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Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are

exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one

of the most studied immune checkpoints, several aspects of its biology remain to be

clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by

activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative

feedback of lymphocyte activation, contributing to the restoration of the steady state

condition after acute immune responses. This loop might become detrimental in

the presence of either a chronic infection or a growing tumor. PD-L1 expression in

tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless,

our knowledge about the regulation of PD-L1 expression is limited. The present

review discusses how NF-κB, a master transcription factor of inflammation and

immunity, is emerging as a key positive regulator of PD-L1 expression in cancer.

NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and

it can also regulate PD-L1 post-transcriptionally through indirect pathways. These

processes, which under conditions of cellular stress and acute inflammation drive

tissue homeostasis and promote tissue healing, are largely dysregulated in tumors.

Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several

signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and

chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers

induces both PD-L1 expression and epithelial–mesenchymal transition, suggesting that

PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor

infiltrating myeloid cells can contribute to the immune suppressive features of the tumor

environment. A better understanding of the interplay between NF-κB signaling and PD-L1

expression is highly relevant to cancer biology and therapy.
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INTRODUCTION

The immune system relies on a complex balance between
activating and inhibitory mechanisms to counteract infections
and other threats while avoiding excessive tissue damage. Among

the inhibitory molecules, a distinct set of inhibitory receptors
and their ligands, collectively called “immune checkpoints,”
has recently attracted a lot of attention for its relevance in

cancer therapy, chronic infections, and autoimmune diseases
(1). Programmed cell death protein-1 (PD-1) is a member
of the CD28 family expressed by activated lymphocytes. PD-

1 triggers immunosuppressive signals upon engagement by its
ligands, i.e., PD-L1 (CD274 or B7-H1) and PD-L2 (CD273),
which are members of the B7 family. While PD-L2 expression
is largely restricted to antigen-presenting cells (APCs) and B1
lymphocytes, PD-L1 is expressed by APCs (mostly macrophages
and dendritic cells), activated/exhausted T and B lymphocytes,
and regulatory T cells (Treg), among others (2, 3). PD-L1 is also
expressed by the cardiac endothelium, placenta, and pancreatic
islets, with a possible role in maintaining immunological
tolerance in these districts (4). Cancer cells can express PD-L1
and exploit the PD-L1-driven inhibitory pathway to their benefit
as a key mechanism of immune evasion (5).

Return to the steady state at the end of immune response
is tightly regulated (6, 7), and it is widely recognized that the
PD-1/PD-L1 axis plays a central role in physiological immune
homeostasis, contributing to the prevention of lymphocyte over-
activation and immunopathology (1, 8). A variety of mechanisms
have been involved in PD-1-mediated suppression of activated
T lymphocytes, including exhaustion, inflammatory cytokine
secretion inhibition, anergy, and apoptosis (8). PD-1 expression
by antigen-responding T and B cells is tightly regulated, which
allows for a stringent control of lymphocyte response (9, 10).
Accordingly, PD-1 deficiency is associated with the development
of autoimmune diseases (11, 12). PD-1 can be expressed also by
γδ T cells, natural killer (NK) cells, and innate lymphoid cells
(ILCs), which are circulating and tissue-resident lymphocytes
involved in tissue repair and early responses against pathogens
and cellular stress (13–16).

Regulation of PD-L1 expression and function takes place at
different levels, as extensively reviewed by Sun and colleagues
(17). Several mediators of inflammation are PD-L1 inducers,
including TNFα, IFN-γ, IL-10, IL-17, and C5a (18–21). The
JAK/STAT, RAS/MAPK, and PTEN-PI3K/AKT pathways are
involved in the control of PD-L1 gene expression via different
downstream transcription factors, such as STAT1, STAT3,
IRF1, IRF3, HIF-1α, MYC, JUN, BRD4, and NF-κB (22). The
corresponding DNA-binding elements, except for IRF3, have
been described on the PD-L1 promoter (23–32). Additional
mechanisms of regulation include microRNA-mediated post-
transcriptional inhibition (e.g., miR-513, miR-34a, miR-200, and
miR-570) and the presence of a soluble form of PD-L1 (sPD-
L1) in the blood, which possibly competes with the membrane-
bound PD-L1 for binding to PD-1 (17, 33). Though only partially
investigated, reverse signaling of PD-L1 has been reported in
tumor cells and macrophages, resulting in pro-survival and
inhibitory signals, respectively (34, 35). In addition to the

PD-1/PD-L1 pair, a further interaction between PD-L1 and
B7.1 (CD80) has been implicated in the inhibition of T-cell
proliferation and cytokine production (36).

