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Abstract

Background: Short-latency afferent inhibition (SAI) consists of motor cortex inhibition induced by sensory afferents
and depends on the excitatory effect of cholinergic thalamocortical projections on inhibitory GABAergic cortical
networks. Given the electrophysiological evidence for thalamo-cortical dysrhythmia in migraine, we studied SAI in
migraineurs during and between attacks and searched for correlations with somatosensory habituation, thalamocortical
activation, and clinical features.

Methods: SAI was obtained by conditioning the transcranial magnetic stimulation-induced motor evoked potential (MEP)
with an electric stimulus on the median nerve at the wrist with random stimulus intervals corresponding to the latency of
individual somatosensory evoked potentials (SSEP) N20 plus 2, 4, 6, or 8ms. We recruited 30 migraine without aura patients,
16 between (MO), 14 during an attack (MI), and 16 healthy volunteers (HV). We calculated the slope of the linear regression
between the unconditioned MEP amplitude and the 4-conditioned MEPs as a measure of SAI. We also measured SSEP
amplitude habituation, and high-frequency oscillations (HFO) as an index of thalamo-cortical activation.

Results: Compared to HV, SAI, SSEP habituation and early SSEP HFOs were significantly reduced in MO patients between
attacks, but enhanced during an attack. There was a positive correlation between degree of SAI and amplitude of early HFOs
in HV, but not in MO or MI.

Conclusions: The migraine cycle-dependent variations of SAI and SSEP HFOs are further evidence that facilitatory
thalamocortical activation (of GABAergic networks in the motor cortex for SAI), likely to be cholinergic, is reduced
in migraine between attacks, but increased ictally.

Keywords: Motor cortex inhibition, Thalamo-cortical activation, Sensorimotor integration, GABA, Episodic migraine
without aura
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Background
A number of neurophysiological and neuroimaging stud-
ies have shown dysfunctions of both somatosensory and
motor systems in the brain of migraine patients [1–8].
Recently, the integration between the two systems was
also found to be altered in migraineurs, especially during
an attack [9, 10]. Part of the evidence comes from a
study of the phenomenon of short-latency afferent inhib-
ition (SAI) by which a peripheral sensory afferent volley
inhibits the homotopic muscle response obtained by
stimulation of the motor cortex [11]. SAI is typically
studied by conditioning a transcranial magnetic stimulus
(TMS)-evoked motor potential (MEP) by a preceding
electrical stimulus of a peripheral nerve, usually the me-
dian nerve at the wrist. The peripheral electrical stimu-
lus inhibits the motor-evoked potential and the degree
of this inhibition depends on the interval between the
sensory and the motor stimuli (ISI). For SAI to occur,
both the motor and somatosensory systems must be
functionally intact. SAI depends on the excitatory effect
exerted by cholinergic thalamocortical afferents on in-
hibitory GABAergic cortical networks [11]. Previous
studies have shown that migraineurs are characterized
by ictal and interictal dysfunctions of both thalamic and
cortical somatosensory nodes [2, 12–14], and of the cor-
tical synaptic plasticity partially depending on GABAer-
gic mechanisms [15–17].
SAI was previously reported to be decreased during

the pre-ictal and ictal phases of episodic migraine [10],
but in this study ISIs were predetermined and equal in
all subjects. In fact, the SAI protocol should preferen-
tially adjust ISIs according to the individual latency of
the N20 component of the somatosensory potential
evoked by the peripheral stimulus that indicates the ar-
rival of the afferent volley in cortical area S1 [18, 19].
In the present study we applied such a protocol in

healthy volunteers and migraine patients during and be-
tween attacks. We recorded SAI at 4 different ISIs, de-
termined on the basis of the SSEP N20 latency in each
individual as well as somatosensory high-frequency os-
cillatory activity reflecting thalamocortical activation, in
order to evaluate sensorimotor control and its relation-
ship to the activity of thalamocortical afferents. We
searched for correlations between the neurophysiological
data and clinical migraine features.

