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Abstract

In this paper we study a fully discrete Semi-Lagrangian approximation of a second order Mean
Field Game system, which can be degenerate. We prove that the resulting scheme is well posed
and, if the state dimension is equals to one, we prove a convergence result. Some numerical
simulations are provided, evidencing the convergence of the approximation and also the difference
between the numerical results for the degenerate and non-degenerate cases.
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1 Introduction

Mean Field Games (MFG) systems were introduced independently by [22] 23] and [25, 26, 27] in
order to model dynamic games with a large number of indistinguishable small players. In the model
proposed in [26], 27] the asymptotic equilibrium is described by means of a system of two Partial
Differential Equations (PDEs). The first equation, together with a final condition, is a Hamilton-
Jacobi-Bellman (HJB) equation describing the value function of an average player whose cost function
depends on the distribution m of the entire population. The second equation is a Fokker-Planck
equation which, together with an initial distribution mg, describes the fact that m evolves following
the optimal dynamics of the average player. We refer the reader to the original papers [22] 23] 25|, 26,
27] and the surveys [10, [19] for a detailed description of the problem and to [21] for some interesting
applications.

Numerical methods to solve MFGs problems have been addressed by several authors. Let us
mention the papers [3, 24, 20, 2, 11] where the second order system (i.e. when the underlying
dynamics is stochastic) is treated and to [9 [12] for the first order case (i.e. when the underlying

dynamics is deterministic).
In this article we consider the following second order possibly degenerated MFG system

—0w — Ltr (o(t)o(t) " D?v) + 3|Dv]*> = F(z,m(t)) in R*x]0, T,
oym — itr (o(t)o(t) " D?v) —div(Dvm) = 0 in R¥x]0,T7, (1.1)
v(z,T) = G(x,m(T)) for z € R, m(-,0) = mg(-) € P1(RY),
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where P;(R?) is the set of probability measures over R? having finite first order moment, o : [0,7] —
R and F, G : R x P; — R are two functions satisfying some assumptions described in Section
Up to the best of our knowledge, for this system, existence and uniqueness results have not been
established yet (except for the case r = d, 0 := 6l3xq4, 0 € R).

The aim of this work is to provide a fully-discrete Semi-Lagrangian discretization of , to
study the main properties of the scheme and to establish a convergence result for the solutions of
the discrete system. The line of argument is similar to the one analyzed in [I2]. Given a continuous
measure-valued application u(-) and a space-time step (p, h) we discretize the HIB

—9w — Str (o(t)o(t) " D) + 3|Dv? = F(z,p(t) in Q,

v(x,T) = G(z,u(T)) for z € RY, (12
using a fully-discrete Semi-Lagrangian scheme in the spirit of [8, [I6]. We then regularize the solution
of the scheme by convolution with a mollifier ¢ (¢ > 0). The resulting function is called vf , [u].
In order to discretize the second equation we propose a natural extension to the second order case
of the scheme in [12] designed for the first order equation (i.e. with ¢ = 0). The solution of the
scheme is denoted by m ,[u(-). The fully-discretization of problem is thus to find p(-) such
that m? , [u(-) = p(-). The existence of a solution of the discrete problem is established in Theorem
by standard arguments based on the Brouwer fixed point Theorem. The convergence of the
solutions of the discrete system to a solution of is much more delicate. As a matter of fact,
as in [12] we establish in Theorem the convergence result only when the state dimension d is
equals to one. Under suitable conditions over the discretization parameters, the proof is based on
three crucial results. The first one is a relative compactness property for m;h[u](-), which can be
obtained as a consequence of a Markov chain interpretation of the scheme. The second result is the
discrete semiconcavity of v, [u] (see e.g. [1]), which implies a.e. convergence of Dvg ,[u] to Du[y]
(where vy is the unique viscosity solution of (L.2))). The third result are L>-bounds for the density
of m  [u](-), where the one dimensional assumption plays an important role. We remark that our
convergence result proves the existence of a solution of when d = 1. Moreover, our results are
valid for more general Hamiltionians, as the ones considered in [I] (see Remark [5.1fii)). However,
since the proofs are already rather technical, as in [12], we preferred to present the details for the
quadratic Hamiltonian case.

The paper is organized as follows. In Section [2| we fix some notations and we state our main
assumptions. In Section [3| we provide the natural Semi-Lagrangian discretization for the HJB equa-
tion and we prove its main properties. In Section [d] we propose a scheme for the Fokker-Planck
equation and we prove that the associated solutions, as functions of the discretization parameters,
form a relatively compact set. In Section [5| we prove our main results, the existence of a solution of
the discrete system and, if d = r = 1, the convergence to a solution of . Finally, in Section |§|
we present some numerical simulations showing the difference between the numerical approximation
between degenerate and non-degenerate systems.

2 Preliminaries

Let us first fix some notations. For z € RY we will denote by || = VT2 for the usual Euclidean
norm. In the entire article ¢ > 0 will be a generic constant, which can change from line to line. For
u € R? x [0,7] — R we will denote by dyu for the partial derivative of u (if it exists) w.r.t. the time
variable and by Du, D?u the gradient and Hessian of u (if they exist) w.r.t. the space variables. We
denote by P(R?) the set of Borel probability measures p over R? and, for p € [1,00[, we say that



p € Pp(RY) if
/ |z|Pdp(z) < +oo.
Rd

The distance d,, : P,(R?) x Pp(RY) — R is defined as

dp(p1, p2) = inf { [/R e y|"dw<x,y)} T AAXRY = i(A), AR x B) = pa(B) VA, B € B(R%} :

~YEP (R xRE)

It is well-known (see e.g. |29, Theorem 1.14]) that d;, can be expressed in the following dual form
di(p, po) = sip {/d o(x)d[pr — p2l(x) 5 ¢is 1—Lipschitz} . (2.1)
R

Let us recall the following useful result (see e.g. [4, Chapter 7] and [10, Lemma 5.7)):

Lemma 2.1 Let ¢ > p >0 and K C P,(R%) be such that

sup/ |z|9dp(r) < 0.
neK JR4

Then K is a relatively compact set in Py(R?).

