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Abstract

This is the third paper of a group of three where we prove the
following result. Let A be an alphabet of t letters and let ψ : A∗ −→ Nt
be the corresponding Parikh morphism. Given two languages L1, L2 ⊆
A∗, we say that L1 is commutatively equivalent to L2 if there exists
a bijection f : L1 −→ L2 from L1 onto L2 such that, for every u ∈
L1, ψ(u) = ψ(f(u)). Then every bounded context-free language is
commutatively equivalent to a regular language.
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1 Introduction

Let A = {a1, . . . , at} be an alphabet of t letters and let ψ : A∗ −→ Nt be
the corresponding Parikh morphism. Given two languages L1 and L2 over
the alphabet A, we say that L1 is commutatively equivalent to L2 if there
exists a bijection f : L1 −→ L2 from L1 onto L2 such that, for every u ∈ L1,
ψ(u) = ψ(f(u)). This is the third paper of a cycle of three (cf [6, 7]) where
the proof of the following theorem is provided.

Theorem 1 Every bounded semi-linear language L1 is commutatively equiv-
alent to a regular language L2. Moreover the language L2 can be effectively
constructed starting from an effective presentation of L1.

As an immediate consequence of Theorem 1, we obtain the following result.

Theorem 2 Every bounded context-free language L1 is commutatively equiv-
alent to a regular language L2. Moreover the language L2 can be effectively
constructed starting from an effective presentation of L1.

It is worth noticing that Theorem 2 does not hold for an arbitrary context-
free language. Indeed, if such a language would be commutatively equivalent
to a regular one, then its generating function would be rational. On the
other hand, there exist context-free languages whose generating functions
are algebraic not rational, as for instance in the case of the Dyck languages,
and, even, transcendental, as proven by Flajolet [9]. Theorem 2 naturally
fits in the algebraic theory of bounded context-free languages developed by
Ginsburg and Spanier. We refer to [6] for a more exhaustive description of
the relationships between Theorem 2 and the above mentioned theory.

We would like to give a short description of some key aspects of the proof
of Theorem 1 as well as of the relations of the present paper with the other
cited ones [6, 7]. Let L ⊆ u∗1 · · ·u∗k be a bounded semi-linear language where,
for every i = 1, . . . , k, ui is a non-empty word over a given alphabet A. Let
us consider the Ginsburg map

ϕ : Nk −→ u∗1 · · ·u∗k

which associates with every tuple (`1, . . . , `k) of non-negative integers, the
word ϕ(`1, . . . , `k) = u`11 · · ·u

`k
k . By a result of [11], there exists a semi-simple

set B of Nk such that ϕ(B) = L and ϕ is injective on B. We recall that B
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admits a partition into a finite family of sets:

B =
n⋃
i=0

Bi, n ≥ 1,

where B0 is a finite set of vectors and, for every i = 1, . . . , n, Bi is a simple
set of dimension ki > 0:

Bi = b
(i)
0 + {b(i)

1 , . . . ,b
(i)
ki
}⊕, (1)

where b
(i)
0 ,b

(i)
1 , . . . ,b

(i)
ki
, are the vectors of the unambiguous representation

of Bi. The proof of Theorem 1 is essentially based upon two main tools. The
first one is a refinement of a technique developed in [6], while the second
tool has been developed in [7]. The first tool has been conceived to prove
the theorem under the assumption that, for every i = 1, . . . , n and for every
j = 1, . . . , ki, the word ϕ(b

(i)
j ), that represents via ϕ the vector b

(i)
j of (1),

contains at least two distinct letters.
The second tool provides the solution of Theorem 1 in the opposite case,

that is, under the assumption that there exists a letter a ∈ A such that,
for every i = 1, . . . , n, all the words ϕ(b

(i)
1 ), . . . , ϕ(b

(i)
ki

) are powers of a.
We treat such last case by reducing the study of commutative equivalence
for languages to that of the commutative equivalence for semi-linear sets of
vectors. More precisely, given two subsets S1, S2 of Nk, we say that S1 is
commutatively equivalent to S2 if there exists a bijection f : S1 −→ S2 from
S1 onto S2 such that, for every v ∈ S1, |v| = |f(v)|, where |v| denotes the
sum of the components of v. In [7] we prove that every semi-linear set of Nk

is commutatively equivalent to a subset which is recognizable in Nk in the
classical sense of Elgot and Mezei. As a straightforward consequence of the
latter result, we derive the corresponding one for languages. By eventually
combining the two techniques, we then provide the proof of Theorem 1.

We give the proof of Theorem 1 by considering the case of a binary
alphabet A of two letters a and c. This special case allows us to simplify the
exposition of the proof and, at the same time, shows all the essential aspects
of the argument. In the Appendix, we will show how to adapt such proof to
the case of a finite arbitrary alphabet.

The paper is structured as follows. In Section 2, some basic results about
bounded semi-linear languages are introduced. In Section 3 we describe the
geometrical decomposition of simple sets. In Section 4, the proof of Theorem
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1 is presented. An Appendix reports some technical proofs and some exam-
ples.
Finally, we mention an open problem pointed out in [12]. Also in the theory
of formal series there is a notion of commutative equivalence (see [1], Ch.
14). Given a N-series σ ∈ N〈〈A〉〉 over an alphabet A of non-commutative
variables, the commutative image of σ is the N-series ψ(σ) ∈ N[[A]] over the
commutative variables ψ(A) defined as: for every u ∈ ψ(A∗), (ψ(σ), u) =∑

ψ(w)=u (σ,w). Given two series σ1, σ2 ∈ N〈〈A〉〉, we say that σ1 is commu-
tatively equivalent to σ2 if they have the same commutative image. In this
context, as a possible extension of Theorem 2, one can ask whether every
N-algebraic series with bounded support is commutatively equivalent to a
rational one. Theorem 2 seems to be a first step of the study of this problem.

2 Preliminaries

The aim of this section is to introduce some results concerning bounded
semi-linear languages. We assume that the reader is familiar with the basic
notions of this theory. The reader is referred to [10].

2.1 Basic notation

We find useful to recall the attention of the reader to some notation adopted
in this paper.

The letter k is always used to denote the dimension of the underlying
working monoid Nk. A vector of Nk is denoted in bold as, for instance,
for v which represents the vector (v1, . . . , vk), or vj = (v

(j)
1 , v

(j)
2 , . . . , v

(j)
k ).

Moreover if the vector is indexed, as for instance for vj, its components are
also denoted (vj1, vj2, . . . , vjk).

A set of vectors of Nk is always denoted by using capital letters like,
for instance, X, Y, L, etc. Given a set S, a family of n pairwise disjoint sets
S1, . . . , Sn, such that S =

⋃n
i=1 Si, is called a decomposition of S. The number

n will be denoted by ](S).

2.2 Semi-linear sets of Nk

The free abelian monoid on k generators is identified with Nk with the usual
additive structure. Let B = {b1, . . . ,bm} be a finite subset of Nk. Then we
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denote by B⊕ the submonoid of Nk generated by B, that is

B⊕ = b⊕1 + · · ·+ b⊕m = {n1b1 + · · ·+ nmbm | ni ∈ N, i = 1, . . . ,m}.

In the sequel, in the formula above we will assume B = ∅ whenever m = 0.

Definition 1 Let X be a subset of Nk. Then

1. X is linear in Nk if X = b0 + {b1, . . . ,bm}⊕, where b0,b1, . . . ,bm are
vectors of Nk,

2. X is simple in Nk if b1,b2, . . . ,bm are linearly independent in Qk,

3. X is semi-linear in Nk if X is a finite union of linear sets in Nk,

4. X is semi-simple in Nk if X is a finite disjoint union of simple sets.

In the sequel, we will adopt the following terminology.

Convention If X = b0 + {b1, . . . ,bm}⊕ is a simple set, then the vectors
b0,b1, . . . ,bm, will be called the (unambiguous) representation of X. More-
over, b0 will be called the constant vector and b1, . . . ,bm will be called the
generators of the representation, respectively.

It is worth noticing that the uniqueness of the representation of a simple set
is folklore. With every simple set B whose representation is given by the
vectors b0,b1, . . . ,bm, we can associate the number m called the dimension
of B. One obviously has that m ≤ k and the dimension of a singleton is 0.
By convention, the dimension of the empty set is −1. The following theorem
by Eilenberg and Schützenberger [8] provides an important characterization
of semi-linear sets.

Theorem 3 Let X be a subset of Nk. Then X is semi-linear in Nk if and
only if X is semi-simple in Nk.

Theorem 3 is effective. Indeed, one can effectively represent a semi-linear
set X as a semi-simple set. More precisely, one can effectively construct a
finite family {Vi} of finite sets of vectors such that the vectors in Vi form a
representation of a simple set Xi and X is the disjoint union of the sets Xi.

The following proposition states a well-known result proved by Ginsburg
and Spanier (see [10]).

Proposition 1 The family of semi-linear sets of Nk is closed under the
Boolean set operations.
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2.3 Bounded languages

Along all this paper, we let A = {a1, . . . , at} be an alphabet of t letters and
we let A∗ be the free monoid generated by A. The empty word of A∗ is
denoted by 1A∗ . The length of every word u is denoted |u|. For every a ∈ A,
the number of occurrences of a in u will be denoted |u|a.

We let ψ : A∗ −→ Nt be the Parikh map over A. Moreover, if u1, . . . , uk
are k words of A+, we let

ϕ : Nk −→ u∗1 · · ·u∗k, (2)

be the Ginsburg map which associates with every tuple (`1, . . . , `k) of non-
negative integers, the word ϕ(`1, . . . , `k) = u`11 · · ·u

`k
k .

The following proposition provides a faithful description of a bounded
semi-linear language ([11], see also [2, 3] for a proof).

Proposition 2 Let L ⊆ u∗1 · · ·u∗k be a bounded semi-linear language. Then
there exists a semi-simple set B of Nk such that ϕ(B) = L and ϕ is injective
on B. Moreover, B can be effectively constructed.

2.4 Some results of combinatorics on words

The content of this section has been already presented in [6]. To help the
reader, we report it here verbatim. We recall some notions and elementary
results of Combinatorics on words that are needed in this setting.

Definition 2 Let L1, L2 be two languages over A. We say that L1 is com-
mutatively equivalent to L2 if there exists a bijection f : L1 −→ L2 such
that, for every u ∈ L1, one has ψ(u) = ψ(f(u)).

In the sequel, if L1 is commutatively equivalent to L2, we simply write
L1 ∼ L2. The following lemmas are easily proved.

Lemma 1 Let L1, L2, L
′
1 and L′2 be languages over A. Suppose that Li ∼ L′i

(i = 1, 2) and L1 ∩ L2 = L′1 ∩ L′2 = ∅. Then (L1 ∪ L2) ∼ (L′1 ∪ L′2).

Lemma 2 Let L1, L2 be languages over A such that L1 ∼ L2 and L2 is
regular. Let w ∈ A∗ such that w /∈ L1. Then there exists a regular language
L′2 such that {w} ∪ L1 ∼ L′2.
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Proof. Set [w] = {u ∈ A∗ : ψ(u) = ψ(w)}. Obviously, [w] 6⊆ L1. Since
L1 ∼ L2, the latter implies [w] 6⊆ L2, so that there exists a word w′ such that
ψ(w) = ψ(w′) and w′ /∈ L2. Hence L1 ∪ {w} ∼ L′2, with L′2 = L2 ∪ {w′}.

In the sequel,
u1, . . . , uk,

will be a list of k non-empty words over the alphabet A, fixed once for all for
the rest of the paper.

Lemma 3 ([6], Lemma 3) There exists a constant γ ∈ N such that the
following condition holds: let a, b ∈ A, with a 6= b, and assume that w is a
word having a factor of the form

aγbaγb . . . aγbaγ︸ ︷︷ ︸
(k+1)−times

(3)

where aγ occurs (k+ 1) times in the word (3). Then w is not a factor of any
word in u∗1 · · ·u∗k.

In the sequel, γ will denote the minimum constant specified by Lemma 3.
Let v = (v1, . . . , vt) ∈ Nt be a vector. We denote by |v| the non-negative

integer |v| = v1 + · · ·+ vt. Let

w1, . . . ,wm, (4)

be a list of (not necessarily pairwise distinct) m vectors of Nt. We associate
with it its corresponding multiset:

{(α1,v1), . . . , (α`,v`)}, (5)

where α1 + · · ·+ α` = m and, for every i = 1, . . . , `, vi is a vector of the list
(4) and αi is the number of vectors of (4) equals to vi.

