventional RPC-based trigger algorithm. Hits are linked between con-
secutive planes based on predefined coincidence windows centred on a straight-line extrapolation from
the nominal interaction point. Patterns of linked hits that satisfy quality requirements are selected as
muon track candidates. The width of the coincidence windows defines the pT threshold [3].

Moreover, the algorithm effectively measures the muon momentum from the deflection of the
trajectory with respect to a straight line from the interaction point, limiting the possibility to
trigger with high efficiency neutral long-lived particles decaying in muons.

3 Deep Neural Network approach

To overcome the limitations of the Standard Algorithm, we have used an ML-based approach
based on the implementation of a Convolutional Neural Network (CNN) on an FPGA. CNN
is a regularised version of multilayer perceptrons well known to excel in classification and
regression task analysing visual imagery. As shown in Figure 3 [11], RPC detector strips
can be arranged in image-like objects, to be fed to CNN as training inputs. Each bin of the
vertical axis corresponds to a detector layer (3 detector layers for the inner station, 4 for
the middle and 2 for the outer station). The horizontal axis maps the η coordinates of each
physical RPC strip: for the i-th strip ηi

bin = 384 ηi−ηmin

ηmax−ηmin , where ηmax and ηmin are respectively
the maximum (ηmax = 0.95) and the minimum (ηmin = 0.07) η values for the barrel RPC
strips chosen to prevent muons from falling outside any layer of a specified sector; and 384 is
a realistic number of strips per layer. This provides a convenient representation for the RPC
hits data, in which an infinite momentum muon appears in the image as a vertical pattern of
pixels, independently of the pseudorapidity η, while lower momentum muons appear ideally
as inclined pixel patterns with slopes inversely proportional to the muon pT.

Training data for the CNN is based on detailed Monte Carlo simulation of the ATLAS
Phase-II detector, including realistic geometry, resolution effects, and cavern background
evaluated from minimum bias events at HL-LHC peak luminosity conditions. Events with
multiple muons are built by combining multiple single muons events with the cavern back-
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Figure 3: An example input to a Convolutional Neural Network (CNN) for the Phase-2 ATLAS Level-0 muon trigger,
implemented on a FPGA, is shown for a 4 GeV muon without background. Resistive Plate Chambers (RPC) hits
of a fixed � sector are arranged in a matrix-like object. Each bin of the y-axis corresponds to a detector layer (3
detector layers for inner station, 4 for the middle and 2 for the outer station). The x-axis maps the ⌘ coordinates of
each physics RPC strip: for the i-th strip ⌘i

bin
= 384 ⌘i�⌘min

⌘max�⌘min , where ⌘max and ⌘min are respectively the maximum
(⌘max = 0.95) and the minimum (⌘min = 0.07) ⌘ values for the barrel RPC strips chosen to prevent muons to fall
outside any layer of a specified sector; 384 is a realistic number of strips per layer. This particular choice has
been taken in order to evaluate ML algorithm performances, without any geometrical acceptance e�ect. Random
background has been added. The background rate has been evaluated from minimum bias events. Events used in the
training phase of the CNN can also contain two or more muons in the same sector. Events with more than one muon
are built superimposing one muon images with no background, which is then included. The CNN output is set to
evaluate transverse momentum and ⌘ of the leading and sub-leading muons (if the latter exists) in the sector and
returns also a flag for events that contain more than 2 muons.
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ATLAS Simulation Preliminary RPC hit

Figure 4: An example input to a Convolutional Neural Network (CNN) for the Phase-2 ATLAS Level-0 muon
trigger, implemented on a FPGA, is shown for a 12 GeV and 15 GeV muons without background. Resistive Plate
Chambers (RPC) hits of a fixed � sector are arranged in a matrix-like object. Each bin of the y-axis corresponds to a
detector layer (3 detector layers for inner station, 4 for the middle and 2 for the outer station). The x-axis maps the ⌘
coordinates of each physics RPC strip: for the i-th strip ⌘i