We assume now the following assumptions on the data of (1.1):

(A1) We suppose that:

(i) F and G are uniformly bounded over R? x P; and for every m € P;(R?), the functions F(-,m),
G(-,m) are C? and their first and second derivatives are bounded in R, uniformly with respect to
m, i.e. 3 ¢ > 0 such that

IFC,m)|lez + [|GCm)lle2 < ¢ ¥V m € Py(RY),

where for ¢ : R — R we set [|¢|c2 := sup,cpa. laj<2 [DYd(z)].
(ii) Denoting by oy : [0,7] — R? (£ =1,...,7) the £ column vector of the matrix o, we assume that
oy is continuous.

(iii) The measure myg is absolutely continuous, with density still denoted as mg. Moreover, we
suppose that mg is essentially bounded and has compact support, i.e. there exists ¢ > 0 such that
supp(mg) € B(0,c), where B(0,¢) := {z € R?; |z| < ¢}.

We say that (v, m) is a solution of if the first equation is satisfied in the viscosity sense (see
e.g. [14, [18]), while the second one is satisfied in the distributional sense (see e.g [17]), i.e. for every
¢ €C>(R?) and t € 0,7

| o@an@@) = [ oamo@) + [ [ [¥1v(00" (5)0%()) = (Do(@). Dofe. )] dm(s) ).

Our aim in this work is to provide a discretization scheme for (|1.1)). Given h, p > 0, let us define
a space grid G, and a time-space grid G, as

g/) = {,jU,L = Zp, 1€ Zd}, gp,h = gp X {tk}]kVZ()?

where t, = kh (k = 0,...,N) and ty = Nh = T. We call B(G,) and B(G, ) the spaces of
bounded functions defined respectively on G, and G, . For f € B(Qp) and g € B(gp,h) we set
fi == f(xi), gir = g(xi,t). Given a regular triangulation of R? with vertices belonging to Gp, we



set f;(x) for the barycentric coordinate of x relative to z; in the triangulation. Clearly §;(z) is a
piecewise affine function with compact support, satisfying 0 < 3; < 1, B;(x;) = d;; for all x; € G, (the
Kronecker symbol) and Y, 54 8;(z) = 1 for all z € R?. We consider the following linear interpolation
operator

IIf1(-) =Y fiBi(-) for f € B(G,). (2.2)
iezd
We recall two basic results about the interpolation operator I (see e.g. [13,28]). Given ¢ € Gy, (RY)

(the space of bounded continuous functions on R?), let us define ¢ € B(G,) by ¢; := ¢(z;) for all
i € Z%. Suppose that ¢ : R — R is Lipschitz with constant L. Then,

I[@¢] is Lipschitz with constant v/dL. (2.3)

On the other hand, if ¢ € C?(R?%), with bounded second derivatives, then there exists ¢ > 0 such that

sup 1] () — ¢(x)| = cp”. (2.4)

3 A fully discrete semi-Lagrangian scheme for the Hamilton-Jacobi
Bellman equation

Given u € C([0,T]; P1(R9)), let us consider the equation

0w — Str (o(t)o(t) " D*v) + 3|Dv> = F(z,p(t)) in R9x]0,T7, 3.1)
v(z,T) = G(a,u(T)) for z € R™ '

We discuss now a probabilistic interpretation of . Consider a probability space (Q, F,P), a
filtration {F; ; t € [0,T]} and a Brownian motion W(-) adapted to F := {Fl},c 7). Define the
space

LIQF’2 ={ve L’(Qx[0,T];P®dt); v is progressively measurable w.r.t. F},

where dt is the Lebesgue measure in [0,7]. For every a € LIQF’2, set
S S
X%a)(s) = x —/ a(r)dr+/ o(r)dW(r) VseltT].
t t

Then, setting

T
ofp)(z,t) = inf E( | [3la() + Fx=4lal(s). )] ds+G<Xx’t[a1<T>,u<T>>), (3:2)

oceLIQF’2

under (A1), classical arguments (see [30, Proposition 3.1 and Proposition 4.5]) imply the existence
of ¢ > 0 such that

vlpl(z,t) — vlu](2’, )] SC[IJE-JE’\ + (L |zl v 2']) If’—tl} Va2’ eRY tt €[0,T], (3.3)
vlp|(z + 2’ t) — 2v[u](x,t) +olp)(z —2',t) < c2’]? Va2’ €eRY, 0<t<T. (3.4)
Moreover, by the continuity property implied by (3.3]), we can write directly the following dynamic

programing principle for v[ul(-,-) (see e.g. [6]):

t+h
v[p](z,t) = inf E (/t [%]a(s)\g + F(X™!a](s), (s))] ds + (X a](t + h),t+ h)) ,  (3.5)

2,2
a€ly



for all h € [0, T — t]. Using it is shown (see e.g. [15, Theorem 3.1]) that v[u](x,t) is the unique
viscosity solution of .

Given p, h > 0 and N such that Nh = T, expression (3.5)) naturally induces the following scheme
to solve (3.1))

i = Spnlp) (v g1, k) foralli € G, k=0,...,N—1,

. (3.6)

v N = G(zi, p(tn)), for all i € G,

where Sp,h[#] : B(G,) x Z x {0,...,N — 1} — R is defined as
Spalul(F0sK) = intacpa |3 Sy (1) = ha + Vhrou(to) + 1)@ = ha = Vo))

+3hlal® + hE(zi, p(tr))] -
This scheme has been proposed in [§] for a stationary second order possibly degenerate Hamilton-
Jacobi-Bellman equation, corresponding to an infinite horizon stochastic optimal control problem.
We now prove, in our evolutive framework, some basic properties of S’p,h[,u]~

Proposition 3.1 The following assertions hold true:

(i) Suppose that I[f] is Lipchitz with constant L > 0. Then, there exists a compact set K C R?
(whose diameter depends only on L) such that the infima in the r.h.s. of s attained in the
interior of Ky,.

(ii) For allv,w € B(G,) with v < w, we have that

Synlul(vi k) < Sy ulu)(w,i k) for alli € G,y k=0,...,N — 1.
(iii) For every c € R and w € B(G,) we have
gmh[y](w +ec, i, k) = Sp’h[u](w,i,kj) +c, forallic G, k=0,...,N —1.

