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Abstract
We introduce a kinetic model for traffic flow, based on Boltzmann like binary interac-

tions. We illustrate two possible examples of this type, using two different patterns to model
interactions resulting in acceleration, both based on a parameter that describes the maxi-
mum acceleration of a vehicle. Under suitable and reasonable hypotheses on the microscopic
interactions among vehicles, we can compute the asymptotic behaviour of the resulting ki-
netic distribution functions. In both cases, we find that these models permit to recover the
phase change observed in experimental fundamental diagrams. Further, the analysis of the
exact equilibria shows that it is possible to have the full richness of a kinetic approach with
the simplicity of a space of microscopic velocities characterized by a small number of modes.
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1 Introduction
In this work we discuss a kinetic traffic model characterized by the fact that drivers react to

the presence of other vehicles, deciding whether to modify their speed according to the overall
traffic conditions and to the particular velocity of the cars around them. Thus, the decision of
whether to modify one’s speed is modelled with a probability distribution, which depends on
the local traffic density, or better, on the free space available, as we argue in [21]. The possible
speeds available to the driver are naturally the driver’s current speed, and a set of possible speeds
which depend on the velocity of the vehicles ahead.

This framework permits to take the stochasticity of the drivers’ behaviour into account,
thanks to the probability distribution which assigns a weight to the possible driver’s decisions,
while maintaining the general kinetic setting, based on binary interactions. In this sense, the
model proposed here generalizes a previous kinetic model for traffic flow, introduced in [6, 7].
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However, here we introduce a few important generalizations. The model [6] considers a discrete
lattice of velocities available, and the possible outcomes of an interaction depend on the particular
lattice chosen. Here the effort is to introduce a few parameters, namely, the maximum speed
Vmax of cars, and the velocity jump ∆v which are based on the actual characteristics of the
flow. For instance, Vmax can be dictated by the physical characteristics of vehicles, or on local
speed limitations, while ∆v is a parameter that depends on the mechanical characteristics of
vehicles. In the section on macroscopic properties §5, we show that ∆v is related to the maximum
acceleration, and we discuss how this parameter can be chosen through experimental data used
by Lebacque, [13]. Thus the model discussed here is based on a continuous and bounded velocity
space, and on a parameter ∆v which controls the maximum acceleration. Its solution is the
distribution function describing the probability of finding a vehicle with a given speed, at a given
time.

The purpose of kinetic theory for traffic flow is to provide an aggregate representation of
the distribution of vehicles on the road, thanks to a detailed characterization of the microscopic
interactions which play an important role in the macroscopic behaviour of the flow. Several
kinetic approaches have been proposed, starting from the pioneering work of [19, 20] and later [17].
For more recent reviews on kinetic traffic models, see [12]. The goal is to obtain information on the
macroscopic carateristics of the flow, without assuming previous knowledge on the dependence
of the mean velocity on the local density of traffic, as is done in standard macroscopic traffic
models. See in particular the prototype of macroscopic models, [15], or the reviews in [22, 18].
More refined macroscopic models consider a system of equations, instead of a single equation, see
[2], and/or they prescribe different flow conditions at certain stages, building phase transitions
within the flow, [16, 14], but still it is necessary to complete the model with a closure law,
derived from heuristic or physical arguments, or from experimental data. Kinetic models provide
quite naturally a closure law, which is linked in general to the equilibria of the kinetic model.
Several models provide interesting ideas and tools, see [11, 10], where the drivers react to non
local interactions, or [8, 9], where the interaction is modelled with a Vlasov type relaxation
towards a desired speed. Another approach to derive closure laws can be obtained through
microscopic “follow the leader” models [23], see [1]. For a review on the derivation of macroscopic
traffic models from the microscopic “follow the leader” approach and from the mesoscopic kinetic
approach, see [3].

In this work, we follow the classical Boltzmann like setting of binary interactions. The cross
section of Boltzmann models which gives the probability of an interaction, is replaced here with a
probability distribution which depends on the local mean traffic conditions. Further, we suppose
that a vehicle driving at speed v∗, meeting a slower vehicle with speed v∗, can either brake to the
speed v∗, or keep its previous velocity, thus overtaking the slower vehicle. Acceleration can occur
when a driver meets a faster vehicle. In this case, its new velocity is chosen within v∗, v∗ + ∆v,
where ∆v is the maximum speed change available in a unit time.

We propose two models that follow the framework just described, one based on a quantized
velocity jump, i.e. if acceleration occurs, the new speed is v∗ + ∆v, (δ model), the other one is
based on a continuous uniform distribution between v∗ and v∗ + ∆v (χ model), see also [11].

The δ and the χ models are discussed in depth in §3 and 4. There we compute the exact
equilibrium distributions of the δ model, proving that at equilibrium the possible velocities are
quantized, according to the parameter ∆v. This in turn permits to write explicitly the exact
equilibrium distribution of the δ model, showing that the equilibrium solution (and therefore
the macroscopic characteristics of the flow) depend on a few velocity values, namely the integer
multiples of the velocity jump ∆v. In §4, we show the somewhat surprising result that the equi-
librium distributions of the χ model yield a macroscopic flow that is extremely well approximated
by the closure law resulting from the δ model. This is illustrated in the final section §5, where
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the fundamental diagrams, that is the flux-density diagrams, obtained by the two models tend
to coincide, under grid refinement. Further, we compute the macroscopic acceleration induced
by the model, proving in particular the link between ∆v and the acceleration.

We end the paper with a section summarising the main results of this work, and propos-
ing possible applications and further developments. Finally, the details of the matrix elements
resulting from the discretization of the χ model are written in an Appendix.

2 The general form of the kinetic model
In this section, we present a kinetic traffic model which is a generalization of [6]. Unlike [6],

the present model is defined on a continuous velocity space, and it is characterized by a parameter
∆v related to the typical acceleration of a vehicle. We start from a general construction, and then
we derive two simplified models. Next, we show that the simplified models permit to describe
the complexity of the equilibrium solutions with a very small number of discrete velocities.

We will focus only on the space homogeneous case, because we want to investigate the struc-
ture of the collision term, and of the resulting equilibrium distributions.

Let f = f(t, x, v) be the kinetic distribution function such that f(t, x, v)dxdv gives the number
of vehicles at place [x, x + dx] with velocity in [v, v + dv] at time t. Space homogeneity can be
translated mathematically by assuming that the function f does not depend on the space variable
x. Therefore, the statistical distribution of vehicles is given by the function:

f = f(t, v) : R+ × [0, Vmax]→ R+,

where V = [0, Vmax] is the domain of the microscopic speeds and Vmax is the maximum speed,
which may depend on the mechanical characteristics of the vehicles, on imposed speed limits,
environmental conditions (such as quality of the road, weather conditions, etc).

As usual, macroscopic quantities are obtained as moments of the distribution function f with
respect to the velocity v:

ρ(t) =
∫
V

f(t, v)dv, (ρu)(t) =
∫
V

vf(t, v)dv

where ρ is the density, i.e. the number of vehicles per unit length (tipically, kilometers), u is
the macroscopic speed and ρu is the flux of vehicles. Note that ρ can also be interpreted as the
reciprocal of the average distance between cars, see [2].

Here we consider a Boltzmann-type kinetic model for vehicular traffic, in which the relaxation
to equilibrium is due to binary interactions. In the homogeneous case, the model can be written
as

∂tf(t, v) = Q[f, f ](t, v) (1)

where J [f, f ](t, v) is the collisional operator and it describes the change of f in time given by
the microscopic interactions among vehicles. For mass conservation to hold, the collision term
must satisfy ∫

V

Q[f, f ](t, v)dv = 0.

In fact, this ensures that, in the space homogeneous case, the density remains constant during
the evolution of the flow:

d

dt
ρ(t) = ∂t

∫
V

f(t, v)dv = 0.
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We split the collisional operator into a gain term G[f, f ] and a loss term L[f, f ] that model
statistically the interactions which lead to acquire or to loose the test speed v.

