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APPROXIMATE CONTROLLABILITY OF

THE JAYNES-CUMMINGS DYNAMICS

LORENZO PINNA AND GIANLUCA PANATI

Abstract. We investigate the controllability of the Jaynes-Cum-
mings dynamics in the resonant and nearly resonant regime. We
analyze two different types of control operators acting on the bosonic
part, corresponding – in the application to cavity QED – to an ex-
ternal electric and magnetic field, respectively.
We prove approximate controllability for these models, for all val-
ues of the coupling constant g ∈ R except those in a countable set
S∗ which is explicitly characterized in the statement. The proof
relies on a spectral analysis which yields the non-resonance of the
spectrum for every g ∈ R \ S∗.

Keywords: Quantum Control Theory, Schrödinger equation, spin-
boson models, Jaynes-Cummings model, Rabi model, cavity QED.

1. Introduction

Spin-boson models, which describe the interaction between a 2-level
quantum system and finitely many distinguished modes of a bosonic
field, are ubiquitous in Quantum Theory. They play a prominent role
in quantum optics, magnetic resonance theory and in cavity Quantum
Electro Dynamics (QED). In the latter context, they provide an ap-
proximate yet accurate description of the dynamics of a 2-level atom
in a resonant microwave cavity, as in recent experiments [BRH, HaRa].
Among the spin-boson models, two prototypical examples are the Rabi
model [Ra1, Ra2] and the Jaynes-Cummings model [JaCu], which de-
spite their age are still very popular in several fields.
More recently, these models attracted the attention of researchers in

mathematical control theory. In a nutshell, the controllability problem
is the following. An initial state Ψin and a target state Ψfin are given,
as well as the unperturbed Hamiltonian operator Hup and the control
operator Hcon. Then, one investigates whether there exist a number
T > 0 and a reasonably regular (e. g. piecewise constant) function
u : [0, T ] → R such that the dynamics generated by the Hamiltonian
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2 L. PINNA AND G. PANATI

operator

H(t) := Hup + u(t)Hcon

drives the state Ψ(0) = Ψin so that Ψ(T ) is (in an ε-neighbourod of)
the state Ψfin. If the latter holds true for every normalized Ψin, Ψfin

(and every ε > 0) the system is called (approximately) controllable
(see Definition 1 for details). It has been noticed that, whenever the
Hilbert space is infinite dimensional, controllability is generally false,
hence one focuses on approximate controllability [BMS, Tur].
In the field of quantum control, a crucial role is played by the com-

petition between symmetry and controllability. In general, symmetries
are an obstacle to controllability, because they imply the existence of
invariant subspaces for the dynamics. Therefore, the external con-
trol operator must necessarily break all the symmetries of the unper-
turbed Hamiltonian in order to achieve approximate controllability.
There are highly symmetric systems that are not approximately con-
trollable, as proved by Mirrahimi and Rouchon for the 1-dimensional
harmonic oscillator [MiRo]. On the other hand, approximate control-
lability has been proved for trapped ion models [EbLa, ErPu, PaSi]
and, more recently, for the Rabi Hamiltonian [BMPS]. So, one may
wonder whether a model which is somehow intermediate between the
harmonic oscillator and the Rabi Hamiltonian is still approximately
controllable. In particular the Jaynes-Cummings (JC) model, despite
its superficial similarity with the Rabi model, has an additional symme-
try with respect to the latter, corresponding to the conservation of the
total number of excitations. Hence, its controllability is an interesting
matter in control theory, and the question whether the JC dynamics
is controllable has been considered by Rouchon some years ago [Ro,
Section 4.2].
In this paper, we answer the previous question. We consider two

different types of control operator, which in the application to cavity
QED correspond, respectively, to an external magnetic and an external
electric field. (For the connection between the JC model and the stan-
dard model of non-relativistic QED, namely the Pauli-Fierz model, we
refer to e. g. [BMPS, Section I.A] and references therein). In Theorem
2 we prove that the Jaynes-Cummings dynamics is controllable for ev-
ery value of the coupling constant with the exception of a set S∗ of
measure zero. Then, in Theorem 3 we characterize the values in S∗ as
solutions to some explicit equations. The proof exploits three technical
ingredients: the integrability of the JC model [JaCu]; a controllability
criterion proved by Boscain et al. [BCCS], which is based on the study



CONTROLLABILITY OF THE JAYNES-CUMMINGS DYNAMICS 3

of the resonances of the spectrum; a detailed analysis of the resonance
condition.
As far as future perspectives are concerned, an interesting task is to

provide a constructive control method for the Jaynes-Cummings and
the Rabi dynamics. Notice that in this paper we make an explicit con-
struction of a non-resonant chain of connectedness (see Definition 2).
However, as far as we know, this fact implies the approximate control-
lability of the system only via a general theorem [BCCS] whose proof is
not constructive. Finally, we mention a related interesting problem. It
is known that the Jaynes-Cummings dynamics can be heuristically seen
as an approximation of the Rabi dynamics, in an appropriate regime,
as discussed in detail in [Ro, Section 4.2]. A rigorous mathematical
proof of the latter claim, which is still missing in the literature, would
provide a deeper understanding of both the models and their dynamics.

Acknowledgments. We are grateful to U.Boscain, M. Sigalotti, P.Ma-
son, and S.Teufel for stimulating and useful discussions on related top-
ics. We also thank M.Moscolari for a careful reading of the manuscript.