bin
= 384 ⌘i�⌘min

⌘max�⌘min , where ⌘max and ⌘min are respectively
the maximum (⌘max = 0.95) and the minimum (⌘min = 0.07) ⌘ values for the barrel RPC strips chosen to prevent
muons to fall outside any layer of a specified sector; 384 is a realistic number of strips per layer. This particular
choice has been taken in order to evaluate ML algorithm performances, without any geometrical acceptance e�ect.
Random background has been added. The background rate has been evaluated from minimum bias events. Events
used in the training phase of the CNN can also contain two or more muons in the same sector. Events with more than
one muon are built superimposing one muon images with no background, which is then included. The CNN output is
set to evaluate transverse momentum and ⌘ of the leading and sub-leading muons (if the latter exists) in the sector
and returns also a flag for events that contain more than 2 muons.
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Figure 7: An example input to a Convolutional Neural Network (CNN) for the Phase-2 ATLAS Level-0 muon
trigger, implemented on a FPGA, is shown. This example contains three muons with background. Resistive Plate
Chambers (RPC) hits of a fixed � sector are arranged in a matrix-like object. Each bin of the y-axis corresponds to a
detector layer (3 detector layers for inner station, 4 for the middle and 2 for the outer station). The x-axis maps the ⌘
coordinates of each physics RPC strip: for the i-th strip ⌘i

bin
= 384 ⌘i�⌘min

⌘max�⌘min , where ⌘max and ⌘min are respectively
the maximum (⌘max = 0.95) and the minimum (⌘min = 0.07) ⌘ values for the barrel RPC strips chosen to prevent
muons to fall outside any layer of a specified sector; 384 is a realistic number of strips per layer. This particular
choice has been taken in order to evaluate ML algorithm performances, without any geometrical acceptance e�ect.
Random background has been added. The background rate has been evaluated from minimum bias events. Events
used in the training phase of the CNN can also contain two or more muons in the same sector. Events with more than
one muon are built superimposing one muon images with no background, which is then included. The CNN output is
set to evaluate transverse momentum and ⌘ of the leading and sub-leading muons (if the latter exists) in the sector
and returns also a flag for events that contain more than 2 muons.
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Figure 3. Examples of RPC event images used to train the CNN [11]: (left) an event with one low-pT

muon (pT = 4 GeV); (center) an event with two high-pT muons (15 and 12 GeV respectively); (right)
an event with three muons and background noise due to pileup and cavern background.

ground. A total of one million images with muons in the range 3 – 20 GeV pT has been used,
divided between training, validation and testing sets.

Two CNN models have been trained in order to assess the performance of the new al-
gorithm, one is a benchmark network based on state-of-the-art floating-point CNN imple-
mentation, based on a simplified VGG architecture [12], and the other one is based on a
ternary-CNN (tCNN) [4, 5], that addresses the limited storage and computational resources
imposed by the use of an FPGA. It can be realised by constraining weights and activation
function in the network to be ternary-valued: +1, 0 and -1. The weights and neuron outputs
in a tCNN can be represented using just two bits per weight instead of 32 as it would have
been for a floating-point CNN, resulting in a 16-times larger compression in terms of mem-
ory occupation and simpler implementation in the FPGA firmware with better performance
in term of latency.

The neural network architecture is illustrated in Figure 4. Convolutional [13] and Max-
Pooling layers [14] have (4,3) and (4,1) kernels respectively, and the activation function for
the hidden layers is ReLU [15] for the CNN and deterministic ternary activation for the tCNN,
while a sigmoid activation [16] is used in the output layer in order to describe continuous
values in output. Batch normalisation layers [17] with momentum are used in both the con-
volutional and fully connected stages. Both networks are trained to predict a five-component
vector

(plead
T , ηlead, psub−lead

T , ηsub−lead, nmuons),

where "lead" stands for leading (i.e. the muon with the highest pT) and nmuons represents the
number of muons in an image. The MSE [16] loss function is minimised using the Adam
algorithm [18] with an initial learning rate of 10−3 and a minibatch size of 64.