Denoting with A(v∗→v|v∗) the probability that the velocity v ∈ V will result from a micro-
scopic interaction between candidate vehicles with velocity v∗ and field vehicles with speed v∗,
the model writes as an integro-differential equation

∂tf(t, v) =
∫
V

∫
V

η(v∗, v∗)A(v∗→v|v∗)f(t, v∗)f(t, v∗)dv∗dv∗︸ ︷︷ ︸
G[f,f ]

− f(t, v)
∫
V

η(v, v∗)f(t, v∗)dv∗︸ ︷︷ ︸
L[f,f ]

(2)

in which η(v∗, v∗) is the interaction rate which may depend on the relative speed of the interacting
vehicles, e.g. η(v∗, v∗) = |v∗ − v∗| as in [10, 4]. This choice would make the model richer,
however, in [21], we found that a constant interaction rate is already sufficient to account for
many aspects of the complexity of traffic. Another possibility is to consider η as dependent on the
local congestion of the road, that is η = η(ρ). However this is not relevant in the homogeneous
case, where ρ is constant, and therefore η affects only the relaxation time towards equilibrium.
Thus in this paper we will set η(v∗, v∗; ρ) = η.
Notation. In the whole paper, in order to shorten formulas, we adopt the following traditional
shorthand f(t, v∗) = f∗, f(t, v∗) = f∗, etc. Note that f∗ and f∗ are not different distribution
functions, but the evaluation of the same f(t, v) at two different points v∗ and v∗.

We will suppose that A depends also on the macroscopic density ρ in order to account for
the influence of the macroscopic traffic conditions (local road congestion) on the microscopic
interactions among vehicles, see [20, 10, 9, 21]. Thus, we suppose that A fulfills
Assumption 1.

A(v∗→v|v∗; ρ) ≥ 0, and
∫
V

A(v∗→v|v∗; ρ)dv = 1, for v∗, v∗, v ∈ V, ρ ∈ [0, ρmax]

where ρmax is the maximum density of vehicles and it can be chosen as the maximum number
of vehicles per unit length in bumper-to-bumper conditions.
Remark 1. Any transition probability density A that satisfies Assumption 1 guarantees mass
conservation since

∂t

∫
V

f(t, v)dv =
∫
V

[G(v)− L(v)]dv =∫
V

∫
V

f(t, v∗)f(t, v∗)dv∗dv∗ −
∫
V

f(t, v)dv
∫
V

f(t, v∗)dv∗ = ρ2 − ρ2 = 0

It is convenient to split V × V into

Ω1 =
{

(v∗, v∗) ∈ [0, Vmax]2 : v∗ ≤ v∗
}

(3)
Ω2 =

{
(v∗, v∗) ∈ [0, Vmax]2 : v∗ > v∗

}
,

and consequently the gain term G[f, f ](t, v) as

G[f, f ](t, v) =
∫

Ω1

ηA1(v∗→v|v∗; ρ)f(t, v∗)f(t, v∗)dv∗dv∗︸ ︷︷ ︸
G1[f,f ](t,v)

(4)

+
∫

Ω2

ηA2(v∗→v|v∗; ρ)f(t, v∗)f(t, v∗)dv∗dv∗︸ ︷︷ ︸
G2[f,f ](t,v)

.
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Here A1 and A2 are the projections of the transition probability density A onto the sets Ω1 and Ω2
respectively. Note that the modelling of acceleration will be contained in A1, because a candidate
vehicle travelling at speed v∗ may decide to accelerate when it meets a faster vehicle, provided
that there is free space ahead. The modelling of overtaking and braking will be contained in A2,
because in this case the candidate vehicle at speed v∗ is interacting with a field vehicle travelling
at a slower speed v∗.

2.1 Choice of the probability density A

The probability density A assignes a post-interaction speed in a non-deterministic way, con-
sistently with the intrinsic stochasticity of the drivers’ behaviour. The construction of A is at
the core of the model we propose. It is obtained with a very small set of rules.

• if (v∗, v∗) ∈ Ω1, i.e. the candidate vehicle is slower than the field vehicle, the post-
interaction rules are:

Do nothing: the candidate vehicle keeps its pre-interaction speed with probability 1−P1,
thus v = v∗;

Accelerate: the candidate vehicle accelerates to a velocity v > v∗ with probability P1;

• if (v∗, v∗) ∈ Ω2, i.e. the candidate vehicle is faster than the field vehicle, the post-interaction
rules are:

Do nothing: the candidate vehicle keeps its pre-interaction velocity with probability P2,
so v = v∗, thus overtaking the field vehicle;

Brake: the candidate vehicle decelerates to the velocity v = v∗ with probability 1 − P2,
thus following the leading vehicle;

From the previous rules, we observe that both probability densities A1 and A2 have a term
that will be proportional to a Dirac delta function at v = v∗, due to interactions in which the
pre-interaction microscopic speed is preserved (the two “Do nothing” alternatives). Note that
these are “false gains” for the distribution f , because the number of vehicles with speed v is not
altered by these interactions.

In [10] Klar and Wegener assume that the velocity after acceleration is uniformly distributed
over a range of speeds between v∗ and v∗ +α(Vmax − v∗), where α is supposed to depend on the
local density; in a similar way, the output velocity from a braking interaction is assumed to be
uniformly distributed in [βv∗, v∗], with β ∈ [0, 1].

Instead, the rules above assign the speed after braking as proposed in [19] and used also
in [6, 7] in the context of a discrete velocity model. Namely, we suppose that if a vehicle brakes,
interacting with a slower vehicle, it will slow down to the speed v∗ of the leading vehicle, thus,
after the interaction, v = v∗, and the field vehicle will remain behind the leading vehicle. For
the post-interaction speed due to acceleration we propose two different models.

Quantized acceleration (δ model): we will suppose that the output velocity v is obtained
by accelerating instantaneously from v∗ to the velocity min {v∗ + ∆v, Vmax}. Considering
all possible outcomes, the resulting probability distribution is

A(v∗→v|v∗; ρ) =
{

(1− P1)δv∗(v) + P1δmin{v∗+∆v,Vmax}(v), if (v∗, v∗) ∈ Ω1

(1− P2)δv∗(v) + P2δv∗(v), if (v∗, v∗) ∈ Ω2.
(5)
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Uniformly distributed acceleration (χ model): here we assume that the new velocity v
is uniformly distributed between v∗ and min{v∗ + ∆v, Vmax}. The resulting probability
distribution is

A(v∗→v|v∗; ρ) =
{

(1− P1)δv∗(v) + P1
χ[v∗,min{v∗+∆v,Vmax}](v)

min{v∗+∆v,Vmax}−v∗ , if (v∗, v∗) ∈ Ω1

(1− P2)δv∗(v) + P2δv∗(v), if (v∗, v∗) ∈ Ω2.
(6)

Note that the δ model (5) of A may seem as a continuous extension of the model [6, 7]
which was based on a discrete velocity space. However, in [6, 7] the acceleration parameter ∆v is
chosen as the distance between two adjacent discrete velocities, thus ∆v depends on the number
of elements in the speed lattice. In this work, ∆v is a physical parameter that represents the
ability of a vehicle to change its pre-interaction speed v∗. With this choice, ∆v will not depend
on the discretization of the velocity space and the maximum acceleration is bounded, as in [13].
In contrast, deceleration can be larger than ∆v, and this fact reflects the hypothesis that drivers
tend to brake immediately if the traffic becomes more congested, while they react more slowly
when they can accelerate (see the concept of traffic hysteresis in [23] and references therein).