2. The Jaynes-Cummings model

2.1. Definition of the model. In the Hilbert space H = L2(R)⊗C2

we consider the Schrödinger equation

i~ ∂tψ = HJCψ

with Hamiltonian operator (JC Hamiltonian)

HJC ≡ HJC(g) =
~ω

2
(X2+P 2)⊗1+

~Ω

2
1⊗σz +

~g√
2
(X⊗σx−P ⊗σy)

(2.1)
where ω,Ω ∈ R+ and g ∈ R are constants, X is the position operator,
i. e. Xψ(x) = xψ(x), and P = −i∂x. The operators σx, σy, σz acting on
C2 are given by the Pauli matrices

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

.

The quantity ∆ := Ω−ω is called detuning and measures the difference
between the energy quanta of the two subsystems corresponding to the
factorization of the Hilbert space.
By introducing the creation and annihilation operators for the har-

monic oscillator, defined as usual by

a† =
1√
2
(X − iP ) a =

1√
2
(X + iP ), (2.2)
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and the lowering and raising operators

σ =
1

2
(σx − iσy) =

(

0 0
1 0

)

σ† =
1

2
(σx + iσy) =

(

0 1
0 0

)

, (2.3)

the JC Hamiltonian (omitting tensors) reads

HJC = ~ω

(

a†a+
1

2

)

+
~Ω

2
σz +

~g

2

(

aσ† + a†σ
)

.

The popularity of this model relies on the fact that it is presum-
ably the simplest model describing a two-level system interacting with
a distinguished mode of a quantized bosonic field (the harmonic os-
cillator). It was introduced by Jaynes and Cummings in 1963 as an
approximation to the Rabi Hamitonian

HR = HR(g) = ~ω

(

a†a +
1

2

)

+
~Ω

2
σz +

~g

2
(a+ a†)(σ + σ†). (2.4)

The latter traces back to the early works of Rabi on spin-boson in-
teractions [Ra1, Ra2], while in [JaCu] Jaynes and Cummings derived
both (2.1) and (2.4) from a more fundamental model of non-relativistic
Quantum Electro Dynamics (QED).
Nowadays, both Hamiltonians (2.1) and (2.4) are widely used in sev-

eral fields of physics. Among them, one of the most interesting is cavity
QED. In typical cavity QED experiments, atoms move across a cavity
that stores a mode of a quantized electromagnetic field. During their
passage in the cavity the atoms interact with the field: the Hamiltoni-
ans (2.1) and (2.4) aim to describe the interaction between the atom
and the cavity, in different regimes [BRH, HaRa]. More precisely, (2.1)
and (2.4) can be heuristically derived from a mathematical model of
non-relativistic QED, the Pauli-Fierz model [Sp]; we refer to [Co1] and
the more recent [BMPS] for a discussion of this derivation.
The approximation consisting in replacing (2.4) with (2.1) is com-

monly known as the rotating wave approximation (or secular approxi-

mation), and is valid under the assumptions [Ro]

|∆| ≪ ω,Ω g ≪ ω,Ω (2.5)

which mean that the harmonic oscillator and the two-level system are
almost in resonance and the coupling strength is small compared to
the typical energy scale. Heuristically, in this regime the probability of
creating or destroying two excitations is negligible, thus one can remove
the so-called counter-rotating terms a†σ† and aσ in (2.4) to obtain
(2.1). More precisely, the justification of this approximation relies on
separation of time scales, a well-know phenomenon in several areas
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of physics [PST1, PST2, PSpT]. Indeed, by rewriting the dynamics
generated by (2.4) in the interaction picture with respect to

H0 := HJC(0) = HR(0) = ~ω

(

a†a+
1

2

)

+
~Ω

2
σz, (2.6)

one gets

eiH0t/~(HR −H0)e
−iH0t/~ =

g

2

(

e−i(Ω−ω)ta†σ + ei(Ω−ω)taσ†
)

+
g

2

(

e−i(Ω+ω)taσ + ei(Ω+ω)ta†σ†
)

. (2.7)

One notices that the terms a†σ, aσ† oscillate with frequency |ω − Ω|,
while a†σ†, aσ oscillate on the faster scale ω + Ω, so that the latter
average to zero on the long time scale |ω − Ω|−1. While the physical
principles leading from (2.4) to (2.1) are clear, as we mentioned in the
Introduction a rigorous mathematical justification for this approxima-
tion seems absent from the literature, as recently remarked in [Ro].

We use hereafter Hartree units, so that in particular ~ = 1.

2.2. Spectrum of the JC Hamiltonian. While apparently similar,
the JC Hamiltonian (2.1) and the Rabi Hamiltonian (2.4) are consid-
erably different from the viewpoint of symmetries.
As operators, they are both infinitesimally small perturbation, in the

sense of Kato [Ka], of the free Hamiltonian H0 (defined in (2.6)), which
has compact resolvent. Eigenvalues and eigenvectors of H0 are easily
obtained by tensorization, starting from the eigenvectors {e1, e−1} of
σz and the standard basis of L2(R) given by real eigenfunctions of a†a,
namely the Hermite functions

|n〉 = 1
√

2nn!
√
π
hn(x) e

−x2

2 , n ∈ N,

where hn is the n-th Hermite polynomial. As well known, they satisfy

a†a |n〉 = n |n〉 , a† |n〉 =
√
n + 1 |n+ 1〉 , a |n〉 =

√
n |n− 1〉 .

(2.8)
Then

H0 |n〉 ⊗ e1 = E0
(n,1) |n〉 ⊗ e1, H0 |n〉 ⊗ e−1 = E0

(n,−1) |n〉 ⊗ e−1

with

E0
(n,s) = ω(n+

1

2
) + s

Ω

2
, n ∈ N, s ∈ {−1, 1}.

