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Abstract

We study the time evolution of a single species positive plasma,
confined in a cylinder and having infinite charge. We extend the result
of a previous work by the same authors, for a plasma density hav-
ing compact support in the velocities, to the case of a density having
unbounded support and gaussian decay in the velocities.
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1 Introduction

In this paper we study the behavior in time of a Vlasov-Poisson plasma, with
infinite charge and velocities, confined in an infinite cylinder by an external
magnetic field, the so-called magnetic mirror. To specify the problem, we
consider a continuous distribution of positively charged particles, assembled
at time zero in an infinite cylinder and kept inside it by means of an external
magnetic field, which diverges at a distance A from its symmetry axis. The
plasma evolves under the action of the auto-induced electric field plus the
external force, and it is governed by the Vlasov-Poisson equations in which
an extra term is added due to the external Lorentz force. Our aim is to
investigate the existence and uniqueness of the time evolution of this system
and its confinement over an arbitrary time interval [0, T ].

This problem has been studied by the same authors in [3, 4, 5], and
in all these papers it is assumed that the density has compact support in
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the velocities. Moreover, in the first paper [3] it is considered a density
having compact support in space; in the second one [4] this assumption is
removed and it is only assumed that the density is bounded. In this case,
however, it is considered an interaction potential of Yukawa type, that is
Coulomb at short distance and exponentially decaying at infinity; finally in
the third paper [5] it is considered the Coulomb potential, but it is assumed
that the spatial density, even if not integrable, has to satisfy some decaying
properties at infinity. Here we generalize this last result to a density without
compact support in the velocities. More precisely, we consider a plasma
having infinite charge and velocities, and we assume that its density is slowly
decaying in space (not integrably) and gaussian in the velocities.

While the theory of the Vlasov-Poisson equation for integrable data is
much developed (see for instance [8] and [11] for L1 data in space and veloc-
ities, [12, 16] for compactly supported densities and [7] for a nice review of
results in this context), the difficulties are increasing as one tries to remove
this assumption, since one has to match the divergence of the Coulomb in-
teraction with the infinite charge and velocities of the system. We quote
[10, 13, 14, 15] as it regards results for infinite charge systems. Our method
to control the infinite charge, and hence systems with infinite total mass
and energy, is to introduce the local energy, which is the energy of a region
interacting with all the rest of the plasma. In [1], [2] and successively in
[4] and [5], it has been proved a bound on the local energy in terms of its
initial value, which implies a control on the spatial density. In the setup of
confined plasmas, from one side we have an extra difficulty, deriving from
the singularity of the external confining Lorentz force, from the other side
the system can be considered a one-dimensional system at infinity, which
makes our job easier. We also quote [9] for a confined relativistic plasma
in one dimension in space and two in the velocities, with bounded charge.
An important feature of the results [4, 5] is that, once we prove that the
velocities are bounded, we have as a consequence the confinement of the
plasma.

In the present paper we consider a case of unbounded total charge and
unbounded velocities. We assume that the density has spatial support in the
whole infinite cylinder, where it is slightly decaying (not integrably), and is
fast decaying (gaussian) in the velocities. We introduce a regularized system,
called the partial dynamics, in which the density has compact support
in the velocities. In [5] it is proved the existence and uniqueness of the
time evolution for such system, and our aim is to remove the compactness
assumption, by letting the size of the velocity support go to infinity. By
refining the estimate of the auto-induced electric field E made in [5], we prove
some uniform bounds on the partial dynamics and in particular we prove
that E is bounded. Since the Lorentz force does not affect the modulus of
the velocities of the particles, this is sufficient to prove that any fixed particle
has a bounded displacement and velocity, uniformly in the support. This
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allows us to state that the limit time evolution does exist unique globally in
time and that the system remains confined.

We now discuss some related problems. While here we consider an ex-
ternal magnetic field parallel to the symmetry axis of the cylinder, we could
consider other external magnetic fields as well, always divergent on the bor-
der of the cylinder and tangent to it (hence giving a formal confinement of
the plasma); in this case the magnetic lines would not be straight lines, but
lines with some curvature as, for instance, cylindrical helices. Moreover, we
could consider domains whose boundaries have non-zero gaussian curvature.
A problem within this context can be studied, for finite mass and bounded
velocities, and in fact an explicit investigation has been done in [6], in the
case of a torus. We remark that, at the moment, in other generic cases we
are not able to reproduce results similar to those of the present paper.
We sketch the plan of the paper at the end of the next section.

2 The equation and the main result

The equation we consider is a Vlasov-Poisson equation, with an extra Lorentz
force acting on the particles, in order to keep the plasma confined in a cylin-
der. Denoting by x = (x1, x2, x3) and v = (v1, v2, v3) the position and ve-
locity vectors in R

3 and by f(x, v, t) the plasma density in the phase-space
at time t, we have:





∂tf(x, v, t) + v · ∇xf(x, v, t) + (E(x, t) + v ∧B(x)) · ∇vf(x, v, t) = 0

E(x, t) =

∫

R3

x− y

|x− y|3
ρ(y, t) dy

ρ(x, t) =

∫

R3

f(x, v, t) dv

f(x, v, 0) = f0(x, v).

(2.1)
We consider an infinite, open cylinder D of radius A and symmetry axis x1,
that is

D = {x ∈ R
3 : r < A} r =

√
x22 + x23 (2.2)

and the confining vector field B, diverging on the boundary of D, is defined
as

B(x) = (h(r2), 0, 0) h(r2) =
1

(A2 − r2)θ
θ > 2, (2.3)

where θ has been chosen large enough for further purposes (see eqn. (3.55)).
Letting X(t) = X(x, v, t) and V (t) = V (x, v, t) represent position and

velocity at time t of a particle starting at time t = 0 from x with velocity v,
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the related characteristics equations are





Ẋ(t) = V (t)

V̇ (t) = E(X(t), t) + V (t) ∧B(X(t))

(X(0), V (0)) = (x, v)

f(X(t), V (t), t) = f0(x, v).

(2.4)

We also consider the sub-cylinder D0 ⊂ D :

D0 = {x ∈ R
3 : r < Ā}

A

2
< Ā < A. (2.5)

The following theorem states the main result of this paper.

Theorem 1. Let us fix an arbitrary positive time T. Let f0(x, v) be supported
on D0 × R

3 and satisfy the two following assumptions:

0 ≤ f0(x, v) ≤ C0e
−λ|v|2 (2.6)

and, for any i ∈ Z/{0},

∫

i≤x1≤i+1
ρ(x, 0) dx ≤ C1

1

|i|α
with α >

5

9
(2.7)

for some positive constants C0, C1 and λ.
Then there exists a solution to system (2.4) in [0, T ] such that, for any
(x, v) ∈ D0 × R

3, sup0≤t≤T

√
X2(t)2 +X3(t)2 < A. Moreover, there exist

positive constants C2, λ̄ and C3 such that

0 ≤ f(x, v, t) ≤ C2e
−λ̄|v|2 (2.8)

and, for any i ∈ Z/{0},

∫

i≤x1≤i+1
ρ(x, t) dx ≤ C3

log(1 + |i|)

|i|α
. (2.9)

This solution is unique in the class of those satisfying (2.8) and (2.9).

Remark 1. We put in evidence the fact that assumption (2.7) does not
imply that ρ0 belongs to any Lp space, as it can be satisfied even in case ρ0
is only bounded, but supported over suitably sparse sets. The fact that ρ0 ∈
L∞ (and also ρ(t)) is a direct consequence of (2.6) (and (2.8) respectively).
We also note that the case α > 1 deals with finite total mass, whereas the
main difficulties we face concern the infinite mass case. Hence the more
interesting case for the present paper is realized for 5/9 < α ≤ 1.
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The strategy of the proof of this result is the following: we introduce
a truncated dynamics, denoted as partial dynamics, in which we assume
that the initial datum f0 has (infinite) spatial support in D0 and compact
support in the velocities. This allows us to make use of the results in [5]
to find a bound on the electric field. Then we are ready to prove that the
partial dynamics is converging, as the size of the velocity support goes to
infinity, to some limit dynamics, which satisfy the equations and the con-
finement globally in time. The theorem is proved in the next Section 3: in
3.1 we introduce the partial dynamics, and we state the main estimate on
the electric field, which is an improvement of the analogous in [5]; in 3.2
we show that the partial dynamics is converging as the compactness of the
velocity support of f0 is removed; in 3.3 we prove that the displacement and
the velocity of a single particle are proportional to its initial velocity, inde-
pendently of the initial support. This allows to complete the demonstration,
proving that the limit dynamics satisfy the equations and the confinement.
For the sake of clearness in the presentation of the result, we postpone to
Section 4 some estimates concerning the local energy, and to Section 5 the
proof of the estimate of the electric field. In Section 6 it is proved the main
estimate on the local energy, together with other technicalities. We report
here the bound on the local energy for completeness, even if its proof does
not differ from the one given in [5].