IFN-γ is one of the most studied PD-L1 inducers in tumors
but PD-L1 expression does not necessarily mirror the IFN-γ
signature (37, 38). NF-κB, a central player of inflammation and
immunity, is emerging as a key positive regulator of PD-L1
expression. Notably, two recent studies, by using a CRISPR-Cas9-
based wide screening approach, have identified NF-κB as a major
determinant of cancer cell resistance against immune attack
(39, 40). Considering the pivotal role played by PD-L1 for tumor
cell immune evasion, the disclosure of the relationship between
NF-κB signaling and PD-L1 expression is of great relevance (41).
The present review gives an overview of the experimental works
linking NF-κB to the regulation of PD-L1 expression in tumors.
Furthermore, the implications of NF-κB-mediated control of
PD-L1 expression for tissue homeostasis, cancer biology, and
immune-therapy are discussed.

NF-κB AMONG INFLAMMATION,
IMMUNITY, AND CANCER

NF-κB [nuclear factor kappa-light-chain-enhancer of activated
B cells, discovered by Sen and Baltimore in 1986 (42)] is a
transcription factor supporting host responses to cellular stress
and immune responses to pathogens and other challenges. NF-
κB can be composed of different dimers of the NF-κB family,
activated downstream of multiple signaling pathways [for a
comprehensive review on NF-κB see (43)]. Briefly, five proteins
belong to the NF-κB family: p50, p52, p65 (RelA), RelB, and c-
Rel; they are encoded by NFKB1, NFKB2, RELA, RELB, and REL
genes, respectively. NFKB1 and NFKB2 codify for the p105 and
p100 precursors, which are then processed to the active forms
p50 and p52, respectively. The canonical (or classical) pathway
leads to the activation of the p50/p65 (RelA) or p50/c-Rel
heterodimers, while the non-canonical (or alternative) pathway
leads to the activation of the p52/RelB heterodimer. The different
heterodimers play distinct biological roles, controlling lymphoid
organ development, immune activation, and cell survival (44–
46). In healthy cells, NF-κB complexes are retained in the
cytoplasm by inhibitory proteins belonging to the IκB family.
Activating signals of the canonical pathway, which include TNFα,
IL-1, and Lypopolysaccharide (LPS), cause IκB phosphorylation
via IκB kinase (IKK). IKKα and IKKβ are the catalytic subunits
of the multimeric IKK, which also includes the scaffold protein
IKKγ (also named NEMO). Upon phosphorylation, IκB is
ubiquitinated and targeted to degradation by the proteasome.
This allows NF-κB’s translocation to the nucleus where it
regulates gene transcription by binding to the promoters of its
target genes. Direct phosphorylation of p65 further enhances
NF-κB nuclear translocation. In the non-canonical pathway,
the inactive precursor of p52/RelB heterodimer is matured
into its active form by IKKα phosphorylation and proteasomal
processing upon NF-κB-induced kinase (NIK) activation by
signals such as CD40L and lymphotoxin (47). A third atypical
IKK-independent pathway is mainly triggered by hypoxia and
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TABLE 1 | Predicted binding sites for NF-κB on the PD-L1 gene promoter.

Consensus sequence
−5 −4 −3 −2 −1 0 +1 +2 +3 +4

5′-G G G N N N N N C C-3′
N: any base

Position κB element Validated by Cell type References

From −387 to −378 GGGGGACGCC ChIP-PCR TNBC (67)

N/A GGAAAGTCCA Luciferase assay Cervical cancer (68)

N/A GGAGCGTTCC Luciferase assay

From −1769 to −1760 GGCAAATTCC Macrophage (69)

From −1293 to −1284 GGGAAGTCAC

From −610 to −601 GGGAAGTTCT ChIP-PCR

From −75 to −66 GGAAAGTCCA

From −606 to −597 N/A Gastric cancer (70)

From −238 to −229 N/A

From −71 to −62 N/A Luciferase assay

From −49 to −40 N/A

Position refers to the transcription starting site. TNBC, triple-negative breast cancer; N/A, not available.

UV radiation and leads to p50/p65 activation (48). NF-κB
activation is regulated by several negative loops, including
phosphorylation/de-phosphorylation and ubiquitination events.
The NF-κB inhibitor IκBα is itself a transcriptional target of
NF-κB. Different microRNAs (e.g., miR-146a, miR-302b) can
contrast mRNA translation of proteins involved in the NF-κB
cascade (49, 50).