Since (a + a†)σx and (aσ† + a†σ) are infinitesimally H0-bounded, by
standard perturbation theory {HJC(g)}g∈C and {HR(g)}g∈C are ana-
lytic families (of type A) of operators with compact resolvent [Ka,
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Section VII.2]. Therefore, by Kato-Rellich theorem, the eingenvalues
and eigenvectors of HJC(g) and HR(g) are analytic functions of the
parameter g. Coefficients of the series expansion of eingenvalues and
eigenvectors can be explicitly computed [RS4].
From the viewpoint of symmetries, it is crucial to notice that, as

compared to the Rabi Hamiltonian, the JC Hamiltonian has an ad-
ditional conserved quantity, namely the total number of excitations,
represented by the operator C = a†a+ σ†σ. As a consequence, the JC
Hamiltonian reduces to the invariant subspaces

Hn = Span{|n〉⊗e1, |n+ 1〉⊗e−1} n ≥ 0, H−1 = Span{|0〉⊗e−1},
(2.9)

which are the subspaces corresponding to a fixed number of total exci-
tations, i. e. C ↾Hn

= n + 1. Indeed, HJC restricted to these subspaces
reads

Hn(g) := HJC(g) ↾Hn
=

(

E0
(n,1) g

√
n + 1

g
√
n+ 1 E0

(n+1,−1)

)

= ω(n+ 1)1+

(

∆/2 g
√
n+ 1

g
√
n+ 1 −∆/2

)

. (2.10)

Eigenvalues and eigenvectors of Hn are easily computed to be

HJC(g) |n, ν〉 = E(n,ν) |n, ν〉 , n ∈ N, ν ∈ {−,+} (2.11)

where

E(n,ν)(g) = ω(n+ 1) + ν
1

2

√

∆2 + 4g2(n + 1) (2.12)

|n,+〉 (g) = cos(θn/2) |n〉 ⊗ e1 + sin(θn/2) |n+ 1〉 ⊗ e−1 (2.13)

|n,−〉 (g) = − sin(θn/2) |n〉 ⊗ e1 + cos(θn/2) |n+ 1〉 ⊗ e−1 (2.14)

and the mixing angle θn(g) ∈ [−π/2, π/2] is defined through the rela-
tion

tan θn :=
2g

√
n + 1

ω − Ω
. (2.15)

Hereafter, we will omit the g-dependence of the eigenvectors |n, ν〉 for
the sake of a lighter notation. Observe that in the resonant case, i. e.
∆ = 0, equation (2.15) implies |θn| = π/2 for every n ∈ N, hence the
eigenvectors |n, ν〉 are independent from g, while the eingenvalues still
depend on it.
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Moreover, depending on the sign of ∆, one has

E(n,+)(0) = E0
(n,1) E(n,−)(0) = E0

(n+1,−1), for ∆ > 0

E(n,+)(0) = E0
(n+1,−1) E(n,−)(0) = E0

(n,1), for ∆ < 0

E(n,ν)(0) = E0
(n+1,−1) = E0

(n,1), for ∆ = 0

.

As we mentioned before, in view of Kato-Rellich theorem, the eigen-
values of HJC(g) are analytic in g if a convenient labeling is chosen.
The table above shows which function, among g 7→ E(n,+)(g) and g 7→
E(n,−)(g), provides the analytic continuations of the spectrum at the
points E0

(n,1) or E
0
(n+1,−1). When ∆ = 0, in order to have analytic eigen-

values and eigenfunctions we must choose E(n,ν) = ω(n+1)+ν
√
n+ 1g.

The spurious eigenvector |0〉 ⊗ e−1 with eigenvalue E0
(0,−1) = ∆/2

completes the spectrum of the JCH. Let us define

δ ≡δ(∆) :=

{

+ if ∆ ≥ 0
− if ∆ < 0

.

Throughout the paper we will use the notation |−1, δ〉 := |0〉 ⊗ e−1

and E(−1,δ) := E0
(0,−1). We will denote a pair (n, ν) with a bold letter

n, meaning that the first component of n is the same not-bold letter
while the second component is the corresponding Greek letter, namely

n = (n, ν), n(1) = n, n(2) = ν.

Let also us define

fn(g) :=
1

2

√

∆2 + 4g2(n+ 1). (2.16)

With this notation, we can write the specrum of the JC Hamiltonian
in a synthetic way as

σ
(

HJC(g)
)

= {En}n∈N, En(g) = ω(n+ 1) + νfn(g) (2.17)

where

N := (N× {−,+}) ∪ {(−1, δ(∆))}. (2.18)

Notice that the notation is coherent since

E(−1,δ) = δ(∆)f−1(g) = δ(∆)
|∆|
2

=
∆

2
= E0

(0,−1),

in agreement with the definition above. It will be also useful introduce
the following sets

N± := N ∪ {∓δ(∆)1} (2.19)

which are copies of the natural numbers with {−1 } added to the set
with the index δ(∆).
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3. General setting and main result

3.1. General setting. We now introduce the controllability problem
in a general setting. LetH be a separable Hilbert space with Hermitian
product 〈· , ·〉. We consider the equation

∂tψ = (A+ u(t)B)ψ, ψ ∈ H (3.1)

where A,B are skew-adjoint linear operator on H with domain D(A)
and D(B) respectively, u is a function of time with values in U ⊂ R.