Subjects and methods
Participants
In 2016 and 2017 we prospectively recruited 30 patients
with migraine without aura at the headache clinic of the
Sapienza University of Rome Polo Pontino in Latina
(Italy). Of these patients, 16 were recorded during the
pain-free period (MO), i.e. at a distance of at least 3 days
from the last and the next migraine attack at the time of

the recording session. The remaining 14 patients were
recorded within the first 8 h of a spontaneous migraine
attack, during the headache phase (MI) (see Table 1 for
the clinical characteristics). Patients who had received
prophylactic therapy in the preceding 3 months or had
any other neurological or psychiatric disorder were ex-
cluded. For comparison, we recruited 16 healthy volun-
teers (HV) from the medical and nursing staffs with no
personal or family history of migraine or another pri-
mary headache. HVs were randomly recorded between
patients. All female participants were recorded at mid-
cycle at an average of 18.8 (HV), 17.4 (MO) or 17.2 days
(MI) after the 1st day of the last menstruation). Clinical
information was collected from headache diaries the par-
ticipants had filled in for at least 1 month before the re-
cording session. The study was conducted in accordance
with the Declaration of Helsinki and was approved by
the Ethical Committee of the ‘Sapienza’ University of
Rome. All individuals were naïve to the study procedure
and provided written informed consent.

Transcranial magnetic stimulation (TMS)
TMS was performed using a MagStim rapid device
(MagstimRapid, The Magstim Company Ltd., Whitland,
South West Wales, UK) connected to a figure-of-8 coil
of which each loop had a 9 cm outer diameter. The coil
was placed on the right side of scalp in an optimal pos-
ition to elicit an electromyographic response in the first
dorsal interosseous muscle of the left. The optimal site
was labelled with a red dermographic pencil. The motor
evoked potential was recorded using silver-chloride cups
with the active electrode positioned on the muscle and
the reference electrode on the metacarpophalangeal
junction of the index finger. The resting motor threshold
(RMT) was defined as the minimal intensity needed to

Table 1 Demographic and clinical features of healthy
volunteers (HV) and migraine patients without aura between
(MO) and during (MI) the attacks. Data are expressed as means
± SD. (p < 0.05 * MO vs. HV, ** MI vs. MO)

Characteristics HV
(n = 16)

MO
(n = 16)

MI
(N = 14)

Women (n) 12 14 10

Age (years) 27.5 ±
9.4

28.0 ± 7.5 32.2 ± 9.2

Duration of migraine history (years) 12.3 ± 6.8 19.9 ± 10.9
*

Attack frequency/month (n) 2.9 ± 2.5 2.9 ± 2.9

Attack duration (hours) 15.2 ±
15.5

22.1 ± 21.9

Severity of headache (n) 8.0 ± 1.2 7.4 ± 0.9

Days from the last migraine attack
(n)

16.4 ±
15.2
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evoke an electromyographic response of at least 50 μV
with 50% probability in a fully relaxed muscle.

Somatosensory evoked potentials
SSEPs were obtained by electrical stimulation of the left
median nerve at the wrist, at an intensity of 1.2 times the
motor threshold of the thumb. The active recording elec-
trode was positioned at the C3’ position of the 10–20
international system (2 cm posterior to C3), with the refer-
ence electrode at Fz; the ground electrode was positioned
over the left arm. The electrocortical signals were ampli-
fied with Digitimer D360™ pre-amplifiers, recorded by a
CED™ power1401 device (CED Ltd., Cambridge, UK), and
off-line analysed with the Signal™ software package version
4.10 (CED Ltd). While subjects were sitting relaxed with
open eyes and fixed their attention on the movement of
their thumb, 300 non-artefacted traces were acquired at a
frequency of 4.4 Hz. On the grand-average trace we mea-
sured the latency of the parietal components N20 and P25
and their respective peak-to-peak amplitudes. Subse-
quently, the 300 traces were averaged in 3 blocks of 100 in
order to study SSEP habituation. The peak-to-peak ampli-
tude N20-P25 was measured in each block and habitu-
ation was calculated as the slope of the regression line
along the amplitudes of the 3 sequential blocks.