Lemma 4 ([6], Lemma 4) Let us consider the list of vectors (4) together
with its multiset (5). Suppose that:

i) for every j = 1, . . . ,m, wj has, at least, two non null components;

ii) for every j = 1, . . . , `, |vj| = β, where β is a constant not depending
on j.
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Let Nj be the greatest integer such that vj has the form vj = Njv̄j with
v̄j ∈ Nt, for every j = 1, . . . , `. If, for every j = 1, . . . , `,

Nj ≥ m(γ + 1)(k + 1),

there exists a uniform code W of m (distinct) words of length β over the
alphabet A such that

∀ i = 1, . . . , `, Card({w ∈ W | ψ(w) = vi}) = αi. (6)

Moreover every w ∈ W has a prefix of length γ(k + 1) + k that cannot be a
factor of any word in u∗1 · · ·u∗k. In particular every w ∈ W is not a factor of
any word in u∗1 · · ·u∗k.

Remark 1 Roughly speaking, Lemma 4 states the following fact. We are
given a distribution of Parikh vectors of words, where all of the words have the
same length and contain at least two distinct letters. Under the assumption
that all the components of every Parikh vector are sufficiently large, one
can construct a uniform length code with the same distribution of Parikh
vectors. Moreover, every word of the code is not a factor of any word of
the set u∗1 · · ·u∗k. This result will be used for the construction of a regular
language which is commutatively equivalent to an arbitrarily given bounded
semi-linear language contained in u∗1 · · ·u∗k.

3 A geometrical decomposition of a simple

set of Nk

In this section, we introduce a slight refinement of a technique introduced in
[6]. This technique of geometrical nature (inspired to our work [5]) provides
a suitable decomposition of a simple set into the sets of integer points lying
in the interiors of parallelepipeds of dimension lower than or equal to k. Let
B be a simple set of Nk of dimension m > 0:

B = b0 + b⊕1 + · · ·+ b⊕m = {b0 + x1b1 + · · ·+ xmbm | xi ∈ N, i = 1, . . . , n},

where the vectors b0,b1, . . . ,bm form the representation of B. Let

(N1 + χ1, . . . , Nm + χm) (7)
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be a tuple where, for every i = 1, . . . ,m, Ni and χi are given non-negative
integers. Let {+,−} be an alphabet of two symbols and let E be the set

E = {(ε1, . . . , εm) | εi ∈ {+,−}, i = 1, . . . ,m},

of all sequences of length m with elements in the set {+,−}. With every
sequence (ε1, . . . , εm) ∈ E , we associate the set

B(ε1,...,εm) (8)

given by all the vectors b0+x1b1+ · · ·+xmbm, where, for every i = 1, . . . ,m,
one has:

xi ≥ Ni + χi if εi = +,

xi < Ni + χi if εi = −.

Observe that, for every (ε1, . . . , εm) ∈ E , B(ε1,...,εm) is a semi-simple set.
In order to simplify the notation, if, for every i = 1, . . . ,m, εi = −, then
the corresponding set B(ε1,...,εm) will be simply denoted B−. Observe that
B− is the unique finite set of the family (8). From the fact that the vectors
b0,b1, . . . ,bm form the representation of the simple set B, we have:

Lemma 5 The family {B(ε1,...,εm)}(ε1,...,εm)∈E gives a partition of B.

Let (ε1, . . . , εm) ∈ E \{(−,−, . . . ,−)}, that is, there exists i, with 1 ≤ i ≤
m, where εi = +. Then there exists a non-negative integer p, depending on
(ε1, . . . , εm), such that the set of indices i, with i = 1, . . . ,m is partitioned in
two sets:

I−ε1···εm = {i1, . . . , ip}, I+ε1···εm = {ip+1, . . . , im}, (9)

where
εi` = −, ` = 1, . . . , p, εi` = +, ` = p+ 1, . . . ,m.

It’s worth to remak that:

• If, for every i = 1, . . . ,m, εi = +, then one has I−ε1···εm = ∅;

• the integer p depends upon the sequence (ε1, . . . , εm); in the sequel, if no
ambiguity arises, we will drop the dependency of p from the sequence
(ε1, . . . , εm).
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Let us now associate with every index i` of the set I+ε1···εm of (9) a remainder
ri` modulo Ni` , where all the constants Ni` are defined in (7).

Similarly, let us associate with every index i` of the set I−ε1···εm of (9) a
non-negative integer ci` < Ni` + χi` , with respect to the constants defined in
(7). We thus obtain a sequence of m constants

(ci1 , . . . , cip , rip+1 , . . . , rim), (10)

Denote by Cε1···εm the set of all sequences (10).
For every sequence (ci1 , . . . , cip , rip+1 , . . . , rim) ∈ Cε1···εm , define the simple

set of vectors B(ε1, . . . , εm, ci1 , . . . , cip , rip+1 , . . . , rim) as:

{b0 +

p∑
`=1

ci`bi` +
m∑

`=p+1

(ri` + χi`)bi` +
m∑

`=p+1

Ni`xi`bi` | xi` ≥ 1}. (11)

In the sequel, to shorten the notation, we denote a set of the family (11) as:

B(ε1, . . . , εm, d1, . . . , dm),

where it is understood that the sequence of numbers (d1, . . . , dm) is defined
as:

d1 = ci1 , . . . , dp = cip , dp+1 = rip+1 + χip+1 , . . . , dm = rim + χim .

Proposition 3 The sets (11), together with the set B−, give a partition of
B into a finite union of pairwise disjoint semi-simple sets.

Proof. The claim follows immediately from (11) and from the fact that the
vectors b0,b1, . . . ,bm form the representation of B.

An application of Proposition 3 is shown in Example 1 of the Appendix.
Let us associate with every set B(ε1, . . . , εm, d1, . . . , dm) of (11) the lan-

guage of A∗:

L(ε1, . . . , εm, d1, . . . , dm) = ϕ(B(ε1, . . . , εm, d1, . . . , dm)), (12)

and let L− = ϕ(B−). The following result follows immediately from Propo-
sition 2 and Proposition 3.

Proposition 4 The family (12), together with L−, gives a partition of L.
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4 The construction of the regular language

In this section, we prove Theorem 1. Let L ⊆ u∗1 · · ·u∗k be a bounded semi-
linear language and let ϕ : Nk −→ u∗1 · · ·u∗k be the map defined in (2). By
Proposition 2 there exists a semi-simple set B of Nk such that ϕ(B) = L and
ϕ is injective on B. In the sequel, we will assume that B is infinite since,
otherwise, Theorem 1 is trivially proved. We give the proof of Theorem 1
by considering the case of a binary alphabet A of two letters a and c. This
assumption allows us to strongly simplify the exposition of the proof and, at
same time, shows all the essential aspects of the arguments. In the Appendix,
we will show how to adapt such proof to the case of a finite arbitrary alphabet.

From now on, we will suppose that L is a bounded semi-linear language
such that L = ϕ(B) and B is partitioned into a finite family of pairwise
disjoint sets

B = B0 ∪B1 ∪ · · · ∪Bn,

where B0 is finite and, for every i = 1, . . . , n, Bi is a simple set of dimension
ki > 0

Bi = b
(i)
0 + {b(i)

1 , . . . ,b
(i)
ki
}⊕, (13)

where b
(i)
0 , b

(i)
1 , . . . ,b

(i)
ki

is the representation of Bi. The combinatorial struc-
ture of the words that represent, via ϕ, the generators of the simple sets Bi

of (13) plays a crucial role in our solution. For this reason, we find useful to
adopt the formalism described in the next section.

4.1 An enumeration of the generators of the set Bi

Let Bi, with i = 1, . . . , n, be a simple set of the decomposition (13) of B. Let

b
(i)
0 , b

(i)
1 , . . . ,b

(i)
ki

be the vectors of the representation of Bi, where ki > 0 is
the dimension of Bi.

From now on, we will fix, once for all, an enumeration of the generators
of Bi such that three integers n

(i)
a , n

(i)
c , n

(i)
+ ∈ N, are determined according

to the following property:

1. ∀ ` = 1, . . . , n
(i)
a , ϕ(b

(i)
` ) ∈ a+,

2. ∀ ` = 1, . . . , n
(i)
c , ϕ(b

(i)
` ) ∈ c+,

3. ∀ ` = 1, . . . , n
(i)
+ , ϕ(b

(i)
` ) contains at least two distinct letters.
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If no ambiguity arises, in the sequel, we will denote n
(i)
a , n

(i)
c , n

(i)
+ by na, nc, n+

respectively, dropping the dependency of such numbers from the index i.
Therefore, we can display the generators of Bi as:

b
(i)
a,1, . . . ,b

(i)
a,na , b

(i)
c,1, . . . ,b

(i)
c,nc , b

(i)
+,1, . . . ,b

(i)
+,n+

, (14)

where it is understood that:

1. ∀ ` = 1, . . . , na, ϕ(b
(i)
a,`) ∈ a+,

2. ∀ ` = 1, . . . , nc, ϕ(b
(i)
c,`) ∈ c+,

3. ∀ ` = 1, . . . , n+, ϕ(b
(i)
+,`) contains at least two distinct letters.

4.2 Determining the constants N
(i)
j

The aim of this section is the following. For every simple set Bi of (13), we
want to compute the geometrical decomposition defined in Section 3. For
this purpose, we need to determine a suitable sequence of constants of type
(7). Let c be a non-negative integer and let β(c) be the positive integer
defined as

β(c) = Πn
i=1 Πki

j=1 |ϕ(b
(i)
j )|c,

where, for every i = 1, . . . , n, and for every j = 1, . . . , ki, b
(i)
j is the j-th

generators of the simple set Bi of (13). For every i = 1, . . . , n, and for every

j = 1, . . . , ki, let N
(i)
j (c) be the number defined as:

N
(i)
j (c) =

(
β(c)

|ϕ(b
(i)
j )|

)
. (15)

The following lemma is immediate.

Lemma 6 Let N
(i)
j (c) be the numbers defined in (15). For every i = 1, . . . , n,

and for every j = 1, . . . , ki, one has |ϕ(N
(i)
j (c)b

(i)
j )| = β(c).

From now on, in all the rest of the paper, we will assume that c is the
minimum positive integer such that, for every i = 1, . . . , n, and for every
j = 1, . . . , ki:

N
(i)
j (c) ≥ m(γ + 1)(k + 1), (16)
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where m = k1 + · · · + kn is the sum of the dimensions of the simple sets Bi

and γ is the fixed constant of Lemma 3. By the sake of simplicity, from now
on, for every i = 1, . . . , n, the above defined numbers N

(i)
j (c) will be denoted

N
(i)
1 , N

(i)
2 , . . . , N

(i)
ki
, (17)

and the corresponding number β(c) will be denoted β. Moreover, for every
i = 1, . . . , n, and for every j = 1, . . . , ki, we set

χ
(i)
j = N

(i)
j (ki + 1)β. (18)

4.3 A coding

Let us describe first the aim of this section. For every simple set Bi, with
i = 1, . . . , n, of the decomposition (13), consider the generators whose image,
via the map ϕ, are words that contain at least two distinct letters. We want
to codify such vectors with words of a uniform length code.

For this purpose, let Bi, with i = 1, . . . , n, be a simple set of the de-
composition (13) where b

(i)
0 , b

(i)
1 , . . . ,b

(i)
ki

is the representation of Bi. Let us
consider the (possibly empty) set of vectors

N
(i)
+,1b

(i)
+,1, . . . , N

(i)
+,n+

b
(i)
+,n+

, (19)

where, according to the enumeration (14), for every ` = 1, . . . , n+, ϕ(b
(i)
+,`)

contains at least two distinct letters, and N
(i)
+,` denotes the coefficient (17)

associated with b
(i)
+,`. Then, if the list above is not empty, we associate with

Bi the list of (not necessarily pairwise distinct) words

ϕ(N
(i)
+,1b

(i)
+,1), . . . , ϕ(N

(i)
+,n+

b
(i)
+,n+

),

and the list of the corresponding Parikh vectors

ψ(ϕ(N
(i)
+,1b

(i)
+,1)), . . . , ψ(ϕ(N

(i)
+,n+

b
(i)
+,n+

)). (20)

By performing the latter operation with every simple set Bi with i = 1, . . . , n
we construct a list of (not necessarily pairwise distinct) h Parikh vectors with
h ≤ m = k1 + · · ·+ kn:

w1, . . . ,wh. (21)

Now by (16), the list of Parikh vectors (21) satisfies the hypotheses of
Lemma 4 and thus, by applying this lemma, one gets the following result.
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Lemma 7 There exists a code W = {w1, . . . , wh} of h distinct words of
length β such that, for every j = 1, . . . , h, ψ(wj) = wj, that is, the Parikh
vector of wj is the vector wj of the list (21). Moreover every w ∈ W has a
prefix of length γ(k + 1) + k that cannot be a factor of any word in u∗1 · · ·u∗k.
In particular every w ∈ W is not a factor of any word in u∗1 · · ·u∗k.