Assumption 1. The system (A,B, U,ΦI) is such that:

(A1) ΦI = {φk}k∈I is a Hilbert basis of eigenvectors for A associated
to the eigenvalues {iλk}k∈I;

(A2) φk ∈ D(B) for every k ∈ I;
(A3) A + wB : Spank∈I{φk} → H is essentially skew-adjoint for every

w ∈ U ;
(A4) if j 6= k and λj = λk, then 〈φj , Bφk〉 = 0. ⋄
Under these assumptions A + uB generates a unitary group t 7→

e(A+uB)t for every constant u ∈ U . Hence, for every piecewise constant
function u(t) =

∑n
i=1 uiχ[ti−1,ti](t) associated to a partition 0 = t0 <

t1 < . . . < tn, we can define the propagator

Υu
t := e(t−tj )(A+uj+1B)e(tj−tj−1)(A+ujB) . . . et1(A+u1B) for tj < t ≤ tj+1.

(3.2)
The solution to (3.1) with initial datum ψ(0) = ψ0 ∈ H is denoted by
ψ(t) =: Υu

t (ψ0).

Definition 1. Let (A,B, U,ΦI) satisfy Assumption 1. We say that
(3.1) is approximately controllable if for every Ψin and Ψfin with
‖Ψin‖ = 1 = ‖Ψfin‖ and for every ε > 0 there exist a finite Tε > 0 and
a piecewice constant control function u : [0, Tε] → U such that

∥

∥Ψfin −Υu
Tε
(Ψin)

∥

∥ < ε.

⋄
We recall a criterion for approximate controllability on which our

proof is based. This general result gives a sufficient condition for ap-
proximate controllability based on the spectrum of A and the action of
the control operator B. More precisely, if σ(A) has a sufficiently large
number of non-resonant transitions, i. e. pairs of levels (i, j) such that
their energy difference |λi − λj | is not replicated by any other pair, and
B is able to activate these transitions, then the system is approximately
controllable. This heuristic idea is made precise in the following
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Definition 2. Let (A,B, U,ΦI) satisfy Assumption 1. A subset C of
the set I × I = I2 connects a pair (j, k) ∈ I2, if there exists a finite
sequence c0, ..., cp such that:

(i) c0 = j and cp = k;
(ii) (ci, ci+1) ∈ C for every 0 ≤ i ≤ p− 1;
(iii)

〈

φci , Bφci+1

〉

6= 0 for every 0 ≤ i ≤ p− 1.

The set C is called a chain of connectedness for (A,B, U,ΦI) if con-
nects every pair in I2.
A chain of connectedness is called non-resonant if for every (c1, c2) ∈
C holds

|λc1 − λc2| 6= |λt1 − λt2 |

for every (t1, t2) ∈ I
2 \ {(c1, c2), (c2, c1)} such that 〈φt1 , Bφt2〉 6= 0. ⋄

Intuitively, if two levels of the spectrum are non-resonant and the
control operator B couples them, one can tune the control function u
in such a way to arrange arbitrarily the wavefunction’s components on
these levels, without modifying any other component. Therefore, hav-
ing a non-resonant chain of connectedness allow us to approximately
reach the target state by sequentially modifying the wavefunction.
These heuristic idea is crucial for the proof of the following criterion
by Boscain et al.

Theorem 1. [BCCS, Theorem 2.6] Let c > 0 and let (A,B, [0, c],ΦI)
satisfy Assumption 1. If there exists a non-resonant chain of con-

nectedness for (A,B, [0, c],ΦI) then the system (3.1) is approximately

controllable.

3.2. Statement of the result. In most of the physically relevant ap-
plications, the external control does not act on the spin part [BMPS,
Sp]. Hence, we consider the JC dynamics with two different control
terms acting only on the bosonic part, namely

H1 = X ⊗ 1 H2 = P ⊗ 1. (3.3)

To motivate our choice, we notice that – for example – in the cavity
QED context the experimenters can only act on the electromagnetic
field stored in the cavity. In this context the control terms H1, H2 cor-
respond, respectively, to an external electric field and a magnetic field
in the dipole approximation, see [BMPS, Section I.A], and the control
functions u1(t), u2(t) model the amplitudes of this external fields.
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With the previous choice, the complete controlled Schrödinger dy-
namics reads



































i∂tψ =
(

HJC(g) + u1(t)H1 + u2(t)H2

)

ψ

ψ(0) = Ψin ∈ H, Ψfin ∈ H s.t. ‖Ψin‖ = ‖Ψfin‖
u1, u2 ∈ [0, c]

ω,Ω > 0

|∆| ≪ ω,Ω

(3.4)

Notice that the control functions u1, u2 are independent from each
other so, as subcases, one can consider the system in which just one
control is active. Obviously, controllability of the system in one of
these two subcases implies controllability in the general case. This is
exactly what we are going to prove. We consider the system (3.4) in
the subcases u1 ≡ 0 or u2 ≡ 0 and we prove that in each subcase the
system is approximately controllable.

The following theorems are the main results of the paper.

Theorem 2 (Approximate controllability of JC dynamics). The
system (3.4) with u1 ≡ 0 or u2 ≡ 0 is approximately controllable for

every g ∈ R \ S∗ where S∗ is a countable set.

Theorem 3 (Characterization of the singular set). The set S∗,

mentioned in Theorem 2, consists of the value g = 0 and those g ∈ R

that satisfy one of the following equations:

E(n+1,−)(g) = E(n,ν)(g), (n, ν) ∈ N (3.5)

2ω = fm+1(g) + fm(g)− fn+1(g) + fn(g), n,m ∈ N+ (3.6)

2ω = fm+1(g)− fm(g)− fn+1(g) + fn(g), n,m ∈ N−, m < n (3.7)

2ω = fm+1(g) + fm(g)− fn+1(g)− fn(g), n,m ∈ N−, m > n (3.8)

where N, N± and fn are defined in (2.18),(2.19) and (2.16), respec-

tively.