Within the context of inflammation and immunity, NF-
κB is activated downstream of the toll-like receptor (TLR)-
MyD88 pathway that senses both pathogen-associated molecular
patterns (PAMPs), such as LPS and other microbial products,
and damage-associated molecular patterns (DAMPs), which are
released by either stressed or dying host cells (51). NF-κB
positively regulates the expression of inflammatory cytokines
(TNFα, IL-1, IL-6), chemokines (CCL2, CCL5, CXCL8), adhesion
molecules (VCAM1, ICAM1), angiogenic (VEGF), and anti-
apoptotic factors (BCL-2, BCL-XL, FLIP), enzymes required
for prostaglandin and NO synthesis (COX2, iNOS) (52).
Furthermore, NF-κB is activated downstream of both the T-
cell receptor (TCR) and B-cell receptor (BCR), sustaining the
adaptive immune response (e.g., by controlling IL-2 expression)
(53). NF-κB is also involved in NK-cell activation regulating
IFN-γ production (54).

Within the context of cancer, NF-κB activation can support
the neoplastic process (55, 56). One of the earliest pieces of
evidence dates back to the discovery of the retroviral oncogene
v-Rel (57). Furthermore, NF-κB can induce the transcription
of the mitogenic factors MYC and Cyclin-D (58, 59). Finally,
the AKT-mediated NF-κB activation, which frequently occurs in
tumors, promotes cell survival and contributes to chemotherapy
resistance of cancer cells (60). Remarkably, NF-κB activation in
cells of the tumor immune infiltrate can have both anti-tumoral
and pro-tumoral consequences depending on the immune cell
type. On one hand, T cells, NK cells, andNKT cells require NF-κB
for their anti-tumoral effector activity (61–63), but on the other

hand, NF-κB sustains Treg and myeloid-derived suppressor cell
(MDSC) activity, resulting in pro-tumoral effects (64–66).

NF-κB-MEDIATED EXPRESSION OF PD-L1
BY CANCER CELLS

PD-L1 expression is often observed in tumors and correlates
with aggressive behavior and poor prognosis. Whether PD-L1
is expressed by cancers cells, especially at the later stages of the
disease, as negative feedback of a chronic inflammation process
intertwined with cancer progression or as a consequence of cell
selection by the immune system is still unclear. Certainly, PD-
L1 expression confers a selective advantage to cancer cells, e.g.,
by enabling them to avoid host immune response by activated
CD8T lymphocytes and NK cells.

Considering the key role played by NF-κB in inflammation,
immunity, and cancer, perhaps it is not surprising that NF-
κB regulates PD-L1 expression in tumors, either directly at
the transcriptional level or via indirect mechanisms. Different
binding sequences for NF-κB have been described on the
promoter of the PD-L1 gene (Table 1). The canonical consensus
for NF-κB DNA binding, named κB, consists of a nearly
palindromic sequence, 5′-GGGRNWYYCC-3′ (where R: purine,
Y: pyrimidine, W: adenine or thymine, and N: any base),
which recently has been broadened to 5′-GGGNNNNNCC-3′

(32, 71, 72).
PD-L1 expression by cancer cells can be related to endogenous

oncogenic pathways or oncogenic virus infection. In addition,
PD-L1 expression by either cancer cells or tumor infiltrating
cells can be driven by different kinds of exogenous stimuli,
including cellular stress, e.g. stress induced by UV exposure
or chemotherapy, as well as pro-inflammatory cytokines (such
as TNFα and IFN-γ) in the tumor bed (Figure 1 and
paragraphs below).
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FIGURE 1 | Mechanisms of PD-L1 expression through NF-κB. (A) Oncogene-related mechanisms. MUC1 and EGFR up-regulate PD-L1 expression by activating

NF-κB pathway. These pathways are intertwined with EMT. HPV modulates PD-L1 expression triggering STING that in turn activates NF-κB. (B) Inflammatory

cytokine-related mechanisms. Tumor-infiltrating immune cells can produce several cytokines regulating PD-L1 expression. Two well-known cytokines acting via NF-κB

pathway are TNFα produced by TAMs and IFN-γ produced by tumor infiltrating T and NK cells. (C) Drug- and stress-related mechanisms. Different drugs act on

NF-κB transcriptional activity (e.g., Palblociclib). Stress response to UVR activates NF-κB, thus mediating PD-L1 up-regulation. Blue arrows indicate activation of

NF-kB pathway; black arrows indicate NF-κB-mediated PD-L1 up-regulation; red T-arrows indicate negative regulation. EGFR, Epidermal Growth Factor Receptor;