(iv) Let (pn, hn) — 0 (as n 1 o) with p2 = o(hy) and consider a sequence of grid points (l‘zn,tk ) —
(z,t) and a sequence i, € C([0,T); P1(RY)) such that p,, — p. Then, for every ¢ € C° (R x [0,T)),
we have

tim - (61, t4,) = Sy 1) Bho 1 )| = ~000(e, 1) — Stx (o()0(t) D2(, 1)) + 3IDol — F(a, p(t)),

where ¢ = {d(zi, tr) }icza-

Proof. Properties (ii) and (iii) follows directly from (3.7). Now, since I[f] is bounded and continuous
we directly obtain the existence of a minimizer & of the r.h.s. of (3.7). Letting

T

> (111w = ha+ Vhroy(t)) + 111 1(ws — ha = Vhrou(t)) )

(=1

1

g(a) == o

we have that ¢ is Lipschitz with constant hv/dL and
shlal® < g(0) — g(a) < WVdL|al,

The above expression implies that |@| < 2v/dL, which proves (i). Now, in order to prove (iv) let
# € C>*(R?) and notice that since I[¢(-, )] is Lipschitz with a constant depending only on || D¢(-, 1) |0
(and thus independent of (u, p, h)), We obtaln by (i) a fixed compact K, C R? (depending only on ¢)
such that the infima in the r.h.s. of (3.7)) are attained in K. Using this fact, for every £ =1,.

and a € K4 a Taylor expansion ylelds to

d(xi, — hna+ Vhproo(ty, ) te, 11) = gb(:cln,tk 1)+ Doy, te, 1) ( hpo + \/Wag(tkn))
oo(tr,) " D*@(xi,,, th, 11)00(tr,) + o(hn),

O(xi, — hna = Vhproo(ty, ), th, 11) = ¢($zn»tk +1) + Do(xi, te,41) T (=hna = Vhnroo(te,))
)" D2¢(@i,, sty +1)00(th, ) + 0(hn).-

(3.8)
Uz(tk

5



Using the interpolation error estimate (2.4) and adding the equations in (3.8)), we get

(i, th, ) — Spn,hn [Nn](¢kn+1vina kn) = o(zi,,tk,) — O(xi, e, +1) — M F (24, , pin(tk,))
—Letr(o(tr, )o(t,) T DG (i, , th, +1))
—hninf, cing g,y [=DO(i, te,+1) T @ + 5halal?]
+0(p2) + o(hy).

If we choose K, large enough such that for all (2/,#') € R? x [0, 7],

inf  [-Dg(x',t")Ta+ §|af’] = inf [-Do(a',t")Ta+ §|af*] = —5|De(a’, ),
acint(K,) aER4

then, dividing by h,, and letting h,, | 0, we can pass to the limit in (3.9) to obtain the result. m

We now define
vpn[pl(x,t) = I[v[%]](ac) for all (z,t) € R? x [0, T]. (3.10)

Note that taking ¢t = ¢’ in (3.3), we have that v[u](-, ) is Lipschitz. We now prove the corresponding
result for v, ,[u](-,t) as well as a discrete version of (3.4).

Lemma 3.1 For every t € [0,T], the following assertions hold true:
(i) [Lipschitz property] The function v, p[p](-,t) is Lipschitz with constant independent of (p, h, j1,t).
(ii) [Discrete semiconcavity| There exists ¢ > 0 independent of (p, h, j1,t) such that

Vol (i + 2, t) = 20p [l (i, t) + v nlpl (i — 2, t) < el Vi, 2 €0, andt €[0, 7] (3.11)

Proof. Using that 8,(2it; +2) = Bm—;(xi + 2), for every m,i, j € Z% and z € RY, for every o € RY,
k=0,....N—1and £=1,...,7r, we have that

I[v. g1 )(xi; — ha + Vrhoo(t)) — Iv. g (@ — ha 4+ Vrhoy(ty))

(3.12)
= ZmeZd /Bm(xl — ha + maf(tk))(vm—i-j,k—i-l - Um,k—i—l)a
with an analogous equality for the difference

T 1) iy — ha = Vrhoo(t)) = I[v 1) (zi — ha — Vrhoy(t).

Since G(-, u) is Lipschitz by A1(i), with a constant ¢ independent of u, (3.6)-(3.7) imply that
[Vm+j, N — Vmn| < €|Tmtj — Tm| = clziy; — @i for all m € Z9. Therefore, since >, _ya Bm(z) = 1

for all z € R?, we obtain with A1(i), (3-6)-(3.7) and that
[Vigjn—1 — vin-1] < (1 + h)|@it; — i
Therefore, by a recursive argument using we easily obtain that
[Vitjk — vig| < c(1+Th)|xiy; — x| foralli, j € Z? and k=0,...,N,

and assertion (i) follows from (3.10]) and (2.3). In order to prove the second assertion note that, since
G is semiconcave, the result is valid for v. ;. Inductively, we suppose the result for t;,1, i.e.

2 C s md
Vit k1 — Vi1 + vimjrs1 < clzglt, Vi, j € Z, (3.13)



and we prove its validity for ¢; (k=0,...,N —1). Let us denote by «;j an optimal solution for the
problem defining S, 14} (v. k41,%, k). Then

Vigik < o S [I['U»,k+1]($i+j — hai g + Vrhoo(te)) + 31V ng1](Tigs — hog g — maz(tk))] + L hloy k|2

+hF (@545, 1(te)),

=3 [I[v»,k+1](xifj — ha g+ Vrhoo(te)) + 31V m1](ziej — hoy o — ma@(tk))] + hla )2

+hF (@i—j, p(tx)),

Vik = 5= pey [I[U,k“](wi — hoy i + Vrhoy(ty)) + 31V ng1)(ms — hoy i — mvz(tk))] + 1n|a; k]2
+hF (x4, p(tr))-

IN

.
ik (3.14)

On the other hand, we have that

I[U-,k+1](xi+j - /’LO&,’JC + vV Tho’g(tk)) — 2][’!}.,16_;,_1}(:(22‘ — haiyk + V ’r‘ho’g(tk)) + I[v.7k+1](zi,j - h()c@k + V Tho’e(tk)) =

> mezd Bm(xi — hai g + Vrhou(t)) [Vmtj k1 — 20m kst + Om—jk41] < clajl?,
where the last inequality follows from . Analogously,
Iv. 1) (i j — hey k — Vrhoo(te)) — 21 v. 1] (zi — hag o — Vrhoo(ty)) + I[v. g1](zij — hoy . — Vrhoo(ty)) < claj|?.