3 The proof of the Theorem

3.1 The partial dynamics

We introduce the partial dynamics, that is a sequence of differential systems
in which the initial densities have compact velocity support:





ẊN (t) = V N (t)

V̇ N (t) = EN (XN (t), t) + V N (t) ∧B(XN (t))

(XN (0), V N (0)) = (x, v)

fN
0 (x, v) = f0(x, v)χ(b(N))

(3.1)

where χ is the characteristic function of the set b(N) = {v ∈ R
3 : |v| < N},

EN (x, t) =

∫
x− y

|x− y|3
ρN (y, t) dy,

ρN (x, t) =

∫

R3

fN(x, v, t) dv

and
fN(XN (t), V N (t), t) = fN

0 (x, v). (3.2)
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In [5] it is proven the existence of a solution to system (3.1), provided f0
satisfies the assumptions of Theorem 1, since fN

0 has compact support in
the velocities. Moreover, it is proven the confinement of the solution, that
is

sup
(x,v)∈D0×b(N)

sup
0≤t≤T

√
XN

2 (t)2 +XN
3 (t)2 < CNA (3.3)

where CN < 1 is a positive, N -dependent constant.
From now on all constants appearing in the estimates will be positive

and possibly depending on the initial data and T , but not on N . They will
be denoted by C and some of them will be numbered in order to be quoted
elsewhere in the paper.

We introduce the maximal velocity of a characteristic

VN (t) = max

{
C4, sup

s∈[0,t]
sup

(x,v)∈D0×b(N)
|V N (s)|

}
(3.4)

where C4 is a constant that will be chosen large enough.
We premise the following result on the partial dynamics, which is fun-

damental for the proof of Theorem 1 and will be proved in Section 5.

Proposition 1. There exists γ < 2/3 such that

∫ t

0
|EN (XN (s), s)|ds ≤ C5 V

N (t)γ . (3.5)

As a consequence, the following holds:

Corollary 1.
VN (T ) ≤ CN (3.6)

ρN (x, t) ≤ CN3γ (3.7)

|B(XN (t))| ≤ CN
θ

θ−1 , (3.8)

being γ the exponent in (3.5) and θ the one in (2.3).

Proof. To prove (3.6) we observe that the external Lorentz force does not
affect the modulus of the particle velocities, being

d

dt

|V N (t)|2

2
= V N (t) · EN (XN (t), t). (3.9)

Hence

|V N (t)|2 = |v|2 + 2

∫ t

0
V N (s) · EN (XN (s), s) ds. (3.10)

6



This fact, by Proposition 1 and the choice of the initial data such that
v ∈ b(N), implies

|V N (t)|2 ≤ N2 + C
[
VN (t)

]γ+1
. (3.11)

Hence, since γ + 1 < 2, by taking the supt∈[0,T ] we obtain the thesis.
Now we prove (3.7). Putting

(x̄, v̄) =
(
XN (x, v, t), V N (x, v, t)

)
,

by using the invariance of the density along the characteristics we have

ρN (x̄, t) =

∫
f(x̄, v̄, t) dv̄ =

∫
f0(x, v) dv̄.

We notice that, putting

Ṽ N (t) = sup
0≤s≤t

|V N (s)|,

from (3.10), Proposition 1 and (3.6) it follows

|v|2 ≥ |V N (t)|2 − C6Ṽ
N (t)Nγ . (3.12)

Hence, we decompose the integral as follows

ρN (x̄, t) ≤
∫

Ṽ N (t)≤2C6Nγ

f0(x, v) dv̄ + C0

∫

Ṽ N (t)>2C6Nγ

e−λ|v|2 dv̄

≤ CN3γ + C0

∫

Ṽ N (t)>2C6Nγ

e−λ|v|2 dv̄,

(3.13)

being by definition |v̄| ≤ Ṽ N (t).
By (3.12), if Ṽ N (t) > 2C6N

γ , then

|v|2 ≥ |V N (t)|2 −
[Ṽ N (t)]2

2
.

Since the inequality holds for any t ∈ [0, T ], it holds also at the time in
which V N reaches its maximal value over [0, t], that is

|v|2 ≥ [Ṽ N (t)]2 −
[Ṽ N (t)]2

2
=

[Ṽ N (t)]2

2
≥

|V N (t)|2

2
.

Hence from (3.13) it follows

ρN (x̄, t) ≤ CN3γ + C0

∫
e−

λ
2
|v̄|2 dv̄ ≤ CN3γ . (3.14)
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We prove (3.8) by an analogous argument to the one used in [5] to prove
the confinement of the plasma. Writing by components equations (3.1), after
elementary manipulation we get, omitting for simplicity the argument t and
the index N, after putting r(t) =

√
X2(t)2 +X3(t)2 :

(V2X2 + V3X3)h(r
2) = V̇2X3 − V̇3X2 +X2E3 −X3E2. (3.15)

Let H be a primitive of h. By integrating in time by parts over [0, t], for any
t ∈ [0, T ], we obtain by (3.15),

1

2

[
H(r2(t))−H(r2(0))

]
=

1

2

∫ t

0

d

ds
H(r2(s))ds =

∫ t

0
h(r2(s))r(s)ṙ(s) ds =

∫ t

0
ds
[
V̇2(s)X3(s)− V̇3(s)X2(s) +X2(s)E3(s)−X3(s)E2(s)

]
=

[V2(s)X3(s)− V3(s)X2(s)]
t
0 +

∫ t

0
[X2(s)E3(X(s), s) −X3(s)E2(X(s), s)] ds.

(3.16)

Recalling that the initial data are such that H(r2(0)) < C, by (3.6), (3.3)
and Proposition 1 we get

H(r2(t)) ≤ CNA+ACNγ ≤ CN. (3.17)

From this, by the definition of the field B, it follows the thesis.

3.2 Convergence of the partial dynamics

Remark 2. We stress that estimate (3.8) allows us to make explicit the
constant in (3.3), that is, for a fixed N, we have that

A− sup
(x,v)∈D0×b(N)

sup
0≤t≤T

√
XN

2 (t)2 +XN
3 (t)2 > CN− 1

θ−1 := A(1− CN ).

This implies that all the spatial integrals in the sequel of this section have
to be intended over the infinite cylinder D, that is three-dimensional over
small sets and one-dimensional over large sets.

We fix a couple (x, v) ∈ D0× b(N) and we consider XN (t) and XN+1(t),
that is the time evolved characteristics, both starting from this initial con-
dition, in the different dynamics relative to the initial distributions fN

0 and
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fN+1
0 . We have

|XN (t)−XN+1(t)| =
∣∣∣∣
∫ t

0
dt1

∫ t1

0
dt2

[
EN

(
XN (t2), t2

)
+ V N (t) ∧B

(
XN (t2)

)

− EN+1
(
XN+1(t2), t2

)
− V N+1(t) ∧B

(
XN+1(t2)

) ]∣∣∣∣ ≤
∫ t

0
dt1

∫ t1

0
dt2 [F1(x, v, t2) + F2(x, v, t2) +F3(x, v, t2)] ,

(3.18)

where
F1(x, v, t) =

∣∣EN
(
XN (t), t

)
− EN

(
XN+1(t), t

)∣∣ , (3.19)

F2(x, v, t) =
∣∣EN

(
XN+1(t), t

)
− EN+1

(
XN+1(t), t

)∣∣ , (3.20)

and

F3(x, v, t) =
∣∣V N (t) ∧B

(
XN (t)

)
− V N+1(t) ∧B

(
XN+1(t)

)∣∣ . (3.21)

We set
δN (t) = sup

(x,v)∈D0×b(N)
|XN (t)−XN+1(t)|

ηN (t) = sup
(x,v)∈D0×b(N)

|V N (t)− V N+1(t)|.

Let us start by estimating the term F1. We will prove a quasi-Lipschitz
property for EN . Let us put |x− y| := d. In case d ≥ 1, recalling Remark 2,
by (3.7) we have

|EN (x, t)− EN (y, t)| ≤

∫ (
ρN (z, t)

|x− z|2
+

ρN (z, t)

|y − z|2

)
dz ≤ CN3γ ≤ CN3γd.

In case d < 1, we define z̄ = x+y
2 and decompose the integral as follows:

|EN (x, t)− EN (y, t)| ≤ C

3∑

i=1

Ii (3.22)

where

I1 =

∫

|z−z̄|≤2d

(
1

|x− z|2
+

1

|y − z|2

)
ρN (z, t)dz

I2 =

∫

2d<|z−z̄|≤ 2

d

∣∣∣∣
1

|x− z|2
−

1

|y − z|2

∣∣∣∣ ρ
N (z, t)dz

I3 =

∫

|z−z̄|≥ 2

d

(
1

|x− z|2
−

1

|y − z|2

)
ρN (z, t)dz.
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If |z− z̄| ≤ 2d then |x− z| ≤ 3d and |y− z| ≤ 3d. Hence, always by (3.7),

I1 ≤ CN3γ

(∫

|x−z|≤3d

dz

|x− z|2
+

∫

|y−z|≤3d

dz

|y − z|2

)
≤ CN3γd. (3.23)

For the term I2 we have, by the Lagrange theorem:

I2 ≤ CN3γd

∫

2d<|z−z̄|≤ 2

d

1

|z − ξ|3
dz ≤ CN3γd| log d|, (3.24)

where ξ = tx+ (1− t)y and t ∈ [0, 1].
Finally, if |z − z̄| ≥ 2

d
, then min{|x− z|, |y − z|} ≥ 1

d
, so that

I3 ≤ CN3γd

∫

|z−ξ|≥ 1

d

1

|z − ξ|3
dz ≤ CN3γd, (3.25)

recalling again the Remark 2. Hence by (3.22) and the estimates of the
terms Ii, i = 1, 2, 3, we have shown that

F1(x, v, t) ≤ CN3γδN (t)| log δN (t)|. (3.26)

Now we draw our attention to the term F2.
We put X̄ = XN+1(t) and we have:

F2(x, v, t) ≤ F ′
2(x, v, t) + F ′′

2 (x, v, t), (3.27)

where

F ′
2(x, v, t) =

∫

|X̄−y|≤2δN (t)

ρN (y, t) + ρN+1(y, t)

|X̄ − y|2
dy (3.28)

and

F ′′
2 (x, v, t) =

∣∣∣∣∣

∫

|X̄−y|>2δN (t)

ρN (y, t)− ρN+1(y, t)

|X̄ − y|2
dy

∣∣∣∣∣ . (3.29)

By the bound (3.7) it is

F ′
2(x, v, t) ≤ CN3γ

∫

|X̄−y|≤2δN (t)

1

|X̄ − y|2
dy ≤ CN3γδN (t). (3.30)

Now we pass to the term F ′′
2 . We put

(Y N (t),WN (t)) = (XN (y,w, t), V N (y,w, t)).