EMT, Epithelial-Mesenchymal Transition; HPV, Human Papilloma Virus; IFN, Interferon; JAK, Janus Kinase; MUC1, Mucin 1; NK, Natural Killer; PD-L1, Programmed

Cell Death Protein 1 Ligand; RB, Retinoblastoma; STAT, Signal Transducer and Activator of Transcription; STING, Stimulator of Interferon Genes; TAMs, Tumor

Associated Macrophages; TNF, Tumor Necrosis Factor; UVR, ultraviolet radiation.
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Oncogene-Related Mechanisms
A direct link between the epidermal growth factor receptor
(EGFR) and PD-L1 expression via NF-κB has been described in
non-small-cell lung cancer (NSCLC), the most common lung
cancer (73, 74). EGFR mutations associated with constitutive
tyrosine kinase-mediated phosphorylation lead to NF-κB
activation along with PD-L1 overexpression. Accordingly,
the tyrosine kinase inhibitor gefitinib, approved for NSCLC
treatment, reduces PD-L1 levels by inhibiting the NF-κB
pathway. Notably, even wild-type EGFR induces PD-L1 up-
regulation after stimulation with EGF (73). Mechanistically,
EGFR triggers ERK, AKT, and IκBα phosphorylation, resulting
in HIF-1α and PD-L1 accumulation (74). Activation of AKT is
reported to increase HIF-1α protein translation, and it is known
that the PD-L1 promoter contains an HIF-1α response element
(27, 75, 76). As a consequence, EGFR activation in NSCLC
promotes PD-L1 expression directly by phosphorylating IκBα

and indirectly via HIF-1α. Furthermore, HIF-1α can support
NF-κB pathway activation by driving IKKβ gene transcription
through a hypoxia response element present in the promoter and,
at the same time, by directly inducing p65 (77, 78). Conversely,
it has been reported that NF-κB can induce HIF-1α by binding
directly to the HIF-1α promoter (79, 80). Thus, both HIF-1α
and NF-κB pathways sustain PD-L1 expression and reinforce
each other.

Overexpression of the oncoprotein Mucin 1 (MUC1) is
correlated to NF-κB-mediated PD-L1 expression in both NSCLC
and triple-negative breast cancer (TNBC) (81, 82). MUC1,
through its MUC1-C subunit, activates the PI3K/AKT, MAPK,
β-catenin/MYC, and NF-κB pathways (83). NF-κB activation
by MUC1 occurs, at least, through three different mechanisms:
(i) binding to p65, thus forming a p65/MUC1 transcriptionally
active complex (84); (ii) binding to IKKβ-IKKγ complexes, which
triggers IκBα phosphorylation (85); and (iii) associating with
TGF-β-activated kinase-1 (TAK1), which phosphorylates IKKβ

on Ser181 (86). Once activated, NF-κB enhances the expression
of MUC1, thus creating a self-sustaining loop. At the same
time, MUC1, via the YAP/β-catenin pathway, mediates the
induction of the WNT target gene MYC (87). PD-L1 promoter
contains both an E-box sequence (CAGCTT) for MYC binding
at positions from −164 to −159 nt and a p65-binding site
(GGGGGACGCC) at positions from −387 to −378 nt upstream
of the transcription-starting site (67) (Table 1). Hence, MUC1
can induce the expression of PD-L1 triggering the occupancy of
its promoter by both p65 and MYC.

It is remarkable that the signaling of PD-L1 induction
shares important elements with that occurring during epithelial-
mesenchymal transition (EMT), a tissue remodeling process
typical of advanced epithelial cancers (88). PD-L1 expression
is observed during EMT in NSCLC (89). Hypoxia and chronic
inflammation are the main drivers of EMT, which is largely
mediated by TGF-β1, TNFα, HGF, EGF, and PDGF (90, 91).
Interestingly, PD-L1 expression is not regulated by the EMT-
specific transcription factor SNAIL, but it involves a non-
canonical NF-κB signaling. In particular, TNFα activates IKKε,
which leads to p65 recruitment on the PD-L1 promoter.
Concomitantly, TGF-β1 reduces DNA methyl transferase-1
(DNMT1) recruitment on the PD-L1 promoter, causing its

de-methylation and thus enhancing its transcription. Notably,
TNFα and TGF-β1 withdrawal reverts the EMT phenotype
and, at the same time, abolishes PD-L1 expression (89). The
interconnection between EMT and PD-L1 is evident in the
MUC1 signaling with NF-κB as the matchmaker. NF-κB not
only drives PD-L1 expression, but also the expression of ZEB1,
a transcription factor that is able to mediate EMT (92). ZEB1,
in turn, suppresses the transcription of miR-200, an inducer
of epithelial differentiation, thus enhancing EMT and PD-L1
expression (93).