Somatosensory high-frequency oscillations (HFOs)
To assess thalamocortical activity, we extracted HFOs
from the broad-band SSEP signal using the method pub-
lished elsewhere [20]. In brief, we applied a digital band-
pass filter (450–750 Hz, 51 coefficients) on the grand-
average SSEP. From the filtered trace we extrapolated
the amplitude of the maximum peak of the two oscilla-
tion bursts, i.e. the one that occurs before the N20 peak
of the broad-band SSEP (early HFOs), and the one that
appears after the N20 peak (late HFOs). By identifying
source activity from multichannel scalp recordings and
the effect of pharmacological agents, previous studies
have determined that the early HFO burst reflects thal-
amic/thalamocortical activity while the late burst is gen-
erated by cortical activation [21, 22].

Short-latency afferent inhibition (SAI)
The recordings were performed in the afternoon be-
tween 2 P.M. and 7 P.M. while participants were sitting
on a comfortable armchair with eyes closed. The periph-
eral conditioning stimuli on the median nerve (200 μs
duration) were applied to the left wrist with a bipolar
electrode at an intensity of 1.2 times the motor thresh-
old. The intensity of the TMS test stimulus over the
right motor cortex was set at 120% of the resting motor
threshold.
We studied SAI using the following protocol. The per-

ipheral electrical stimulus preceded the cortical magnetic

stimulus by interstimulus intervals (ISIs) of 2, 4, 6, or 8
msec set with respect to the latency of the SSEP N20
peak in each subject. The baseline MEP was obtained
without the conditioning stimulus. For each participant,
40 acquisitions were performed, 5 for each condition
(baseline, 2, 4, 6, 8 ms ISIs), randomly applied with a 5-s
intertrial interval, and averaged off-line in 5 blocks. For
each block, we measured the average peak-to-peak MEP
amplitude whereafter we computed the slope of MEP
amplitude regression line between the unconditioned
and the 4 conditioned recordings as an overall measure
of the SAI effect. Three investigators (DDL, CDL, and
CA), not involved in patients’ recruitment, performed
the recordings. All recordings were anonymized and an-
alyzed blindly off-line by one investigator (F.F).

Statistical analysis
We used the Statistica for Windows (StatSoft Inc.) ver-
sion 8.0, for all analyses. An a posteriori sample size cal-
culation based upon a recently published study where
SAI was assessed with a similar protocol [10] showed
that 7 subjects per group (standardized effect size of
2.0428) are needed to disclose a significant difference be-
tween HV and migraine patients during the attack
(power 0.90, alpha error 0.05).
Descriptive analysis showed that MEP peak-to-peak

amplitudes of the SAI were not normally distributed.
After log transformation, all data reached a normal dis-
tribution (Kolmogorov-Smirnov test).
A General Linear Model approach was used to analyze

the “between-subjects factor” × “within-subjects factors”
interaction effect. The between-subjects factor was the
variable “group” (HV, MO, and MI); for SAI the within-
subjects factor was “ISI” (baseline, 2 ms, 4 ms, 6 ms, and
8ms) and for SSEP it was “block” (from the 1st to the
3rd block). Two models of repeated measures ANOVA
(rm-ANOVA) followed by univariate ANOVAs were
employed to investigate the interaction effect. Univariate
results were analyzed only if Wilks’ Lambda multivariate
significance criterion was achieved.
A regression analysis was used to disclose linear trends

in MEP amplitude across ISIs (slope) and in SSEP N20-
P25 amplitude across blocks in each group. For SSEP,
HFOs, MEP and MEP/SSEP slopes we employed one-
way ANOVAs with factor “group” (HV, MO, MI), using
least significant difference test for post hoc analysis. P <
0.05 was considered as statistically significant.
Pearson’s correlation test was used to search for corre-

lations between MEP/SSEP amplitude slopes, early/late
HFOs and clinical variables such as duration of episodic
migraine history, mean monthly attack frequency, mean
monthly attack duration, number of days since the last
migraine attack, severity of migraine headache on a 0–
10 visual analogue scale.
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Results
The clinical features did not differ between the 2 groups
of migraineurs, except for a significantly longer duration
of disease in patients recorded during an attack (F1,29 =
5.833, p = 0.023, Table 1).