In the following, the probabilities P1 and P2 are taken as P = P1 = P2 and P will be a
function of the local density only, as assumed for instance in [20] where P = 1 − ρ/ρmax. More
generally P should be a decreasing function of ρ, see also [8] or [22]. For instance in [21] we have
taken

P = 1−
(

ρ

ρmax

)γ
, (7)

where γ ∈ (0, 1) can be chosen to better fit experimental data. In [6] P = α(1 − ρ/ρmax),
with α ∈ [0, 1] as a parameter describing environmental conditions, for instance road or weather
conditions. In more sophisticated models, one could also choose P as a function of the relative
velocities of interacting vehicles, but we will not explore this possibility in the present work.
Remark 2. Both choices (5) and (6) for A include terms of the form δv∗(v) which actually describe
false gains mentioned above, because the velocity of the candidate vehicle does not change. They
are automatically compensated by false losses, because the classical kinetic loss term of equation
(2) can be rewritten as

L[f, f ](t, v) =
∫
V

∫
V

ηδv∗(v)f∗f∗dv∗dv∗

and already accounts for them.

3 The δ velocity model
Using the expression (5) for A, we rewrite the gain term in (2) as:

G[f, f ] =η
∫

Ω1

[
(1− P )δv∗(v) + Pδmin{v∗+∆v,Vmax}(v)

]
f∗f
∗dv∗dv

∗

+ η

∫
Ω2

[(1− P )δv∗(v) + Pδv∗(v)] f∗f∗dv∗dv∗

where Ω1,Ω2 are defined in (3).
We compute explicitly the restrictions G1 and G2 of the gain term on the sets Ω1 and Ω2. In

G1 the Dirac delta function at v = min {v∗ + ∆v, Vmax} can be split as

δmin{v∗+∆v,Vmax}(v) =
{
δv∗+∆v(v), if v∗ ∈ [0, Vmax −∆v]
δVmax(v), if v∗ ∈ [Vmax −∆v, Vmax]

6



because the velocity jump of size ∆v, leading to the output velocity v = v∗+∆v, can be performed
only if v∗ ≤ Vmax −∆v. If instead v∗ ∈ [Vmax −∆v, Vmax], the post-interaction velocity will be
v = Vmax. Thus G1 can be written as:

G1[f, f ](t, v) =η(1− P )f(t, v)
∫ Vmax

v

f∗dv∗

+ ηPf(t, v −∆v)H∆v(v)
∫ Vmax

v−∆v
f∗dv∗

+ ηPδVmax(v)
∫ Vmax

Vmax−∆v
f∗dv∗

∫ Vmax

v∗

f∗dv∗.

where Hα(x) denotes the Heaviside step function with jump located in α. The last term
in the expression for G1 means that, as a result of the microscopic interactions, the mass
P
∫ Vmax
Vmax−∆v f∗dv∗

∫ Vmax
v∗

f∗dv∗ is assigned entirely to f(t, Vmax).
The projection of the gain operator G over Ω2 is

G2[f, f ](v) = η(1− P )
∫
V

δv∗(v)f∗dv∗
∫ Vmax

v∗
f∗dv∗ + ηP

∫
V

δv∗(v)f∗dv∗
∫ v∗

0
f∗dv∗

which can be rewritten as

G2[f, f ](v) = η(1− P )f(t, v)
∫ Vmax

v

f∗dv∗ + ηPf(t, v)
∫ v

0
f∗dv∗.

Globally, the gain term of the δ model is written as

G[f, f ] =η(1− P )f(t, v)
[∫ Vmax

v

f∗dv∗ +
∫ Vmax

v

f∗dv∗

]
+ ηPf(t, v)

∫ v

0
f∗dv∗

+ η

{
Pf(t, v −∆v)H∆v(v)

∫ Vmax
v−∆v f

∗dv∗ if v ∈ [0, Vmax −∆v)
PδVmax(v)

∫ Vmax
Vmax−∆v f∗dv∗

∫ Vmax
v∗

f∗dv∗ if v ∈ [Vmax −∆v, Vmax]
(8)

Note that, in non space-homogeneous models, f∗ and f∗ may refer to distributions evaluated at
different locations in space, see for instance [10] and [11]. For this reason we write the gain term
with the two integrals over field and candidate particles separately.

3.1 Discretization of the model
In order to study the properties of the model, we consider a discretization of the velocity

space. We suppose that the acceleration parameter ∆v is a fixed parameter of the model. For
simplicity, we suppose that ∆v = Vmax/T with T ∈ N. The study becomes simpler if we choose
the discretization parameter δv such that ∆v = rδv, so that ∆v corresponds to an integer number
of intervals in the velocity discretization. Thus we will take T ∈ N fixed, while r = N−1

T will
depend on the number of grid points N .

We define the velocity cells Ij = [(j − 3
2 )δv, (j − 1

2 )δv] ∩ [0, Vmax], for j = 1, . . . , N . Note
that all cells have amplitude δv except I1 and IN which have amplitude δv/2. The velocity grid
nodes, located at the center of each cell, are v1 = δv/4, vN = Vmax − δv/4, and vj = (j − 1)δv
for j = 2, . . . , N − 1. This choice is convenient for computations, see §5, because all grids with
r > 1 contain all the points of the coarser mesh with r = 1 (except the first and the last point).
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Figure 1: Structure of the probability matrices of the δ model.

In order to discretize the model, we approximate the velocity distribution with the piece-wise
constant function

f(t, v) =
N∑
j=1

fj(t)
χIj

(v)
|Ij |

(9)

where fj represents the number of vehicles travelling with velocity v ∈ Ij .
By integrating the kinetic equation (1) over the cells Ij we obtain the following system of

ordinary differential equations

f ′j(t) = Qj [f, f ](t) =
∫
Ij

Q[f, f ](t, v)dv (10)

whose initial condition f1(0), . . . , fN (0) are such that:

N∑
j=1

fj(0) =
∫
V

f(t = 0, v)dv = ρ0

and ρ is the initial density, which remains constant in the spatially homogeneous case.
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By computing the right hand side of the ODE system, we obtain

1
η
Qj [f, f ](t) = (1− P

2 )f jfj + Pfj

j−1∑
k=1

fk + (1− P )fj
N∑

k=j+1
fk (11a)

+ (1− P )f j
N∑

h=j+1
fh − fj

N∑
k=1

fk, for j = 1, . . . , r

1
η
Qj [f, f ](t) = P

2 f
j−rfj−r

:::::::::

+ (1− P

2 )f jfj + Pfj−r

N∑
k=j−r+1

fk

:::::::::::::::

+ Pfj

j−1∑
k=1

fk (11b)

+ (1− P )fj
N∑

k=j+1
fk + (1− P )f j

N∑
h=j+1

fh − fj
N∑
k=1

fk, for j = r + 1, . . . , N − 1

1
η
QN [f, f ](t) = P

2

N−1∑
h=N−r

fhfh

::::::::::::

+ fNfN + P

N−1∑
h=N−r

N∑
k=h+1

fkfh

:::::::::::::::::

+ PfN

N−1∑
k=1

fk − fN
N∑
k=1

fk,

(11c)

In the formulae above, the distribution of the field and of the candidate vehicles are distinguished
by the position of the index of the components of f : bottom right for the candidate vehicles (as
fh), top right for the field vehicles (fk). The terms with a wavy underline are those deriving
from the acceleration term. The structure of the model is more readable in vector form:

d

dt
fj = η

[
fTAjδf − fTej1T

N f
]
, j = 1, . . . , N (12)

where f = [f1, . . . , fN ]T ∈ RN , ej ∈ RN denotes the vector with a 1 in the j-th component and
0’s elsewhere, 1T

N = [1, . . . , 1] ∈ RN . The matrices Ajδ have a sparse structure, which is shown in
Fig. 1.

As it can be checked using (11), these matrices are stochastic with respect to the index j,
i.e.

∑N
j=1

(
Ajδ

)
hk

= 1, ∀h, k ∈ {1, . . . , N}. This property comes from Assumption 1, and it
guarantees mass conservation.

In the figure, the nonzero elements are shaded with different hatchings, corresponding to the
different values of the elements, as indicated in the first two panels.