Taken together, these findings indicate that PD-L1 expression
is a feature of EMT in cancer. Considering that (i) EMT
occurs physiologically during embryonic development and (ii)
PD-L1 expression can be enhanced by OCT4 and SOX2, two
master “stemness” transcription factors driving the expression
of genes necessary for the stem cell phenotype (94), it is
tempting to speculate that NF-κB drives PD-L1 expression in
the context of a general mechanism that has evolved to protect
mesenchymal cells and stem cells from immune attack during
physiological development.

It is now emerging that PD-L1 not only mediates negative
feedback in the context of immune response, but it is also
a component of a homeostatic response of epithelial cells
to stress (95). In this case, PD-L1 expression can be linked
to cellular conditions such as proliferation, adhesion, and
migration (22). Supporting this consideration, MUC1, whose
role in mammalians is to protect epithelial layers by forming
a mucous barrier, senses cell stress and transduces signals that
are able to activate the NF-κB pathway, which leads to PD-L1
expression (96). It is therefore convincing that NF-κB-mediated
expression of PD-L1 takes part in cancer biology by echoing a
process evolved to restore tissue integrity during the epithelial
stress response.

Oncogenic viruses are also PD-L1 inducers. For example,
infection by papilloma virus promotes PD-L1 expression in
cervical cancer cells. Interferon-inducible 16 (IFI16) acts as viral
DNA sensor and activates stimulator of IFN genes (STING),
leading to TANK-binding kinase-1 (TBK1) activation that, in
turn, initiates a cascade signaling that is able to recruit p-p65 on
the PD-L1 promoter. The STING/TBK1 pathway activates both
IRF3 and NF-κB, with NF-κB mediating a major contribution to
PD-L1 gene transcription (68). PD-L1 expression is also observed
in NK/T cell lymphoma infected by Epstein-Barr virus. Both
MAPK and NF-κB pathways are involved in PD-L1 induction in
these cells (97).

Inflammatory Cytokine-Related
Mechanisms
NF-κB regulates PD-L1 expression downstream of inflammatory
cytokine-induced pathways in the tumor microenvironment,
contributing to linking together two immune-related hallmarks
of cancer, i.e., tumor-promoting chronic inflammation and
immune escape (98). IFN-γ and TNFα will be considered here
in more detail.

IFN-γ is one of themost studied PD-L1-inducer inflammatory
cytokines, which is produced by highly activated T and NK cells
infiltrating the tumor (38, 99). Although it is well-established
that IFN-γ signals via JAK/STAT (100), there is evidence
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that IFN-γ can also activate the NF-κB pathway, which in
turn mediates PD-L1 up-regulation. For example, in melanoma
cells, IFN-γ inducible expression of PD-L1 is linked to the
activity of p50 and p65, and not to the activation of the
interferon-related STAT factors (101). Moreover, inhibitors of
the bromodomain and extra terminal (BET) proteins, a class
of epigenetic regulators with immunomodulatory activity (102),
reduce PD-L1 expression by inhibiting p50 transcription (103).
Transcriptional up-regulation of PD-L1 gene by NF-κB occurs
also in clonal blasts from myelodysplastic diseases treated with
IFN-γ and TNFα (104). Notably, also type I IFN, which can be
produced by many types of cell stimulated by either PAMPs or
DAMPs, is a PD-L1 inducer (105).

TNFα, which can be released by activated tumor associated
macrophages (TAMs), is a major driver of inflammation and one
of the main inducers of NF-κB in tumor microenvironment. It
has been mentioned above that TNFα drives EMT and regulates
PD-L1 expression (see previous paragraph). Apart from EMT,
TNFα, IL-17, or a combination of both, can induce PD-L1 up-
regulation via NF-κB (20). Moreover, Lim and colleagues have
shown that TNFα-activated NF-κB can regulate PD-L1 post-
transcriptionally through an indirect way (106). TNFα binds
TNFR on cancer cells and induces, among other pathways, a
signaling cascade that promotes p65 nuclear translocation via
IKKβ. In the nucleus, p65 trans-activates the COPS5 gene by
binding to its promoter. COPS5 codifies for COP9 signalosome
5 (CSN5), which is the catalytic subunit of a large multiprotein
complex with deubiquitination activity (107). CSN5 is able to
interact and deubiquitinate PD-L1 protein, increasing its stability
and consequently its surface expression. The biological relevance
of this regulatory mechanism is confirmed by the positive
correlation observed in breast cancer specimens between p-p65,
CSN5, and PD-L1 expression as well as the inverse correlation
with granzyme B, a cytotoxic lymphocyte effector molecule (106).
Notably, TNFα, through the activation of the NF-κB pathway,
also up-regulates CSN2, which, by blocking the ubiquitination
of the transcription factor SNAIL, promotes tumor invasiveness
(108). Therefore, the inflammatory cytokine TNFα coordinates
both EMT and tumor immune evasion by using NF-κB signaling
(see also the previous paragraph). This pathway is negatively
regulated by curcumin, a natural anti-inflammatory compound
that is known to inhibit NF-κB signaling as well as CSN5 activity
(109, 110). Accordingly, it has been shown that curcumin reduces
TNFα-mediated PD-L1 stabilization (106).