The proof of Theorem 2 follows two main steps: we introduce a
Hilbert basis of eigenvectors of HJC, namely {|n〉}n∈N, and analyze the
action of the control operators on it in order to show that all levels are
coupled for every value of the parameter g except a countable set (see
Section 4.1). We then construct a subset C0 of N2 and prove that it
is a non-resonant chain of connectedness (see Section 4.2). The claim
then follows from the application of the general result by Boscain et
al., namely Theorem1.



CONTROLLABILITY OF THE JAYNES-CUMMINGS DYNAMICS 11

To prove Theorem 3 we carefully analyze the resonances of the sys-
tem, which are solution to the forthcoming equation (4.7). By proving
that the latter has a countable number of solutions, we conclude that
relevant pairs of energies are not resonant for every g ∈ R except the
values in a countable set which will be characterized in the proof.

4. Proof of Theorem 2

4.0. Preliminaries. Preliminarily, we have to show that Assumption 1
is satisfied by

(iHJC(g), iHj , R, {|n〉}n∈N), for g ∈ R \ S0, j ∈ { 1, 2 } ,

where S0 is a countable set. Notice that the index set N plays the role
of the countable set I in Definition 2.
We have already shown that {|n〉}n∈N is a Hilbert basis of eigenfunc-

tions for HJC(g). Since Hj is infinitesimally H0-bounded (Hj ≪ H0

for short) for j ∈ { 1, 2 }, then Hj ≪ HJC(g) for j ∈ { 1, 2 } (see
[RS4, Exercise XII.11]). Hence (A2) holds. Moreover, this implies that
HJC(g) + wHj is selfadjoint on D(HJC) = D(H0) for every w ∈ R (see
[RS2, Theorem X.12]) and so (A3) is satisfied.
As for assumption (A4), we observe that in view of the analyticity

of the eigenvalues, there are just countable many values of g which
correspond to eigenvalue intersections. With the only exception of
these values, the eigenvalues are simple, so (A4) and Assumption 1
hold automatically for every g ∈ R \ S0, where S0 is the countable set
corresponding to the eigenvalue intersections.
On the other hand, we can further restrict the set of singular points

from S0 to S1 ⊂ S0. Indeed, if two eigenvalues intersect in a point
g∗, say En(g∗) = Em(g∗), property (A4) is still satisfied (by the same
orthonormal system) provided that 〈m|Hj |n〉 (g∗) = 0, j ∈ { 1, 2 }.
Observe that, given n ∈ N,

|m− n| > 2 ⇒ 〈m|Hj |n〉 (g) = 0 ∀g ∈ R, j ∈ { 1, 2 } . (4.1)

Hence, a priori the only possibly problematic points are solutions to
the following equations

Em(g) = En(g) m,n ∈ N, m 6= n, |m− n| ≤ 2. (4.2)
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By direct investigation, and using (2.17), one notices that there are
solutions only in the following cases (for n = (n, ν) ∈ N):

En(g) = E(n+1,−)(g) which is satisfied if and only if (4.3)

|g| = G(1)
n

:=

√

ω2(2n+ 3)− ν
√

4ω4(n2 + 3n+ 2) + ω2∆2;

En(g) = E(n+2,−)(g) which is satisfied if and only if (4.4)

|g| = G(2)
n

:=

√

2ω2(n+ 2)− ν
√

4ω4(n2 + 4n+ 3) + ω2∆2;

E(n,+)(g) = E(n,−)(g) which is satisfied if and only if (4.5)

g = 0 and ∆ = 0.

We will establish a posteriori whether we have indeed to exclude those
points by the analysis in the next subsection, after looking at the action
of the control operators.

4.1. Coupling of energy levels. To apply Theorem 1 to our case
we need to build a non resonant chain of connectedness. As observed
before in (4.1), the control operators do not couple most of the pairs.
The coupling between remaining pairs is easily checked by using

(2.3), (2.8), (2.13), and (2.14). For the sake of a shorter notation,
we set cn := cos(θn/2) and sn := sin(θn/2). Some straightforward
calculations for H1 yield the following result:

〈n,−|H1 |n,+〉 = 0

〈n+ 1,+|H1 |n,+〉 = 1√
2
(
√
n+ 1cncn+1 +

√
n+ 2snsn+1) 6= 0

〈n+ 2,+|H1 |n,+〉 = 0

〈n+ 1,−|H1 |n,−〉 = 1√
2
(
√
n+ 1cncn+1 +

√
n+ 2snsn+1) 6= 0

〈n+ 2,−|H1 |n,−〉 = 0

〈n+ 1,−|H1 |n,+〉 = 1√
2
(
√
n+ 2sncn+1 −

√
n+ 1cnsn+1) 6= 0 ⇔ g 6= 0
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〈n+ 2,−|H1 |n,+〉 = 0

〈n+ 1,+|H1 |n,−〉 = 1√
2
(
√
n+ 2cnsn+1 −

√
n+ 1sncn+1) 6= 0 ⇔ g 6= 0

〈n+ 2,+|H1 |n,−〉 = 0

〈0,−|H1 |−1, δ〉 = c0√
2
≥ 1

2

〈0,+|H1 |−1, δ〉 = s0√
2
6= 0 ⇔ g 6= 0.