Recall that the elements of the matrix Ajhk are the probability that the candidate vehicle with
velocity in Ih interacting with a field vehicle with velocity in Ik will acquire a velocity in Ij . The
fact that these matrices are sparse means that a velocity in Ij can be acquired only for special
values of the velocity of candidate and field vehicles. In particular, the j-th row of the matrix
Aj contains the probability of what we called “false gains” in Remark 2, that is the probability
that the candidate vehicle does not change its speed. The non zero elements of the j-th column
contains the probability that a candidate vehicle acquires a speed in Ij by braking down to the
speed of the leading vehicle. The non zero row, located at h = j − r, contains the probability
that the candidate vehicle accelerates by ∆v, acquiring therefore a velocity in Ij = Ih + ∆v.
The band between the rows h = j − r and h = j is filled with zeroes because the acceleration is
quantized, in the δ model. This band will be filled by non zero elements in the χ model, where
the acceleration is distributed uniformly between [0,∆v].

The structure of the matrices Ajhk determines the equilibrium of the system. In Figure 2 we
show the function f∞(v) = limt→∞ f(t, v) for a few typical cases. In all numerical tests we take
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Figure 2: Approximation of the asymptotic kinetic distribution function obtained with two
acceleration terms ∆v = 1/T , T = 3 (top), T = 5 (bottom), and N = rT + 1 velocities, with
r ∈ {1, 4, 8}; ρ = 0.3 (left) and ρ = 0.6 (right) are the initial densities. We mark with red circles
on the x-axes the velocities (or grid points) of the discretized model with N = T + 1.

P = 1 − ρ, with Vmax = ρmax = 1. As initial macroscopic densities, we choose ρ0 = 0.3, 0.6
(plots to the left and right of the figure). We consider two values for the acceleration parameter,
∆v = Vmax/T , T = 3, 5 (top and bottom of the figure). The number of velocities in the grid
is taken as N = rT + 1, with r ∈ {1, 4, 8}. The three curves in each plot contain the data for
the cell averages of the equilibrium distribution for the different values of r. It is clear that in
all cases, f∞(ρ0, v) approaches a series of delta functions, centered on the velocity grid points
induced by the special velocity grid obtained with r = 1, which are indicated in the picture by
red dots on the horizontal axis.

As time goes to infinity the number of non zero values of the steady-state distribution f∞

is univocally determined by the acceleration term ∆v = Vmax/T . More precisely, the kinetic
function f∞ is not identically zero only on the T + 1 cells, V1, Vr, V2r, . . . , VN .
Remark 3. Similar considerations hold if N is not a multiple of T . In this case we consider r =⌊
N−1
T + 1

2
⌋
, and we will find again that only the values of f on the velocity nodes corresponding

to vk = ∆v(k − 1), k = 1, . . . T + 1 are non zero, as δv → 0.
The evolution towards equilibrium of the distribution function is shown in Fig. 3. In this

figure, ∆v = Vmax/3, and the different plots show the evolution of f towards equilibrium, starting
from a uniform initial distribution, namely fj(t = 0) = ρ/N,∀j = 1, . . . , N , for r = 1 (green), r =
2 (blue) and r = 3 (red), which correspond to N = 4, 7 and 10 velocity grid points respectively.
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Figure 3: Evolution towards equilibrium of the discretized solution for model (12) with N = 4
(green), N = 7 (blue) and N = 10 (red) grid points. The acceleration parameter ∆v is taken as
Vmax/3. Black circles indicate the equilibrium values.

Note that a different dynamics towards equilibrium is observed, for different values of the number
N of grid points, but as equilibrium is approached, the values of f go toward zero, except for
the velocities vj corresponding to integer multiples of ∆v.

To study the structure of the solutions of system (12), we first recall a result from [5], where
the existence and well posedness of the solution of such systems is proven.
Theorem 4. (Delitala-Tosin) Let f0(v) ≥ 0, with ρ =

∫
f0(v) dv, be the initial condition for the

system
d

dt
fj = fTAjf − fTej1TN f , j = 1, . . . , N,

where the matrices Aj are stochastic matrices with respect to the index j, i.e.
∑
j A

j
hk = 1 for all

h, k. Then there exists t∗ > 0 such that the system admits a unique non-negative local solution
f ≥ 0 satisfying the a priori estimate

||f(t)||1 = ||f0||1 = ρ ∀t ∈ (0, t∗].

The following theorem proves the structure of the equilibria that we have already observed
in the numerical results.
Theorem 5. For any fixed ∆v = Vmax/T , T ∈ N, let fr(ρ) denote the equilibrium distribution
function of the ODE’s system (10), obtained on the grid with spacing δv given by ∆v = rδv with
r = (N − 1)/T ∈ N. Then

(fr)j =
{

(f1)(j−1)/T mod(j − 1, T ) = 0
0 otherwise

(13)

is the unique stable equilibrium distribution, and the values of f1 depend uniquely on the initial
density ρ, with

∑T+1
k=1 (f1)k = ρ.

Proof. We already know from Theorem 4 that the solution of (10) exists is non-negative and is
uniquely determined by the initial condition.

To prove the statement, we compute explicitly the equilibrium solutions of (10), using the
explicit expression of the collision kernel given in (11a), (11b) and (11c). Since here we are
interested in the solutions of the homogeneous problem, we will take identical distributions for
the candidate and the field vehicles, i.e. fj ≡ f j .

For j = 1, using the expression (11a), adding the loss term, and using the fact that
∑
k fk = ρ

we obtain
d

dt
f1 = 0 ⇔

(
3P − 2

2

)
f2

1 + (1− 2P ) ρf1 = 0. (14)

11



This is a quadratic equation for f1, which has the two roots f1 = 0 and f1 = ρ(2P −1)/( 3
2P −1).

It is easy to see that one solution is stable, and the other one unstable, depending on the value
of P . Here we are interested only in the stable root, so we find

(fr)1 =
{

0 P ≥ 1
2

2 2P−1
3P−2ρ otherwise

(15)

Thus, no vehicle is in the lowest speed class I1 if P ≤ 1
2 , which, for the simple case P = 1 − ρ

means that all cars are moving if ρ ≤ 1
2 .

The j = 1 case we just computed is typical. Also for larger values of j, we find a quadratic
equation for the unknown fj , which involves only previously computed values of fk, k < j. Thus,
we can easily compute successively all components of fr.

For 2 ≤ j ≤ r, the equilibrium equation is(
3P − 2

2

)
f2
j +

[
(3P − 2)

j−1∑
k=1

fk + (1− 2P ) ρ
]
fj = 0.

Start from j = 2. Clearly, for P > 1
2 , substituting eq. (15), we again have (fr)2 = 0. For P < 1

2 ,
the equation for f2, with f1 given by (15), becomes(

3P − 2
2

)
f2

2 − (1− 2P ) ρf2 = 0.

Comparing with the equation for f1, we see that now the stable root is f2 = 0. Thus, at
equilibrium, we have (fr)2 ≡ 0, for all values of P . Analogously, it is easy to see that (fr)j ≡
0,∀j = 2, . . . r.

For j ≥ r + 1, in place of (11a), we use (11b), which contains two extra terms:

P

2 f
2
j−r + (1− P )fj−r

N∑
k=j−r+1

fk.

If we consider r + 1 < j < 2r + 1, then fj−r = 0 from the previous step, and the equation is
identical to a case we have already seen, so (fr)j = 0 for r+ 1 < j < 2r+ 1. If instead j = r+ 1,
then fj−r = f1. The new terms are certainly zero for P ≥ 1

2 . So again we find (fr)r+1 = 0
for P ≥ 1

2 , because the equation becomes identical to what we have already seen. If P < 1
2 ,

substituting the expression for f1, the equation for fr+1 becomes(
3P − 2

2

)
f2
r+1 + (2P − 1)ρfr+1 + 2P (2P − 1)

3P − 2 ρ2 = 0.