Somato-sensory broad-band evoked potentials (SSEP) and
high frequency oscillations (HFO)
N20 and P25 latencies, N20-P25 amplitudes in the
grand-average of 300 responses or in the 3 blocks of 100
sequential responses were not different between groups
(F2,45 < 2.5, p > 0.05, Table 2).
In the rm-ANOVA model with N20-P25 peak-to-peak

amplitude as dependent variable, the multivariate test was
significant for the “group”× “block” interaction (Wilks’
Lambda = 0.608, F4,86 = 7.354, p = 0.00004). In fact, in both
HVs and patients during an attack, the linear regression
slope of SSEP N20-P25 amplitudes over the 3 blocks showed
a negative value, i.e. habituated (slope− 0.33 in HV and−
0.14 in MI, Table 2 & Fig. 1), while it was positive in patients
between attacks, indicating a habituation deficit (+ 0.49, p <
0.001 MO vs. HV).
After applying the bandpass digital filter to the grand-

average SSEP, amplitude of the early HFOs (F2,45 =
3.146, p = 0.048) was reduced in MO patients compared
to HVs (p = 0.019), while it was within normal range in
MI patients (p = 0.398). Amplitude of the late HFOs did
not differ between groups (F2,45 = 2.848, p = 0.069, Table
2 & Fig. 1).

Short-latency afferent inhibition (SAI)
There was no significant difference between groups in
the motor thresholds after electrical stimulation of the
median nerve or magnetic stimulation of the motor

cortex (F2,45 = 1.40, p = 0.301; F2,45 = 1.30, p = 0.283
respectively).
In the rm-ANOVA model with MEP peak-to-peak

amplitude as dependent variable, the multivariate test
was significant for the “group” × “ISI” interaction (Wilks’
Lambda = 0.665, F8,172 = 2.04, p = 0.045). The linear re-
gression slope of MEP amplitudes over the 5 condition-
ing latencies, indexing SAI, was significantly different
between groups (F2,45 = 8.571, p = 0.001). The MEP
amplitude slope showed a greater positive value in MO
patients than in HVs (+ 242.3 in MO vs + 11.2 in HV,
p = 0.039), while MI patients had a negative slope (−
129.6, p = 0.043 vs. HV) (Table 3). These results indicate
that SAI is reduced between migraine attacks, but in-
creased during an attack.

Correlation analysis
The correlation analysis showed that the slope of MEP
amplitudes correlated positively with that of SSEP in
HVs (r = 0.540, p = 0.031), while this correlation was not
found in the two groups of patients (r = − 0.086, p =
0.751 in MO and r = 0.399, p = 0.158 in MI). Similarly,
there was a significant positive correlation between the
MEP slope and the amplitude of early somatosensory
HFOs in HVs (r = 0.510, p = 0.044), but not in the 2
groups of patients (r = 0.439, p = 0.089 in MO and r =
0.208, p = 0.476 in MI) (Fig. 2).
No clinical variable correlated with neurophysiological

results.

Discussion
The main conclusion of this study is that the neuro-
physiological mechanisms underlying short-latency affer-
ent inhibition (SAI) are dysfunctional in migraine
patients: in between attacks SAI is reduced compared to
healthy volunteers, while it is increased during an attack.
In healthy volunteers, SAI correlates with both habitu-
ation of SSEP and amplitude of thalamocortical activity
indexed by somato-sensory high frequency oscillations
(HFOs). By contrast, such correlation is absent in both
subgroups of migraineurs.
The mechanisms underlying SAI are complex. SAI

could be induced by the somatosensory projections that
reach the dorsomedial and intralaminar thalamic nuclei.
In fact, in patients with a thalamic stroke, SAI is abol-
ished, while SSEP remains intact [23]. The primary role
of the thalamus in generating SAI can also be exerted in-
directly via cortico-cortical modulation of the motor
cortex by the somatosensory cortex, as suggested by
neuromodulation studies. The latter indicate that experi-
mental protocols raising extracellular GABA levels in-
hibit S1 pyramidal cells, which reduces their cortico-
cortical inhibitory activity on M1 and thus reduces SAI
[24]. Concordantly, benzodiazepines, GABAA receptor

Table 2 Latencies and amplitudes of the various cortical SSEP
components after median nerve stimulation (mean ± standard
deviation)

HV
(n = 16)

MO
(n = 16)

MI
(N = 14)