Performance of the models on test samples are shown in Figure 5 [11]. In Figure 5 (left),
the trigger efficiency curves are reported. Cyan dots show the efficiency of the Standard Al-
gorithm as a function of pT, red squares the efficiency obtained with the reference benchmark
CNN with floating-point weights, and blue triangles the efficiency obtained with the tCNN.
The CNN always performs better than the Standard Algorithm (lower efficiency under the
threshold and higher efficiency above the threshold). Similar results are obtained with the
tCNN, which shows a reduction in the resolution in pT manifested by a slower rise in the ef-
ficiency curve around the nominal threshold. The performance of the network in term of the
number of muons identified by the tCNN vs the number of true muons reconstructed offline
is reported in Figure 5 (right). Each column is normalised to unity. No trigger threshold is
applied in calculating the table entries. By requiring a minimum pT of 10 GeV, the numbers
off-diagonal are further reduced, in particular, in the case where 0 muons are reconstructed in
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Figure 4. Schematic view of the network architecture that has been adopted. The numbers beside "Conv
2D" represent the number of filters. The numbers beside "Dense" represent the number of neurons of
that layer.
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Figure 5. (Left) Trigger efficiency of different algorithms as a function of the reconstructed pT. All
the curves are realised taking single-muon images without a background as input and are tuned so
that the efficiency reached at nominal threshold (10 GeV) is the same (82%) to ease the comparison.
(Right) Confusion matrix of the predicted number of muons vs the true number of muons (i.e. offline
reconstructed number of muons) [11].

the detector, and one muon is reconstructed by the network, the number decrease from 0.6%
to 0.01%.

4 FPGA implementation

The implementation of the tCNN neural network model into the FPGA (Xilinx Virtex Ul-
traScale+ XCVU13P) has been accomplished with two sequential phases. First, we have
translated the model from the original Python form to a C++ code with a custom made tool1.
During this phase, several techniques have been adopted in order to improve performance
by tuning the trade-off between latency, throughput, and FPGA resource usage. In particular
extensive C++ code modularisation has been used in order to reduce FPGA resource usage,
while loop pipelining and vector partitioning have been implemented for latency reduction.
In order to reduce the number of parameters of the neural network, the tCNN has been mod-
ified to process in parallel a predefined number of portions of the entire image. Passing a

1A public version of the tool is under development, check availability by contacting the authors.
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Table 1. A summary of the HLS resource occupation of the implemented tCNN on a Xilinx Virtex
UltraScale+ XCVU13P FPGA [11].

RAM 5%
Logic (LUT+Flip-Flops) 17%
DSP48E 11 %
Latency 1.1µs
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Figure 6. Trigger efficiency as a function of the reconstructed pT for the implemented tCNN in com-
parison with the optimal tCNN and the Standard Algorithm [11].

smaller input to the tCNN largely reduces the total number of multiplications and therefore,
memory occupancy and latency. For the final step, the translation from C++ code into VHDL
code, we have used HLS, a tool developed by Xilinx [19]. FPGA latency and resource usage
are reported in Table 1 [11].

The Table shows that the implemented tCNN reached the latency goal of 1 µs, and with
a limited resource occupation of about 17%, to be compared with about 420 ns latency and
6% resource usage of the Standard Algorithm. However, these results have been obtained for
the moment with a tCNN with a smaller number of parameters (about 1/10th of the optimal
tCNN) limiting the expressive power and physics performance of the network. This is clearly
visible in the efficiency curve reported in Figure 6 [11], where the implemented tCNN (pur-
ple triangles) shows a slightly lower plateau efficiency and, more importantly, a less steep
turn-on with respect to the optimal tCNN. Nevertheless, the achieved initial performance is
very promising, the implemented tCNN has already comparable performance with respect
to the Standard Algorithm, and given the reduced resource utilisation there is large space for
optimisation of the FPGA code synthesis, a work that is ongoing at the moment of the writing
of these proceedings.

5 Conclusions

ML alternatives to conventional trigger algorithms have been studied for the Phase-II Level-
0 muon barrel trigger of the ATLAS detector at the LHC. In particular, it has been shown
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that a deep neural network-based algorithm can be effectively implemented in the trigger
FPGA, within the latency requirements of the ATLAS trigger, and with comparable or better
performance with respect the ATLAS Standard Trigger algorithm. Work is ongoing on op-
timisation strategies and parameter tuning to synthesise the best performing tCNN into the
trigger FPGA.
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