This equation has a negative and a positive real root, which is stable. Thus

(fr)r+1 =
{

0 P ≥ 1
2

ρ 1−2P+
√

1−4P 2

3P−2 otherwise.
(16)

Clearly, this procedure can be repeated. For (l − 1)r < j < lr + 1, the equation for fj is

dfj
dt

= 3P − 2
2 f2

j + (1− 2P )ρfj + (3P − 2)fj
l−1∑
h=0

frh+1

12
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Figure 4: Evolution towards equilibrium, ρ = 0.7, T = 4, N = 17. Left: fj(t = 0) ≡ ρ/N .
Middle: fj(t = 0) = 0, j = 1, 2, 3, fj(t = 0) ≡ (ρ/(N − 3)), j > 3. Right: f1 = ε = 10−6, f2 =
f3 = 0 and fj(t = 0) ≡ ((ρ− ε)/(N − 3)). The thick lines highlight the components fj and the
blue ones are for those that appear in stable equilibria, i.e. with j = kr + 1 for k = 0, . . . , T .

which clearly gives fj = 0 for P ≥ 1
2 . For P < 1

2 , again the largest root is positive. One root is
fj = 0, the other one is

fj = 2
3P − 2

(
(2P − 1)ρ+ (2− 3P )

l−1∑
h=0

frh+1

)
,

where the numerator is clearly positive. Thus again the largest root is fj = 0. From these
considerations, the thesis easily follows. Just note that for the last value, fN , we use mass
conservation

(fr)Tr+1(ρ) = (fr)N (ρ) = ρ−
T−1∑
l=0

(fr)lr+1(ρ).

The result above prove that equilibria are uniquely determined by the initial density ρ0,
which is constant in the spatially homogeneous case. More precisely, they do not depend on the
number of grid points N and for any ρ0 ∈ [0, ρmax] the number of non zero distribution functions
is determined by the acceleration term ∆v = Vmax/T .
Remark 6 (Critical density). For P ≥ 1

2 (that is ρ ≤ 1
2 when taking P = 1− ρ), the equilibrium

distribution is fr = [0, . . . , 0, ρ] and thus all vehicles travel at maximum speed. Only when P < 1
2

the lower speed classes begin to fill up. The value of ρ for which P = 1
2 is called critical density,

and it influences the qualitative behaviour of macroscopic quantities. In particular, it determines
the phase transition observed in fundamental diagrams, see §5 below.

Remark 7 (Unstable equilibria). Theorem 5 gives the uniqueness of the stable equilibria of the
model. Unstable ones may occour if the initial condition is such that f1(0) = 0. In fact, the
interaction rules related to Ω2 do not allow a post-interaction velocity v which is less than v∗.
Thus if f1(0) = 0, i.e. there are no vehicles with velocity v1 = 0 at the initial time, there will not
be interactions leading to an increase of f1. This consideration can be generalized: if fj(0) = 0
for j = 1, . . . , j̄ < r, then the computed equilibria will be fj = (fr)j−j , where fr is the stable
equilibrium of Theorem 5. In this sense, the equilibrium solution of the δ model depends not
only on ρ, but also on the initial condition f(0). These solutions however are unstable: a small
perturbation on f1(0) is enough to trigger the evolution towards the stable equilibrium, which
depends only on ρ.

13



This is illustrated in Figure 4: in the left panel we show the evolution towards equlibrium
when fj(0) 6= 0 for all classes, while in the middle we show the case when f1 = f2 = f3 = 0. In
the rightmost panel we show a perturbation of the previous case, where f1 takes a very small
but nonzero value. It is clear that the evolution goes at first towards the unstable equilibrium
of the middle panel, but then, at length, the stable equilibrium of Theorem 5 emerges.

4 The χ velocity model
A very reasonable doubt arises from the structure of the stable equilibria of the δ model.

In fact one could argue that the equilibria depend on the particular choice of the acceleration
interaction made in the δ model, in which a vehicle accelerates by jumping from its pre-interaction
velocity v∗ to the new velocity v∗ + ∆v. Thus it could seem quite natural that only velocities
0, ∆v, 2∆v, . . . , Vmax give a non zero contribution at equilibrium.

Here we study the χ model, already introduced in Section 2.1, in which vehicles can assume
a post-interaction velocity uniformly distributed over a range of speeds when the acceleration
interaction occurs. We will show that although this model is more refined than the δ model, at
equilibrium the essential information is already caught by the simpler δ model.

Using the formulation (6) for the transition probability density A, we rewrite (2) as

∂tf = G1[f, f ](t, v) +G2[f, f ](t, v)− ηf

∫
V

f∗dv∗,

where, defining Ω1 and Ω2 as in (3),

G1[f, f ](t, v) = η

∫
Ω1

[
(1− P )δv∗(v) + P

χ[v∗,min{v∗+∆v,Vmax}](v)
min {v∗ + ∆v, Vmax} − v∗

]
f∗f
∗dv∗dv

∗, (17)

G2[f, f ](t, v) = η

∫
Ω2

[(1− P )δv∗(v) + Pδv∗(v)] f∗f∗dv∗dv∗. (18)

In G1, the χ function can be split as

χ[v∗,min{v∗+∆v,Vmax}](v)
min {v∗ + ∆v, Vmax} − v∗

=
{
χ[v∗,v∗+∆v](v)

∆v , if v∗ ∈ [0, Vmax −∆v]
χ[v∗,Vmax](v)
Vmax−v∗ , if v∗ ∈ [Vmax −∆v, Vmax]

and substituting in (17) and evaluating explicitly (18), we find:

G1[f, f ](t, v) =η(1− P )f(t, v)
∫ Vmax

v

f∗dv∗ + η
P

∆v

∫ Vmax−∆v

0
f∗χ[v∗,v∗+∆v](v)dv∗

∫ Vmax

v∗

f∗dv∗

(19)

+ ηP

∫ Vmax

Vmax−∆v
f∗
χ[v∗,Vmax](v)
Vmax − v∗

dv∗

∫ Vmax

v∗

f∗dv∗

G2[f, f ](t, v) =η(1− P )f(t, v)
∫ Vmax

v

f∗dv∗ + ηPf(t, v)
∫ v

0
f∗dv∗.

4.1 Discretization of the model
To compute the asymptotic kinetic distribution function of the χ model, we need to integrate

the equations numerically. Thus we use the same discretization of the velocity space [0, Vmax]
introduced to discretize the δ model, see (9).
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Figure 5: Structure of the interaction matrices resulting from the χ model.

Integrating the model (4) over each cell, we find the system of ODEs (10), but now the gain
term is given by (19). Although in this case the integrals are laborious, they can be computed
recalling that ∆v = Vmax/T with T ∈ N and assuming that ∆v is a multiple of δv. Thus we will
take N − 1 ≡ 0(modT ) and r = N−1

T .
The details are reported in Appendix A and here we just point out that, as in the case of the

δ model, the ODE system can be conveniently rewritten in vector form as

d

dt
fj = η

[
fTAjχf − fTej1T

N f
]
, j = 1, . . . , N (20)

where f = [f1, . . . , fN ]T ∈ RN is the vector of the unknown functions, ej ∈ RN denotes the
vector with a 1 in the j-th coordinate and 0’s elsewhere, 1T

N = [1, . . . , 1] ∈ RN and Ajχ is the
j-th interaction matrix such that

(
Ajχ
)
hk

contains the probabilities that a candidate vehicle with
velocity in Ih interacting with a field vehicle with velocity in Ik will acquire a velocity in Ij .

Since the matrices appearing in (20) are again stochastic, we can apply Theorem 4 to guar-
antee existence and well posedness of the solution.

In Figure 5 we show the structure of the χ matrices: they are less sparse than the δ matrices
because of the uniformly distributed acceleration in [v∗, v∗ + ∆v], where v∗ is the pre-interaction
speed. In fact the matrix Ajχ contains non zero elements also on the rows from the (j− r+ 1)-th
to the (j − 1)-th, see the shaded areas in Figure 5, which represent non zero probabilities of
accelerating to a speed in Ij and, since ∆v = rδv, exactly r rows fill up. Instead, the area drawn
using hatching contains the same probabilities already shown in Figure 1 for the case of the δ
model. Thus, in contrast to the δ model, steady solutions of the ODE system (20) depend on
the number of velocities N chosen to discretize the χ model.