From these computations we see that (compare with (4.3),(4.4)) in

the points {G(2)
n }n∈N the system still satisfies Assumption 1, while in

the points {G(1)
n }n∈N does not. The point g = 0 is never solution to

(4.3) or (4.4) in view of the assumption |∆| ≪ ω. Moreover, since
〈n,−|H1 |n,+〉 = 0 for every g ∈ R, the system still satisfies Assump-
tion 1 for g = 0, notwithstanding (4.5).
The same results hold for H2. Moreover, in each of the previous

cases one has
〈m|H2 |n〉 = i 〈m|H1 |n〉 .

We conclude that Assumption (A4) is satisfied for every g ∈ R \ S1,

where S1 := {G(1)
n }n∈N.

4.2. Non-resonances of relevant pairs. Knowing exactly the pairs
of levels coupled by the control terms, we claim that the set (illustrated
in Figure 1)

C0 =
{[

(n+ 1,+), (n,+)
]

,
[

(n + 1,+), (n,−)
]

| n ∈ N
}

∪
{[

(0,+), (−1, δ)
]}

(4.6)
is a non-resonant chain of connectedness for every g ∈ R \ S2, where
S2 ⊂ R is a countable set.
To prove this claim, we have to show that for every g ∈ R \ S2

each pair of eigenstates in C0 has no resonances with every other pair
coupled by the control term. In view of the computation above, there
are just four types of pairs coupled, as illustrated in Figure 1 and 2. So,
we define S2 as the set of the solutions g to the following equations:

|Ek(g)−El(g)| = |Es(g)− Et(g)| (4.7)

where [k, l] ∈ C0 and

[s, t] ∈ C0 ∪
{[

(n+ 1,−), (n,−)
]

,
[

(n+ 1,−), (n,+)
]

| n ∈ N
}

∪
{[

(0,−), (−1, δ)
]}

. (4.8)

It is enough to prove that the set of solutions to the latter equa-
tions is countable. Observe that, by the analyticity of the functions
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Figure 1. Schematic representation of the eigenstates of
the JC Hamiltonian and the chain of connectedness C0, in
the case δ(∆) = −. Thick black lines correspond to pairs
of eigenstates in the chain C0. Gray dashed lines correspond
instead to pairs of eigenstates coupled by the control which
are not in C0.

|−1, δ〉 |0,−〉

|0,+〉

|1,−〉

|1,+〉

|2,−〉

|2,+〉

|3,−〉

|3,+〉

|4,−〉

|4,+〉

g 7→ Ek(g)− El(g), equation (4.7) may have at most countable many
solutions unless is identically satisfied. Thus, we need to show that

Ek(g)− El(g) = ±(Es(g)− Et(g))

is not satisfied for some value g or, equivalently, that the Taylor expan-
sions of r.h.s. and l.h.s. differ in at least a point. The same argument
was used in [BMPS], where the authors computed the perturbative ex-
pansion of the eigenvalues of the Rabi Hamiltonian up to forth order
in g. In our case, the model is exactly solvable, (1) so that we can com-
pute the series expansions in g = 0 directly from expression (2.12). An
explicit computation yields the Taylor expansion:

En = ω(n+ 1) + ν
(

|Ω−ω|
2

+ n+1
|Ω−ω|

g2 − (n+1)2

|Ω−ω|3
g4 + o (g4)

)

for ∆ 6= 0

En = ω(n+ 1) + ν
√
n+ 1g for ∆ = 0.

It is now easy to check, mimicking Step 2 in the proof of [BMPS],
that for every choice of the indices in equation (4.7) the r.h.s. and
l.h.s. have different series expansion at g = 0. We are not going to
detail this calculation, since in the next Section we will analyze in full
detail equations (4.7), in order to characterize the set S2. By setting
S∗ = S1 ∪ S2, the proof of Theorem 2 is concluded.

5. Proof of Theorem 3

In this proof we will discuss the resonances of the pairs of eigenstates
in the chain C0, defined in (4.6). Our aim is to provide conditions to

(1) Actually, the Rabi model is also solvable, as recently proved by Braak [Br].
However, the “explicit” expression of the eigenvalues is practically intractable, so
that the authors of [BMPS] preferred to compute the perturbative series in g up to
fourth order.
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Figure 2. Classification of the arcs representing pairs of

eigenstates coupled by the control operator. On the left-hand

panel, red arcs and labels show the classification of generic

arcs in four different types {A,B,C,D }. On the right-hand

panel, black arcs of the set C0 are classified in two types

{ 1, 2 }. Labels correspond to the cases enumerated in the

proof of Theorem 3.

1

2

A

D

B
C

|m,+〉 |m+1,+〉 |n,+〉 |n+1,+〉

|m,−〉 |m+1,−〉 |n,−〉 |n+1,−〉

determine whether, for a particular value of g, resonances are present
or not. This requires a direct investigation of equation (4.7). Since
these computations are rather long, we prefer to collect them in this
section, not to obscure the simplicity of the proof of Theorem 2 with
the details on the characterization of the set S∗.
Let us recall that the sets N± defined in (2.19) include both the

natural numbers, and −1 is added to the one, among N+ and N−,
whose label equals δ(∆).
In each of the following subcases the existence of solutions to equa-

tion (4.7) is discussed, for every choice of the indices compatible with
the constraints (4.8). The mathematical arguments are based on el-

ementary properties of functions fn(g) = 1
2

√

∆2 + 4g2(n + 1), which
are summarized in Lemma 4 in the Appendix.