Remark 2 Let wj be a word of the code W .

(i) wj has a prefix of length γ(k+ 1) + k that cannot be a factor of any word
in u∗1 · · ·u∗k. In particular every wj is not a factor of any word in u∗1 · · ·u∗k.

(ii) |wj| = β.

By the previous lemma, there exists a uniform length code of h distinct
words

w1, . . . , wh, (22)

where, for every j = 1, . . . , h, ψ(wj) = wj. Finally we define our desired
coding as the one-to-one correspondence:

N
(i)
+,`b

(i)
+,` −→ w+,` (23)

that, given a simple set Bi, with 1 ≤ i ≤ n, of the decomposition (13), maps

every vector N
(i)
+,`b

(i)
+,` of the list (19) into exactly one code word w+,` of the

list (22) in such a way that ψ(ϕ(N
(i)
+,`b

(i)
+,`)) = ψ(w+,`).

4.4 Normalization

The aim of this section is the following. By applying the technique of Section
3, we want to decompose the set B according to the combinatorial structure
of the words that represent, via the Ginsburg map ϕ, the generators of the
simple sets Bi of the decomposition (13).

Let Bi, with 1 ≤ i ≤ n, be a simple set of the decomposition (13) and let
us consider the sequence of integers (17):

N
(i)
1 , N

(i)
2 , . . . , N

(i)
ki
,

together with the sequence (18):

χ
(i)
1 = N

(i)
1 (ki + 1)β, χ

(i)
2 = N

(i)
2 (ki + 1)β, . . . , χ

(i)
ki

= N
(i)
ki

(ki + 1)β.
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By Proposition 3, starting from the two sequences above, there exists a finite
family of simple sets B(i, ε1, . . . , εki , d1, . . . , dki) defined by Eq. (11) such that

Bi = B−i ∪
⋃

B(i, ε1, . . . , εki , d1, . . . , dki),

where B−i = B
(ε1,...,εki )

i is the set associated with the sequence (−,−, . . . ,−).

Remark 3 The bold number i that appears in B(i, ε1, . . . , εki , d1, . . . , dki) is
used to emphasize the fact that such set belongs to the partition (11) of Bi.

Hence we have:

B = B0 ∪
n⋃
i=1

(
⋃

B(i, ε1, . . . , εki , d1, . . . , dki)).

Now we simply re-arrange the sets of the partition above of B as:

B = B− ∪B+ ∪Ba,c ∪Ba ∪Bc, (24)

where the semi-simple sets B−, B+, Ba,c, Ba, Bc are defined as follows:

1. B− = B0 ∪
⋃n
i=1B

−
i ;

2. B+ is the union of all the sets B(i, ε1, . . . , εki , d1, . . . , dki) satisfying the
following property: there exists ` with 1 ≤ ` ≤ ki where ε` = + and
ϕ(N

(i)
` b

(i)
` ) contains at least two distinct letters;

3. Ba,c is the union of all the sets B(i, ε1, . . . , εki , d1, . . . , dki) satisfying the
following properties:

3.1. there exist two indices `a and `c with 1 ≤ `a, `c ≤ ki such that
ε`a = ε`c = + and ϕ(N

(i)
`a

b
(i)
`a

) ∈ a+, ϕ(N
(i)
`a

b
(i)
`c

) ∈ c+;

3.2. no index ` exists such that ε` = + and ϕ(N
(i)
` b

(i)
` ) contains at

least two distinct letters;

4. Ba is the union of all the sets B(i, ε1, . . . , εki , d1, . . . , dki) satisfying the
following property: for every ` = 1, . . . , ki, such that ε` = +, then
ϕ(b

(i)
` ) ∈ a+.

5. Bc is the union of all the sets B(i, ε1, . . . , εki , d1, . . . , dki) satisfying the
following property: for every ` = 1, . . . , ki, such that ε` = +, then
ϕ(b

(i)
` ) ∈ c+.
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Let us set

L− = ϕ(B−), L+ = ϕ(B+), La,c = ϕ(Ba,c), La = ϕ(Ba), Lc = ϕ(Bc). (25)

The following result is an immediate corollary of Proposition 2.

Corollary 1 The languages of the family (25) gives a partition of L.

Let
N = max{N (i)

j + χ
(i)
j : 1 ≤ i ≤ n, 1 ≤ j ≤ ki},

be the maximum of the integers defined, for every i = 1, . . . , n, by (17)
together with (18). If σ ∈ A and u ∈ A∗, denote by |u|σ the number of
occurrences of the symbol σ in u. Let Maxc be the number defined as

Maxc = (1 + kN) max{|ϕ(b
(i)
j )|c : 1 ≤ i ≤ n, 0 ≤ j ≤ ki}. (26)

From the definition of Ba, it follows that

∀ u ∈ La, |u|c < Maxc . (27)

Similarly, if we let Maxa be the number defined as

Maxa = (1 + kN) max{|ϕ(b
(i)
j )|a : 1 ≤ i ≤ n, 0 ≤ j ≤ ki}, (28)

from the definition of Bc, it follows that

∀ u ∈ Lc, |u|a < Maxa . (29)

We finally show that, up to a slight refinement of the decomposition (24) of
the semi-simple B, we can assume that the following property holds

∀ u ∈ Lc, Maxc ≤ |u|c. (30)

For this purpose, we describe an algorithm that provides the desired decom-
position of B. Let M = Maxc. Let B(i, ε1, . . . , εki , d1, . . . , dki) be an arbitrary
simple set of the decomposition of Bc and denote it by B. According to (11)
and (18), B can be written as

B = {b0 + x1b1 + · · ·+ xmbm : x1, . . . , xm ≥ 2β}, (31)

where b0, . . . ,bm are vectors of Nk, with m ≥ 1, such that b1, . . . ,bm are
linearly independent and, for every ` = 1, . . . ,m, ϕ(b`) ∈ c+.
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In order to prove (30), it is sufficient to show that, for every set B of
type (31), one has |ϕ(b0)|c ≥ M . Suppose that, for some of such set B,
|ϕ(b0)|c < M . We can write B as B = B1 ∪ B2, with

– B1 = {b0 + bm + x1b1 + · · ·+ xmbm : x1, . . . , xm ≥ 2β},
– B2 = {b0 + 2βbm + x1b1 + · · ·+ xm−1bm−1 : x1, . . . , xm−1 ≥ 2β}.

Observe now that, for every u ∈ ϕ(B1)∪ϕ(B2), |ϕ(b0)|c+|ϕ(bm)|c ≤ |u|c. By
iterating finitely many times the latter argument, one yields a decomposition
of B as B = (B)≥M ∪ (B)<M , where:

– (B)≥M is a finite union of pairwise disjoint simple sets, every one of which
is still in the form (31) and, for every u ∈ ϕ((B)≥M), M ≤ |u|c;
– (B)<M is a finite set of vectors.

Replace B with (B)≥M and add (set-theoretically) (B)<M to the set B− of
the decomposition (24). By applying the argument above to every set B of
the decomposition of Bc, one yields two new sets (Bc)

(new) and (B−)(new),
where ϕ((Bc)

(new)) satisfies (30) and (B−)(new) is finite. The required new
decomposition of B is finally obtained by replacing, in the decomposition
(24) of B, Bc with (Bc)

(new) and B− with (B−)(new).

An immediate consequence of Eq. (27) and Eq. (30) is the following result.

Corollary 2 Let L′1 and L′2 be languages such that L′1 ∼ La and L′2 ∼ Lc.
Then the languages L′1 and L′2 are disjoint.

4.5 The clusterization of L+

In this section, we will construct a regular language L′+ such that L′+ is
commutatively equivalent to L+. We call such construction clusterization.
We will essentially use a refinement of the technique used in [6].

4.5.1 The definition of L′+

We recall that, according to point (2) of (24), L+ = ϕ(B+), where B+ is the
union of all the simple sets B(i, ε1, . . . , εki , d1, . . . , dki) satisfying the following

property: there exists ` with 1 ≤ ` ≤ ki where ε` = + and ϕ(N
(i)
` b

(i)
` ) contains

at least two distinct letters.
Let B(i, ε1, . . . , εki , d1, . . . , dki) be a simple set that appears in the decom-

position of B+. For the sake of simplicity, denote it by B. We want now
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to associate with B a regular language L′(i, ε1, . . . , εki , d1, . . . , dki). For this
purpose, it is useful to remind the definition of B. By (11), (17), and (18),
the set B has the form:

B = {b(i)
0 +

ki∑
`=1

d`b
(i)
` +

s∑
`=1

xi`N
(i)
i`

b
(i)
i`
| xi` ≥ 1}, (32)

where:

• the vectors b
(i)
0 , . . . ,b

(i)
ki

that appear in (32) form the representation of
Bi and ki is the dimension of Bi; moreover s ≥ 1;

• there exists at least an index ` = 1, . . . , ki, such that di` ≥ N
(i)
i`

(ki+1)β.

For the sake of simplicity, from now on, we will suppose that i` = i1.
According to the enumeration (14) of the generators of Bi defined in

Section 4.1, we can display the generators b
(i)
1 , . . . ,b

(i)
ki

of Bi as:

b
(i)
a,1, . . . ,b

(i)
a,na , (33)

b
(i)
c,1, . . . ,b

(i)
c,nc , (34)

b
(i)
+,1, . . . ,b

(i)
+,n+

, (35)

where na, nc, n+ ∈ N and

• ∀ ` = 1, . . . , n+, ϕ(b
(i)
+,`) contains at least two distinct letters;

• ∀ ` = 1, . . . , na, ϕ(b
(i)
a,`) ∈ a+,

• ∀ ` = 1, . . . , nc, ϕ(b
(i)
c,`) ∈ c+.

Thus, by (33), (34), and (35), the formal sum of vectors
∑s

`=1 xi`N
(i)
i`

b
(i)
i`

that appears in the expression (32) can be rewritten as:

pa∑
`=1

xa,i`N
(i)
a,i`

b
(i)
a,i`

+

pc∑
`=1

yc,i`N
(i)
c,i`

b
(i)
c,i`

+

p+∑
`=1

z+,i`N
(i)
+,i`

b
(i)
+,i`

, (36)

where we have:

– 0 ≤ pa ≤ na, 0 ≤ pc ≤ nc, 1 ≤ p+ ≤ n+,
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– N
(i)
a,` (resp., N

(i)
c,` , N

(i)
+,`) denotes the coefficient (17) associated with b

(i)
a,`

(resp., b
(i)
c,`, b

(i)
+,`) in the expression (32),

– xa,i` , yc,i` and z+,i` are free variables over N+. In the sequel, to simplify
the notation, such variables will be denoted by xi` , yi` and zi` , respectively.

Remark 4 Since we are dealing with the set B+, one has n+, p+ ≥ 1.
Moreover, it is understood that, if pa = 0 or pc = 0, the corresponding sum
in the expression (36) vanishes.

By (36), the set B can be rewritten as:

{b(i)+

pa∑
`=1

xi`Na,i`b
(i)
a,i`

+

pc∑
`=1

yi`Nc,i`b
(i)
c,i`

+

p+∑
`=1

zi`N+,i`b
(i)
+,i`

, | xi` , yi` , zi` ≥ 1}.