Therefore, combining , the semiconcavity of F' and the above inequalities, we obtain

Vigjik — 205k + Viejk < (14 h)|z; [
In particular, for n = N — 1, we get

Vigj N—1 — 20; N—1 + vi—jn—1 < c(1 + h)|acj|2

and by recurrence, for all k =0,..., N,

Vitjk = 20ik +0i g < (14 T)|z [?

from which the result follows. =

Now, we regularize v, in the space variable. Let ¢ > 0 and ¢ € Cgo(Rd), with ¢ > 0 and
Jga #(z)dz = 1. Define ¢ (x) := E%(;S(:L"/s) and set

Uonltl(51) := e x vpn[p] (- 1) Vi €0,T]. (3.15)

Using that vy, [u](-,¢) is Lipschitz by Lemma (i), we easily check that there exists v > 0 (inde-
pendent of (e, p, h, u,t)) such that

AN

o5 nlid 5 ) = vpnlul 5 )l < e

3.16
1D [ (Moo < cas 1o (3.16)

where « is a multiindex with |a| > 0 and ¢, > 0 depends only on a. We have the following results
whose proofs are provided in [12].

Lemma 3.2 For every t € [0,T] we have that:
(i) The function vzh[,u](-,t) is Lipschitz with constant c independent of (p, h, u,t).
(ii) If d = 1, then

(Dv;h(xj, ty) — DU;h(l‘i,tk)) (xj — ;) < ez — xi)2 Vk=0,...,N. (3.17)



Proof. See [12, Lemma 3.4(i) and Lemma 3.6]. m
The following convergence result holds true:

Theorem 3.1 Let (pn, hpn,en) — 0 be such that p” — 0 and p, = 0(5n) Then, for every sequence
wn € C([0,T];Py) such that p, — p in C([0, TY; 731) we have that v" , [un] — vlp] uniformly over
compact sets and Dvi" | un](z,t) — Dolu](x,t) at every (z,t) such that Dv[u)(z,t) ezists.

Proof. Using the properties of the scheme proved in Proposition the first assertion follows by
classical arguments (see [5] and [12, Theorem 3.3]). The second assertion is proved following the same
lines of the proof of [I12] Theorem 3.5], which uses the uniform discrete semi-concavity of Uz:,hn [fen],
proved in our case in Lemma and [I, Lemma 4.3 and Remark 4.4]. m

4 The fully-discrete scheme for the Fokker-Planck equation

Given a compact set I C R let us define the convex and compact set

S =< (Mi)ieza; mi =0 Vi€ Z m;y =0 ifip ¢ K and > m=1p. (4.1)
i€zl
For p > 0 and i € Z? we set E; := [z} — ip,al + 3p] x -+ [2¢ — p,2¢ + 1p| and for a given

p=A{pir; i€ k=0,...,N} € Sg“ we define for all k = 0,..., N the measure fi(t) € P1(R?)
as
p Z i kg, (x (4.2)
i€Z4

and its extension to all t € [0,7T] by

i) = (5= e+ (5 ) ) it e st (43)

By construction i € C([0,T]; P1(R%)) and without danger of confusion we will still write u for fi.
Thus, given u € S,JCV'H we can define v[p](-,-) as in Section 3| For ¢ > 0,i € Z% ¢ =1,...,r and
k=20,...,N —1 let us set

(I)f,’lf’ﬂﬂ] = x; — hDv , [u](@i, t) + Vrhoo(ty), (4
q)f,7l€7_[/“b] = x; — hDvg  [u](@i, t,) — Vrhoo(ty),
and define m[u] = {m; x[p] ; i € Z%, k=0,..., N} recursively as
r 2, -

miolp] = fEimo(iL')dZL‘.

Remark 4.1 There exists a compact set K C R such that m[u] € Sﬁh“. In fact, using that myg
has a compact support and that o and Dv; ,[u](z,tr)are uniformly bounded (by Lemma (1)) we

have the existence of a constant ¢ > 0 such that m; = 0 if pi ¢ B(0,¢/V'h), for every k =0,...,N
Moreover,

Z mi);ﬁ_l Z Z Z [61 (‘ba b + ) + Bz (q)iji’_[ ):| m;j, k Z m;j k = Z mj,O[/J’] -
i€zd jEZd Z 14ezd JEZA jeZ

which implies that the scheme is conservative.



Associated to (4.5) we set mg ,[u] = n/”;m € O([0,T); P1(RY)), defined through (4.3), and for all
k=0,...,N we define the measure

WSl Cote) = Y miglulda, (). (4.6)
i€zd

Clearly, {mg ,[u](-,tx) ; k =0,....,N} € Py (RHN+L The following simple remark will be very
useful in the sequel.
Remark 4.2 (Probabilistic interpretation) Let us define
(k) . 1 r ) e,l,+ ) el,— _ o
p](-,oi) = a2y o (25 ) 48 (5] vE=0 N, wn
b; = mioly].

By classical results in probability theory (see e.g. [T]) the family {pgkl) 0§, i€Z% k=0,...,N -1}

together with {pl(-o) ;i € Z% allow to define a probability space (Q, F,P) and a discrete Markov chain

(Xk)o<k<n taking values in Z¢, such that its initial distribution is given by (pgo))iezd, the transition

probabilities are given by (4.7) and the law at time ti is given by m;h[u](-,tk). That is,

P(Xo = ;) :pg , P(Xpy1 = | X =2j) = p(? and P(Xy = x;) = m; ;1]

J
We have the following relation between the m , [u] and s, [u]:

Lemma 4.1 There exists a constant ¢ > 0 (independent of (p, h,e, 1)) such that for all k =0,..., N
Jl (m;,h[ﬂ](y tk)a mf},h[u](7 tk)) < cp.
Proof. Let ¢ € C(R?) be 1-Lipschitz. Then, by definition,
€ ~E 1
[ 0w [l te) = el 0] ) = 3 masli] | [ dladte - o(es)|.
i€z i

Then, the result follows, since for all i € Z¢,

5 [ otente = o)

1
< — [ |z —a]dz < cp.
P JE;

The following result will be the key to prove a compactness property for m;h[u].