Drug- and Stress-Related Mechanisms
Drugs currently used in the clinic or in pre-clinical studies
can influence PD-L1 expression via NF-κB, also influencing
epigenetic regulation. Epigenetic events, changing the chromatin
structure via methylation or acetylation/deacetylation, modulate
gene expression. For example, taxolo (named also paclitaxel)
and gemcitabine induce transient expression of PD-L1 mRNA
in ovarian cancer by up-regulating p65, even in the absence of
IFN-γ signaling (111). NF-κB nuclear activity is regulated by
reversible acetylation/deacetylation of p65 operated by HDAC3
(112). As a result, two histone deacetylase (HDAC) inhibitors,

namely resminostat and entinostat, affect NF-κBmediated PD-L1
expression (113).

Palbociclib, a recently developed CDK4/6 inhibitor,
promotes PD-L1 protein stabilization and increases PD-L1
gene transcription (114, 115). The latest effect is due to an
indirect mechanism involving the retinoblastoma protein (RB),
which acts as a negative regulator of NF-κB functions, as follows.
Hyper-phosphorylated RB (phosphorylation at S249 and T252)
specifically interacts via its N-terminal portion with p65 in
the nucleus and, in this manner, blocks NF-κB transcriptional
activity, including the NF-κB-dependent transcription of PD-L1.
Inhibition of the RB pathway by palbociclib induces the hypo-
phosphorylated status of RB, thus enhancing NF-κB-mediated
PD-L1 transcription (115).

Solar ultraviolet radiation (UVR) is a common environmental
stress for the skin and is largely involved in the carcinogenesis
of skin cancers. Besides the well-known mutagenic effects, UVR
can establish an immunosuppressive environment by different
mechanisms, including CTLA-4 and PD-L1 up-regulation
(116). PD-L1 transcriptional up-regulation in melanocytes and
melanoma cells has been linked to the transcriptional activity
of either NRF2, a regulator of antioxidant proteins, or NF-
κB (117, 118). Regarding NF-κB, UVR B exposure causes in
keratinocytes andmelanocytes the subcellular translocation from
the nucleus and release outside the cell of the high mobility
group box 1 protein (HMGB1), an early stress response DAMP.
HMGB1 acts in an autocrine and/or paracrine fashion and
binds the receptor for advanced glycation endproducts (RAGE)
leading to downstream kinase TBK1 activation. TBK1, and not
TAK1, is involved in starting the NF-κB cascade after UVR B
exposure even though TAK1 has been shown to play a role
in the DNA-damage induced NF-κB signaling (119). TBK1
phosphorylates its canonical target IRF3 and IKKβ, which,
by phosphorylating IκBα, removes its inhibition on p65. PD-
L1 promoter contains two putative IFN-stimulated response
elements (ISRE) along with NF-κB binding sites. Once activated,
p65 forms the canonical p50/p65 heterodimer but also interacts
with IRF3 itself forming a complex that is recruited to PD-
L1 promoter at the NF-κB binding sites, thus starting PD-L1
gene transcription. In agreement with PD-L1 up-regulation, and
possibly mediated also by additional mechanisms, melanoma
cells show a reduced susceptibility to CTL-dependent cytotoxicity
after UVR B treatment (118).

NF-κB-MEDIATED EXPRESSION OF PD-L1
BY TUMOR INFILTRATING
MACROPHAGES

Chronic inflammation can pave the way to tumor onset
and cancers are often embedded in an inflammatory
microenvironment that enhance tumor progression (120).
In this context, investigating the regulation of PD-L1 expression
by tumor infiltrating cells can shed light on the link between
chronic inflammation, tumor progression, and immune escape.
TAMs are key cellular players of the tumor infiltrate that can
regulate the inflammatory process and, at the same time, act as
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antigen-presenting cells for CD4T lymphocytes. Macrophages
have heterogeneous phenotypes, ranging from classical M1 to
alternative M2 cells, which represent extremes in a continuous
spectrum of activation states, with M1 cells having tumoricidal
activity and M2 cells favoring tumor progression (121, 122). In
addition to the identification of PD-L1+ TAMs (123), PD-L1
has been found highly expressed in MDSCs, a population of
tumor-infiltrating myeloid cells implicated in inhibition of other
cells of the immune system (124, 125), and a MDSC molecular
program linked to NF-κB activation has been related to PD-L1
expression (126).