(37)

with b(i) = b
(i)
0 +

∑ki
`=1 d`b

(i)
` . By using the coding (23) of Section 4.3, we

associate bijectively with every vector N
(i)
+,i`

b
(i)
+,i`

of the list

N
(i)
+,i1

b
(i)
+,i1

, N
(i)
+,i2

b
(i)
+,i2

, . . . , N
(i)
+,ip+

b
(i)
ip+
,

a unique code word of the list

wi1 , wi2 , . . . , wip+ , (38)

where such words are defined in (22). Now let us define the language L(i)
a as:

L(i)
a = wi1La,1wi1La,2wi1 · · ·wi1La,na ,

where:

• na is the length of the list (33);

• wi1 is the first codeword of (38) and it occurs na times in L(i)
a ;

• For every j = 1, . . . , na, we set La,j = (aβ)+ if the vector b
(i)
a,j of the list

(33) appears in the sum (36); otherwise it is equal to 1A∗ .

Similarly, let us define the language L(i)
c as:

L(i)
c = wi1Lc,1wi1Lc,2wi1 · · ·wi1Lc,nc ,

where:
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• nc is the length of the list (34);

• wi1 is the first codeword of (38) and it occurs nc times in L(i)
c ;

• For every j = 1, . . . , nc, we set Lc,j = (cβ)+ if the vector b
(i)
c,j of the list

(34) appears in the sum (36); otherwise it is equal to 1A∗ .

Remark 5 It is understood that if na = 0 (resp. nc = 0), L(i)
a (resp. L(i)

c )
vanishes. The interest of the language L(i)

a relies on the following argument:

every vector N
(i)
a,i`

b
(i)
a,i`

of B is represented univocally by the presence into L(i)
a

of the factor La,i` = (aβ)+ in the corresponding slot i`. The same remark
holds for L(i)

c .

Finally we associate with B the regular language L′(i, ε1, . . . , εki , d1, . . . , dki)
defined as:

ϕ(b̃(i))w
(ki−na−nc)
i1

L(i)
a L(i)

c w
+
i1
w+
i2
· · ·w+

in+
, (39)

where b̃(i) is the vector

b̃(i) = b
(i)
0 + (di1 −N

(i)
i1
ki)b

(i)
i1

+

ki∑
`=1, 6̀=i1

d`b
(i)
` .

Example 2 of the Appendix clarifies the construction above.

4.5.2 L′+ is commutatively equivalent to L+

The following lemmas are intermediate steps to prove that L′+ is commuta-
tively equivalent to L+. Their proofs are very similar to the one presented
in [6]. For the sake of completeness, we report them in the Appendix.

Let B(i, ε1, . . . , εki , d1, . . . , dki) be a simple set that appears in the decom-
position of B+ and let

L(i, ε1, . . . , εki , d1, . . . , dki) = ϕ(B(i, ε1, . . . , εki , d1, . . . , dki))

be the image under ϕ of the set B(i, ε1, . . . , εki , d1, . . . , dki).
Moreover, let L′(i, ε1, . . . , εki , d1, . . . , dki) be the regular language associ-

ated with B(i, ε1, . . . , εki , d1, . . . , dki) defined by the Equation (39).

Lemma 8 L(i, ε1, . . . , εki , d1, . . . , dki) and L′(i, ε1, . . . , εki , d1, . . . , dki) are com-
mutatively equivalent.
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Lemma 9 All the languages L′(i, ε1, . . . , εki , d1, . . . , dki) are pairwise disjoint.

Let L′+ be the language over A:

L′+ =
⋃

L′(i, ε1, . . . , εki , d1, . . . , dki), (40)

given by the union of all the regular languages defined by the Equation (39).

Theorem 4 The language L′+ is regular and it is commutatively equivalent
to L+. Moreover every word of L′+ has a suffix of length β that cannot be a
factor of any word of u∗1 · · ·u∗k.

Proof. By definition the language L′+ is regular. By Proposition 4, the
languages L(i, ε1, . . . , εki , d1, . . . , dki) gives a partition of L+. By Lemma 9,
the languages L′(i, ε1, . . . , εki , d1, . . . , dki) give a partition of L′+. By Lemma
8, every language L′(i, ε1, . . . , εki , d1, . . . , dki) is commutatively equivalent to
L(i, ε1, . . . , εki , d1, . . . , dki). Then L′+ ∼ L+ follows by Lemma 1.

By definition, every word of L′(i, ε1, . . . , εki , d1, . . . , dki) ends with a code
word of (38). Such code word has length β and cannot be factor of any word
of u∗1 · · ·u∗k. (see also Remark 2).

4.6 The clusterization of La,c

In this section, we construct a regular language L′a,c which is commutatively
equivalent to La,c. We use a technique very similar to that of Section 4.5.

4.6.1 The definition of L′a,c

We recall that, according to point (3) of (24), La,c = ϕ(Ba,c), where Ba,c

is the union of all the simple sets B(i, ε1, . . . , εki , d1, . . . , dki) satisfying the
following property:

3.1. there exist two indices `a and `c with 1 ≤ `a, `c ≤ ki such that ε`a =

ε`c = + and ϕ(N
(i)
`a

b
(i)
`a

) ∈ a+, ϕ(N
(i)
`a

b
(i)
`c

) ∈ c+;

3.2. no index ` exists such that ε` = + and ϕ(N
(i)
` b

(i)
` ) contains at least two

distinct letters;
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Let B(i, ε1, . . . , εki , d1, . . . , dki) be a simple set that appears in the decom-
position of Ba,c. For the sake of simplicity, denote it by B. We want now
to associate with B a regular language L′(i, ε1, . . . , εki , d1, . . . , dki). For this
purpose, it is useful to remind the definition of B. By (11), (17), and (18),
the simple set B has the form:

B = {b(i)
0 +

ki∑
`=1

d`b
(i)
` +

s∑
`=1

xi`N
(i)
i`

b
(i)
i`
| xi` ≥ 1}, (41)

where:

• the vectors b
(i)
0 , . . . ,b

(i)
ki

that appear in (41) form the representation of
Bi and ki is the dimension of Bi; moreover s ≥ 1;

• there exist two indices i`a and i`c with 1 ≤ i`a , i`c ≤ ki such that

di`a ≥ N
(i)
i`a

(ki + 1)β and di`c ≥ N
(i)
i`c

(ki + 1)β.

For the sake of simplicity, we denote i`a and i`c by i1 and i2, respectively.
According to the enumeration (14) of the generators of Bi defined in

Section 4.1, we can display the generators b
(i)
1 , . . . ,b

(i)
ki

of Bi as:

b
(i)
a,1, . . . ,b

(i)
a,na , (42)

b
(i)
c,1, . . . ,b

(i)
c,nc , (43)

b
(i)
+,1, . . . ,b

(i)
+,n+

, (44)

where na, nc, n+ ∈ N and

• ∀ ` = 1, . . . , n+, ϕ(b
(i)
+,`) contains at least two distinct letters;

• ∀ ` = 1, . . . , na, ϕ(b
(i)
a,`) ∈ a+,

• ∀ ` = 1, . . . , nc, ϕ(b
(i)
c,`) ∈ c+.

Thus, by (42), (43), the formal sum of vectors
∑s

`=1 xi`N
(i)
i`

b
(i)
i`
, that appears

in the expression (41) can be rewritten as:

pa∑
`=1

xa,i`N
(i)
a,i`

b
(i)
a,i`

+

pc∑
`=1

yc,i`N
(i)
c,i`

b
(i)
c,i`
, (45)
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where we have:

– 1 ≤ pa ≤ na, 1 ≤ pc ≤ nc,

– N
(i)
a,` and N

(i)
c,` denote the coefficients (17) of b

(i)
a,` and of b

(i)
c,`, respectively,

and xa,i` and yc,i` are free variables over N+.

This implies that the set B can be rewritten as:

{b(i) +

pa∑
`=1

xa,i`Na,i`b
(i)
a,i`

+

pc∑
`=1

yc,i`Nc,i`b
(i)
c,i`
| xa,i` , yc,i` ≥ 1}. (46)

with b(i) = b
(i)
0 +

∑ki
`=1 d`b

(i)
` . By using the same argument of the proof of

Lemma 4, we can construct a word w of the following type.

Property 1 The word w fulfills the following properties:

– ψ(aβcβ) = ψ(w),
– w = uv, where u and v are words of length β, with u 6= v, both containing
2 distinct letters,
– u cannot be factor of any word of u∗1 · · ·u∗k.

Now let us define the language L(i)
a as:

L(i)
a = wLa,1wLa,2w · · ·wLa,na , (47)

where:

• na is the length of the list (42);

• w is the word defined above and it occurs na times in L(i)
a ;

• For every j = 1, . . . , na, we set La,j = (aβ)+ if the vector b
(i)
a,j of the list

(42) appears in the sum (45); otherwise it is equal to 1A∗ .

Similarly, let us define the language L(i)
c as:

L(i)
c = wLc,1wLc,2w · · ·wLc,nc , (48)

where:

• nc is the length of the list (43);

• w is the word defined above and it occurs nc times in L(i)
c ;
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• For every j = 1, . . . , nc, we set Lc,j = (cβ)+ if the vector b
(i)
c,j of the list

(43) appears in the sum (45); otherwise it is equal to 1A∗ .

Remark 6 Every vector N
(i)
i`

b
(i)
a,i`

of B is univocally represented by the pres-

ence into the language L(i)
a of the factor La,i` = (aβ)+ in the corresponding

slot i`. The same remark holds for L(i)
c .

Finally we associate with B the regular language L′(i, ε1, . . . , εki , d1, . . . , dki)
defined as:

ϕ(b̃(i))w(ki−na−nc)L(i)
a L(i)

c w, (49)

where b̃ is the vector

b̃(i) = b
(i)
0 + (di1−N

(i)
i1

(ki+1))b
(i)
i1

+ (di2−N
(i)
i2

(ki+1))b
(i)
i2

+

ki∑
`=1, 6̀=i1,i2

d`b
(i)
` .

Example 3 of the Appendix clarifies the construction above.

4.6.2 L′a,c is commutatively equivalent to La,c

The following lemmata are intermediate steps to prove that L′a,c is commu-
tatively equivalent to La,c. Their proofs are very similar to those of Lemma
8 and Lemma 9 respectively and therefore they are omitted.

Let B(i, ε1, . . . , εki , d1, . . . , dki) be a simple set of the decomposition of
Ba,c and let L(i, ε1, . . . , εki , d1, . . . , dki) = ϕ(B(i, ε1, . . . , εki , d1, . . . , dki)) be
the image under ϕ of B(i, ε1, . . . , εki , d1, . . . , dki).

Moreover, let L′(i, ε1, . . . , εki , d1, . . . , dki) be the regular language associ-
ated with B(i, ε1, . . . , εki , d1, . . . , dki) defined by (49).

Lemma 10 L(i, ε1, . . . , εki , d1, . . . , dki) and L′(i, ε1, . . . , εki , d1, . . . , dki) are
commutatively equivalent.

Lemma 11 All the languages L′(i, ε1, . . . , εki , d1, . . . , dki) are pairwise dis-
joint.

Let L′a,c be the language over A:

L′ =
⋃

L′(i, ε1, . . . , εki , d1, . . . , dki), (50)

given by the union of all the regular languages defined by the Equation (49).
The proof of the following theorem is based upon Lemma 10 and Lemma 11
and follows the very same scheme of that of Theorem 4; thus it is omitted.
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Theorem 5 The language L′a,c is regular and it is commutatively equivalent
to La,c. Moreover every word of L′a,c has a suffix of length 2β that cannot be
a factor of any word of u∗1 · · ·u∗k.

4.7 The clusterization of La and of Lc

Let La = ϕ(Ba) and Lc = ϕ(Bc) be the languages defined in Section 4.4.
The aim of this section is to prove the following theorems.

Theorem 6 There exists a regular language L′a which is commutatively equiv-
alent to La. Every word of L′a ends with a word u of length 2β, where β is the
constant defined in Section 4.2, and u is a factor of some word of u∗1 · · ·u∗k.

Theorem 7 There exists a regular language L′c which is commutatively equiv-
alent to Lc. Every word of L′c ends with a word u of length 2β, where β is the
constant defined in Section 4.2, and u is a factor of some word of u∗1 · · ·u∗k.

We present only the proof of Theorem 6, since the proof of Theorem 7 is
exactly the same. As a general remark, we point out to the reader that the
proof of Theorem 6 will be essentially based upon the main result of [7].