Since by the Liouville theorem dydw = dY N (t)dWN (t), by the invariance
of the density fN along the characteristics, putting

Si(t) = {(y,w) : |X̄ − Y i(t)| ≥ 2δN (t)}, i = N,N + 1,
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we get

F ′′
2 (x, v, t) ≤
∫

dy

∫
dw

∣∣∣∣∣
fN
0 (y,w)

|X̄ − Y N (t)|2
χ(SN (t))−

fN+1
0 (y,w)

|X̄ − Y N+1(t)|2
χ(SN+1(t))

∣∣∣∣∣

≤ I1 + I2 + I3,

(3.31)

where

I1 =

∫

SN (t)
dy

∫
dw

∣∣∣∣
1

|X̄ − Y N (t)|2
−

1

|X̄ − Y N+1(t)|2

∣∣∣∣ f
N
0 (y,w), (3.32)

I2 =

∫

SN+1(t)
dy

∫
dw

∣∣∣fN
0 (y,w) − fN+1

0 (y,w)
∣∣∣

|X̄ − Y N+1(t)|2
(3.33)

and

I3 =

∫

SN (t)\SN+1(t)
dy

∫
dw

fN
0 (y,w)

∣∣X̄ − Y N+1(t)
∣∣2 . (3.34)

By the Lagrange theorem

I1 ≤

∫

SN (t)
dy

∫
dw

fN
0 (y,w)

|X̄ − ξN (t)|3
|Y N (t)− Y N+1(t)| (3.35)

where ξN (t) is a point of the segment joining Y N (t) and Y N+1(t). Note that
if y ∈ SN (t) then, by the definition of δN (t),

|X̄ − Y N+1(t)| > |X̄ − Y N (t)| − |Y N (t)− Y N+1(t)| > δN (t), (3.36)

which implies that |X̄ − ξN (t)| is certainly bigger than 1
2 |X̄−Y N (t)|. Hence

by (3.7) it follows

I1 ≤ 8δN (t)

∫

SN (t)
dy

∫
dw

fN
0 (y,w)

|X̄ − Y N (t)|3
=

8δN (t)

∫

SN (t)
dY N (t)

∫
dWN (t)

fN (Y N (t),WN (t), t)

|X̄ − Y N (t)|3
≤

CN3γδN (t)

∫
dy

χ(|X − y| ≥ 2δN (t))

|X̄ − y|3
≤

CN3γδN (t)(1 + | log δN (t)|), (3.37)

recalling that the integral is over the cylinder D. It is easily seen that, for
any positive a < 1 and ǫ < 1 it holds

a(1 + | log a|) ≤ a| log ǫ|+ ǫ.
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Hence, if δN (t) < 1, we have

I1 ≤ CN3γ
(
δN (t)| log ǫ|+ ǫ

)
. (3.38)

If δN (t) ≥ 1, estimate (3.37) gives us

I1 ≤ CN3γδN (t). (3.39)

We choose ǫ = e−λN2

, and in both cases it results

I1 ≤ CN3γ+2δN (t) + Ce−
λ
2
N2

. (3.40)

Let us now estimate the term I2. By the choice of the initial condition it
follows

I2 ≤ 2

∫

SN+1(t)
dy

∫
dw

fN+1
0 (y,w)

|X̄ − Y N+1(t)|2
χ(N ≤ |w| ≤ N + 1)

≤ 2C0e
−λN2

∫
dy

∫
dw

χ(|w| ≤ N + 1)

|X̄ − Y N+1(t)|2

≤ Ce−λN2

∫
dY N+1(t)

∫
dWN+1(t)

χ(|WN+1(t)| ≤ CN)

|X̄ − Y N+1(t)|2

≤ CN3e−λN2

∫
dy

1

|X̄ − y|2
≤ CN3e−λN2

≤ Ce−
λ
2
N2

, (3.41)

where we have used the bound (3.6) on the maximal velocity and again the
fact that the integral is over the cylinder D.

Let us estimate the term I3. Formula (3.36) implies that

I3 ≤
1

δN (t)2

∫
dy

∫
dwfN

0 (y,w)χ(SN (t) \ SN+1(t)). (3.42)

Now we observe that

SN (t) \ SN+1(t) =
{
(y,w) :

∣∣X̄ − Y N (t)
∣∣ ≥ 2δN (t)

}
∩
{
(y,w) :

∣∣X̄ − Y N+1(t)
∣∣ ≤ 2δN (t)

}
.

(3.43)

Hence, putting (Y N (t),WN (t)) = (ȳ, w̄) and recalling once again the defi-
nition of δN (t), we have

I3 ≤
1

δN (t)2

∫

AN (t)
dȳ

∫
dw̄f(ȳ, w̄, t) (3.44)

where AN (t) = {ȳ : δN (t) ≤
∣∣X̄ − ȳ

∣∣ ≤ 3δN (t)}. This together with estimate
(3.7) implies that

I3 ≤
1

δN (t)2

∫

AN (t)
dȳρ(ȳ, t) ≤ C

1

δN (t)2
N3γδN (t)3 ≤ CN3γδN (t). (3.45)
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Going back to (3.31), from estimates (3.40), (3.41) and (3.45) it follows

F ′′
2 (x, v, t) ≤ CN3γ+2δN (t) + Ce−

λ
2
N2

. (3.46)

so that this last estimate, (3.27) and (3.30) imply

F2(x, v, t) ≤ CN3γ+2δN (t) + Ce−
λ
2
N2

. (3.47)

Finally we estimate the term F3. We have

F3(x, v, t) ≤ |V N (t)||B(XN (t))−B(XN+1(t)|+

|V N (t)− V N+1(t)||B(XN+1(t))|.
(3.48)

By applying the Lagrange theorem we have

|B(XN (t))−B(XN+1(t)| ≤ C
|XN (t)−XN+1(t)|

|A2 − |ξN (t)|2|θ+1

where ξN (t) is a point on the segment joining XN (t) and XN+1(t). Due to
the bound (3.8), it has to be |A− ξN (t)| ≥ 1

CN
1

θ−1

. Hence

|B(XN (t))−B(XN+1(t)| ≤ CN
θ+1

θ−1 δN (t). (3.49)

This, together with the bounds (3.6) and (3.8), imply

F3(x, v, t) ≤ C
[
N

2θ
θ−1 δN (t) +N

θ
θ−1 ηN (t)

]
.

(3.50)

At this point, going back to (3.18), taking the supremum over the set
{(x, v) ∈ D0 × b(N)}, by (3.26), (3.47) and (3.50) we arrive at:

δN (t) ≤C
(
N3γ+2 +N

2θ
θ−1

) ∫ t

0
dt1

∫ t1

0
dt2 δ

N (t2)+

C

∫ t

0
dt1

∫ t1

0
dt2 e

−λ
2
N2

+ CN
θ

θ−1

∫ t

0
dt1

∫ t1

0
dt2 ηN (t2),

(3.51)

where in (3.26) we have taken into account the bound (3.6), which gives
|δN (t)| ≤ CN. On the other side, by using the same method to estimate the
quantity ηN (t), we get, analogously

ηN (t) ≤C
(
N3γ+2 +N

2θ
θ−1

)∫ t

0
dt1 δ

N (t1)+

C

∫ t

0
dt1 e

−λ
2
N2

+ CN
θ

θ−1

∫ t

0
dt1 ηN (t1).

(3.52)
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Since obviously δN (t1) ≤
∫ t1
0 dt2 η

N (t2) we get from the last eqn.

ηN (t) ≤ C
(
N3γ+2 +N

2θ
θ−1

) ∫ t

0
dt1

∫ t1

0
dt2 η

N (t2) + C

∫ t

0
dt1 e

−λ
2
N2

+ CN
θ

θ−1

∫ t

0
dt1 ηN (t1).

(3.53)

Putting now
σN (t) = δN (t) + ηN (t)

we have, summing up (3.51) and (3.53):

σN (t) ≤C
(
N3γ+2 +N

2θ
θ−1

) ∫ t

0
dt1

∫ t1

0
dt2 σ

N (t2)+

CN
θ

θ−1

∫ t

0
dt1 σN (t1) + C

(
t+

t2

2

)
e−

λ
2
N2

.

(3.54)

Putting

ν = max

{
3γ + 2

2
,

θ

θ − 1

}
(3.55)

we get

σN (t) ≤ C

[
N2ν

∫ t

0
dt1

∫ t1

0
dt2 σ

N (t2) +Nν

∫ t

0
dt1 σN (t1)+

(
t+

t2

2

)
e−

λ
2
N2

]
.

(3.56)

We insert in the integrals the same inequality for σN (t1) and σN (t2) and
iterate in time, up to k iterations. By direct inspection, using in the last
step the estimate supt∈[0,T ] σ

N (t) ≤ CN, we arrive at

σN (t) ≤CNe−
λ
2
N2

k−1∑

i=1

i∑

j=0

(
i

j

)
N2νjt2jNν(i−j)ti−j

(2j + i− j)!
+

CN

k∑

j=0

(
k

j

)
N2νjt2jNν(k−j)tk−j

(2j + k − j)!
.