Moreover, all the elements on the rows j − r, . . . , j − 1 of the matrix Ajχ, j = 1, . . . , N , tend
to 0 as 1/r when the grid is refined. In particular, for j = 1, . . . , r, Ajχ → Ajδ. The previous
consideration is not true for the matrices Ajχ, for j = r + 1, . . . , N .

Despite their differences the χ and the δ model are deeply related. This can be seen computing
the expected output speed in each model resulting from a fixed pre-interaction speed. We define
the expected value < v > of the post-interaction velocity as

< v >=
∫ Vmax

0
vA(v∗ → v|v∗, ρ) dv, (v∗, v∗) ∈ [0, Vmax]2 . (21)

For brevity we indicate with Aδ(v) and Aχ(v) the probability density given in (5) and (6)
respectively. Since both Aδ(v) and Aχ(v) depend on the position of the pair (v∗, v∗) in [0, Vmax]2,
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then (21) can be split:

< v >=


∫ Vmax

0
vA1(v) dv, if (v∗, v∗) ∈ Ω1∫ Vmax

0
vA2(v) dv, if (v∗, v∗) ∈ Ω2

(22)

Since Aδ(v) and Aχ(v) differ only in the subset Ω1, the expected speed resulting from the
second equation of (22) is the same both for δ and χ models and it does not depend on the
acceleration parameter ∆v. For this reason we compute < v > only in Ω1. In the case of the δ
model we obtain:

< v >δ =
∫ Vmax

0
v
[
(1− P ) δv∗(v) + P δmin{v∗+∆v,Vmax}(v)

]
dv (23)

= (1− P ) v∗ + P

{
v∗ + ∆vδ, if v∗ + ∆vδ < Vmax

v∗ + (Vmax − v∗) , if v∗ + ∆vδ > Vmax

In contrast, if we consider the χ model we have∫ Vmax

0
v

[
(1− P ) δv∗(v) + P

χ[v∗,min{v∗+∆v,Vmax}](v)
min {v∗ + ∆v, Vmax} − v∗

]
dv

= (1− P ) v∗ + P


1

∆v

∫ v∗+∆v

v∗

v dv, if v∗ + ∆v < Vmax

1
Vmax − v∗

∫ Vmax

v∗

v dv, if v∗ + ∆v > Vmax

and thus

< v >χ= (1− P ) v∗ + P


v∗ + ∆vχ

2 , if v∗ + ∆vχ < Vmax

v∗ + 1
2 (Vmax − v∗), if v∗ + ∆vχ > Vmax

(24)

By comparing the last lines of (23) and (24), it is clear that

< v >χ=< v >δ ∀ v∗ < Vmax −∆vχ, provided ∆vδ = 1
2∆vχ. (25)

Remark 8. Let’s compare the Ajχ matrices (Figure 5) for r < j < N with a given ∆v and the
corresponding Ajδ matrices (Figure 1) with ∆v

2 . The isolated nonzero row of Ajδ is at j−
r
2 , which

corresponds to the middle of the green shaded area in Ajχ. Morevover, for any fixed ∆v, it can
be proven that the sum of the quantities located in the shaded area of Aχ is equal to the total
contribution provided by the

(
j − r

2
)
-th row of the δ matrices obtained with the acceleration

parameter ∆v
2 . In other words the total effect of the

(
j − r

2
)
-th row of Ajδ with

∆v
2 is spread over

r + 1 rows in the matrices Ajχ with ∆v, which are the rows shaded in green in Figure 5.
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5 Macroscopic properties
In order to explain the relation of ∆v with the acceleration of the vehicles in the model, we

compute

∂u

∂t
= ∂

∂t

[
1
ρ

∫
V

vf(t, v) dv
]

= 1
ρ

∫
V

vQ[f, f ](t, v) dv

= η

ρ

[∫
V

v dv

∫
V

∫
V

A(v∗→v|v∗; ρ)f∗f∗ dv∗dv∗ − ρ
∫
V

vf(t, v) dv
]

= η

ρ

[∫
V

∫
V

< v > f∗f
∗ dv∗dv

∗ − ρ
∫
V

vf(t, v) dv
]

where < v >=
∫
V
vA(v∗→v|v∗; ρ) dv is a function of v∗ and v∗.

In the case of the δ model, < v >δ is given by (23) for (v∗, v∗) ∈ Ω1, while < v >δ=
(1− P )v∗ + Pv∗ for (v∗, v∗) ∈ Ω2 and thus

∂u

∂t
= η

ρ

[
(1− P )

∫ Vmax

0

∫ v∗

0
v∗f∗f

∗ dv∗dv∗ + P

∫ Vmax

0

∫ v∗

0
v∗f∗f

∗ dv∗dv∗+

(1− P )
∫ Vmax

0

∫ Vmax

v∗

v∗f∗f
∗ dv∗dv∗ + P

∫ Vmax−∆v

0

∫ Vmax

v∗

(v∗ + ∆v)f∗f∗ dv∗dv∗+

P

∫ Vmax

Vmax−∆v

∫ Vmax

v∗

Vmaxf∗f
∗ dv∗dv∗ − ρ

∫ Vmax

0
vf(t, v) dv

]
.

Given an initial distribution f(t = 0, v), the equation above yields the evolution of the macro-
scopic acceleration in time. It is easy to study analytically this quantity at the initial time. In
particular, we compute the initial acceleration for the case in which all vehicles are steady, but the
density is below the critical value (defined in Remark 6). By considering an initial distribution
with all vehicles in the lowest velocity class, i.e. of the form f(0, v) = 2ρ

δvχI1(v), we have

∂u

∂t

∣∣∣∣
t=0

= η

ρ
P∆vδ

∫ Vmax−∆v

0

∫ Vmax

v∗

f∗f
∗ dv∗dv∗ +O(δv) = 1

2ρηP∆vδ +O(δv)

The above equation shows that the acceleration of the vehicles in the δ model depends linearly
on ∆v. Analogously, for the χ model, using (24), one obtains

∂u

∂t

∣∣∣∣
t=0

= 1
4ρηP∆vχ +O(δv)

which reinforces the remark made in (25) about the similarities of the χ and the δ model when
∆vχ = 2∆vδ.
Remark 9 (Acceleration). Recall that (ηρ)−1 have dimension of time. Thus ηρ∆v is the built-in
acceleration of the model, which, not surprisingly, is linked to ∆v. We can use dimensional
arguments to estimate the order of magnitude of ∆v. According to Lebacque [13], the maximum
acceleration of cars is approximately aLB = 2.5 m/sec2. The maximum speed is approximately
VM ' 28m/sec, and we expect the maximum acceleration when P = 1. Thus 1

2ηρ∆v ' aLB/VM .
For a typical value ηρ = 1, this gives T ' 1

2VM/aLB ' 6.
This argument indicates that the model is expected to provide reliable results for relatively

small values of T .
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Figure 6: Evolution of the macroscopic velocity in time. Left: comparison of different values of
∆v and δv. Right: relaxation to steady state for different combinations of η and T . The dashed
lines correspond to the χ model.

The estimates above provide the behaviour of the macroscopic acceleration at the initial time.
We now study the evolution of the macroscopic velocity u in time, up to steady state. These
data are shown in Fig. 6 and Fig. 7, for various combinations of the model parameters. The
results shown are obtained integrating the equations for the δ and the χ model found in (12)
and (20), respectively, and computing at each time u(t) = 1

ρ

∫
V
vf(t, v) dv.