N20 (ms) 19.0 ± 0.9 18.6 ± 0.7 18.9 ± 0.9

P25 (ms) 23.6 ± 1.8 23.2 ± 1.7 23.0 ± 2.1

N20-P25 (μV) 2.3 ± 0.9 2.2 ± 0.9 1.8 ± 1.0

1st N20-P25 (μV) 2.8 ± 1.1 2.1 ± 0.9 2.1 ± 1.1

2nd N20-P25 (μV) 2.4 ± 0.9 2.5 ± 0.9 1.9 ± 1.0

3rd N20-P25 (μV) 2.5 ± 0.9 2.5 ± 0.9 1.9 ± 0.9

Slope (block 1–3) − 0.33 ± 0.44
*

0.49 ± 0.51 −0.14 ± 0.32
**

Early HFOs amplitude
(μV)

0.058 ± 0.022
*

0.039 ± 0.019 0.051 ± 0.025

Late HFOs amplitude
(μV)

0.061 ± 0.039 0.043 ± 0.019 0.070 ± 0.033

(p < 0.05 * MO vs. HV, ** MI vs. MO) HV Healthy volunteers, MO Migraine
patients between attacks, MI Migraine patients during attacks
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agonists, reduce SAI [25]. Moreover, SAI is modulated
by acetylcholine: it increases after administration of an
acetylcholinesterase inhibitor [26] and decreases after
administration of a muscarinic receptor antagonist [27].
In conditions where a central deficit of acetylcholine
plays an important pathophysiological role, such as Alz-
heimer’s disease [26] and mild cognitive impairment
[28], SAI is reduced. Taken together, these studies sug-
gest that SAI involves a cholinergic pathway whose ac-
tivity is modulated by GABA [11].
In patients recorded between attacks, SAI was reduced

in our study, while it was enhanced during attacks re-
spective to healthy volunteers. As previously shown, the
maximum inhibition occurred at N20 + 2ms in both HV
and patients. The difference between ictal and interictal
recordings became evident only when the median nerve
stimulus was given at N20 + 8ms before the TMS stimu-
lus. Similar abnormalities with long ISIs, even exceeding
N20 + 8ms, were observed in various pathologies [11,
29–31], underlining the fact that short and long afferent
inhibitions may be mediated by partially different cor-
tical circuits [11]. This underscores that exploring the

sensorimotor system at long ISIs between 200 to 1000
ms (long-latency afferent inhibition, LAI) would be of
interest in migraine [11].
Migraine-cycle dependent changes similar to those

found for SAI occurred in thalamocortical activity
indexed by the amplitude of early SSEP high frequency
oscillations, and in SSEP habituation. The latter findings
are in accordance with our previous studies in similar
groups of patients [2, 12, 13]. The difference between
interictal and ictal SAI may thus be due respectively to a
decrease and an increase of facilitatory thalamocortical
cholinergic activity on GABAergic network activity in
the motor cortex. In a previous study, in which we con-
ditioned the MEP by an electrical stimulation of the
ulnar nerve 10msec earlier, the MEP inhibition corre-
lated with amplitude of SSEP early HFOs in a mixed
group of healthy volunteers and interictal migraineurs
[16]. In the present study, we found a significant positive
correlation between the MEP slope and early HFO amp-
litude or SSEP habituation only in healthy controls. The
lack of such correlation in the two subgroups of patients
could be related to a dysfunctioning thalamo-cortical

Fig. 1 Left panel: Line plots of short-latency afferent inhibition (SAI) at the various interstimulus intervals in healthy volunteers (HV) and in
migraine patients recorded between (MO) or during (MI) an attack. Right panel: Bar chart of the MEP slope (mean + sd) of the regression line
between the unconditioned MEP amplitude and the 4-conditioned MEPs in the same subject groups. MEP =motor evoked potential

Table 3 Mean motor thresholds after median nerve and transcranial magnetic stimulation, baseline and conditioned amplitudes of
motor evoked potentials (mean ± standard deviation) in healthy volunteers and migraine without aura patients between (MO) and
during (MI) the attacks. (p < 0.05 * MO vs. HV, ** MI vs. MO)

HV
(n = 16)

MO
(n = 16)

MI
(N = 14)