(3.57)

We observe that the i-th iterate consists in a sum of integrals of increasing
order j ∈ [i, 2i] and that the binomial coefficients represent all the possible
ways to arrange the integrals of the same order. By putting

S′′
k =

k−1∑

i=1

i∑

j=0

(
i

j

)
Nν(i+j)ti+j

(i+ j)!
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and

S′
k =

k∑

j=0

(
k

j

)
Nν(j+k)tj+k

(j + k)!

we get

σN (t) ≤ CNe−
λ
2
N2

S′′
k + CNS′

k. (3.58)

We start by estimating S′′
k . Recalling that

(
i
j

)
< 2i we get

S′′
k ≤

k−1∑

i=1

2i
i∑

j=0

Nν(i+j)ti+j

(i+ j)!
. (3.59)

The use of the Stirling formula annn ≤ n! ≤ bnnn for some constants a, b > 0
yields:

S′′
k ≤

k−1∑

i=1

2i
i∑

j=0

Nν(i+j)(Ct)i+j

(i+ j)i+j
≤

k−1∑

i=1

2i
Nνi(Ct)i

ii

i∑

j=0

Nνj(Ct)j

jj
, (3.60)

from which it follows, again by the Stirling formula,

S′′
k ≤

(
eN

νCt
)2

≤ eN
νC . (3.61)

For the term S′
k, putting j + k = ℓ, we get

S′
k ≤ 2k

2k∑

ℓ=k

N ℓν(Ct)ℓ

ℓℓ
≤ Ckk

N2kν

kk
. (3.62)

The hypothesis (2.3) on the external field B and the range of the parameter
γ given by Proposition 1 guarantee that ν < 2, so that, choosing k = N ζ

with ζ > 4, we have, for sufficiently large N,

S′
k ≤ Ckk

(
k

2ν
ζ
−1
)k

≤ C−Nζ

. (3.63)

Going back to (3.58), by (3.61) and (3.63) we have seen that

σN (t) ≤ CN
[
e−

λ
2
N2

eN
νC + C−Nζ

]
. (3.64)

Hence, being ν < 2, we can conclude that there exists a positive number c
such that

σN (t) ≤ C−Nc

. (3.65)
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3.3 Conclusion of the proof

We have shown that the sum
∑

σN (t) converges uniformly in t ∈ [0, T ], and
then the sequences XN (t) and V N (t) are Cauchy sequences, uniformly on
[0, T ]. Hence, for any fixed (x, v) they converge to limit functions which we
call X(t) and V (t). Now it remains to prove

(i) properties (2.8) and (2.9),
(ii) that these functions satisfy eqn. (2.4),
(iii) that the plasma remains confined in the cylinder D,
(iv) uniqueness of the solution.

To this aim, we start by giving a N -uniform estimate for |V N (t)− v|. Let us
fix (x, v) ∈ D0×R

3, an integer N0 = intg(|v|+C) with C > 1, and N > N0.
Then by construction it is (x, v) ∈ D0 × b(N). By (3.65) and (3.6) it is

|V N (t)− v| ≤ |V N0(t)− v|+

N∑

k=N0+1

|V k(t)− V k−1(t)| ≤

|V N0(t)− v|+ C ≤ |v|+ CN0

(3.66)

and, by the choice of N0,

|V N (t)− v| ≤ C(|v|+ 1). (3.67)

From this it follows
|XN (t)− x| ≤ C(|v|+ 1). (3.68)

We use these estimates to prove properties (2.8) and (2.9) for the density.
To prove the first one, we observe that the bound (3.67) implies

f(X(t), V (t), t) =f0(x, v) ≤ C0e
−λ|v|2 ≤ Ce−λ̄|V (t)|2 . (3.69)

From this it follows
sup

t∈[0,T ]
‖ρ(t)‖L∞ ≤ C. (3.70)

To prove the decay of the spatial density we partition the velocity space by
the sets S1 and Sc

1, with

S1 =

{
v : |v| ≥ ai =

√
2α log |i|

λ̄

}
.

Hence, for any i ∈ Z/{0},
∫

|x1−i|≤1
ρ(x, t) dx =

∫

|x1−i|≤1
dxdvf(x, v, t) =

∫

|x1−i|≤1
dx

[∫

S1

f(x, v, t)dv +

∫

Sc
1

f(x, v, t)dv

]
.

(3.71)
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By (3.69) we get

∫

i≤x1≤i+1
dx

∫

S1

dvf(x, v, t) ≤ C

∫

i≤x1≤i+1
dx

∫

S1

e−λ̄|v|2dv ≤

Ce−
λ̄
2
|ai|

2

∫

i≤x1≤i+1
dx

∫

S1

e−
λ̄
2
|v|2dv ≤ C

1

|i|α
.

(3.72)

On the other side, by a change of variables and (3.68) we have

∫

i≤x1≤i+1
dx

∫

Sc
1

dv f(x, v, t) ≤

∫

i−Cai≤x1≤i+Cai

ρ0(x)dx

≤
∑

|k|≤Cai

∫

|i+k−x1|≤1
ρ0(x)dx ≤

∑

|k|≤Cai

C1

|i+ k|α
.

(3.73)

Since |k| ≤ Cai, for large |i| it is |i+ k| ≥ |i|
2 . Hence previous formula gives

∫

i≤x1≤i+1
dx

∫

S1c

dvf(x, v, t) ≤
C log |i|

|i|α
(3.74)

which, together with (3.72), implies (2.9).
By the estimate (2.8) we obtain that the field EN is uniformly bounded

in N. Indeed:

|EN (x, t)| ≤ C

∫

(x,v)∈D×R3

e−λ̄|v|2

|x− y|2
dydv ≤ C. (3.75)

Moreover, it can be seen that EN (x, t) → E(x, t) uniformly on [0, T ]. In
fact, the term |EN (x, t) − E(x, t)| can be estimated in the same way as we
did with F2 in the proof of the convergence (subsection 3.2), by using the
bound (3.70) on the density, yielding

|EN (x, t)− E(x, t)| ≤ C|XN (t)−X(t)|+ Ce−
λ
2
N2

, (3.76)

which proves the convergence of EN to E.
Putting estimates (3.67) and (3.75) in (3.16), we see that the external

magnetic field B can be bounded as

|B(XN (t)| ≤ C(|v|+ 1)
θ

θ−1 , (3.77)

which proves the confinement. Hence, we have proved that the limit func-
tions (X(t), V (t)) satisfy the integral version of the characteristics equation
(2.4) over the time interval [0, T ].

Finally, the uniqueness of the solution can be inferred by the convergence
of the partial dynamics, putting the difference of two solutions in place of
the difference of two dynamics. This completes the proof of Theorem 1.
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4 The local energy

Since this system has unbounded energy thus, in order to have a control on
the spatial density, and then proceed in proving the estimate (3.5) on the
electric field E, we introduce the following local energy. For µ ∈ R and
R > 0 we define the mollified function,

ϕµ,R(x) = ϕ

(
|x1 − µ|

R

)
, (4.1)

where ϕ, assumed to be smooth for technical purposes, is defined as:

ϕ(a) = 1 if a ∈ [0, 1] (4.2)

ϕ(a) = 0 if a ∈ [2,+∞) (4.3)

− 2 ≤ ϕ′(a) ≤ 0. (4.4)

The local energy is the following function:

WN(µ,R, t) =
1

2

∫
dx ϕµ,R(x)

∫
dv |v|2fN (x, v, t)+

1

2

∫
dx ϕµ,R(x)ρN (x, t)

∫
dy

ρN (y, t)

|x− y|
.

(4.5)

The functionWN is a kind of smoothed energy of a bounded region, in which
the interaction with the rest of the system has been taken into account.
Note that it does not contain the effects of the magnetic force, as it does
not contribute to energy variations.

We put

QN (R, t) = max

{
1, sup

µ∈R
WN (µ,R, t)

}
. (4.6)

The assumptions (2.6) and (2.7) on fN
0 imply that QN is finite at time t = 0

and has the following bound:

Proposition 2.

QN (R, 0) ≤ CR1−α, α > 5/9.

Proof. The proof is quite similar to that in [5]. We consider R integer for
simplicity. It is easily seen that

∫
dx ϕµ,R(x)ρ(x, 0) ≤ CR1−α. (4.7)
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Indeed, it is:

∫

|x1−µ|≤R

ρN (x, 0) dx =

∫

|x1−µ|≤1
ρN (x, 0) dx+

R−1∑

|i|=1

∫

|µ+i−x1|≤1
ρN (x, 0) dx.

Now, if |µ| ≤ 2R, by (2.7) it is:

∫

|x1−µ|≤R

ρN (x, 0) dx ≤ C +

∫

|x1|≤3R
ρN (x, 0) dx ≤

C +
3R−1∑

|i|=1

∫

|i−x1|≤1
ρN (x, 0) dx ≤ C

3R−1∑

|i|=1

1

|i|α
≤ CR1−α

while, if |µ| > 2R:

∫

|x1−µ|≤R

ρN (x, 0) dx ≤ C +

R−1∑

|i|=1

1

|µ+ i|α
≤ CR1−α

since |µ+ i| ≥ R. Hence, by (2.6), we have

WN (µ,R, 0) ≤ CR1−α

∫
dy

ρN (y, 0)

|x− y|
.