Case 1: Assume [k, l] = [(n+ 1,+), (n,+)], n ∈ N+. This as-
sumption correspond to select the black arc labeled by 1 in the graph
in Figure 2. We investigate the possible resonances between the se-
lected arc and the other arcs, classified according to their qualitative
type (see the labels in the left-hand panel of Figure 2). This analysis
amounts to consider, with the help of Lemma 4 (properties (F.1)-(F.3)),
the following subcases:

(1.A) [s, t] =
[

(m + 1,+), (m,+)
]

, m ∈ N+, m 6= n. Equation (4.7)
reads

fn+1(g)− fn(g) = fm+1(g)− fm(g)

which is satisfied if and only if g = 0, because fn+1(g)− fn(g) is
strictly decreasing in n for g 6= 0 in view of (F.3).
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(1.B) [s, t] =
[

(m+ 1,+), (m,−)
]

, m ∈ N−. Equation (4.7) reads

fn+1(g)− fn(g) = fm+1(g) + fm(g)

which is satisfied if and only if g = 0 and ∆ = 0.
Indeed, by (F.2) one has

fn+1(g)− fn(g) ≤ 2 |g|
(√

n+ 2−
√
n + 1

)

=
2 |g|√

n + 2 +
√
n+ 1

.

For ∆ < 0, one has n ∈ N+ = N and m ∈ N− = N ∪ {−1}, as
illustrated in Figure 1. Hence, for g 6= 0,

fn+1(g)− fn(g) ≤
2 |g|√
2 + 1

< |g| ≤ |g| (
√
m+ 2 +

√
m+ 1)

≤ fm+1(g)+fm(g),

and the last inequality is strict whenever ∆ 6= 0.
Analogously, for ∆ > 0 one has n ∈ N+ = N ∪ {−1} and
m ∈ N− = N. Hence, for g 6= 0,

fn+1(g)− fn(g) ≤ 2 |g| < |g| (
√
m+ 2 +

√
m+ 1)

≤ fm+1(g)+fm(g).

As above, the last inequality is strict whenever ∆ 6= 0.

(1.C) [s, t] =
[

(m+ 1,−), (m,+)
]

, m ∈ N+. Equation (4.7) reads

ω + fn+1(g)− fn(g) = |ω − fm+1(g)− fm(g)| .

If |g| < G
(1)
m,+ one has

fn+1(g)− fn(g) = −fm+1(g)− fm(g),

which implies g = 0 and ∆ = 0 because −fm+1(g) − fm(g) ≤
0 ≤ fn+1(g) − fn(g), and the first inequality is strict whenever
∆ 6= 0, while the second inequality is strict whenever g 6= 0.

On the other hand, if |g| ≥ G
(1)
m,+ the equation above reads

2ω = fm+1(g) + fm(g)− fn+1(g) + fn(g) (3.6)

which has two solutions because the r.h.s. is equal to |∆| in zero
(and |∆| ≪ ω in view of (3.4)) and is strictly increasing in |g|.
Indeed, one easily sees that

∂g (fm+1(g) + fm(g)− fn+1(g) + fn(g)) =

g

(

m+ 2

fm+2(g)
+
m+ 1

fm(g)
− n+ 2

fn+1(g)
+
n+ 1

fn(g)

)

=: gCm,n(g)
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where Cm,n(g) > 0 for every choice of indices n,m ∈ N+ and
∆ 6= 0. For ∆ = 0 the r.h.s. of (3.6) is |g| (

√
m+ 2+

√
m+ 1−√

n + 2 +
√
n+ 1) which is clearly strictly increasing in |g|.

(1.D) [s, t] =
[

(m+ 1,−), (m,−)
]

, m ∈ N−. Equation (4.7) reads

ω + fn+1(g)− fn(g) = |ω − fm+1(g) + fm(g)|
Then if |g| < G

(1)
m,−

fn+1(g)− fn(g) = −fm+1(g) + fm(g),

which is satisfied if and only if g = 0 because fn+1(g)− fn(g) ≥
0 ≥ −fm+1(g) + fm(g) and the inequalities are strict whenever

g 6= 0. If instead |g| ≥ G
(1)
m,−, the equation reads

2ω = fm+1(g)− fm(g)− fn+1(g) + fn(g) (3.7)

which has two solutions if and only if m < n. Indeed, fn+1(g)−
fn(g) is decreasing in n in view of (F.3) and the derivative of
the r.h.s. is

∂g (fm+1(g)− fm(g)− fn+1(g) + fn(g)) =

g

(

m+ 2

fm+2(g)
− m+ 1

fm(g)
− n + 2

fn+1(g)
+
n+ 1

fn(g)

)

=: gDm,n(g).

The function Dm,n(g) is strictly positive for every ∆ 6= 0 and
m ∈ N−, n ∈ N+ with m < n because n+2

fn+1(g)
− n+1

fn(g)
is strictly

decreasing in n. For ∆ = 0 the r.h.s. of (3.7) is |g| (
√
m+ 2 −√

m+ 1 −
√
n+ 2 +

√
n+ 1) which is positive if and only if

m < n, and is clearly strictly increasing in |g|.
In view of the above analysis, there exist non trivial resonances (for
g 6= 0) in cases (1.C), and (1.D) for m < n. In such circumstances,
equations (3.6),(3.7) have two solutions each.As for the trivial value
g = 0, the system exhibits multiple resonances, as noted in all previous
cases. Hence, g = 0 has to be included in the set of resonant points.

Case 2: Assume [k, l] = [(n+1,+), (n,−)], n ∈ N−. This assump-
tion corresponds to select the black arc labeled by 2 in the graph in
Figure 2. As before, we proceed by considering the following sub-cases:

(2.A) By symmetry, this case reduces to the subcase (1.B). As already
noticed, a solution exists if and only if g = 0 and ∆ = 0.

(2.B) [s, t] =
[

(m+ 1,+), (m,−)
]

, m ∈ N−, m 6= n. The correspond-
ing equation reads

fn+1(g) + fn(g) = fm+1(g) + fm(g)
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which has only the trivial solution g = 0.