Now, it is useful to remind the definition of La as well as some of its prop-
erties. According to point (4) of (24), the semi-simple set Ba has been defined
as the union of the pairwise disjoint simple sets B(i, ε1, . . . , εki , d1, . . . , dki) of
dimension ≥ 1

{b0 + x1b1 + · · ·+ xmbm : x1, . . . , xm ≥ 2β}, (51)

where b0, . . . ,bm are vectors of Nk such that b1, . . . ,bm are linearly inde-
pendent and, for every ` = 1, . . . ,m, ϕ(b`) ∈ a+. For the sake of simplicity
we still call them (with a minor abuse of terminology) the vectors of the
representation of B(i, ε1, . . . , εki , d1, . . . , dki). It is also useful to remark that,
by (18), the coefficients x1, . . . , xm in (51), are larger than 2β.

In particular, by (27), one has:

∀ u ∈ La, |u|c < Maxc, (52)

where Maxc is defined in (26). For the sake of simplicity, we fix once for all
an enumeration of the simple sets B(i, ε1, . . . , εki , d1, . . . , dki) of the decom-
position of Ba. Thus we can denote an arbitrary set of such family as Ba

`

and Ba can be written as:

Ba = Ba
1 ∪ · · · ∪Ba

s , s ≥ 1. (53)
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The following fact is easily proved.

Lemma 12 Let B and B̄ be two simple sets of the decomposition (53), and
let b0,b1, . . . ,bm and b̄0, b̄1, . . . , b̄m′ , be the representations of B and B̄ re-
spectively. Assume that |ϕ(b0)|c 6= |ϕ(b̄0)|c. Let L and L̄ be two languages
commutatively equivalent to ϕ(B) and to ϕ(B̄), respectively. Then L and L̄
are disjoint.

Proof. By (51), for every b ∈ B, |ϕ(b)|c = |ϕ(b0)|c and, for every b̄ ∈ B̄,
|ϕ(b̄)|c = |ϕ(b̄0)|c. This implies ϕ(B) ∩ ϕ(B̄) = ∅. Then the claim now
follows from L ∼ ϕ(B) and L̄ ∼ ϕ(B̄).

Remark 7 The reader can easily see that, in the general case of an alphabet
with an arbitrary number of letters, the general version of Lemma 12 consists
in separating the languages not only w.r.t. the number of occurrences of the
letter c but also w.r.t. the numbers of occurrences of all the letters different
from a as well as their relative positions in the word ϕ(b0).

Let us consider, for every ` = 1, . . . , s, the simple set Ba
` of (53) and denote

by t` the number of occurrences of the letter c in the word ϕ(b
(a)
0 ), where

b
(a)
0 is the constant vector of the representation of Ba

` . From (51) and (52),
it follows that, for every u ∈ ϕ(Ba

` ), |u|c = t` < Maxc. For a given t =
0, . . . ,Maxc− 1, let Ba

t,1, . . . , B
a
t,st be the subsequence of all simple sets Ba

` in
the decomposition (53) such that t` = t. Define the semi-simple set Ct as:

Ct = Ba
t,1 ∪ · · · ∪Ba

t,st , (54)

and let Lat = ϕ(Ct).

Lemma 13 Assume that, for every t = 0, . . . ,Maxc−1, there exists a regular
language L′at which is commutatively equivalent to Lat . Then there exists a
regular language L′a which is commutatively equivalent to La.

Proof. By (53) and (54), one has Ba =
⋃Maxc−1
t=0 Ct so that La = ϕ(Ba) =⋃Maxc−1

t=0 Lat . Moreover, by Proposition 2, the sets Lat are pairwise disjoint.

Let us consider the regular language L′a =
⋃Maxc−1
t=0 L′at . Observe now that

the languages L′at , with 0 ≤ t < Maxc, are pairwise disjoint. Indeed, this
follows by applying Lemma 12, and taking into account that, for every t =
0, . . . ,Maxc − 1, L′at ∼ Lat . The claim follows by applying Lemma 1.

For Lemma 13, to prove Theorem 6, it is enough to show the following.
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Theorem 8 Let t be a fixed integer with 0 ≤ t ≤ Maxc − 1. There exists a
regular language L′at such that the following two conditions hold:

(i) L′at is commutatively equivalent to Lat ;

(ii) Every word of L′at ends with a word of length 2β, where β is the constant
defined in Section 4.2, which is a factor of some word of u∗1 · · ·u∗k.

In the sequel, we will assume that t ≥ 1. Indeed, if t = 0, the language Lat is
obviously regular and nothing has to be proved.

In order to prove Theorem 8, let us show some preliminary results on the
structure of the language Lat . By (54), one has that Lat =

⋃st
j=1 L

a
t,j, where

∀ j = 1, . . . , st, Lat,j = ϕ(Ba
t,j). (55)

The following lemma holds.

Lemma 14 Let Lat,j, with j = 1, . . . , st, be a language of (55). There exist
a word vj and a non-negative integer mj such that:

Lat,j ⊆ a∗ca∗ca∗c · · · ca∗︸ ︷︷ ︸
mj−times

vj, (56)

where

– vj is a word of length 2β, where β is the constant defined in Section 4.2,
and it is a factor of some word of u∗1 · · ·u∗k;

– the number mj of occurrences of the symbol c in the right-side bounded
expression of (56) is such that t = mj + |vj|c.

Proof. LetBa
t,j be the simple set such that Lat,j = ϕ(Ba

t,j) and let b0,b1, . . . ,bm
be the representation of Ba

t,j. For every i = 1, . . . ,m, let bi = (bi1, . . . , bik)
and let ri be the largest index `, with 1 ≤ ` ≤ k, such that bik > 0. Let
R = max1≤i≤m ri. Then, for every b ∈ Ba

t,j, we get

b = (b01 +
∑m

h=1 xhbh1, . . . , b0R +
∑m

h=1 xhbhR, b0R+1, b0R+2, . . . , b0k),

so that

ϕ(b) = u
b01+

∑m
h=1 xhbh1

1 · · ·ub0R+
∑m
h=1 xhbhR

R u
b0R+1

R+1 u
b0R+2

R+2 · · ·u
b0k
k .

Since Ba
t,j has the form (51), we have xR ≥ 2β and uR ∈ a+, which implies

that the word vj = a2βu
b0R+1

R+1 u
b0R+2

R+2 · · ·u
b0k
k is a suffix of ϕ(b). The proof is

complete.
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Let U be the set obtained by collecting all the words vj, with j = 1, . . . , st.
Let u ∈ U and denote by mu the corresponding number of occurrences of c
that appears in the rightside expression of (56). Let

Lat,u,1, . . . , L
a
t,u,su , (57)

be the subsequence of all the languages Lat,j, with j = 1, . . . , st such that the
corresponding word vj is u. Moreover, set Lat,u = Lat,u,1 ∪ · · · ∪ Lat,u,su .

Lemma 15 Assume that, for every u ∈ U , there exists a regular language
L′at,u such that L′at,u is commutatively equivalent to Lat,u and

L′at,u ⊆ a∗ca∗ca∗c · · · ca∗︸ ︷︷ ︸
mu−times

u.

Then there exists a regular language L′at which is commutatively equivalent
to Lat . Moreover, every word of L′at ends with a word of length 2β, which is
a factor of some word of u∗1 · · ·u∗k.

Proof. Let us consider the regular language L′at =
⋃
u∈U L

′a
t,u. Observe now

that, since all the words of U have the same length 2β, if u1, u2 are distinct
words of U , L′at,u1 ∩ L

′a
t,u2

= ∅. Since Lat is partitioned as Lat =
⋃
u∈U L

a
t,u,

L′at ∼ Lat follows from the latter and the hypothesis, by applying Lemma 1.
Moreover, by construction, every word of L′at ends with some word u of U ,
which is a factor of some word of u∗1 · · ·u∗k.

By Lemma 15, it is enough to prove Theorem 8 with respect to the family
of languages (57). Thus, let us fix, once for all, a word u in U and let

Ba
t,u,1, . . . , B

a
t,u,su , (58)

be the subsequence of the simple sets Ba
t,u,` of (54) such that, for every lan-

guage Lat,u,` of (57), ϕ(Ba
t,u,`) = Lat,u,`. Let us consider the map

ϕ̂ : Nt+1 −→ a∗ca∗ca∗ca∗ · · · a∗ca∗︸ ︷︷ ︸
t−times

,

from Nt+1 into the language a∗ca∗ca∗ca∗ · · · a∗ca∗, where the symbol c oc-
curs t times in the bounded expression above, defined as: for every v =
(v1, . . . , vt+1) ∈ Nt+1 ϕ̂(v) = ϕ̂(v1, . . . , vt+1) = av1cav2c · · · cavt+1 . By defini-
tion, the map ϕ̂ is injective on its domain Nt+1. Given a vector v of Nt+1,
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the weight of v is the number |v| = v1 + · · ·+ vt+1. Given two vectors b and
b′ of Nt+1, then one immediately checks

|b| = |b′| ⇒ ψ(ϕ̂(b)) = ψ(ϕ̂(b′)). (59)

The proof of the following result is postponed in the Appendix.

Proposition 5 For every simple set Ba
t,u,`, with 1 ≤ ` ≤ su, there exists

a simple set B̂a
t,u,` of Nt+1 such that ϕ̂(B̂a

t,u,`) = ϕ(Ba
t,u,`) and ϕ̂ is injective

on B̂a
t,u,`. Moreover, there exists a vector bu ∈ Nt+1 such that, for every

` = 1, . . . , su, the set B̂a
t,u,` has the form

B̂a
t,u,` = D̂a

t,u,` × 0t−mu + bu,

where D̂a
t,u,` is a simple set of Nmu+1.

Proposition 6 There exists a semi-simple set Ĉa
t,u of Nt+1 where ϕ̂(Ĉa

t,u) =

Lat,u and ϕ̂ is injective on Ĉa
t,u. Moreover, there exists a vector bu ∈ Nt+1 such

that Ĉa
t,u has the form Ĉa

t,u = Êa
t,u × 0t−mu + bu, where Êa

t,u is a semi-simple
set of Nmu+1.

Proof. By applying Proposition 5, for every ` = 1, . . . , st, there exists a
simple set B̂a

t,u,` of Nt+1 such that ϕ̂(B̂a
t,u,`) = ϕ(Ba

t,u,`). Let Ĉa
t,u =

⋃st
`=1 B̂

a
t,u,`.

Observe now that the sets B̂a
t,u,` for 1 ≤ ` ≤ st are pairwise disjoint. This

immediately comes from the latter and the fact that the languages ϕ(Ba
t,u,`),

with 1 ≤ ` ≤ st, are pairwise disjoint. Finally, one checks that ϕ̂ is injective
on Ĉa

t,u. Indeed, let b1,b2 ∈ Ĉa
t,u, with ϕ̂(b1) = ϕ̂(b2). If b1,b2 ∈ Ba

t,u,`,
with 1 ≤ ` ≤ st, then the claim follows from Proposition 5. If b1 ∈ Ba

t,u,`,
and b2 ∈ Ba

t,u,`′ , with ` 6= `′, then the claim follows from the fact that the
languages ϕ(Ba

t,u,`), with 1 ≤ ` ≤ st, are pairwise disjoint. The second part
of the claim follows from the second part of the claim of Proposition 5.

By Proposition 6, there exists a semi-simple set Ĉa
t,u of Nt+1 such that

ϕ̂(Ĉa
t,u) = Lat,u and Ĉa

t,u has the form Ĉa
t,u = Êa

t,u × 0t−mu + bu, where Êa
t,u is

a semi-simple set of Nmu+1.
By Theorem 1 of [7] applied to the semi-simple set Êa

t,u of Nmu+1, there

exists a recognizable semi-simple set Ê ′at,u of Nmu+1, which is commutatively

equivalent to Êa
t,u. This is equivalent to say that:
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1) Ê ′at,u is a finite union of pairwise disjoint simple sets of Nmu+1 of the form
v0 + {v1, . . . ,vr}⊕, where r ≥ 01 and, for every ` = 1, . . . , r, exactly one
component of v` is not null and different vectors v`, with 1 ≤ ` ≤ r, have a
different non-null component;

2) there exists a bijection f : Êa
t,u −→ Ê ′at,u between Êa

t,u and Ê ′at,u such that,

for every v ∈ Êa
t,u, |f(v)| = |v|.