NF-κB can directly regulates PD-L1 expression in
macrophages and other myeloid cells stimulated by
inflammatory cytokines (IL-12, IFN-γ), PAMPs, and DAMPs
(69, 107, 127, 128). LPS, a prototypical PAMP, can stimulate
PD-L1 expression by macrophages via TLR signaling. Indeed,
within 1 h after LPS sensing, p65 translocates to the nucleus
where it binds to the PD-L1 promoter, inducing PD-L1 gene
transcription independently of AP-1 and IRF3, two canonical
transcription factors activated by LPS-TLR4 signaling (69).
The mechanism whereby LPS promotes PD-L1 gene expression
through the transcriptional activity of NF-κB links inflammation
to its control, and it is not restricted to macrophages but
also occurs in tumors, as demonstrated in gastric cancer cells
(70). Furthermore, melanoma-derived extracellular vesicles
carrying Heat Shock Protein (HSP)-86, a typical DAMP, can
stimulate PD-L1 expression by myeloid cells via TLR4 signaling.
Interestingly, a strong NF-κB activation is observed in the
immortalized myeloid suppressor cell line MSC-2 stimulated
with the extracellular vesicles, and PD-L1 up-regulation is
reduced in a dose-dependent manner by the NF-κB inhibitor
Bay11-8082 (128).

Despite a direct role for NF-κB in the expression of PD-
L1 by macrophages has been demonstrated in response to
inflammatory cytokines, NF-κB activation in TAMs is the result
of the combined action of both microenvironmental signals
and microphysiological conditions (i.e., hypoxia, glucose levels,
and pH), and accumulating evidence indicates that different
activation states of NF-κB regulate functions and phenotypic
heterogeneity of TAMs (121). Moreover, along with tumor-
promoting functions, TAMs and monocytic MDSCs share
similar molecular traits, such as nuclear accumulation of p50
NF-κB inhibitory homodimer, which drives M2 macrophage
polarization and suppressive activity (66, 129, 130). The nuclear
accumulation of p50 homodimer hinders the expression of
inflammatory cytokines (TNFα, IL-1, IL-6) while increasing
anti-inflammatory cytokines (IL-10, TGFβ) and chemokines
(CCL17, CCL2), being therefore essential for the resolution of
the inflammatory response (131). It thus appears that tumors
co-opt transcriptional mechanisms guiding the resolution of
inflammation, to promote cancer development. Inhibition of
classical NF-κB activation in TAMs has been also observed in
response to the M2 polarizing signal TGFβ, through the induced
expression of kinase IRAK-M, an inactive serine/threonine
kinase that acts as a negative regulator of TLR signaling (132).
Of relevance, a recent report has associated M2-like macrophage
infiltration with PD-L1 expression in gastric adenocarcinoma

(133). Hence, as a key transcriptional component setting the
onset and the resolution phase of inflammation, the different
forms of NF-κB activation appear as the main regulators of TAMs
functional heterogeneity, including their suppressive activity
mediated by PD-L1.

CONCLUDING REMARKS:
TRANSLATIONAL IMPLICATIONS

NF-κB, being a master regulator of inflammation, represents
a link between immune response and cell growth (134).
According to this view, inhibiting NF-κB signaling might
counteract inflammation, tumor growth, and possibly reduce
PD-L1 expression. NF-κB pathway is the primary or secondary
target of different currently used drugs for the treatment
of multiple myeloma (135). IKK inhibitors are commercially
available and have been tested in preclinical studies for the
management of different tumoral and inflammatory pathologies
[for comprehensive reviews on the therapeutic implications of
IKK targeting see (136, 137)]. Nevertheless, several concerns
exist regarding the administration of NF-κB inhibitors due to
their pleiotropic effects. To address this issue, current approaches
comprise intermittent administration and use as adjuvant
therapy. Alternative approaches that can be considered to reduce
unwanted effects include either targeting components of the NF-
κB pathway other than IKK or modulating NF-κB-dependent
downstream effectors. In brief, NF-κB inhibition could be
especially relevant in the context of cancer immunotherapies
aiming to prevent PD-L1 overexpression and to modulate
TAM survival/polarization.