Proposition 4.1 Suppose that p = O(h). Then, there exists a constant ¢ > 0 (independent of
(p,h,e, b)) such that for all 0 < s <t < T, we have that

dy (1 (8), 5 1) (5)) < V. (45)

Proof. Let us first show that for all k&, ¥ = 0,..., N, with ¥’ < k, we have that
di (g 1 (t), Mo [ (te)) < e/ (k= K)h = eVt — T, (4.9)
di(mg [ (tk), mp [ (ter)) < e/ (k= K)h = eViy =t (4.10)

Ne



For notational simplicity we will suppose that k&’ = 0 and we omit the dependence on u. Consider

the Markov chain X defined in Remark and let v € P(R? x RY) be the joint law X}, and Xj.
By definition of d; we have that

da (112, (t), 7, 1 (0)) < Ep (| Xx — Xol) (4.11)

where P is the probability measure introduced in Remark and Ep(Y) = [, Y (w)dP(w), for all
Y : Q@ — R which are F measurable. We have that

_ k—1 (k=1) , (k—2) (0)
Ep (| Xz — Xo|) = Zzgzk Zp:o(xipH - zi,) D1 inPir_syin_1 - Pig.iy Mo 0,
_ k—2 (k=1)  (k—2) (0)
- Ziow--,ikq Zik Lij, = Ty T ZP:O (xip+1 B :Cip) Dij 1 Pir_syin—y -+ Pig,iy Mo, 05
(4.12)
and by (4.7]) we obtain
- k—1
Zik Tij, — Tip_y + Zi:g(‘rip+1 - ‘rlp) pgk,l,)ik =

3 2o sz Tij, — Tiy_y + Zﬁ;g(xipﬂ - xip)l [ﬁik ((I’f,f,fk—l) + Bi, (q)f,f,;kﬂ)} .
Using that p = O(h), for £ =1,...,r we have that

iy |Ti — iy +Zl;;g($ip+1 —Tip)| By (‘Pf;f_’?k,J < ‘Pfl’f_’?k,l —Tip_ +Z;§;g($ip+1 —zip)| + O(p),
= ‘—hDUf,,h(CCik,1 vt—1) + Vrhop(tg—1) + E’;;ﬁmwl - Tip)
+0(p)
< |VrRou(tio1) + SpZi (@i, — @ip)| + che
Analogously,
k-2 k-2
A=
Z Tiy, — Ligy_q + Z(wii"Jrl — :cip) ﬁik (¢§k—17k71) < |- h?"o’g(tk_l) + (:Eierl — -Tip) + ch.
ik p=0 p=0
Thus,
k-2 (k—1)

Eik Tjy, = Tip_y T Ep:o(xip+1 - Iip) P v S

1 T / k—2

2r ka,1:1 Zegkile{—l,l} ’ Thefk—lafk—l (tk‘*l) + Zp:O (xip+1 - xip) + ch.
Therefore,

- k-2
1 / (k—2) (0)
Ep (| Xk — Xo|) < 2r Z Z Z rheg,_ 00, (t—1) + Z(xip+1 - m"p) Dy _grig_q v Pig,ig Mho,0
lp—1=Lleg, ,€{-1,1} 10, ik—1 p=0
+ch.
By a recursive argument, we get
k—1

2

Be (1Xe—Xo) < oo 20 S D enon(ty)| + ckh. (4.13)

( Le—1,L0€{L, i} ey sesepg €{—1,1} |[P=0

Now, consider k steps of a random walk in R", i.e. a sequence of independent random vectors
2o, ..., Z in R", defined in (2, F,P), satisfying that for all 0 < p < k

P(Zle)zp(zf:—l)zi forall {=1,...,7 and P U {2 #0yn{z>+0}| =o0.

p p
2r 1<, <o <r
Then, by the Cauchy-Schwarz inequality,
1
1 k—1 k—1 k—1 2\ 12
(2r)k > > >_er,00,(ty)| = Ee ( D _oltn)Z, ) < |Ee | D _o(t)Z,
li—1,-.Lo€{1,...,T} egkil,...,egoe{—l,l} p=0 p=0 p=

10



Since EF(Z,) = 0, by independence we easily get that

k—1 1 k—1
B | Y lot)Z)" | =~ tr(o(t)o(t,) ),
p=0 p=0

and since o is bounded, we have that

k-1
(271")k Z Z Z ezpo—gp (tp) S C\/E7

Li—1,--,L0 €Ly 102 p=0

for some ¢ > 0. Thus, combining (4.11)), (4.13) and the above inequality, we obtain that
dy (1, (1] (E), 005, (1) (Br)) < eVEh + ckh = O(VEh),

which proves (4.9)). By the triangular inequality we get

du (s () ms (1)) < da (Lt s i (1) )+ (0, [t ), 0 1] ) )
A MR MICOIE

Since p = O(h), we get by Lemma [4.1| and (4.9) that
dy (g, ] (t), mi 1) (tr)) = O(p+ /(k — K)h) < O(Vi, — tw),

which proves (4.10). Now, suppose that s € (¢, tk,+1) and t € (tk,, tg,+1), then by the triangular
inequality

di (mf (1), m5 1(s)) < dy (M p(tky 1), mp () + do (mp g (Eky+1), mp p(Eky)) + di (M p(tky),mp (1) . (4.14)
Now, by (E3) and (LT0)

5 5 5 5 t —s £ 5
dy (mp,h(tk1+1)’ mp,h(s)) +di (mp,h(tk2)7 mp,h(t)) < kltll dy (mp,h(tkl-‘rl)v mp,h(tkl))
t—t e e
+ hk2 dy (mp,h(tk2)a mp,h(tk2+1))

t—tp th, 41—8
< e[+ ]

If k1 + 1 # ko we have, since t — tg, < h and tg,+1 — s < h,
dy (M5 g, (thy 1), M5 1 (9)) +di (M5 4 (tky), M5 1, (1) = O(VR) = O(/ty — try11) = O(VE—5). (4.15)

If k1 + 1 = ko, we have that t — s < 2h

dy (M, (k1) mp () + di (m ) (ty), i (1)) = O(t\;;) =0Vt —s). (4.16)

Therefore, since in both cases we have d; <m;h(tk2),m;h(tkl+1)> = O(\/t — s), inequalities (4.14])
and (E15)-([E16) imply that

dq (m;h(t), m;’h(s)) =0Vt —s).

Now, let us prove some uniform bounds for mg , [¢](-) in Po(RY).