Let us now consider the subset of Nt+1 Ĉ ′at,u = Ê ′at,u × 0t−mu + bu. One

easily checks that Ĉ ′at,u is a recognizable set of Nt+1 and Ĉ ′at,u is commutatively

equivalent to Ĉa
t,u. Let us set L′at,u = ϕ̂(Ĉ ′at,u). The following result holds.

Lemma 16 L′at,u is a regular language and every word of L′at,u ends with the
word u.

Proof. We have L′at,u = ϕ̂(Ĉ ′at,u), where Ĉ ′at,u = Ê ′at,u × 0t−mu + bu. Since Ê ′at,u
is a semi-simple recognizable set of Nmu+1, Ĉ ′at,u is a finite union of pairwise
disjoint simple sets of the form B′ × 0t−mu + bu where B′ is a simple recog-
nizable subset of Nmu+1. Therefore it is enough to prove the claim for every
one of such set B′ × 0t−mu + bu.

Let B′ = v0 + {v1, . . . ,vr}⊕, where v0,v1, . . . ,vr are the vectors of the
representation of B′. Assume first that r ≥ 1. Denote vij the j-th-component
of the vector vi, with 0 ≤ i ≤ r and 1 ≤ j ≤ mu + 1. Remind that, for every
i = 1, . . . , r, exactly one component of vi is not null. We can assume that the
unique non null component of vi is the i-th component vii, with i = 1, . . . , r,
the other cases being completely similar. By the latter, the arbitrary vector
of B′ × 0t−mu + bu is written as

v = (v01 + x1v11, . . . , v0r + xrvrr, 0, 0, . . . , 0︸ ︷︷ ︸
mu+1−r

) + bu, x1, . . . , xr ≥ 0.

Since, by Eq. (71), one has bu = (0, 0, . . . , 0︸ ︷︷ ︸
mu

, α1, . . . , αn+1), with n = |u|c,

and the numbers α` are such that u = aα1caα2c · · · caαncaαn+1 , the image
under the map ϕ̂ of v is ϕ̂(v) = av01+x1v11c · · · cav0r+xrvrr cc · · · c︸ ︷︷ ︸

mu+1−r

u.

Hence the image under the map ϕ̂ of the set B′ × 0t−mu + bu is the regular
language av01(av11)∗c · · · cav0r(avrr)∗ cc · · · c︸ ︷︷ ︸

mu+1−r

u.

1it is understood that if r = 0, the corresponding set of generators is empty
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The case r = 0 is similarly treated. This completes the proof.

Now we show that the regular language L′at,u = ϕ̂(Ĉ ′at,u) allows us to com-
plete the proof of Theorem 8.

Proof of Theorem 8: Let L′at,u = ϕ̂(Ĉ ′at,u) be the language defined above. By
Lemma 16, L′at,u is regular and every word of L′at,u ends with the word u. Thus,
in order to complete the proof, we need to show that L′at,u is commutatively

equivalent to Lat,u. Since Ĉ ′at,u and Ĉa
t,u are commutatively equivalent, there

exists a bijection f : Ĉa
t,u −→ Ĉ ′at,u from Ĉa

t,u onto Ĉ ′at,u such that, for every v̂

∈ Ĉa
t,u, |f(v̂)| = |v̂|. Let v ∈ Lat,u. By Proposition 6, there exists exactly one

vector b̂ ∈ Ĉa
t,u with v = ϕ̂(b̂). If we consider the image of b̂ under the map

f we have |b̂| = |f(b̂)|, and, by (59), one gets

ψ(ϕ̂(b̂)) = ψ(v) = ψ(ϕ̂(f(b̂))). (60)

By Proposition 6, ϕ̂−1 : Lat,u −→ Ĉa
t,u is a bijection from Lat,u onto Ĉa

t,u. Taking

into account that f is a bijection from Ĉa
t,u onto Ĉ ′at,u, and ϕ̂ : Ĉ ′at,u −→ L′at,u is

a bijection from Ĉ ′at,u onto L′at,u, one has that the map ϕ̂−1fϕ̂ : Lat,u −→ L′at,u
is a bijection from Lat,u onto L′at,u. Moreover, by (60), such maps preserve the
Parikh vectors. This concludes the proof.

4.8 Proof of Theorem 1

Let us consider the regular languages L′+, L
′
a,c, L

′
a, and L′c defined by Theo-

rem 4, Theorem 5, Theorem 6, and Theorem 7, respectively. The following
lemma is instrumental for the proof of Theorem 1. Its proof is a technical
consequence of the results proved in the previous sections and is postponed
in the Appendix.

Lemma 17 The languages L′+, L
′
a,c, L

′
a, and L′c are pairwise disjoint.

We are now able to prove our main result.

Proof of Theorem 1: Let L = ϕ(B) be a bounded semi-linear language
contained in u∗1 · · ·u∗k and described, via the map ϕ, by a semi-simple set
B. If B is finite the claim is trivial. Assume that B is not finite and apply
to B the algorithm described in the previous sections. By Corollary 1, one

31



gets the decomposition (25) L = L− ∪ L+ ∪ La,c ∪ La ∪ Lc of L into semi-
linear languages. By Theorem 4, Theorem 5, Theorem 6, and Theorem
7, respectively, there exist regular languages L′+, L

′
a,c, L

′
a, and L′c such that

L′+ ∼ L+, L
′
a,c ∼ La,c, L

′
a ∼ La, and L′c ∼ Lc. By Lemma 17, the languages

L′+, L
′
a,c, L

′
a, and L′c, are pairwise disjoint, so that, by Lemma 1, we have

L+ ∪La,c ∪La ∪Lc ∼ L′+ ∪L′a,c ∪L′a ∪L′c. By Lemma 2, there exists a finite
set of words L′− such that the languages L = L− ∪ L+ ∪ La,c ∪ La ∪ Lc and
L′− ∪ L′+ ∪ L′a,c ∪ L′a ∪ L′c are commutatively equivalent. Finally, we observe
that every step of the construction of L′ is effective.

Acknowledgements. We thank the anonymous referee for her (his) help
in improving a previous version of this paper. In particular, we thank her
(him) for pointing out Lemma 2 that simplifies some parts of the proof.
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Appendix

Proof of lemma 8: Denote B(i, ε1, . . . , εki , d1, . . . , dki) by B. Moreover de-
note the language L(i, ε1, . . . , εki , d1, . . . , dki) by L and the regular language
L′(i, ε1, . . . , εki , d1, . . . , dki) by L′. Let u ∈ L. By Proposition 2 there ex-
ists exactly one vector v ∈ B such that u = ϕ(v). Obviously one has
v ∈ B. Hence, by (37), there exists exactly one tuple of positive integers
xi1 , . . . , xipa , yi1 , . . . , yipc , zi1 , . . . , zip+ , such that

v = b +

pa∑
`=1

xi`Na,i`b
(i)
a,i`

+

pc∑
`=1

yi`Nc,i`b
(i)
c,i`

+

p+∑
`=1

zi`N+,i`b
(i)
+,i`

, (61)

with b = b
(i)
0 +

∑ki
`=1 d`b

(i)
` . Let us consider the map f : L −→ L′ such

that, for every u ∈ L,

f(u) = ϕ(b̃)wki−na−nci1
uaucw

z1
i1
wz2i2 · · ·w

zp+
ip+
,

where

• b̃ = b
(i)
0 + (di1 −N

(i)
i1
ki)b

(i)
i1

+
∑ki

`=1, 6̀=i1 d`b
(i)
` .

• ua = wi1b1wi1b2 · · ·wi1bna is the word of L(i)
a defined by the sequence

xi1 , . . . , xipa , in the proper way: for every j = 1, . . . , na:

bj =

{
aβxj if j = i`,
1A∗ otherwise.
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• uc = wi1b1wi1b2 · · ·wi1bnc is the word of L(i)
c defined by the sequence

yi1 , . . . , yipc in the proper way: for every j = 1, . . . , nc:

bj =

{
cβyj if j = i`,
1A∗ otherwise.

It is easily checked that f is well defined as a map from L to L′. Our
main task is to prove that f is a bijection from L to L′ that preserves the
Parikh vectors of words of L. Let us prove that f is a bijection from L to
L′. From the definition of f , it is easily checked that f is a surjective map.
Let us prove that f is injective. Consider another word u′ ∈ L and assume
f(u) = f(u′). As before, there exists exactly one tuple of positive integers
x′i1 , . . . , x

′
ipa
, y′i1 , . . . , y

′
ipc
, z′i1 , . . . , z

′
ip+
, such that u′ = ϕ(v′) where:

v′ = b +

pa∑
`=1

x′i`Na,i`b
(i)
a,i`

+

pc∑
`=1

y′i`Nc,i`b
(i)
c,i`

+

p+∑
`=1

z′i`N+,i`b
(i)
+,i`

.

Then f(u′) = ϕ(b̃)wki−na−nci1
u′au

′
cw

z′1
i1
w
z′2
i2
· · ·w

z′p+
ip+
, where u′a and u′c are deter-

mined by the sequences x′i1 , . . . , x
′
ipa

and y′i1 , . . . , y
′
ipc

, respectively, similarly
to ua and uc. From the equality f(u) = f(u′), one has

uaucw
z1
i1
wz2i2 · · ·w

zp+
ip+

= u′au
′
cw

z′1
i1
w
z′2
i2
· · ·w

z′p+
ip+
,

which immediately implies

xi1 = x′i1 , . . . , xipa = x′ipa , yi1 = y′i1 , . . . , yipc = y′ipc , zi1 = z′i1 , . . . , zip+ = z′ip+ .

Hence v = v′ and thus u = u′. Thus f is injective on L. Finally, from
the definition of L and L′, one easily verifies that, for every u ∈ L, ψ(u) =
ψ(f(u)). This concludes the proof.

Proof of Lemma 9: By contradiction, assume that there exist two languages
L′i = L′(i, ε1, . . . , εki , d1, . . . , dki) and L′j = L′(j, δ1, . . . , δkj , e1, . . . , ekj) such
that L′i ∩ L′j 6= ∅. Let us denote by Bi the set B(i, ε1, . . . , εki , d1, . . . , dki)
associated with the language L′i. By (37), Bi is the set:

{b(i)+

pa∑
`=1

xi`Na,i`b
(i)
a,i`

+

pc∑
`=1

yi`Nc,i`b
(i)
c,i`

+

p+∑
`=1

zi`N+,i`b
(i)
+,i`
| xi` , yi` , zi` ≥ 1}.
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Similarly, denote Bj the set B(j, δ1, . . . , δkj , e1, . . . , ekj) associated with the
language L′j. By (37), Bj is the set:

{b(j)+

p′a∑
`=1

xi`Na,j`b
(j)
a,j`

+

p′c∑
`=1

yj`Nc,j`b
(j)
c,j`

+

p′+∑
`=1

zj`N+,j`b
(j)
+,j`
| xj` , yj` , zj` ≥ 1}.

By hypothesis, there exists u ∈ L′i ∩ L′j. We want to prove that Bi = Bj,
which is a contradiction. Since u ∈ L′i, by (39), we have:

u = ϕ(b̃(i))w
(ki−na−nc)
i1

uaucw
zi1
i1
w
zi2
i2
· · ·w

zip+
ip+

, (62)

where

• b̃(i) = b
(i)
0 + (di1 −N

(i)
i1
ki)b

(i)
i1

+
∑ki

`=1, 6̀=i1 d`b
(i)
` ,

• ua ∈ L(i)
a , uc ∈ L(i)

c ,

• zi1 , . . . , zip+ , is a tuple of integers ≥ 1.

Similarly, since u ∈ L′j, by (39), we have:

u = ϕ(b̃(j))w
(kj−n′a−n′c)
j1

u′au
′
cw

z′j1
j1
w
z′j2
j2
· · ·w

z′i
p′+

jp′+
, (63)

where

• b̃(j) = b
(j)
0 + (ej1 −N

(j)
j1
kj)b

(j)
j1

+
∑kj

`=1, 6̀=j1 e`b
(j)
` ,

• u′a ∈ L(j)
a , u′c ∈ L(j)

c ,

• z′i1 , . . . , z
′
ip′+
, is a tuple of integers ≥ 1.

Let
Ui = w

(ki−na−nc)
i1

uaucw
zi1
i1
w
zi2
i2
· · ·w

zip+
in+

,

and

Uj = w
(kj−n′a−n′c)
j1

u′au
′
cw

z′j1
j1
w
z′j2
j2
· · ·w

z′i
p′+

jp′+
.