Figure 6 shows a typical case in which we expect acceleration. The density is ρ = 0.15,
well below the critical value, and we start with an initial distribution in which f1(t = 0) = ρ,
while fj(t = 0) = 0, j ≥ 2. Thus initially all vehicles are still, and, since the density is low,
they will accelerate to reach the maximum speed. The duration of the transient depends on the
product η∆v = η/T , for a fixed density, as is apparent in the right panel of the figure, because
the acceleration, i.e. the slope of the curves, is proportional to η∆v. The left panel shows the
effect of the grid discretization, i.e. the role of δv = 1/(N − 1). It is clear that the discretization
grid has no influence on the results, as expected from Theorem 5. The dashed lines show the
evolution of the macroscopic velocity obtained with the χ model. The colour code is chosen
to ensure that the curves with ∆vδ = 1

2∆vχ are drawn in the same colour. As expected, the
macroscopic velocity for the χ and the δ model behave very similarly, provided the parameter
∆v is chosen correctly.

Next, in Figure 7, we show the evolution of the macroscopic velocity in two cases when we
expect deceleration. Namely, we consider ρ = 0.65 in the left panel, while ρ = 0.9 in the right
panel. The initial distribution is fN (t = 0) = ρ − ε, f1(t = 0) = ε, and fj(t = 0) = 0, j =
2, . . . , N − 1. The value ε is introduced to ensure convergence to the stable equilibrium, see
Remark 7. Here ε = 0.01. In other words, we start with a congested traffic, in which initially
almost all cars are driving at the fastest speed available. Clearly, this situation is somewhat
artificial, but surely we expect the cars to brake. Since braking does not depend on ∆v, we
expect that the relaxation time towards equilibrium depends mainly on η and only weakly on
T . This is clearly seen in both pictures. The macroscopic speed to which the model relaxes
on the other hand will depend on ∆v and on ρ, but not on η. Note that when ρ = 0.9, in all
cases considered here, the equilibrium speed is zero: in fact the traffic is extremely jammed. For
ρ = 0.65 instead, we expect that the traffic will have a residual speed, because we are well above
the critical density, but cars are not “bumper to bumper”, and this residual speed does depend
on ∆v.

As already discussed in the previous section, the non zero elements of the matrix Aχ can be
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Figure 7: Evolution of the macroscopic velocity in time, for different values of T and η. Left:
ρ = 0.65. Right: ρ = 0.9

lumped in the matrix Aδ for N sufficiently large, with the only exception of the elements in the
bottom right corner r × r of the matrix. This is shown, for instance, in the evaluation of the
expected value of the resulting speeds due to acceleration interactions in (23) and (24), which are
comparable, except again for the high speed values. Thus, although the χ model is apparently
more refined then the δ model, we expect that both models will provide similar macroscopic
information, for N large. This is usually analyzed by computing the density and the flux as
moments of the asymptotic kinetic distribution f∞(v)

ρ =
∫ Vmax

0
f∞(v) dv, (ρu) =

∫ Vmax

0
vf∞(v) dv (26)

and by studying the characteristics of the related fundamental diagram which is obtained plotting
the flux against the density. Moreover, Theorem 5 ensures that for the δ model, only few
velocities, those obtained with ∆v = δv, are necessary to describe completely the asymptotic
kinetic distribution. We expect therefore that the macroscopic behaviour of the δ model will be
apparent even on very coarse velocity grids, i.e. for r = 1.

In Figure 8 we show the fundamental diagrams provided by the δ model (blue curves) and
the χ model (red curve), computed with ∆vδ = 1

2∆vχ, for two different values of ∆vδ. In
the left panel, r = 1, while r = 20 on the right. The figure shows that the diagram of the
χ model is very similar to the diagram of the δ model when N → ∞ and this result is in
agreement with the fact that the expected output speed of the two models is the same when
choosing the acceleration parameter of the δ model as a half of the acceleration parameter of the
χ model. The only difference is provided by the maximum speeds which, as already noted, are
slightly different. Note that the similarity of the fundamental diagrams does not mean that the
asymptotic equilibrium functions of the χ and of the δ model converge to the same function as
N approaches ∞.

Observe that the fundamental diagrams given by the δ model in both plots in each line of
Figure 8 use the same information. In fact, following the results of Theorem 5, the macroscopic
flux is given by

Fluxδ(r) =
∫ Vmax

0
vf∞(v)dv =

N∑
j=1

(fr)j
1
|Ij |

∫
Ij

v dv =
T+1∑
l=1

(f1)lv(l−1)r+1

where vj denotes the center of the cell Ij . Recalling the definition of Ij , we have that v1 = ∆v/4r,
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Figure 8: Fundamental diagrams resulting from the δ model (blue *-symbols) and from the χ
model with acceleration parameter ∆vδ = 1

2∆vχ (red circles). The dashed line is the flux of the
δ model in the limit r →∞.

vN = Vmax − ∆v/4r and v(l−1)r+1 = (l − 1)∆v. Thus, in order to compute the fundamental
diagram of the δ model with any value of r, it is enough to compute the equilibrium distribution
f1 using r = 1 and then compute the flux with the formula above. In particular, using only f1,
one may also compute the fundamental diagram of the δ model also in the limit r →∞ with the
formula

Fluxδ(∞) =
T+1∑
l=1

(f1)l(l − 1)∆v.

The dashed blue line in all panels of Figure 8 shows the quantity Fluxδ(∞) just defined. Note
that in the case of the χ model, for each value of r, one has to compute the full equilibrium
distribution with N = rT + 1 velocities.

When increasing r, we observe that the flux at ρmax approaches zero. This is because for
ρ = ρmax, (f1)1 is the only non zero component at equilibrium, all vehicles travel at a velocity
in the lowest speed class I1 and the flux is therefore ∆v

4r (f1)1. Similarly, in the free phase, i.e.
below the critical density, all vehicles travel at a velocity in the highest speed class IN and the
flux is therefore (Vmax − ∆v

4r )(f1)T+1 = (Vmax − ∆v
4r )ρ. The free-phase flux is therefore linear in

ρ and its slope approaches Vmax when r →∞.
In Figure 8, we observe that both models provide a sharp decrease in the flux, beyond the

critical density. This phenomenon is well known in traffic modelling, and it is called capacity drop,
see [23] and references therein. The critical density marks the transition from free to congested
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Figure 9: Top: fundamental diagrams provided by the χ model with N = 4 (left) and N = 61
(right) velocities. Bottom: equilibria of the function f1 (blue solid line), fN−1 (green dashed)
and fN (red dot-dashed) for any density in [0, 1].

flow and it corresponds to a bifurcation of the equilibrium solutions computed in Theorem 5 for
the case of the δ model. Thus, the physical concept of phase transition in traffic flow theory has
a rigorous mathematical counterpart in the present models.
Remark 10. Observe that the critical density of the χ model approaches the critical density of
the δ model when N → ∞. In fact, since the matrix A1

χ → A1
δ for r → ∞, we also have that

(fχr )1 →
(
f δ1
)

1. More precisely, the analogous of (14) for the χ model is(
3P − 2

2 − P

12r

)
f2

1 +
(

1− 2P + P

4r

)
ρf1 = 0

and the stable equilibrium is thus{
0 P ≥ 4r

8r−1
2 2P−1

3P−2ρ+O( 1
r ) otherwise

In Figure 9 we show the fundamental diagrams of the χ model for r = 1 and r = 20, together
with a few representative fj ’s at equilibrium, as functions of ρ. In the left part, for r = 1, two
phase transitions appear in the fundamental diagram (top left). Comparing with the bottom
left plot, the origin of this phenomenon can be appreciated. A first transition occurs when the
density becomes large enough to oblige a few drivers to brake: thus the second largest speed
class IN−1 starts being populated (green dashed curve), while the fastest speed class begins to
be depleted (red curve). A second transition occurs when some vehicles enter the lowest speed
class (blue curve). This latter transition is the one that, when increasing r, moves towards the
critical density ρ = 1/2, see Remark 10. The first phase transition is not observable for large
r, because f∞N−1 is related to the velocity vN−1 → Vmax, as δv → 0, so that the transition of
vehicles from IN to IN−1 is not enough to determine an abrupt change in the flux.
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6 Conclusions and perspectives
In this work we have introduced two kinetic models for vehicular traffic, in which we have

assumed a continuous space of microscopic speeds. For the time being, we analyze the space
homogeneous case, to study the asymptotic behaviour of the distribution function.