11



Proposition 4.2 If p = O(Vh), then there exists ¢ > 0 (independent of (p, h, e, 1)) such that

/Rd 22dmS [u](t) < Vi€ [0,T]. (4.17)
Proof. By notational convenience we omit the dependence on u. For every k = 0,...,N — 1 we
have
1
/ \x!zdm;’h(a:,tkﬂ) = Z d/ \x]Qda: M k1,
R? iezd P,
but

L, L=
>iczd ﬁ fEl |z[2dz mi g1 = % Dicza ,%d fE7 |z[*dx ZjeZd P {ﬁi(‘b;,k +) + Bi(q)j,k )} Mk,

Lt L=
= 2% jezd Mk ZZ:1 ZieZd [5i(q’§,k )+ Bi(q);k )} p% fE \17|2d55-

Now, by a simple Taylor expansion we easily prove that for ¢ € C%(E;) we have

E r)dx — ¢(x;)| = 2 { d
\p/&w )z — ¢(an)| = O(?), viezd (4.18)

Thus, letting ¢(x) = |z|?, we get

T in 787 " 747_
Jia @2ams (@, 1) = 3 X segamn Yoy (TBU@50T) + T81(@557) ) + O(s2),
T 7£7 7£7_
= & ez (Sis |05+ 19507 12] ) + 07),

where the last equality follows from ([2.4]). Therefore, we get

1 T
/]R [w2dmg (@, thn) = — D me [l = 20(Dus (w5, 1), 25) + B2 DV (w5, )7 + Bloe(t)[]+0 (p°) -
jezd =1

Now, using that [(Dv} (2, tx), z;)| < 3(c+|zj|?), for some ¢ > 0, and that ¢ is uniformly bounded,

we obtain ) ) )
S l22dms (2, ti1) < (L4 B) Y cqamylas]2 + O (h+ p?),

(14 h) [pa |x]2dm;h(:v, te) + O (h+ p?),
where we have used again (4.18). Setting Ay, := [u |x\2dm; n(x, ;) we get that

Appr < A+ h) A +c(h+p7),
for some ¢ > 0. Therefore, inductively for all k1 =0, ..., k,
Ay < (L4 RFIR A te(h+ ) SICE (LB < (14 R)FH Ag 4 e+ p2) [SHI222]
<eT(Ag+(1+ %))

for some ¢ > 0. Since p? = O(h) we get (£.17) for all t;, =0,..., N and by (4.3) forall t € [0,7]. m

Our aim now is to obtain when d = 1 uniform L*°-bounds for m7 pli]. We remark that for d =1
it suffices to consider also r = 1. In this case the notation can be simplified, and the superscript ¢
will be suppressed.

12



Lemma 4.2 Suppose that d = 1 and consider a sequence of numbers pp, hn,en converging to 0.
Then, there exists a constant ¢ > 0 (independent of (n,u) for n large enough) such that

min {9575 ] — @5 2 07 (] — O3 WP} = (1= cha) s — 3 (4.19)

foralli,jeZ, k=0,....,N—1. As a consequence, there exists a constant ¢ > 0 (independent of
(n, 1)) such that

> 18 (@537 1u]) + 8 (0537 1) | <1+ e (4.20)

JEZ
Proof. For the reader’s convenience, we omit the p argument. By (4.4) we have that

Enyt Enst12
|(I)i,k _(I)j,k -

2
xi—x]——h[Dvi:yhn(mi?tk)—Dv;:’ (xptk)} Vo (ty) — Vino(ty)

> s — z]? — 2hn (Dviz’hn (i te) — D, (2, tk)> (i — z;),

)

which together with the condition Lemma [3.2{ii) yields to
[N <I>€"’+| (1 — chy) |z; — =%

for some ¢ > 0. Since the same argument is valid for ®;5'~, we get (4.19). Using (4.19) and following
the proof in [I2] Lemma 3.8], we obtain that for all k =0,...,N —1 and i € Z

> (@55 ul) <1+ chay and 0B (053 []) <1+ chy
JEZL

JEZ

for some ¢ > 0, which implies (4.20). =

As a consequence we obtain the following uniform bound:

Proposition 4.3 Suppose that d = 1 and consider a sequence of positive numbers (pp, hp,en) — 0.
Then, there exists a constant ¢ > 0, independent of (n, u) such that

[l (5 B)lloe < e (4.21)
Proof. We have that for all k=0,...,N — 1 and = € E;
mor g (@ ten) = Somipale] =Y [ﬁi <<I>§”;€’+[u]) + Bi (@j”;g’_[u])] Sk lul,

= ez [Bi (@53 ) + 81 (@557 1) [ e, [l ),
< g 1)t loo (1 + ),

by (4.20)). Therefore, by recurrence

rm;@wwmmmsuﬂmwwmmsﬂwww

If ¢ €]ty tesa], by (4.3) we have the same bound for [|m." , [p](-?)[[cc. m
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5 The fully discrete SL approximation of the second order mean
field game problem

Given positive numbers p, h and ¢ let us consider the problem

Find p € C([0,T]; P1) such that mg ,, [u] = p. (MFG);,,
or equivalently, recalling (4.5) and Remark find p € gS’,]CVhJrl such that

Bikt1 = 55 D jezd 2= [51' (qi:iﬂr[“]) + 0 (q)?’iﬁ[u})} Hiks (5.1)
pio = [z mo(z)d. |

We have the following existence result:

Theorem 5.1 Problem (MFG); ,, has at least one solution.

Proof. Let {p,}nen and p € SNJrl such that p, — p. Then, as elements in C([0,7T]; P1(R") (see
. ([.3)) we have that SUPye(o, 7] d1 (n(t), u(t)) — 0. Therefore, by assumption (Ag) we have that
05 plin] = 05, [p] uniformly and therefore Dvf ; [un] — Dvf j[p] uniformly. This implies that the

function p € Sﬁjl — mlu] € Sﬁ:l defined by (4.5)) is continuous and since S%:l is a non-empty
convex compact set the result follows from Brouwer fixed point Theorem. m

Now we can prove our main result:

Theorem 5.2 Suppose that d = 1 and that (A1)-(A3) hold true. Consider a sequence of positive
numbers py, hn, €n satisfying that p, = O(hy) and that hy, = o(e2). Let {m"},en be a sequence of
solutions of (MFG);" , . Then any limit point m in C([0,T];P1)of m" (there exists at least one)
solves (MFQG). Moreover, m" — m in L™ (R x [0, T])-weak-+. In particular, if (M FG) has a unique
solution m, then m™ — m in C([0,T]; P1)and in L™ (R x [0, T])-weak-+.