Let us first show that |Ui| = |Uj|. Indeed, assume |Ui| < |Uj| (the other
case is treated similarly). Since all the words appearing in Ui and Uj have
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the same length β, the latter implies that wi1 is a suffix of ϕ(b̃j). Since

ϕ(b̃j) ∈ u∗1 · · ·u∗k and since (cf Remark 2) wi1 cannot be a factor of any word
of u∗1 · · ·u∗k, one gets a contradiction. Hence |Ui| = |Uj|. The latter implies
that

Ui = Uj, ϕ(b̃i) = ϕ(b̃j).

From ϕ(b̃i) = ϕ(b̃j), since b̃i, b̃j ∈ B and ϕ is injective on B, one has

b̃i = b̃j. (64)

This implies that Bi and Bj come from the same simple set Bi of the partition
of B, and hence we get

ki = kj, na = n′a, nc = n′c,

so yielding w
(ki−na−nc)
i1

= w
(kj−n′a−n′c)
j1

. From the latter, since all the words
appearing in Ui and Uj have the same length β and all the words of wi`
contain at least two distinct letters, one has

ua = u′a, (65)

uc = u′c, (66)

and

w
zi1
i1
w
zi2
i2
· · ·w

zip+
ip+

= w
z′j1
j1
w
z′j2
j2
· · ·w

z′i
p′+

jp′+
. (67)

From (67), since we are dealing with code words, one has p+ = p′+ and, for
every ` = 1, . . . , p+, wi` = wj` and zi` = z′j` . Hence, by using the coding (23)
of Section 4.3, one has:

∀ ` = 1, . . . , p+ N
(i)
i`

b
(i)
+,i`

= N
(j)
j`

b
(j)
+,j`

. (68)

From (65) and na = n′a, one has pa = p′a and, by Remark 5, one has:

∀ ` = 1, . . . , pa N
(i)
i`

b
(i)
a,i`

= N
(j)
j`

b
(j)
a,j`
. (69)

Similarly, from (66) and nc = n′c, one has pc = p′c and,

∀ ` = 1, . . . , pc yi`N
(i)
i`

b
(i)
c,i`

= y′j`N
(j)
j`

b
(j)
c,j`
. (70)

Finally, from (64), (68), (69), and (70), it follows that Bi = Bj, a contradic-
tion. The proof of the lemma is complete.
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Proof of Lemma 17: Let us prove that L′+ ∩ L′ac 6= ∅. By contradiction,
assume that there exists a word u with u ∈ L′+ ∩ L′ac. Since u ∈ L′+, by
the definition of L′+, there exists a language L′i = L′(i, ε1, . . . , εki , d1, . . . , dki)
defined by (39) such that u ∈ L′i. Hence, u is written in the form:

u = ϕ(b̃(i))w
(ki−na−nc)
i1

uaucw
zi1
i1
w
zi2
i2
· · ·w

zip+
ip+

, where:

– b̃(i) = b
(i)
0 + (di1 −N

(i)
i1
ki)b

(i)
i1

+
∑ki

`=1, 6̀=i1 d`b
(i)
` ,

– ua ∈ L(i)
a , uc ∈ L(i)

c ,

– zi1 , . . . , zip+ , is a tuple of integers ≥ 1.

Similarly, since u ∈ L′ac, by the definition of L′ac, there exists a language
L′j = L′(j, δ1, . . . , δkj , e1, . . . , ekj) defined by (49) such that u ∈ L′j. Hence, u
is written in the form:

u = ϕ(b̃(j))w(kj−ma−mc)u′au
′
cw, where:

– b̃(j) = b
(j)
0 +(ej1−N

(j)
j1

(kj+1))b
(j)
j1

+(ej2−N
(j)
j2

(kj+1))b
(j)
j2

+
∑kj

`=1, 6̀=j1,j2 e`b
(j)
` .

– u′a ∈ L(j)
a , u′c ∈ L(j)

c ,

– w satisfies Property 1 of Section 4.6.1.

By comparing the latter two factorizations of u, and by using the very same
argument of the proof of Lemma 9, one gets ϕ(b̃(i)) = ϕ(b̃(j)), ki = kj, na =
ma, and nc = mc. Thus one obtains the equation

w
(ki−na−nc)
i1

uaucw
zi1
i1
w
zi2
i2
· · ·w

zip+
ip+

= w(ki−na−nc)u′au
′
cw.

Since |w| = 2β and |wi1| = β, either w = w2
i1

or w = wi1a
β. By Property 1

of Section 4.6.1, the latter two factorizations are not possible for w. Hence
L′+ ∩ L′ac = ∅.

Let us prove that L′a∩L′c = ∅. By Theorem 6 and Theorem 7, the regular
languages L′a and L′c are commutatively equivalent to La and Lc, respectively.
The claim follows by applying Corollary 2.

Now let us prove that, for every σ ∈ A,L′σ ∩ L′+ = ∅. By contradiction,
assume that there exists a word v ∈ L′+ ∩ L′σ, with σ ∈ A. Since v ∈ L′+, by
Theorem 4, v has a suffix of length β that cannot be a factor of any word of
u∗1 · · ·u∗k. On the opposite, since v ∈ L′σ, by Theorem 6 or Theorem 7, v has
a suffix of length 2β which is a factor of a word of u∗1 · · ·u∗k. This implies the
result. The same argument shows that, for every σ ∈ A,L′σ ∩ L′ac = ∅.
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4.9 The proof of Proposition 5

Recall that, by (57) and (58), for every ` = 1, . . . , su, L
a
t,u,` = ϕ(Ba

t,u,`).
Consider any word w in Lat,u,`. With every occurrence of the letter a in the
word w we assign a positive integer ` ≤ t+ 1, called a-index ` in w, defined
as follows:

• if there exists an r, with 1 ≤ r ≤ t− 1, such that the position in w of
the occurrence of a is on the right of the r-th occurrence of c and on
the left of the of r + 1-th occurrence of c, then we set ` = r + 1;

• if the position of the occurrence of a is on the right of the t-th occurrence
of c, then we set ` = t+ 1;

• if the position of the occurrence of a is on the left of the first occurrence
of c, then we set ` = 1.

Since the proof of Proposition 5 is rather technical, Example 4 of the Ap-
pendix will clarify all the steps of the proof. For the sake of simplicity,
denote by B a set Ba

t,u,` of the decomposition (58). Assume that B =
{b0 + x1b1 + · · · + xmbm : x` ≥ 1, 1 ≤ ` ≤ m}. Now let x1, . . . , xm ≥ 1 be
given, and let the word w defined by w = ϕ(b0 + x1b1 + · · ·+ xmbm), where
ϕ : Nk −→ u∗1 · · ·u∗k is the Ginsburg map defined in (2). Observe that by the
definition of the Ginsburg map:

w = u
b01+

∑m
h=1 xhbh1

1 · · ·ub0j+
∑m
h=1 xhbhj

j · · ·ub0k+
∑m
h=1 xhbhk

k .

Now for every j = 1, . . . , k, we have u
b0j+

∑m
h=1 xhbhj

j = u
b0j
j u

x1b1j
j · · ·uxmbmjj .

Given a vector bi, with 1 ≤ i ≤ m, of the representation of B, we say that
u
xibij
j is the factor of w corresponding to the j-th component of xibi.

Lemma 18 Let bi = (bi1, . . . , bik) with 1 ≤ i ≤ m. For every non-zero
component bij of bi, with 1 ≤ j ≤ k, there exists an r, with 1 ≤ r ≤ t + 1
such that, for every x1, . . . , xm ≥ 1, if w = ϕ(b0 + x1b1 + · · ·+ xmbm), then
the a-index in w of every occurrence of a in the factor of w corresponding to
the j-th component of the vector xibi has always the value r.

Proof. Let bi = (bi1, . . . , bik), with 1 ≤ i ≤ m, and a non-zero component bij
of bi, with 1 ≤ j ≤ k be fixed. Then either there exists a greatest index j0,
with 1 ≤ j0 ≤ k such that:
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– |uj0|c > 0, and b0j0 6= 0,
– j > j0,

or no such index exists.
Then we claim that:

– in the first case the required value r is
∑j0

h=1 |uh|c b0h + 1,
– in the second case the required value r is 1.

Let w = ϕ(b0 + x1b1 + · · · + xmbm), with x1, . . . , xm ≥ 1. Then, in case
the index j0 exists, the last c occurring in w before any occurrence of a in
u
xibij
j is the last occurrence of c in ub0j0j0

and one immediately checks that such
occurrence is the (r − 1)-th occurrence of c. In the second case there are no

occurrences of c on the left of u
xibij
j in w as no component of b0 generates

it.

As shown by the previous lemma, for every vector bi, with 1 ≤ i ≤ m,
for every component bij of bi, with 1 ≤ j ≤ k, and for every xi ∈ N, with

xi > 0, the a-index in w of every occurrence of a in u
xibij
j has a value which

depends only on the component bij. Therefore, by a minor terminological
abuse, we call this value the a-index of the component bij.

Proof of Proposition 5: Let ` ∈ N be fixed. For every vector bi, with
1 ≤ i ≤ m, we let Ti,` be the set of all indexes h, with 1 ≤ h ≤ k, such that

the component bih has a-index `. Now we define the vector b̂i as follows:

b̂i = (̂bi1, . . . , b̂it+1),

where, for ` = 1, . . . , t+ 1, b̂i` =
∑

h∈Ti,` bih|uh|. We define the vector b̂0 as:

b̂0 = (̂b01, . . . , b̂0t+1),

where, for ` = 1, . . . , t+ 1, b̂0` is the number of the occurrences of a in ϕ(b0)
with a-index ` in ϕ(b0).

Finally we define B̂ as B̂ = {b̂0 + x1b̂1 + · · ·+ xmb̂m : x1, . . . , xm ≥ 1}.
Now we want to prove the following claim:

Claim. ϕ̂(b̂0 + x1b̂1 + · · ·+ xmb̂m) = ϕ(b0 + x1b1 + · · ·+ xmbm), for every
x1, . . . , xm ≥ 1.

Let us denote by w the word ϕ(b0+x1b1+· · ·+xmbm). To prove the claim,
consider any vector xibi, with 1 ≤ i ≤ m, with xibi = (xibi1, . . . , xibik). Let
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the a-index ` be fixed, with 1 ≤ ` ≤ t+1. By Lemma 18, for every component
bih with a-index `, the word uxibihi contributes a string of a of length xibih|uh|
to its a-index. Therefore the contribution of vector xibi to the a-index ` in w
is given by

∑
h∈Ti,` xibih|uh|. On the other hand, b̂i` is by definition equal to∑

h∈Ti,` bih|uh| and therefore xib̂i` contributes
∑

h∈Ti,` xibih|uh| to the a-index
`. The claim follows. �

From the claim it is immediate that ϕ̂(B̂) = ϕ(B), and since ϕ is injective

on B then ϕ̂ is injective on B̂. It is moreover clear that B̂ is a simple set.
Let us prove the second part of the statement of the proposition. We first

do the following remarks on the vectors b̂i defined above:

1) for every i = 1, . . . ,m, and for every j = mu + 2, . . . , t + 1, the j-th-

component of the vector b̂i is null. This immediately follows from that fact
that ϕ̂(B̂a

t,u,`) is a subset of the product a∗ca∗ca∗c · · · ca∗︸ ︷︷ ︸
mu−times

u, where mu is the

number occurrences of the letter c in the left side part of such product and
t = |u|c + mu. For every i = 1, . . . ,m, let us define the vectors of Nmu+1

as
̂̂
bi = (̂bi1, . . . , b̂imu+1). Observe that b̂i = (

̂̂
bi, 0, 0, . . . , 0︸ ︷︷ ︸

t−mu

), and that the

vectors
̂̂
bi, with i = 1, . . . ,m, are obviously linearly independent in Nmu+1.

2) let u = aα1caα2c · · · caαncaαn+1 be the factorization of u, with n = |u|c and

α1, . . . , αn+1 ≥ 0. Since Lat,u,` = ϕ̂(B̂) and the previous point (1), one has

that, in the vector b̂0, b̂0mu+1 ≥ αmu+1 and, for every j = mu + 2, . . . , t + 1,

b̂0j = αj.