As in [7], we consider a Boltzmann-like term based on binary interactions. Our models are
characterized by a parameter ∆v, that has physical relevance and is related to the maximum
speed variation in a unit of time. The models are defined by the probability density of gaining
or losing a given velocity and they differ only in the modeling of acceleration interaction.

First of all we have studied the case in which the resulting speed after an acceleration is
obtained by a velocity jump from v∗ to v∗ + ∆v, where v∗ is the pre-interaction speed. We have
referred to this model as δ model and we have proved that its asymptotic kinetic function is an
atomic distribution with respect to the velocity variable; in other words it is a combination of
Dirac delta functions centered at a finite number of velocities. The number T of delta functions
contributing to the equilibrium distribution is controlled by the acceleration parameter through
the relation ∆v = Vmax/T , irrespective of the numerical discretization of velocity space. This
result means that, under suitable and reasonable assumptions on the microscopic interactions,
the number of discrete velocities necessary to completely describe the equilibrium distribution
function is implicitly determined by the acceleration parameter ∆v. One of the consequences
of this result is that the discrete velocity approach of [7] is made robust because the distance
of two adjacent velocities in the discrete lattice, can now be given a physical meaning. On the
other hand, our kinetic model is computationally efficient because it can describe macroscopic
phenomena using only Vmax/∆v velocities, without the need for a finer discretization in velocity
space.

Instead, in the χ model we have prescribed the acceleration interaction in a way that is closer
to the modeling given by Klar and Wegener in [10], but again respecting the physical relevance of
∆v. In fact, we have assumed that the output speed after an acceleration is uniformly distributed
over the range [v∗, v∗ + ∆v]. We show that the χ model with acceleration parameter ∆v gives
a similar macroscopic behaviour of traffic provided by the simpler δ model with acceleration
parameter ∆v/2, as we see comparing the fundamental diagrams of both models, notwithstanding
the fact that the asymptotic distribution function does not converge to that of the δ model. Thus
the χ model, despite the more realistic description of interactions, at least at equilibrium, gives
the same information of the simpler and computationally much cheaper δ model.

We study the evolution in time of the macroscopic velocity, and its relation with the parameter
∆v, showing how this parameter determines the macroscopic acceleration.

The results obtained in this work suggest that a small number of velocities is suitable for
the kinetic modeling of traffic. This is crucial to make kinetic modeling of complex traffic flows
amenable to computations. A natural development is to extend the results obtained here to the
spatially inhomogeneous case. We expect that our approach might permit the discretization of
the full kinetic equation using a very small number of microscopic velocities, with a lattice chosen
on the basis of the parameter ∆v endowed with physical meaning. We also plan to extend our
study to the case of multipopulation kinetic models, as we proposed in [21].

Moreover, since the equilibrium solutions of the δ model can be explicitly computed, the
results of this work provide a natural closure law for a possible macroscopic model.
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A Matrix elements for the discretization of the χ model
In order to compute the Ajχ matrices, we observe that the gain operator of the δ model given

in (8) differs from the gain operator of the χ model only in the last two terms of G1 appearing
in the equation (19). Therefore, we just show the terms resulting from:

G̃1[f, f ](t, v) = P

∆v

∫ Vmax−∆v

0
f∗χ[v∗,v∗+∆v](v)dv∗

∫ Vmax

v∗

f∗dv∗

+ P

∫ Vmax

Vmax−∆v
f∗
χ[v∗,Vmax](v)
Vmax − v∗

dv∗

∫ Vmax

v∗

f∗dv∗dv.

When the terms above are integrated over the cells V1, we get∫
V1

G̃1[f, f ](t, v)dv = P

6r f
jfj + P

4r fj
N∑

k=j+1
fk. (27a)

For j = 2, . . . , r:∫
Vj

G̃1[f, f ](t, v)dv =P

r

j−1∑
h=1

fh

[
1
2f

h +
N∑

k=h+1
fk

]
+ P

3r f
jfj + P

2r fj
N∑

k=j+1
fk (27b)

For j = r + 1,∫
Vr+1

G̃1[f, f ](t, v)dv = P

3r f
j−rfj−r + 3P

4r fj−r
N∑

k=j−r+1
fk (27c)

+ P

r

j−1∑
h=j−r+1

fh

[
1
2f

h +
N∑

k=h+1
fk

]
+ P

3r f
jfj + P

2r fj
N∑

k=j+1
fk,

For j = r + 2, . . . , N − r − 1,∫
Vj

G̃1[f, f ](t, v)dv = P

6r f
j−rfj−r + P

2r fj−r
N∑

k=j−r+1
fk (27d)

+ P

r

j−1∑
h=j−r+1

fh

[
1
2f

h +
N∑

k=h+1
fk

]
+ P

3r f
jfj + P

2r fj
N∑

k=j+1
fk,
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For j = N − r,∫
VN−r

G̃1[f, f ](t, v)dv = P

6r f
j−rfj−r + P

2r fj−r
N∑

k=j−r+1
fk (27e)

+ P

r

j−1∑
h=j−r+1

fh

[
1
2f

h +
N∑

k=h+1
fk

]

+ P

[
7

24r + 3
8 −

r

2 +
(

1
2 − r

)2
log
(

2r
2r − 1

)]
f jfj

+ P

[
3
8r + 1

2 +
(

1
2 − r

)2
log
(

2r
2r − 1

)]
fj

N∑
k=j+1

fk

For j = N − r + 1, . . . , N − 1,∫
Vj

G̃1[f, f ](t, v)dv = P

6r f
j−rfj−r + P

2r fj−r
N∑

k=j−r+1
fk (27f)

+ P

r

j−1∑
h=j−r+1

fh

[
1
2f

h +
N∑

k=h+1
fk

]

+ P

[
3 + 4r

8r +
(

1
2 − r

)2
log
(

2r
2r − 1

)]
fN−rfN−r

+ P

[
1
2r + log

(
2r

2r − 1

)]
fN−r

N∑
k=N−r+1

fk

+ P

j−1∑
h=N−r+1

[
1 +

(
h+ 1

2 −N
)

log
(
N − h+ 1

2
N − h− 1

2

)]
fhfh

+ P

j−1∑
h=N−r+1

log
(
N − h+ 1

2
N − h− 1

2

)
fh

N∑
k=h+1

fk,

+ P

[
j + 1−N +

(
j + 1

2 −N
)2

log
(
N − j + 1

2
N − j − 1

2

)]
f jfj

+ P

[
1 +

(
j + 1

2 −N
)

log
(
N − j + 1

2
N − j − 1

2

)]
fj

N∑
k=j+1

fk
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Finally, for j = N ,∫
VN

G̃1[f, f ](t, v)dv = P

[
1 + 3r

12r + 1
2

(
1
2 − r

)
log
(

2r
2r − 1

)]
f j−rfj−r (27g)

+ P

[
1
8r + 1

2 log
(

2r
2r − 1

)]
fj−r

N∑
k=N−r+1

fk

+ P

j−1∑
h=j−r+1

[
1
2 + 1

2

(
h+ 1

2 −N
)

log
(
N − h+ 1

2
N − h− 1

2

)]
fhfh

+ P

j−1∑
h=j−r+1

1
2 log

(
N − h+ 1

2
N − h− 1

2

)
fh

N∑
k=h+1

fk + P

2 f
jfj

In the formulae above, the distribution of the field and of the candidate vehicles are dis-
tinguished by the position of the index of the components of f : bottom right for the candidate
vehicles (as fh), top right for the field vehicles (fk). The matrices Ajχ can be formed by removing
the underlined terms in (11) and adding the contributions given in (27).
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