Proof. For notational convenience we will write v™ := v°" o 1, IM"]. By Propositions Lemma

and Ascoli Theorem, there exists m € C([0,T7; 731) such that, except for some subsequence m"
converge to m in C([0, T] P1). Our aim is to prove that

[ s@am)@ = [ slwymoa / | st @)0%0(a) = Do) Duml(e. )] dm(s)(@)ds. (52

Given t € [0,T1, let us set t,, := [ﬁ] hy. We have

/¢ Ydm™ (t) /¢ Jdmo(a +2/¢ " (1) — m™(t)] (5.3)
By — and , we obtain

Jpd@)dm" (tisr) = icpmi K410, fE oz
= ZzeZ mz k+1¢(xl) O p )7

= 2ien O(@i) Ljen ™y ﬁz( o7 )+/Bz( E"*)] +0(p7), (5.4)
= e Sie (i) [ (@ W)w( )]+ o6,
Toeamin [0 (257 + 0 (93%7)] + o)

)dz,
(
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Let us set

Ot () i= 2 — by DV (2, ) + Voo (), @707 (x) i=x — h, D" (2, 1)) — \/hao(ty).

Taking |a| = 3 in the second inequality of (3.16|) we easily obtain by a Taylor expansion that

1 o, o 1 o o 02
on /E,- ¢ (@ F () dz — ¢ (‘I>j,k+) + o /Ej ¢ (5 (v)) dz — ¢ (<I>J.J€ ) < Chna’
for some ¢ > 0. Therefore,
eon i) = e f [0 (#01@) + o (07 w)] ar

+O(ha 2 + p2),
= o [6 (05 @) + o (85 @) i)
+0 (hng—z + pn) .

By a Taylor expansion we find that

6 (857 0) + 0 (8774 ()] - 9(o) = ~hy | DV (0, t0)D0(0) + 501 D%0(a) | + 002,
The expression above yields to

Jg o( m™(tge1) —m"(te)] = —hn [z [Dv" (@, te)Dé(x) + 50%(te) D*¢(x)] dm™ (t;)
2 (5.5)
+0 (hi R p%) .

Since by the second inequality of (3.16)) the term inside the integral in (5.5)) is ¢/e,-Lipschitz (with ¢
large enough) w.r.t. z, Proposition [4.1] gives that for all s € [tg, tj41], with & =0,...,n — 1, we have

c cvh
< —Vs—t < —2,
£

n 577,

/R Du(z, 5) D()d [m"(s) () — m" (1) ()]

which implies that, since Dv"(z,t;) = Dv"(x,s) for all s € [tg, tx+1],

tet1 tht1 3
/Dv x, 8)Do(x)dm™ (s )(m)ds—/ /Dv x,tg)Do(z)dm” (tx) (x)ds| < Chn. (5.6)
En
Therefore, combining and , we obtain that
Jo d@)d[m" (trr) = m" ()] = — [} [, D" (2, ) D(x)dm" (s)(z)ds
+h f]R 2(ty) D% ¢(x)dm™ (ty,)(x)
+0 (hi + ot h a4 pi)
Thus, summing from k =0 to kK =n — 1 and using
Jz o(x)dm™(t,)(x) = [; o(x)m™(z,0) — fot" Jg Dv"(, s)Dé(x)dm™(s)(x) ds
thy zk Lpls (tk)D2¢( A" (t4) (@) + O (hy + 22 + L2 4+ £,
- fR — fo" fR Dv™(z, s)Dg(x)dm™(s)(z) ds (5.7)
+hn Zk Zo Je 3o (tk)D2¢( )dm(ty)(x)

2
+0 (SUPse[mT] di(mn(s),m(s)) + hn + 2= + \e/TE + %) .
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Since t € [0,T] — [, 0%(t)D*¢(z)dm(t)(x) is continuous (because o is continuous and m € C([0, T]; P1)),
we have that

lim Z/lztkDqu Ydim(ty)( //12 (s)D2¢(z)din(s)(z)ds. (5.8)

Moreover, Proposition implies that the density of m™ (still denoted by m™) is bounded in
L> (R x [0,7]). Thus, m is absolutely continuous and m, — m in L* (R x [0,T])-weak-*. On
the other hand, using that ¢ € CS°(R), that for all ¢ € [0, T the derivative Dv[m](x,t) exists for a.a.
z (by )7 Theorem and the Lebesgue theorem, we get that

ljo¢,) DV (-, -) D@ (-) — T g Dv[m](-,-) Dp(-) strongly in L' (R x [0,T]), (5.9)

Thus, since m™ converge to m in L (R x [0, T])-weak-*, using (5.8)-(5.9), that p, = O(h,) and that
hy, = o(g2), we can pass to the limit in (5.7)) to obtain (5.2). l

Remark 5.1 (i) As the proof shows, the costly assumption h, = o(¢2) comes from the a priori non

reqularity of Dv[m](x,t) w.r.t. the time variable. In fact, an argument similar to the one used for

the convergence in (5.8) cannot be applied since a priori Dv[m](x,-) is not necessarily Riemman
p.6

integrable and hence (5.6) seems to be necessary.

(i1) All the results of this paper, can be extended for the more general Hamiltonians H(x,t,p) con-
sidered in [I. In fact, consider the system

—0w — 1tr (o(t)o(t) " D?v) + H(z,t, Dv) F(z,m(t)) in Rx]0,T],
oym — itr (o(t)o(t) " D?v) — div(9,H (z,t,Dv)m) = 0 in R¥x]0,T], (5.10)
v(x,T) = G(x,m(T)) for z € RY, m(-,0) = mo(-) € P1(RY).

If the assumptions in [1, Section 2| for the Hamiltonian H(xz,t,p) hold true and for every p €
C([0,T); P1(RY)) the (OSLY) condition in [1, page 16] is verified for —0,H (z,t, Dug ,[1]) (where
v, [u] is the Semi-Lagrangian approzimation of the viscosity solution v[u] of the HJB equation in
(5.10), with m replaced by p), then the proofs of this article can be reproduced for this more general
case.

6 Numerical Tests

We present some numerical simulations for the one dimensional case. For an easier explanation of
the tests, let us recall the heuristic interpretation of the MFG system: an average player, whose
dynamic is given by

dX(s) = a(s)ds + o(s)dW (s), for allt € [0,T], X(0) =z € R,

and W (+) a standard one dimensional Brownian motion, aims to minimize, with respect to the control
a(-), the functional :

E ( /0 ' [;oﬂ(s) + F(X(s),m(s))| ds + G(X™(T), m(T))) .