Median nerve motor threshold (mA) 8.6 ± 1.8 7.4 ± 1.9 8.9 ± 2.7

Resting motor threshold (%) 58.3 ± 11.4 55.1 ± 6.0 60.6 ± 9.7

Baseline 2460.3 ± 2771.9 2460.4 ± 2327.0 1868.2 ± 1279.2

2 ms (μV) 1407.2 ± 2025.6 1255.6 ± 1272.5 803.9 ± 803.9

4 ms (μV) 1856.1 ± 2173.5 1920.8 ± 2073.9 906.9 ± 964.0

6 ms (μV) 2418.1 ± 2694.6 2821.2 ± 3104.7 1136.5 ± 962.3

8 ms (μV) 2010.8 ± 2008.6 2887.7 ± 2539.6 1053.7 ± 891.3 **

Slope 11.2 ± 293.5 242.3 ± 334.6 * −129.6 ± 173.8 **
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control and/or to the greater variance of the thalamo-
cortical drive between patients. It is of interest that the
interictal reduction of SAI is reminiscent of another
neurophysiological abnormality previously reported in
children with migraine, i.e. the reduced inhibition of
SSEP amplitude after paired stimuli [32], which may be
yet another finding in favor of a less efficient subcortical
inhibition of sensory cortices [33]. Taken together, the
results emphasize the fundamental role of the thalamus
in controlling cortical inhibitory mechanisms.
Alaydin et al. reported normal SAI in migraineurs be-

tween attacks contrasting with potentiation of the condi-
tioned MEP amplitude in the preictal and ictal phases
[10]. The discrepancy with our findings is probably due

to the different experimental protocol. While we used 4
different short ISIs, adjusted to the SSEP N20 latency,
Alaydin et al. used a conditioning stimulus set at 2 times
the sensory threshold and a fixed predetermined stimu-
lus interval of 21 milliseconds. After conditioning by
median nerve stimulation, MEP increases instead of de-
creases may occur with long ISIs [19]. Compared to the
Magstim Rapid device we used, the Magstim 200 used in
the other study delivers more intense stimuli at the same
output percentage and it is known that the SAI magni-
tude diminishes with increasing TMS intensities [34]. Fi-
nally, although no correlation was found with SAI, the
migraine history duration was significantly longer in pa-
tients we recorded during an attack than in those who

Fig. 2 Scatter plots showing the correlation between individual motor evoked potential (MEP) slopes of the regression line between the unconditioned MEP
amplitude and the 4-conditioned MEPs (y axis) and habituation of the somatosensory evoked potential (SSEP) expressed as the slope of the regression line over
3 blocks of sequential recordings (x axis - left panels) or amplitude of the early burst of SSEP HFOs (x axis – right panels) in healthy volunteers (a) and in
migraine patients recorded between (b) or during (c) attacks
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were interictal, which might have contributed to the dif-
ference in results.
Besides this heterogeneity in duration of the migraine

disease between patients’ groups, our study has some
additional limitations. For instance, we were not able to
record the same patients during and outside the attack,
which would have allowed using each patient as its own
control and strengthened our conclusions. Regarding the
electrophysiological protocol, averaging 5 stimuli per
condition might be not enough to obtain stable SAI
measure, although in previous studies reliable SAI re-
sults were obtained by averaging 3 trials only per condi-
tion [29, 30, 35–37].

Conclusion
We have shown that short-latency afferent inhibition in
the motor cortex changes with the phase of the migraine
cycle. As suggested by our data, these migraine-state
dependent fluctuations may be related to those of cho-
linergic thalamocortical activity that malfunctions in mi-
graine. Like the lack of somatosensory habituation, the
abnormal short-latency afferent inhibition supports a
dysfunction of short-term cerebral plasticity mechanisms
subtending the recurrence of migraine attacks.
Further studies are necessary in order to verify if these

dysfunctional plastic mechanisms of the migrainous
brain can be normalized by pharmacological and non-
pharmacological interventions and if they are similar or
different in chronic migraine with or without medication
overuse. Nevertheless, since the mechanisms of SAI
might be related to several cognitive domains [28, 38], it
seems of interest to search in migraine for a possible re-
lation between SAI abnormalities and the known ictal
[39–42] and interictal [43–45] impairments of cognitive
performance.
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