Now it is:

∫
ρN (y, 0)

|x− y|
dy ≤

∫

|x1−y1|≤1

ρN (y, 0)

|x− y|
dy +

∑

|i|≥1

1

|i|

∫

x1+i≤y1≤x1+i+1
ρN (y, 0) dy

≤ C


1 +

∑

|i|≥1:|x1+i|6=0

1

|i| |x1 + i|α


 .

(4.8)

By considering the two sums

′∑
=

∑

i:|i|≥|x1+i|

and
′′∑

=
∑

i:|i|≤|x1+i|

we get

∑

|i|≥1:|x1+i|6=0

1

|i| |x1 + i|α
≤

′∑ 1

|i|1+α
+

′′∑ 1

|x1 + i|1+α
≤ C.

This, together with (4.7), proves the proposition.

19



We define the maximal displacement of a plasma particle as

RN (t) = 1 +

∫ t

0
VN (s) ds (4.9)

and put
QN (t) = sup

s∈[0,t]
QN (R(s), s). (4.10)

We state the most important result on the local energy, whose proof is
given in Section 6:

Proposition 3. There exists a constant C independent of N such that

QN (RN (t), t) ≤ CQN (RN (t), 0).

As consequence of Propositions 3 and 2 we have:

Corollary 2.
QN (RN (t), t) ≤ CRN (t)1−α. (4.11)

We give now a first estimate on the electric field E, in terms of the local
energy. We will make use of it in the proof of Proposition 1 in the next
section.

Proposition 4.

|EN (x, t)| ≤ C7V
N (t)

4

3QN (RN (t), t)
1

3 . (4.12)

Proof. We premise an estimate on the spatial density: for any µ ∈ R and
any positive number R it is:

∫

|µ−x1|≤R

dx ρN (x, t)
5

3 ≤ CWN(µ,R, t). (4.13)

In fact:

ρN (x, t) ≤

∫

|v|≤a

dvfN (x, v, t) +
1

a2

∫

|v|>a

dv |v|2fN (x, v, t) ≤

Ca3 +
1

a2

∫
dv |v|2fN (x, v, t).

By minimizing over a, taking the power 5
3 of both members and integrating

over the set {x : |µ− x1| ≤ R} we get (4.13).

20



Now we choose a sequence of positive numbers A0, A1, A2, ...Ak, ... such
that A0 = 0, A1 < A has to be chosen suitably in the following and Ak =
(k − 1)RN (t) for k = 2, 3, ... Then we have

|EN (x, t)| ≤

+∞∑

k=0

Jk(x, t) (4.14)

with

Jk(x, t) =

∫

Ak<|x−y|≤Ak+1

χ(y ∈ D)
ρN (y, t)

|x− y|2
dy.

We estimate the terms in (4.14). We have:

J0(x, t) ≤ C‖ρN (t)‖L∞A1 ≤ CVN(t)3A1. (4.15)

Moreover by (4.13) we get:

J1(x, t) ≤

C

(∫

|x−y|≤A2

dy χ(y ∈ D) ρN (y, t)
5

3

) 3

5
(∫

A1<|x−y|≤A2

χ(y ∈ D)

|x− y|5
dy

) 2

5

≤

CWN(x1, R
N (t), t)

3

5

[
A

− 4

5

1 +RN (t)−
4

5

]
≤ CQN (RN (t), t)

3

5A
− 4

5

1 .

The minimum value of J0(x, t) + J1(x, t) is attained at

A1 = CVN (t)−
5

3QN (RN (t), t)
1

3

so that we get

J0(x, t) + J1(x, t) ≤ CVN (t)
4

3QN (RN (t), t)
1

3 . (4.16)

For the remaining terms, for any k = 2, 3, ... we observe that from the
definition (4.9) of the maximal displacement it follows that if Ak < |x−y| ≤
Ak+1, then Ak−1 < |x−Y (t)| ≤ Ak+2. Then by a change of variables we get:

|Jk(x, t)| ≤

∫

Ak<|x−y|≤Ak+1

χ(y ∈ D)
fN (y,w, t)

|x− y|2
dydw ≤

1

(k − 1)2RN (t)2

∫

Ak−1<|x−y|≤Ak+2

χ(y ∈ D) ρN0 (y)dy ≤

C
1

k2RN (t)

(4.17)

since the volume of the set {y ∈ D : Ak−1 < |x− y| ≤ Ak+2} is proportional
to RN (t). Hence:

+∞∑

k=2

Jk(x, t) ≤ C. (4.18)

The proof is achieved by (4.14), (4.16) and (4.18).
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5 The estimate of EN : proof of Proposition 1

The proof of Proposition 1 follows the same lines of the analogous in [5].
The difference consists in the fact that here we need a more refined estimate
of EN in terms of the maximal velocity, since the exponent γ has to be
smaller than 2

3 . To this aim we need to control the time average of EN over
a suitable time interval. Setting

〈EN 〉∆̄ :=
1

∆̄

∫ t+∆̄

t

|EN (X(s), s)| ds

we have the following result, which is the core of this Section:

Proposition 5. There exists a positive number ∆̄, depending on N, such
that:

〈EN 〉∆̄ ≤ CVN (T )γ γ <
2

3
. (5.1)

for any t ∈ [0, T ] such that t ≤ T − ∆̄.

In the proof of Proposition 1, we need to introduce several positive pa-
rameters, all depending only on the parameter α fixed in the hypothesis
(2.7) which we list here, for the convenience of the reader;

η >
1− α

2
, σ <

1 + α

3
, β >

5− α

3
,

δ <
4

3
+

2

3
α− η − β := c, ξ <

3α− 1

8
.

(5.2)

From now on we will skip the index N through the whole section. More-
over, we put for brevity V := V(T ) and Q := Q(T ).

Proof. Let us define a time interval

∆1 :=
1

4C7V
4

3
+ηQ

1

3

(5.3)

where C7 is the constant in (4.12). We remark that, since we have to prove
a more refined estimate on E than that in [5], we choose a smaller ∆1 than
the one chosen there. For a positive integer ℓ we set:

∆ℓ = ∆ℓ−1G = ... = ∆1G
ℓ−1, (5.4)

where
G = Intg

(
Vδ
)
, (5.5)

being Intg(a) the integer part of a.
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Assume that the following estimate holds (it will be established in the
next subsection 5.1), for any positive integer ℓ :

〈E〉∆ℓ
≤ C

[
VσQ

1

3 +
V

4

3Q
1

3

Vc Vδ(ℓ−1)

]
, (5.6)

then, since R(t) ≤ CV(t), the choice of the parameters made in (5.2) and
Corollary 2 imply

〈E〉∆ℓ
≤ C

[
Vγ +

V
5

3
−α

3
−c

Vδ(ℓ−1)

]
(5.7)

with γ < 2
3 . Hence, defining ℓ̄ as the smallest integer such that

Vδ(ℓ−1) ≥ V1−α
3 , (5.8)

estimate (5.7) implies (5.1) with ∆̄ := ∆ℓ̄.
It can be seen that

∆̄ =
C

V
1+α
3

+η Q
1

3

.

This argument shows that, in order to prove Proposition 1, we have to
prove that (5.6) holds, which we will do in the next subsection. For the
moment, we observe that Proposition 5 is sufficient to achieve the proof
of Proposition 1, which can be done by dividing the interval [0, T ] in n
subintervals [ti−1, ti], i = 1, ..., n, with t0 = 0, tn = T, such that ∆̄/2 ≤
ti−1 − ti ≤ ∆̄, and using Proposition 5 on each of them.

5.1 Proof of (5.6)

To prove (5.6) we need some preliminary results, which are stated here and
proved in Section 6.

We consider two solutions of the partial dynamics, (X(t), V (t)) and
(Y (t),W (t)) , starting from (x, v) and (y,w) respectively. Let η be the pa-
rameter introduced in the definition (5.3) of ∆1. Then we have:

Lemma 1. Let t ∈ [0, T ] such that t+∆ℓ ∈ [0, T ] ∀ℓ ≤ ℓ̄.

If |V1(t)−W1(t)| ≤ V−η

then
sup

s∈[t,t+∆ℓ]
|V1(s)−W1(s)| ≤ 2V−η . (5.9)

If |V1(t)−W1(t)| ≥ V−η
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then

inf
s∈[t,t+∆ℓ]

|V1(s)−W1(s)| ≥
1

2
V−η. (5.10)

We put Vr(t) = (V2(t), V3(t)).

Lemma 2. Let t ∈ [0, T ] such that t+∆ℓ ∈ [0, T ] ∀ℓ ≤ ℓ̄.

If |Vr(t)| ≤ Vξ

then
sup

s∈[t,t+∆ℓ]
|Vr(s)| ≤ 2Vξ . (5.11)

If |Vr(t)| ≥ Vξ

then

inf
s∈[t,t+∆ℓ]

|Vr(s)| ≥
Vξ

2
. (5.12)

Lemma 3. Let t ∈ [0, T ] such that t+∆ℓ ∈ [0, T ] ∀ℓ ≤ ℓ̄ and assume that
|V1(t)−W1(t)| ≥ hV−η for some h ≥ 1. Then it exists t0 ∈ [t, t+∆ℓ] such
that for any s ∈ [t, t+∆ℓ] it holds:

|X(s)− Y (s)| ≥
hV−η

4
|s− t0|.

Lemma 4. There exists a positive constant C such that, for any µ ∈ R and
for any couple of positive numbers R < R′ we have:

W (µ,R′, t) ≤ C
R′

R
Q(R, t).