We will consider running costs of the form

1 o2

T2
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where f is C? and

1 2 2
Vs(x,m) = ¢s * *m|(z) and z) = ———e /(29 6.1
5(z,m) = @5 * [p5 x m] (2) ¢s5(x) N (6.1)
for some & > 0 to be chosen later. We solve heuristically the fully discrete MFG system (5.1)) by a
fixed-point iteration method. At a generic iteration p, let us call

{2, mS?), i € Z.k =0,... N}pen

the sequences representing the approximated value function and mass distribution. We consider as
initial guess
m;, = msg = mo(z)dx, i€Z, k=0,...,N.
I ’ E,L
Given mfl’; we calculate mf’,‘f“ according to the following scheme

mf,’; — vi’,f — DvP (x4, tg) — mi’,f“,
where in the step mf,f — vi’,f we compute {vf,f }ik by solving the scheme with discrete mass
distribution given by {m;?};x. In the step vz’,f — Dv®P(x;,t) we compute the discrete gradient
of v*P by approximating using a discrete convolution and then approximating the gradient by
central finite differences. In the last step Dv®(x;, tx) — mi’}:H, we compute mi’,f“ by the scheme
. We stop the fixed point method when the errors

o) i= [0 = o, B(meT) i= e = m 7, (62)

are below a given threshold 7 or p has reached a fixed number of iterations.

So far, we have set the problem in the space domain ) = R. Clearly to implement the numerical
scheme we have to suppose that the domain @ is bounded. Following [8, Section 3], we will thus
formally constraint the problem to a sufficiently large bounded domain ), by supposing now that
o = & (x)o(t), where & € C5°(R) satisfies &(z) = 1 if # € Qp. Note that by doing this we are
imposing a dependence on x for ¢ and our results do not apply. Moreover, for the Fokker Planck
equation, in order to maintain the mass m in @, we will impose Neumann boundary conditions,
which are not covered by our results neither. Therefore, the numerical resolution of the scheme
is heuristic. However, since we will consider cost functions that incite the players to remain on a
bounded domain, this type of approximation is reasonable since the influence in the cost, expressed
through Vs(x, m), of players being far from @, is negligible.

We will show three numerical tests, comparing the different behavior at different choices for the
diffusion term. First we consider the case in which the diffusion term is zero (studied already in
[12]), which corresponds to a deterministic MFG system, then the case with a constant and positive
diffusion term, which corresponds to second order MFG system (see [LI]). Finally, we consider the
case where the diffusion term is given by a positive continuous function, which degenerates in a given
time interval.

Test 1 (deterministic case) We consider a numerical domain @ x [0,7] = [0, 1] x [0, 2] and
we choose as initial mass distribution:

with v(z) = e~ (z-0.5)%/(0.1)%

We choose as final cost G = 0, as running cost 1a2(t) + f(z) + Vs(z,m(t)) with § = 0.2 and

f(z,t) = 5(z — (1 —sin(27t))/2)?,
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and we set o(-) = 0. In the running cost the term f(x,t¢) incites the agents to stay close to
the point (1 — sin(27t))/2 at each time ¢, while the term Vs(z,m) penalizes high concentration
of the density distribution. The density evolution is shown in Fig[l] which has been computed with
p=2312-103,h = p,e = 0.15. The number of iterations required by the fixed point method to
satisfy the stopping criteria with 7 = 1073 is 10. We observe, during the whole time interval, that
the mass density tends to concentrate around to the curve (1 — sin(27t))/2 and no diffusion effect
appears. It is important to remark that the term Vy(x, m) has a non negligible effect in the distribu-
tion. As a matter of fact, if this term is not present, then much higher concentrations are observed

(see e.g. [12, Fig. 4.8]).

Figure 1: Test 1: Mass evolution m;

Test 2 (non-degenerate diffusion) We consider the same problem as in Test 1, but now
we change the diffusion term choosing ¢ = 0.2. Let us note that, in this case, the scheme re-
duce to the one proposed in [11]. The running cost and the initial distribution are chosen as
in the previous tests. The density evolution is shown in Fig. [2] which has been computed with
p=16.35-10"3h = p,e = 2v/h and 7 = 10~3. The number of iterations for the fixed point method,
to satisfy the stopping criteria with 7 = 1073, is 6. Let us note that in this case the convergence is
faster compared to the deterministic case in Test 1. A diffusive effect is observed during the whole
time interval, which seems not very strong, since it is opposite to the one due to the running cost,
which tends to concentrate the mass density around the sinusoidal curve.

Figure 2: Test 2: Mass evolution m;
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Test 3 (degenerate diffusion) We consider the same problem as in Test 1, but now we change
the diffusion term choosing a scalar function

o(t) = max(0,0.2 — |t — 1|).

Note that o(¢t) = 0 for all t € [0,0.8] U [1.2,2]. The running cost and the initial distribution are
chosen as in the previous tests. The density evolution is shown in Fig. [3] which has been computed
with p = 6.35-1073, h = p,e = 2v/h and 7 = 1073. The number of iterations, for the fixed point
method to satisfy the stopping criteria with 7 = 1073, is 9. Let us note that in this case the rate
of convergence, for the fixed point method, is between the rates for the two cases. We observe a
diffusive effect during the time interval [0.8,1.2], due to the non zero term o(¢). When the diffusion
stops to act, a time ¢t = 1.2 the density starts again to concentrate faster around the curve where f
is lower.

Figure 3: Test 1: Mass evolution mj ,

Table |1f shows the errors computed varying all the parameters (p, h, ¢), according the balance
h = p and € = 2v/h. In the first two columns of Table |I| we show the space and regularizing
parameters, in the last two columns the errors for the value function and the density computed after
10 iterations of the fixed point algorithm.

Table 1: Parameters and errors

) ‘ c ‘ E(UE’IO) ‘ E(ms,w) ‘
1.25-1072] 0.2 | 1.72-107% ] 9.52-10°
6.25-107% [ 0.15 | 1.08- 1076 | 1.17-10~1
3.12-107% | 0.1 | 1.82-1076 | 3.26-1071

In Fig. 4] we show the behavior of the errors (6.2)) in logarithmic scale on the y-axes versus the
number of fixed-point iterations on the z-axes. We vary all the parameters according to the Table
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Figure 4: Errors: E(m®P) (left) E(u®P) (right) varying all the parameters (g, p, h) according to
Table [1l
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