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aUniversità degli Studi dell’Insubria, via Valleggio, Como 22100, Italy
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Abstract

We present a novel relaxation scheme for the simulation of compressible ma-
terial flows at all speeds. An Eulerian model describing gases, fluids and
elastic solids with the same system of conservation laws is adopted. The
proposed numerical scheme is based on a fully implicit time discretization,
easily implemented thanks to the linearity of the transport operator in the
relaxation system. The spatial discretization is obtained by a combination
of upwind and centered schemes in order to recover the correct numerical
viscosity in all different Mach regimes. The scheme is validated by simulat-
ing gas and liquid flows with different Mach numbers. The simulation of the
deformation of compressible solids is also approached, assessing the ability
of the scheme in approximating material waves in hyperelastic media.

Keywords: Low Mach limit, compressible flows, relaxation method,
Eulerian elasticity, all-speed scheme

1. Introduction

Different physical phenomena are affected by drastic changes of the sound
speed or, in general, of specific waves speeds. The occurrence of these changes
may be caused for example by the geometry of the problem, e.g. a gas or a
fluid flow in a nozzle. Other examples include the propagation of waves in
heterogeneous compressible solids: these waves can travel at different speeds
due to the local stiffness of the material.

This work focuses on the study of flows with different Mach numbers
pertaining both fluid dynamics and continuum mechanics. Phenomena in-
volving fluid flows and elastic materials deformations are investigated with
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an Eulerian approach. We introduce a monolithic model which is able to
describe each material (gas, liquid or solid) with the same system of conser-
vation equations and an appropriate general formulation of the constitutive
law [1, 2, 3, 4, 5]. The classical Euler system used in fluid dynamics can be
seen as a particular case inside this general framework.

The low Mach limit consists in observing material waves travelling with a
consistently lower speed with respect to a subset of the remaining waves. In
the case of fluids, it means that the flow velocity is consistently slower than
the acoustic waves. In the case of an elastic solid, the deformation wave is
consistently slower than the longitudinal compression waves and/or slower
than the shear isochoric waves.

In general, when the Mach number tends to zero, compressible flow equa-
tions converge to incompressible equations, as it has been mathematically
studied in [6, 7, 8, 9]. Therefore, specific numerical problems arise when
solving low Mach number flows with Godunov-type schemes [10, 11]. Firstly,
the upwind discretization provides an excessive numerical viscosity on the
slow waves when the Mach number tends to zero, as detailed in [12, 13]. In
these works, the importance of centering pressure gradients in the limit of
small Mach numbers has then been addressed. For the present study, the
excess of viscosity is observed in the stress tensor fluctuations. These fluctu-
ations describe both the acoustic compression and the elastic deformation.

The second important issue in adopting standard explicit methods for
low Mach flows is due to the enforcement of the CFL stability condition.
This condition limits the time step with the space step divided by the fastest
wave speed. Thus, the time step of compressible codes becomes extremely
small as the incompressible regime gets closer, requiring an increasingly large
computational time.

A variety of different methods have been developed to overcome these
problems. A possible approach consists in choosing implicit time discretiza-
tions, which allow to avoid the acoustic CFL constraint. Several precondi-
tioning techniques have been devised to decrease the numerical diffusion of
upwind schemes at low Mach numbers in such implicit methods [14, 15, 16,
17], starting from the “artificial compressibility” technique of Chorin [18] and
from Turkel’s work [19, 20]. However, it is extremely difficult to handle the
non-linearities of classical upwind discretizations (e.g. approximate Riemann
solvers) when implicit schemes are employed.

In other works a different approach is adopted, with the focus on the pres-
sure equations. The main idea consists in adapting classical incompressible
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schemes to compressible flows. Klein [21] proposes a semi-implicit scheme by
solving explicitly the leading order contribution of the pressure and implic-
itly the lower orders. In [22, 23] different variations of all-speed schemes are
proposed, based on the introduction of a suitable elliptic equation on the pres-
sure. In order to do this, pressure gradient-type terms are introduced inside
the momentum equation, allowing the splitting of the fast and the slow scales.
These schemes are based on the Asymptotic Preserving (AP) methodology,
namely their lower order expansion is a consistent and stable discretization
of the incompressible limit. We refer the reader to [24, 25, 26, 27] for other
AP schemes.

In the present paper, we aim at deriving a novel relaxation scheme for
the simulation of compressible materials in different regimes, including the
low Mach number limit. We adopt the relaxation method intoduced by Jin
and Xin [28] due to its simplicity and generality. With this approach, the
relaxation system is linear except for a lower order source. The linearity of
the advective part is fundamental to easily implement an implicit scheme.
Then, demanding acoustic constraints on the time step can be avoided.