Estimate (5.6) will be proved analogously to what has been done in [5],
the difference being that the time interval ∆1 has been chosen smaller. We
use an inductive procedure, that is:
step i) we prove (5.6) for ℓ = 1;
step ii) we show that if (5.6) holds for ℓ− 1 it holds also for ℓ.

Step i) is the fundamental one, while step ii) is an almost immediate
consequence, as it will be seen after.

Proof of step i).
All the parameters appearing in this demonstration have been listed in

(5.2).
We have to show that the following estimate holds:

〈E〉∆1
≤ C

[
VσQ

1

3 +
V

4

3Q
1

3

Vc

]
. (5.13)
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We fix any t ∈ [0, T ] such that t + ∆1 ≤ T , and we consider the time
evolution of the characteristics over the time interval [t, t + ∆1]. For any
s ∈ [t, t+∆1] we set

(X(s), V (s)) := (X(s, t, x, v), V (s, t, x, v)), X(t) = x

(Y (s),W (s)) := (Y (s, t, y, w),W (s, t, y, w)), Y (t) = y.

Then

|E(X(s), s)| ≤

∫
dydw

f(y,w, s)

|X(s)− y|2
=

∫
dydw

f(y,w, t)

|X(s)− Y (s)|2
. (5.14)

We decompose the phase space in the following way. We define

T1 = {y : |y1 − x1| ≤ 2R(T )} (5.15)

S1 = {w : |v1 − w1| ≤ V−η} (5.16)

S2 = {w : |wr| ≤ Vξ} (5.17)

S3 = {w : |v1 − w1| > V−η} ∩ {w : |wr| > Vξ}. (5.18)

We have

|E(X(s), s)| ≤
4∑

j=1

Ij(X(s)) (5.19)

where for any s ∈ [t, t+∆1]

Ij(X(s)) =

∫

T1∩Sj

dydw
f(y,w, t)

|X(s)− Y (s)|2
, j = 1, 2, 3

and

I4(X(s)) =

∫

T c
1

dydw
f(y,w, t)

|X(s)− Y (s)|2
.

Let us start by the first integral. By the change of variables (Y (s),W (s)) =
(ȳ, w̄), and Lemma 1 we get

I1(X(s)) ≤

∫

T ′

1
∩S′

1

dȳdw̄
f(ȳ, w̄, s)

|X(s) − ȳ|2
(5.20)

where T ′
1 = {ȳ : |ȳ1−X1(s)| ≤ 4R(T )} and S′

1 = {w̄ : |V1(s)− w̄1| ≤ 2V−η}.
Now it is:

I1(X(s)) ≤

∫

T ′

1
∩S′

1
∩{|X(s)−ȳ|≤ε}

dȳdw̄
f(ȳ, w̄, s)

|X(s) − ȳ|2
+

∫

T ′

1
∩S′

1
∩{|X(s)−ȳ|>ε}

dȳdw̄
f(ȳ, w̄, s)

|X(s)− ȳ|2
≤

CV2−ηε+

∫

T ′

1
∩S′

1
∩{|X(s)−ȳ|>ε}

dȳdw̄
f(ȳ, w̄, s)

|X(s)− ȳ|2
.

(5.21)
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Now we give a bound on the spatial density ρ(ȳ, s). Setting

ρ1(y, s) =

∫

S′

1

dwf(y,w, s),

we have:

ρ1(y, s) ≤ 2C0V
−η

∫

|wr|≤a

dwr +

∫

|wr|>a

dwr

∫
dw1 f(y,w, s) ≤

Ca2V−η +
1

a2

∫
dw|w|2f(y,w, s) = Ca2V−η +

1

a2
K(y, s)

where K(y, s) =
∫
dw|w|2f(y,w, s). Minimizing in a we obtain

ρ1(y, s) ≤ CV− η
2K(y, s)

1

2 . (5.22)

Hence from (5.22) we get

(∫

T ′

1

dy ρ1(y, s)
2

) 1

2

≤ CV− η
2

(∫

T ′

1

dy K(y, s)

) 1

2

≤

CV− η
2

√
W (X1(s), 4R(s), s) ≤ CV− η

2

√
Q,

(5.23)

where we have also applied Lemma 4. Going back to (5.21), this bound
implies

I1(X(s)) ≤

CV2−ηε+

(∫

T ′

1

dyρ1(ȳ, s)
2

) 1

2
(∫

T ′

1
∩{|X(s)−ȳ|>ε}

dȳ
1

|X(s) − ȳ|4

) 1

2

≤ C
(
V2−ηε+ V− η

2

√
Q

ε

)
.

Minimizing in ε we obtain:

I1(X(s)) ≤ CQ
1

3V
2

3
(1−η). (5.24)

We observe that, since by (4.9) it is RN (t) ≤ C(1+VN (t)), Corollary 2 and
the lower bound for η in (5.2) imply that I1(X(s)) is bounded by a power
of V less than 2

3 .
Now we pass to the term I2. Proceeding as for the term I1, defining

S′
2 = {w : |wr| ≤ 2Vξ}, by Lemma 2 and the Holder inequality we get:

I2(X(s)) ≤

∫

T ′

1
∩S′

2

dȳdw̄
f(ȳ, w̄, s)

|X(s) − ȳ|2
≤

∫

T ′

1
∩S′

2
∩{|X(s)−ȳ|≤ε}

dȳdw̄
f(ȳ, w̄, s)

|X(s)− ȳ|2
+

∫

T ′

1
∩{|X(s)−ȳ|>ε}

dȳ
ρ(ȳ, s)

|X(s) − ȳ|2
≤
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CV1+2ξε+

(∫

T ′

1

dȳ ρ(ȳ, s)
5

3

) 3

5
(∫

{|X(s)−ȳ|>ε}
dȳ

1

|X(s)− ȳ|5

) 2

5

.

The bound (4.13) implies

I2(X(s)) ≤ CV(t)1+2ξε+ CQ(t)
3

5 ε−
4

5 .

By minimizing in ε we get:

I2(X(s)) ≤ CV
4

9
(1+2ξ)Q

1

3 . (5.25)

Analogously to what we have seen before for the term I1(X(s)), also in this
case the upper bound for the parameter ξ in (5.2) implies that I2(X(s)) is
bounded by a power of V less than 2

3 .
Now we estimate I3(X(s)). It will be clear in the sequel that it is because

of this term that we are forced to bound the time average of E, and then to
iterate the bound, from smaller to larger time intervals.

We cover T1∩S3 by means of the sets Ah,k and Bh,k, with k = 0, 1, 2, ...,m
and h = 1, 2, ...,m′, defined in the following way:

Ah,k =
{
(y,w, s) : hV−η < |v1 − w1| ≤ (h+ 1)V−η ,

αk+1 < |wr| ≤ αk, |X(s)− Y (s)| ≤ lh,k
} (5.26)

Bh,k =
{
(y,w, s) : hV−η < |v1 − w1| ≤ (h+ 1)V−η ,

αk+1 < |wr| ≤ αk, |X(s) − Y (s)| > lh,k
} (5.27)

where:

αk =
V

2k
lh,k =

22kQ
1

3

hVβ−η
, (5.28)

with β chosen in (5.2). Consequently we put

I3(X(s)) ≤

m′∑

h=1

m∑

k=0

(
I ′
3(h, k) + I ′′

3 (h, k)
)

(5.29)

being

I ′
3(h, k) =

∫

T1∩Ah,k

f(y,w, t)

|X(s) − Y (s)|2
dydw (5.30)

and

I ′′
3 (h, k) =

∫

T1∩Bh,k

f(y,w, t)

|X(s)− Y (s)|2
dydw. (5.31)

Since we are in S3, it is immediately seen that

m ≤ C log V, m′ ≤ CV1+η. (5.32)
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By adapting Lemma 1 and Lemma 2 to this context it is easily seen that
∀ (y,w, s) ∈ Ah,k it holds:

(h− 1)V−η ≤ |V1(s)−W1(s)| ≤ (h+ 2)V−η , (5.33)

and
αk+1

2
≤ |Wr(s)| ≤ 2αk. (5.34)

Hence, setting

A′
h,k =

{
(ȳ, w̄, s) : (h− 1)V−η ≤ |V1(s)− w̄1| ≤ (h+ 2)V−η ,
αk+1

2
≤ |w̄r| ≤ 2αk, |X(s)− ȳ| ≤ lh,k

}
.

(5.35)

we have

I ′
3(h, k) ≤

∫

T ′

1
∩A′

h,k

f(ȳ, w̄, s)

|X(s)− ȳ|2
dȳdw̄. (5.36)

By the choice of the parameters αk and lh,k made in (5.28) we have:

I ′
3(h, k) ≤ C lh,k

∫

A′

h,k

dw̄ ≤ Clh,kα
2
k

∫

A′

h,k

dw̄1 ≤

C lh,kα
2
kV

−η ≤ C
V2−βQ

1

3

h
.

(5.37)

Hence by (5.32)

m′∑

h=1

m∑

k=0

I ′
3(h, k) ≤ CV2−βQ

1

3

m∑

k=0

m′∑

h=1

1

h
≤ CV2−βQ

1

3 log2 V. (5.38)

The choice of β is such that

m′∑

h=1

m∑

k=0

I ′
3(h, k) ≤ CVγ γ <

2

3
.