Let
̂̂
b0 be the vector of Nmu+1 defined as

̂̂
b0 = (̂b01, . . . , b̂0mu , b̂0mu+1−α1),

and define the vector bu of Nt+1 as

bu = (0, 0, . . . , 0︸ ︷︷ ︸
mu

, α1, . . . , αn+1). (71)

Observe that the definition of the vector bu depends only from u and not

from the simple set B. Moreover, observe that b̂0 = (
̂̂
b0, 0, 0, . . . , 0︸ ︷︷ ︸

t−mu

) + bu.

Set D̂ = {̂̂b0 + x1
̂̂
b1 + · · · + xm

̂̂
bm : x1, . . . , xm ≥ 1}. By construction, D̂ is

a simple set of Nmu+1 and B̂ = D̂ × 0t−mu + bu. The proof is complete.
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Remark 8 The reader may wonder how Proposition 5 can be proved with-
out showing that the number m of the generators of B is no greater than
t + 1. Indeed the bound m ≤ t + 1 is implicit in the hypothesis that ϕ is
injective on B. However, such bound can be proved in a direct way.

Extension of Theorem 1

We now sketch the proof of the extension of Theorem 1 to a general alphabet
A = {a1, . . . , as} with s ≥ 3 letters. Let L be a bounded language of A∗

such that L = ϕ(B), where B is a semi-simple set. By using the algorithm
of Section 4.4, we construct a partition of semi-simple sets of B:

B = B− ∪B+ ∪ C ∪
⋃s
i=1Bai , (1)

where the sets of (1) are defined as follows:

1. B− is a finite set of vectors;

2. B+ is a finite union of pairwise disjoint simple sets of dimension ≥ 1,
every one of each satisfies the following property: if b0,b1, . . . ,bm form the
representation of the simple set, there exists ` with 1 ≤ ` ≤ m where ϕ(b`)
contains at least two distinct letters;

3. C is a finite union of pairwise disjoint simple sets of dimension ≥ 1, every
one of each satisfies the following property. Let ai1 , . . . , ai` be distincts letters
with ` ≥ 2. If b0,b1, . . . ,bm form the representation of the simple set, for
every ` = 1, . . . ,m, ϕ(b`) is a non-trivial power of some aij ; moreover, no
index ` exists such that 1 ≤ ` ≤ m and ϕ(b`) contains at least two distinct
letters;

4. Let ai be a letter of A. Then Bai is a finite union of pairwise disjoint simple
sets of dimension ≥ 1, every one of each satisfies the following property:
if b0,b1, . . . ,bm form the representation of the simple set, for every ` =
1, . . . ,m, ϕ(b`) ∈ a+i .

Finally, let L−, L+, LC and, for every i = 1, . . . , s, Lai be the image under
the map ϕ of the sets of the decomposition (1). Then one has:

L = L− ∪ L+ ∪ LC ∪
⋃s
i=1 Lai . (2)

Moreover, up to a slight refinement of the decomposition (2), we may suppose
that, for every i, j with 1 ≤ i 6= j ≤ s, one has:

∀ u ∈ Lai , ∀ v ∈ Laj , |u|aj < |v|aj . (3)

41



Now we describe the construction of the regular languages which are com-
mutatively equivalent to the languages of the decomposition (2). By using
the technique of Section 4.5, we construct a regular language L′+ such that
L′+ ∼ L+. Similarly, by using the technique of Section 4.7, for every letter
ai, with 1 ≤ i ≤ s, we construct a regular language L′ai such that L′ai ∼ Lai .

Let us describe the construction of the regular language L′C commuta-
tively equivalent to LC . For this purpose, let B be an arbitrary simple
set of the decomposition of C and let b0,b1, . . . ,bm be the vectors of its
representation. By hypothesis, we may suppose that ϕ(b1), . . . , ϕ(bn1) ∈
σ+
1 , . . . , ϕ(bj), . . . , ϕ(bn`) ∈ σ+

` , where σ1, . . . , σ` are distinct letters of A,
with ` ≥ 2. In the case of two letters σ1, σ2, we associate with B the regular
language

ϕ(b̃(i))w(ki−nσ1−nσ2 )L(i)
σ1

L(i)
σ2
w, (4)

of the Eq. (49) where L(i)
σ1

and L(i)
σ2

are defined by the Eq. (47). In the case
of three or more letters, the regular language associated with B is defined
similarly as:

ϕ(b̃(i))w(ki−(nσ1+nσ2+···+nσ` ))L(i)
σ1

L(i)
σ2

L(i)
σ3
· · ·L(i)

σ`
w, (5)

where, for every j = 1, . . . , `, the language L(i)
σj

is defined as in (47) and
it codifies the vectors of the representation of B whose images, under the
map ϕ, are powers of the letter σj. By following the very same argument of
Lemma 11, one can prove that the languages (4) and (5) are pairwise disjoint.
Finally the regular language L′C is defined as the union of all the languages
(4) and (5) associated with the simple sets B of the decomposition of C. Let
us define the regular language L′ as

L′ = L′+ ∪ L′C ∪
⋃s
i=1 L

′
ai
. (6)

The languages of the decomposition (6) of L′ are pairwise disjoint. Indeed,
by (3) and by Corollary 2, the languages L′ai , with 1 ≤ i ≤ s, are pairwise
disjoint. Moreover, since the definitions of the languages of the decomposition
(6) of L′ are exactly the same given in Section 4, the same argument of Lemma
17 allows to prove the claim.
Hence, by Lemma 1, L′ is commutatively equivalent to L+ ∪ LC ∪

⋃s
i=1 Lai .

By Lemma 2, there exists a finite set of words L′− such that the languages L
and L′− ∪ L′ are commutatively equivalent. This completes the proof.

Examples
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Example 1 Let B = {x1b1+x2b2 : x1, x2 ∈ N} be a simple set of Nk, k ≥ 2,
where b0 = 0, b1 and b2 form the representation of B. Let N1 = 2, N2 = 3
and χ1 = χ2 = 0. One has B = B− ∪B(−,+) ∪B(+,−) ∪B(+,+), where:
B− = {c1b1 + c2b2 : 0 ≤ c1 < 2, 0 ≤ c2 < 3},
B(−,+) = {c1b1 + x2b2 : 0 ≤ c1 < 2, x2 ≥ 3},
B(+,−) = {x1b1 + c2b2 : 0 ≤ c2 < 3, x1 ≥ 2},
B(+,+) = {x1b1 + x2b2 : x1 ≥ 2, x2 ≥ 3}.
For (ε1, ε2) = (+,+), B(+,+) is partitioned into the family of 6 simple sets
of the form B(+,+, r1, r2) = {(r1b1 + r2b2) + 2x1b1 + 3x2b2 : x1, x2 ≥ 1},
where 0 ≤ r1 < 2, 0 ≤ r2 < 3.

For (ε1, ε2) = (−,+), B(−,+) is partitioned into the family given by 3
simple sets of the form B(−,+, 0, r2) = {r2b2 + 3x2b2 : x2 ≥ 1}, together
with 3 sets of the form B(−,+, 1, r2) = {b1 + r2b2 + 3x2b2 : x2 ≥ 1}, where
0 ≤ r2 < 3.

Example 2 Let us consider the simple set Bi of dimension ki = 8 whose
representation is given by the vectors: b0, b1, b2, b3, b4, b5, b6, b7, b8.
We suppose that:
∀ ` = 1, . . . , 4, ϕ(b`) ∈ a+;
∀ ` = 5, 6, ϕ(b`) ∈ c+;
∀ ` = 7, 8, ϕ(b`) contains at least two distinct letters.

Thus the list above is written as: b0,ba,1,ba,2,ba,3,ba,4,bc,1,bc,2,b+,1,b+,2,
so that na = 4, nc = 2, n+ = 2.

Let B = B(i,+,+,+,+,−,−,+,+, d1, d2, d3, d4, d5, d6, d7, d8) be the simple
set of the decomposition of B+ defined in (37) and given by all the vectors:

b+x1Na,1ba,1 +x2Na,2ba,2 +x3Na,3ba,3 +x4Na,4ba,4 + z1N+,1b+,1 + z2N+,2b+,2,

where x`, z` ≥ 1 and b = b0 +
∑8

`=1 d`b`. We can rewrite b as:

b0+da,1ba,1+da,2ba,2+da,3ba,3+da,4ba,4+dc,1bc,1+dc,2bc,2+d+,1b+,1+d+,2b+,2.

Observe that, by the definition of B, d+,1 ≥ 9N+,1β. The regular language

associated with B is ϕ(b̃)w2
1L

(i)
a L(i)

c w
+
1 w

+
2 (cf Eq. (39)) where:

– w1 and w2 are the words of W associated with N+,1b+,1, N+,2b+,2 respec-
tively;
– L(i)

a = w1(a
β)+w1(a

β)+w1(a
β)+w1(a

β)+;
– L(i)

c = w2
1;

– b̃ is the vector obtained from b by replacing d+,1 with (d+,1 − 8N+,1).

43



Example 3 Let Bi be the simple set of Example 2. Consider the simple set
B = B(i,−,+,−,+,+,+,−,−, e1, e2, e3, e4, e5, e6, e7, e8) of the decomposition of
Ba,c defined as in (46):

{b+ x2Na,2ba,2 + x4Na,4ba,4 + y1Nc,1bc,1 + y2Nc,2bc,2 | x`, y` ≥ 1},

where b = b0 +
∑8

`=1 e`b`. We can rewrite b as:

b0+ea,1ba,1+ea,2ba,2+ea,3ba,3+ea,4ba,4+ec,1bc,1+ec,2bc,2+e+,1b+,1+e+,2b+,2.

Observe that, by the definition of B, ea,2 ≥ 9Na,2β and ec,1 ≥ 9Nc,1β. Then

the regular language associated with B is ϕ(b̃)w2L(i)
a L(i)

c w, where:
– w is a word of A∗ satisfying Property 1 of Section 4.6;
– L(i)

a = ww(aβ)+ww(aβ)+;
– L(i)

c = w(cβ)+w(cβ)+;

– b̃ is the vector obtained from b by replacing ea,2 with (ea,2 − 9Na,2) and
ec,1 with (ec,1 − 9Nc,1), respectively.

Example 4 Assume k = 7 and let u1 = a2, u2 = acaa, u3 = a, u4 = c,
u5 = a7, u6 = c, and u7 = a2. We find useful to emphasize in bold the
occurrences of the symbol c in the factorizations of words. In the word
u1u

2
2u3u4u5u6u7 = aaacaaacaaaca7ca2, for instance, the first 3 occurrences

of a have a-index 1, the subsequent 3 occurrences of a have a-index 2, while
the last 2 occurrences of a have a-index 5. Let us consider the simple set of
N7 B = b0 + {b1,b2}⊕ where b0 = (0, 2, 0, 1, 7, 1, 2), b1 = (2, 0, 0, 0, 0, 0, 0),
and b2 = (2, 0, 1, 0, 0, 0, 0). Then, for every x, y ∈ N, b0 + xb1 + yb2 =
(2x + 2y, 2, y, 1, 7, 1, 2), so that ϕ(b0 + xb1 + yb2) = u2x+2y

1 u22u
y
3u4u

7
5u6u

2
7 =

a4x+4yacaaacaaayca7ca2. Observe that, with respect to the vector b2, the
a-index of every occurrence of a in uyb211 = a4y (resp., uyb233 = ay) is always

1 (resp., 3). Observe that ϕ(B) ⊆ a∗ca∗ca∗u, where u = ca7ca2. Let B̂ be

the simple set of N5 given by B̂ = b̂0 + {b̂1, b̂2}⊕, with b̂0 = (1, 3, 2, 7, 2),

b̂1 = (4, 0, 0, 0, 0), and b̂2 = (4, 0, 1, 0, 0). The reader can check that ϕ̂(B̂) =
ϕ(B) with respect to the map ϕ̂ : N5 −→ a∗ca∗ca∗ca∗ca∗. Finally observe

that B̂ can be written as B̂ = D × 02 + bu, where bu = (0, 0, 0, 7, 2) and D

is the simple set of N3 given by D =
̂̂
b0 + {̂̂b1,

̂̂
b2}⊕, where

̂̂
b0 = (1, 3, 2),̂̂

b1 = (4, 0, 0),
̂̂
b2 = (4, 0, 1).
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