Conversely, immunotherapy based on immune checkpoint
inhibition (ICI) has revolutionized cancer treatment and PD-
1/PD-L1 axis is the target of different monoclonal antibodies
approved for human use (Pembrolizumab and Nivolumab are
approved anti-PD-1; Atezolizumab, Avelumab, Durvalumab are
approved anti-PD-L1). It is still unclear if they have different
activity and/or toxicity. The majority of these compounds
are engineered in order to prevent antibody-dependent cell
cytotoxicity (ADCC), but Avelumab, an anti-PD-L1 IgG1 isotype,
is able to perform both immune checkpoint inhibition and
ADCC so that TAMs, MDSCs, and Treg, which can express high
levels of PD-L1 in the tumor infiltrate, can be targeted as well
as cancer cells (35, 138, 139). Immune-related adverse effects
(irAEs) that resemble autoimmune responses occur during ICI
therapy. Indeed, breakdown of the homeostatic PD-1/PD-L1 axis
can provoke colitis, hepatitis, endocrinopathies, kidney injury,
and skin problems (4, 140).

PD-L1 expression, as evaluated by immunohistochemistry,
is routinely used as a biomarker for patient eligibility to anti-
PD-1/PD-L1 therapy, and it is the only reliable molecular
biomarker nowadays. Nevertheless, responsiveness to therapy
does not mirror PD-L1 expression, and unfortunately a few
PD-L1+ patients undergo hyper-progressive disease after ICI
therapy (141–143). These discrepancies can be ascribed to several
issues, including technical limitations of PD-L1 expression
analysis, intra-tumoral heterogeneity, tumor mutational burden,
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inefficient priming of anti-tumoral T cells, and inadequate
T-cell responses due to either tumor-intrinsic (compensatory
immune checkpoints) or tumor-extrinsic (immune suppressive
milieu) factors (144). It remains to be determined whether
there are differences among individual drugs targeting PD-1/PD-
L1 axis that are relevant for their clinical use and whether
some patients would better benefit of either anti-PD-1 or anti-
PD-L1 treatment. Although blocking either PD-L1 or PD-
1 should similarly inhibit their molecular interaction, it is
conceivable that, at least in some anti-PD-L1-treated patients,
unblocked PD-L2 activity on PD-1 receptor can still inhibit
anti-tumor response. Furthermore, considering that anti-CTLA-
4 therapeutic efficacy can heavily depend on depletion of intra-
tumoral CTLA-4+ Treg by ADCC (145), it is possible that anti-
PD-1/PD-L1 therapy efficacy could similarly depend on the
depletion of either PD-1+ and/or PD-L1+ tumor-infiltrating
Treg, at least in those patients in which these types of inhibitory
cells dominate suppression of anti-tumor response. Accordingly,
patient-tailored anti-PD-1/PD-L1 therapy is a subject of intense
investigation [for example, see (146)].

It is conceivable that it is not PD-L1 expression per se,
but rather the tumor microenvironment that induces PD-
L1, that accounts for therapy success. A more comprehensive
characterization of the tumor environment in terms of cytokine
milieu, type of lymphocyte infiltration, macrophage phenotype
would lead to improved approaches, most likely involving
combined therapies (147, 148).

In this regard, the NF-κB state of activation, rather than PD-
L1 alone, could have a prognostic value, as recently suggested
by a detailed investigation of different types of human cancers,
which reports how the local immune landscape drives clinical
outcome (38). In patients with cancer, a positive or negative
prognostic value has been correlated to the activation state of
STAT1 and NF-κB pathways, respectively, despite the signaling
of either being enough to lead to PD-L1 expression (38). It
is tempting to speculate that the STAT factors, evolved in
response to viral infections as components of the IFN-activated
pathways that limit viremia, have anti-cancer features mostly by

mediating pro-apoptotic effects. In contrast, NF-κB, evolved to
regulate inflammation and tissue healing, and thus supporting
cell survival and proliferation, drives pro-survival functions in
cancer settings.

PD-L1 expression controls the strength of the immune
response and acts as a rheostat of inflammation. Unfortunately,
this mechanism is exploited by cancer cells to perform
immune evasion. PD-L1 regulation during tumor progression
evokes its physiological modulation, as discussed in the
present review. In this scenario, uncovering the NF-κB-
mediated regulation of PD-L1 in tumors can pave the
way towards tailored therapeutic approaches targeting the
PD-1/PD-L1 axis.
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