Now we pass to I ′′
3 (h, k). Setting

B′
h,k =

{
(y,w) : (y,w, s) ∈ Bh,k for some s ∈ [t, t+∆1]

}
(5.39)

we have:

∫ t+∆1

t

I ′′
3 (h, k) ds ≤

∫ t+∆1

t

ds

∫

T ′

1
∩B′

h,k

dydw
f(y,w, t)

|X(s)− Y (s)|2
≤

∫

T ′

1
∩B′

h,k

f(y,w, t)

(∫ t+∆1

t

χ(Bh,k)

|X(s)− Y (s)|2
ds

)
dydw.

(5.40)
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By Lemma 3, putting a =
4 lh,kV

η

h
we have:

∫ t+∆1

t

χ(Bh,k)

|X(s)− Y (s)|2
ds ≤

∫

{s:|s−t0|≤a}

χ(Bh,k)

|X(s)− Y (s)|2
ds+

∫

{s:|s−t0|>a}

χ(Bh,k)

|X(s)− Y (s)|2
ds ≤

1

l2h,k

∫

{s:|s−t0|≤a}
ds+

16V2η

h2

∫

{s:|s−t0|>a}

1

|s− t0|2
ds ≤

2a

l2h,k
+

32V2η

h2

∫ +∞

a

1

s2
ds =

16Vη

lh,kh
.

(5.41)

Moreover:
∫

T ′

1
∩B′

h,k

f(y,w, t) dydw ≤
C

α2
k

∫

T ′

1
∩B′

h,k

w2f(y,w, t) dydw.
(5.42)

Now it is:
∫

T ′

1
∩B′

h,k

w2f(y,w, t) dydw ≤

∫

T ′

1
∩Ch,k

w2f(y,w, t) dydw (5.43)

where

Ch,k =
{
w : (h− 1)V−η ≤ |v1 − w1| ≤ (h+ 2)V−η ,

αk+1 ≤ |wr| ≤ αk

}
,

so that:

m′∑

h=1

m∑

k=0

∫

T ′

1
∩B′

h,k

w2f(y,w, t) dydw ≤ C

∫

T ′

1

K(y, t) dy ≤

CW (X1(t), 5R(t), t) ≤ CQ

(5.44)

by Lemma 4.
Taking into account (5.28), by (5.40), (5.41), (5.42) and (5.44) we get:

m′∑

h=1

m∑

k=0

∫ t+∆1

t

I ′′
3 (h, k) ds ≤ CQ

2

3Vβ−2. (5.45)

By multiplying and dividing by ∆1 defined in (5.3) we obtain,

m′∑

h=1

m∑

k=0

∫ t+∆1

t

I ′′
3 (h, k) ds ≤ CV

4

3Q
1

3

(
Q

2

3V−2+η+β
)
∆1. (5.46)
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Now we have, by Corollary 2,

Q
2

3V−2+η+β ≤ CV
2

3
(1−α)−2+η+β := CV−c. (5.47)

Hence, where c positive, the estimate (4.12) of the electric field in Proposi-
tion 4 would be improved, at least on a short time interval ∆1. Indeed, the
choice of the parameters ensure that it is so, provided that α > 5

9 .

Finally the bounds (5.24), (5.25), (5.29), (5.38) and (5.46) imply:

3∑

j=1

∫ t+∆1

t

Ij(X(s)) ds ≤ C∆1

[
VσQ

1

3 +
V

4

3Q
1

3

Vc

]
, (5.48)

where 0 < σ < 1+α
3 .

It remains the estimate of the last term I4(X(s)). It can be done by the
same procedure we used in Proposition 4 for the bound (4.18) with k ≥ 2
to obtain

I4(X(s)) ≤ C. (5.49)

Hence by (5.14), (5.19) and (5.48), this last bound implies:

∫ t+∆1

t

|E(X(s), s)| ds ≤ C∆1

[
VσQ

1

3 +
V

4

3Q
1

3

Vc

]
,

so that we have proved (5.6) for ℓ = 1.

Proof of step ii).
In the previous step we have seen that, starting from estimate (4.12)

on [0, T ], we arrive at (5.13) on ∆1. Let us now assume that (5.6) holds at
level ℓ− 1. Since it is uniform in time, it holds over [0, T ] and, in particular,
over ∆ℓ = G∆ℓ−1. Hence, we can assume (5.6) at level ℓ− 1 to arrive to an
improved estimate over ∆ℓ.

We recall that the term I3 was the one for which we needed to do the
time average. Hence, proceeding in analogy to what we have done above,
we arrive at the analogous of estimate (5.45),

∑

h

∑

k

∫ t+∆ℓ

t

I ′′
3 (h, k) ds ≤ CQ

2

3Vβ−2∆ℓ

∆ℓ

≤ C
V

4

3Q
1

3

Vc V(ℓ−1)δ
∆ℓ (5.50)

and consequently

〈E〉∆ℓ
≤ C

[
VσQ

1

3 +
V

4

3Q
1

3

Vc V(ℓ−1)δ

]
(5.51)

which proves the second step. Hence (5.6) is proved for any ℓ.
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6 Some technical proofs

Also in this section we will skip the index N in the estimates, but it has to
be reminded that the following estimates concern the partial dynamics.
Proof of Lemma 4.

It follows from the definition of the function ϕµ,R that, for any µ ∈ R

and any couple R,R′ such that 0 < R < R′, it is:

ϕµ,R′

(x) = ϕ

(
|x1 − µ|

R′

)
≤

∑

i∈Z:|i|≤R′

R

ϕ

(
|x1 − (µ+ iR)|

R

)
.

Hence, since both terms in the function W are positive, we have:

W (µ,R′, t) ≤
∑

i∈Z:|i|≤R′

R

W (µ+ iR,R, t) ≤ C

(
R′

R

)
Q(R, t).

Proof of Proposition 3.

For any s and t such that 0 ≤ s < t ≤ T we define

R(t, s) = R(t) +

∫ t

s

V(τ) dτ. (6.1)

Then,

R(t, t) = R(t) and R(t, 0) = R(t) +

∫ t

0
V(τ) ≤ 2R(t). (6.2)

Let (X(t), V (t)) and (Y (t),W (t)) be the two characteristics starting at time
t = 0 from (x, v) and (y,w) respectively. We have:

W (µ,R(t, s), s) =
1

2

∫
dx

∫
dv ϕµ,R(t,s)(X(s))|V (s)|2fN

0 (x, v)+

1

2

∫∫
dxdv

[
ϕµ,R(t,s)(X(s))fN

0 (x, v)

∫∫
dydwfN

0 (y,w)|X(s) − Y (s)|−1

]

(6.3)

from which it follows, by deriving the function W with respect to s,

∂sW (µ,R(t, s), s) = A1(t, s) +A2(t, s) (6.4)

with

A1(t, s) =

∫∫
dxdv ϕµ,R(t,s)(X(s))fN

0 (x, v)
[
V (s) · V̇ (s)+

1

2

∫∫
dydwfN

0 (y,w)∇
(
|X(s)− Y (s)|−1

)
· (V (s)−W (s))

] (6.5)
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and

A2(t, s) =
1

2

∫∫
dxdv fN

0 (x, v) ∂s

[
ϕµ,R(t,s)(X(s))

]

[
|V (s)|2 +

∫∫
dydw fN

0 (y,w) |X(s)− Y (s)|−1
]
.

(6.6)

The term A2(t, s) is negative. Indeed the quantity in square brackets is
positive, whereas, by the definition of the function ϕ, it is

∂s

[
ϕµ,R(t,s)(X(s))

]
=

ϕ′

(
|X1(s)− µ|

R(t, s)

)[
X1(s)− µ

|X1(s)− µ|
·
V1(s)

R(t, s)
−

∂sR(t, s)

R2(t, s)
|X1(s)− µ|

]
.

Now, ϕ′(r) 6= 0 only if 1 ≤ r ≤ 2, so that

−
∂sR(t, s)

R2(t, s)
|X1(s)− µ| ≥

V(s)

R(t, s)
,

since ∂sR(t, s) = −V(s). Hence

X1(s)− µ

|X1(s)− µ|
·
V1(s)

R(t, s)
−

∂sR(t, s)

R2(t, s)
|X1(s)− µ| ≥

−|V1(s)|+ V(s)

R(t, s)
≥ 0.

Thus, being ϕ′ ≤ 0, we have proved that

A2(t, s) ≤ 0. (6.7)

In the term A1, we observe ∇|x− y|−1 is an odd function. Hence, recalling
(3.9), by the change of variables (x, v) → (y,w) we obtain:

A1(t, s) = −
1

2

∫∫
dxdv

∫∫
dydw fN

0 (x, v)fN
0 (y,w)

[
ϕµ,R(t,s)(X(s))

∇|X(s)− Y (s)|−1 · (V (s) +W (s))
]

= −
1

2

∫∫
dxdv

∫∫
dydw fN

0 (x, v)fN
0 (y,w)×

{
∇
(
|X(s) − Y (s)|−1

)
· V (s)

[
ϕµ,R(t,s)(X(s)) − ϕµ,R(t,s)(Y (s))

]}
.

By the definition of ϕµ,R(t,s) it follows

|ϕµ,R(t,s)(X(s)) − ϕµ,R(t,s)(Y (s))| ≤ 2
|X(s) − Y (s)|

R(t, s)
,

and then:

|A1(t, s)| ≤
V(s)

R(t, s)

∫∫
dxdv

∫∫
dydw fN

0 (x, v)fN
0 (y,w)

∣∣∇
(
|X(s)− Y (s)|−1

)∣∣ |X(s)− Y (s)|
[
χ(B(s)) + χ(B̄(s))

]
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where, as it comes from the definition of ϕ,

B(s) = {(x, v) : |X1(s)− µ| ≤ 2R(t, s)},

B̄(s) = {(y, v) : |Y1(s)− µ| ≤ 2R(t, s)}.