(2.C) [s, t] =
[

(m+ 1,−), (m,+)
]

, m ∈ N+. Equation (4.7) reads

ω + fn+1(g) + fn(g) = |ω − fm+1(g)− fm(g)| .
Then if |g| < G1

m,+ the equation above become

fn+1(g) + fn(g) = −fm+1(g)− fm(g)

which clearly implies that g = 0 and ∆ = 0.
On the other hand, if |g| ≥ G1

m,+ the equation reads

2ω = fm+1(g) + fm(g)− fn+1(g)− fn(g) (3.8)

which has non trivial solutions if and only if m > n because fn
is increasing in n for g 6= 0. Since the r.h.s. is strictly increasing
in |g|, as one can see using an argument similar to case (1.C),
the latter equation has two solutions if m > n.

(2.D) [s, t] =
[

(m+ 1,−), (m,−)
]

, m ∈ N−. Equation (4.7) reads

ω + fn+1(g) + fn(g) = |ω − fm+1(g) + fm(g)| .
If |g| < G1

m,− the above equation reads

fn+1(g) + fn(g) = −fm+1(g) + fm(g)

which is satisfied if and only if g = 0 and ∆ = 0, since−fm+1(g)+
fm(g) ≤ 0 ≤ fn+1(g) + fn(g), and the first inequality is strict
whenever g 6= 0, while the second inequality is strict whenever
∆ 6= 0. If, instead, |g| ≥ G1

m,−, the above equation becomes

2ω = fm+1(g)− fm(g)− fn+1(g)− fn(g),

which has no solution since the r.h.s. is non-positive for every
g,∆ ∈ R and n,m ∈ N−.

In summary, as far as Case 2 is concerned, there exist non trivial
resonances (for g 6= 0) only in the case (2.C) for m > n, and in such
case equation (3.8) has exactly two solutions.
Recalling the definition of C0 (see (4.6)), one notices that every el-

ement of C0 is non-resonant with every other element of C0 except for
the trivial value g = 0, in view of the analysis of the cases (1.A), (1.B),
(2.A) and (2.B).
The proof above exhibits equations (3.6), (3.7) and (3.8) appearing

in the statement of Theorem 3, as the equations which characterize the
values of g in S2, namely those values such that an arc in C0 is resonant
with some arc (not in C0) non-trivially coupled by the interaction. As
we said before, the value g = 0 is included in S2.
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Finally, one has to include in S∗ those values of g for which some
eigenspace has dimension 2 and the corresponding eigenvectors are cou-
pled. These values, defining the set S1, have been already characterized
by equation (3.5), whose solutions are exhibited in (4.3).
In view of Theorem 1, we conclude that the system is approximately

controllable for every g ∈ R \ S∗, where S∗ = S1 ∪ S2 is characterized
by equations (3.5), (3.6), (3.7), and (3.8). This concludes the proof of
Theorem 3.

Appendix A. Ancillary results

The following Lemma contains a list of useful elementary properties
of the functions {fn}n∈N, which have been used in the proof of Theorem
3 (Section 5).

Lemma 4. Let fn, n ∈ N, be defined as in (2.16). Then

(F.1) fm(g)− fn(g) ≥ 0 if and only if m ≥ n;

(F.2) fn+1(g)− fn(g) ≤ 2 |g| (
√
n + 2−

√
n + 1);

(F.3) fn+1(g) − fn(g) is strictly increasing w.r.to |g|, and strictly de-

creasing in n;

Proof. Property (F.1) follows from the monotonicity of the square root.
As for (F.2), one notices that

fn+1(g)− fn(g) ≤
2g2

√

∆2 + 4g2(n + 2)

which is equivalent to

(∆2 + 4g2(n+ 2))−
√

∆2 + 4g2(n + 2)
√

∆2 + 4g2(n + 1) ≤ 4g2

which follows from the fact that

(∆2 + 4g2(n+ 1)) ≤
√

∆2 + 4g2(n+ 2)
√

∆2 + 4g2(n+ 1).

Then,

fn+1(g)− fn(g) ≤
2g2

√

∆2 + 4g2(n+ 2)
≤ 2g2

2 |g|
√
n+ 2

≤ 2 |g| (
√
n+ 2−

√
n+ 1).

Notice that the last inequality is strict whenever g 6= 0.
As for (F.3), one sets

F (x, y) :=
1

2

√

∆2 + 4x2y and G(x, y) := y/
√

∆2 + 4x2y,
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so that fn(g) = F (g, n+1) and ∂gfn(g) = 2g G(g, n+1). Observe that
for y ≥ 0 one has

∂G

∂y
=

1
√

∆2 + 4x2y

(

1− 2x2y

∆2 + 4x2y

)

> 0

and also

∂2G

∂y2
=

4x2

(∆2 + 4x2y)3/2

(

−1 +
3y

4

4x2

∆2 + 4x2y

)

≤ 0,

and the latter is equal to 0 if and only if x = 0. Then, one has (with
an innocent abuse of notation concerning ∂nfn(g))

∂g(fn+1 − fn)(g) =2g(G(g, n+ 2)−G(g, n+ 1))

{

> 0 for g > 0
< 0 for g < 0

;

∂n(fn+1 − fn)(g) =
∂F

∂y
(g, n+ 2)− ∂F

∂y
(g, n+ 1)

=g2

(

1
√

∆2 + 4g2(n+ 2)
− 1
√

∆2 + 4g2(n+ 1)

)

< 0.

The monotonicity properties claimed in the statement follow immedi-
ately.

�
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