By symmetry we have:

|A1(t, s)| ≤ 2
V(s)

R(t, s)

∫∫
dxdv

∫∫
dydw fN

0 (x, v)fN
0 (y,w)

∣∣∇
(
|X(s)− Y (s)|−1

)∣∣ |X(s)− Y (s)| χ(B(s)).

Since it is

r
∣∣∇(|r|−1)

∣∣ = 1

r
,

we have,

|A1(t, s)| ≤ 2
V(s)

R(t, s)

∫∫
dxdv

∫∫
dydw

fN
0 (x, v)fN

0 (y,w)

|X(s)− Y (s)|
χ(B(s)).

By the change of variables (X(s), V (s)) = (x̄, v̄) and (Y (s),W (s)) = (ȳ, w̄)
we get, after integrating out the velocities

|A1(t, s)| ≤ C
V(s)

R(t, s)

∫

B(s)
dx̄

∫
dȳ

ρ(x̄, s)ρ(ȳ, s)

|x̄− ȳ|
. (6.8)

Setting

B(s) =
⋃

i∈Z:|i|≤1

Bi(s)

and
Bi(s) = {x : |x1 − µi| ≤ R(t, s)}, µi = µ+ iR(t, s),

by the definition of ϕ we get:

∫

B(s)
dx̄

∫
dȳ

ρ(x̄, s)ρ(ȳ, s)

|x̄− ȳ|
=

∑

i∈Z:|i|≤1

∫

Bi(s)
dx̄

∫
dȳ ϕµi,R(t,s)(x)

ρ(x̄, s)ρ(ȳ, s)

|x̄− ȳ|

≤ C
∑

i∈Z:|i|≤1

W (µi, R(t, s), s) ≤ CQ(R(t, s), s).

(6.9)

Going back (6.8) we have

|A1(t, s)| ≤ C
V(s)

R(t, s)
Q(R(t, s), s), (6.10)
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so that, by (6.4), (6.7) and (6.10)

∂sW (µ,R(t, s), s) ≤ C
V(s)

R(t, s)
Q(R(t, s), s). (6.11)

Since we have

∫ t

0

V(s)

R(t, s)
ds = −

∫ t

0

∂sR(t, s)

R(t, s)
ds = log

R(t, 0)

R(t, t)
≤ log 2,

by integrating in s both members in (6.11) and taking the supremum over
µ, we get, by the Gronwall lemma,

Q(R(t, s), s) ≤ CQ(R(t, 0), 0).

The thesis follows by putting s = t, since by (6.2) Q(R(t, t), t) = Q(R(t), t),
while the monotonicity of the function Q and Lemma 4 imply Q(R(t, 0), 0) ≤
Q(2R(t), 0) ≤ CQ(R(t), 0).

Proof of Lemma 1.

We give first the proof for ℓ = 1, that is ∆ℓ = ∆1.
Since the magnetic force gives no contribution to the first component of the
velocity, by (4.12) and (5.3) we get, for any s ∈ [t, t+∆1],

|V1(s)−W1(s)| ≤ |V1(t)−W1(t)|+
∫ t+∆1

t

[
|E(X(s), s)| + |E(Y (s), s)|

]
ds ≤

V−η + 2C7V
4

3Q
1

3∆1 ≤ 2V−η .

Analogously we prove the second statement:

|V1(s)−W1(s)| ≥ |V1(t)−W1(t)|−
∫ t+∆1

t

[
|E(X(s), s)| + |E(Y (s), s)|

]
ds ≥

V−η − 2C7V
4

3Q
1

3∆1 ≥
1

2
V−η.

We show now that Lemma 1 holds true also over a time interval ∆ℓ,
ℓ > 1, supposing for the electric field the estimate (5.6) at level ℓ− 1 (that
is, only Lemma 1 at level less than ℓ is needed to establish (5.6) at level
ℓ). Since the estimate is uniform in time, it holds also over [0,∆ℓ]. Hence,
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proceeding as before we get for any s ∈ [t, t+∆ℓ],

|V1(s)−W1(s)| ≤ |V1(t)−W1(t)|+
∫ t+∆ℓ

t

[
|E(X(s), s)| + |E(Y (s), s)|

]
ds ≤

V−η + C

[
VσQ

1

3 +
V

4

3Q
1

3

Vc Vδ(ℓ−2)

]
Vδ(ℓ−1)

4C7V
4

3
+ηQ

1

3

≤

V−η + CVσ− 4

3
−η+δ(ℓ−1) + CVδ−η−c ≤ 2V−η,

by (5.8) and the choice of the parameters made in (5.2).
We proceed analogously for the lower bound.

Proof of Lemma 2.

We begin with the case ℓ = 1, that is ∆ℓ = ∆1.
We prove the thesis by contradiction. Assume that there exists a time
interval [t∗, t∗∗] ⊂ [t, t + ∆1), such that |Vr(t

∗)| = Vξ, |Vr(t
∗∗)| = 2Vξ and

Vξ < |Vr(s)| < 2Vξ ∀s ∈ (t∗, t∗∗). By the definition of B it is:

d

dt
V 2
r (t) = 2Vr(t) · Er(X(t), t), (6.12)

so that, by (4.12)

|Vr(t
∗∗)|2 ≤ |Vr(t

∗)|2 + 2

∫ t∗∗

t∗
ds |Vr(s)| |Er(X(s), s)| ≤

V2ξ + 4Vξ

∫ t∗∗

t∗
ds |E(X(s), s)| ≤

V2ξ + 4Vξ∆1C7V
4

3Q
1

3 < 2V2ξ.

(6.13)

The contradiction proves the thesis.
Now we prove (5.12). As before, assume that there exists a time interval

[t∗, t∗∗] ⊂ [t, t + ∆1), such that |Vr(t
∗)| = Vξ, |Vr(t

∗∗)| = 1
2V

ξ and 1
2V

ξ <
|Vr(s)| < Vξ ∀s ∈ (t∗, t∗∗). Then from (6.12) it follows, by (4.12):

|Vr(t
∗∗)|2 ≥ |Vr(t

∗)|2 − 2

∫ t∗∗

t∗
ds |Vr(s)| |Er(X(s), s)| ≥

V2ξ − 2Vξ

∫ t∗∗

t∗
ds |E(X(s), s)| ≥

V2ξ − 2Vξ∆1C7V
4

3Q
1

3 >
1

2
V2ξ.

(6.14)

Hence also in this case the contradiction proves the thesis.
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The same argument works also in an interval [t, t+∆ℓ], ℓ > 1, assuming
for the electric field the estimate (5.6) at level ℓ − 1. In fact we have the
bound (see before, at the end of the proof of Lemma 1),

〈E〉∆ℓ−1
∆ℓ ≤ CV−η−ε,

(for a suitable small ε > 0), which used in (6.13) and (6.14) allows to achieve
the proof.

Proof of Lemma 3.

We treat first the case ℓ = 1, that is ∆ℓ = ∆1.
Let t0 ∈ [t, t + ∆1] be the time at which |X1(s) − Y1(s)| has the minimum
value. We put Γ(s) = X1(s)− Y1(s). Moreover we define the function

Γ̄(s) = Γ(t0) + Γ̇(t0)(s − t0).

Since the magnetic force does not act on the first component of the velocity
it is:

Γ̈(s)− ¨̄Γ(s) = E1(X(s), s) − E1(Y (s), s)

Γ(t0) = Γ̄(t0), Γ̇(t0) =
˙̄Γ(t0)

from which it follows

Γ(s) = Γ̄(s) +

∫ s

t0

dτ

∫ τ

t0

dξ
[
E1(X(ξ), ξ) − E1(Y (ξ), ξ)

]
.

By (4.12)

∫ s

t0

dτ

∫ τ

t0

dξ |E1(X(ξ), ξ) −E1(Y (ξ), ξ)| ≤ 2C7V
4

3Q
1

3
|s− t0|

2

2
≤

C7V
4

3Q
1

3∆1|s− t0| ≤
|s− t0|

4
.

(6.15)

Hence,

|Γ(s)| ≥ |Γ̄(s)| −
|s− t0|

4
. (6.16)

Now we have:

|Γ̄(s)|2 = |Γ(t0)|
2 + 2Γ(t0)Γ̇(t0)(s − t0) + |Γ̇(t0)|

2|s− t0|
2.

We observe that Γ(t0)Γ̇(t0)(s − t0) ≥ 0. Indeed, if t0 ∈ (t, t + ∆1) then
Γ̇(t0) = 0 while if t0 = t or t0 = t+∆1 the product Γ(t0)Γ̇(t0)(s − t0) ≥ 0.
Hence

|Γ̄(s)|2 ≥ |Γ̇(t0)|
2|s− t0|

2.

By Lemma 1 (adapted to this context with a factor h ≥ 1), since t0 ∈
[t, t+∆1] it is

|Γ̇(t0)| ≥ h
V−η

2
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hence

|Γ̄(s)| ≥ h
V−η

2
|s− t0|

and finally by (6.16),

|Γ(s)| ≥ h
V−η

4
|s− t0|.

From this the thesis follows, since obviously |X(s)− Y (s)| ≥ |Γ(s)|.

By the same argument used at the end of the proof of Lemma 2, we see
that the same proof works also considering the interval [t, t+∆ℓ], ℓ > 1 and
assuming for the electric field the estimate (5.6) at level ℓ− 1.
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