In this framework, we introduce both centered and upwind spatial dis-
cretizations. The centered space discretization is needed in order to recover
the correct limit on the stress tensor gradients when the Mach number tends
to zero. The upwind discretization, on the other hand, introduces enough
numerical viscosity when solving regimes with Mach number of order one.
Hence, we build a convex combination of the two methods, which is based
on the local Mach number of the flow.

We focus on one dimensional problems. The numerical illustration of the
performances of the scheme is carried out through a comparison with stan-
dard explicit-upwind relaxation schemes as the ones derived in [28, 29]. The
ability of our scheme in recovering the correct numerical viscosity is proven
with several numerical tests. Our main interest is in accurately capturing the
motion of the fluid or the material deformation. Thus, a lack of accuracy on
the fast waves is acceptable in low Mach regimes, also because these waves
carry a negligible amount of energy.

The outline of the paper is as follows. We provide a description of the
Eulerian model for simulating compressible materials in Section 2. The low
Mach limits that can arise are analyzed. Then, we briefly introduce and re-
view the relaxation method in Section 3. In Section 4, the standard explicit-
upwind relaxation schemes are revised and then our novel implicit all-speed
scheme is derived in detail. The numerical validation of the scheme is per-
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formed in Section 5, where its applicability to different regimes and materials
is shown. Finally, conclusions are drawn in Section 6.

2. Eulerian model for compressible materials

The monolithic Eulerian model describing different materials with the
same system of conservation laws is thoroughly discussed in several works
[1, 2, 3, 4, 5, 30]. In this section we briefly revise the principal elements of
the model in 2D and then focus on the one dimensional version, studying the
wave speeds and the low Mach limits.

2.1. The 2D model

Let Ω0 ∈ R2 be the reference or initial configuration of a continuous
medium and Ωt ∈ R2 the deformed configuration at time t. The forward
characteristics X (ξ, t) are defined as the image at time t in the deformed
configuration of a material point ξ belonging to the initial configuration, i.e.,
X : Ω0 × [0, T ]→ Ωt, (ξ, t) 7→ X (ξ, t). The corresponding Eulerian velocity
field u is defined as u : Ωt × [0, T ]→ R2, (x, t) 7→ u (x, t) where{

∂tX (ξ, t) = u (X (ξ, t) , t)

X (ξ, 0) = ξ, ξ ∈ Ω0.

The backward characteristics Y (x, t) describe the continuum in the Eu-
lerian framework: for a time t and a point x in the deformed configuration
the corresponding initial point ξ in the initial configuration is given, i.e.,
Y : Ωt × [0, T ] → Ω0, (x, t) 7→ Y (x, t). Relation Y (X (ξ, t) , t) = ξ can be
differentiated with respect to time and space in order to get:{

∂tY + u · ∇xY = 0

Y (x, 0) = x, x ∈ Ωt.
(1)

Since the transformation from X to Y corresponds to an invertible change
of variables, we have

[∇ξX (ξ, t)] = [∇xY (x, t)]−1 .

At this point, one is able to compute the gradient of the deformation in
the Eulerian frame via Y . Since the stress tensors have a direct dependence
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on [∇xY ], the gradient of (1) is taken as a governing equation. The other
governing equations are given by the conservation of mass, momentum and
energy in the Eulerian framework (for details, see [4, 5]). The conservative
form of the equations of a general medium in the deformed configuration is
given by 

∂tρ+ divx (ρu) = 0

∂t (ρu) + divx (ρu⊗ u− σ) = 0

∂t ([∇xY ]) +∇x (u · [∇xY ]) = 0

∂t (ρe) + divx
(
ρeu− σTu

)
= 0.

(2)

Here ρ is the density, u is the Eulerian velocity field, [∇xY ] is the gradient
of the backward characteristics and σ is the Cauchy stress tensor, which is
derived from the model chosen through the state law. e is the total energy
per unit mass and it is given by the sum of the kinetic energy and the internal
energy per unit mass ε:

e =
1

2
|u|2 + ε.

The initial density ρ (x, 0), the initial velocity u(x, 0), the initial total energy
e(x, 0) and [∇xY ] (x, 0) = I are given together with appropriate boundary
conditions.

The internal energy can be decomposed in the following way [31]:

ε = εvol (ρ (X (ξ, t) , t) , s (X (ξ, t) , t)) + εiso
(
tr
(
B (ξ, t)

))
= εvol (ρ (x, t) , s (x, t)) + εiso

(
tr
(
B (x, t)

))
.

(3)

εvol is the purely volumetric contribution to the energy associated to the
deformation (depending on the volume and on the entropy s), instead εiso
is the purely isochoric (volume preserving) contribution. Here B is the 2D
right Cauchy-Green tensor, namely we have

B = FF T = [∇xY ]−1 [∇xY ]−T , J = det [∇xY ]−1 , B =
B

J
. (4)

We adopt a general constitutive law, which is able to describe gases, fluids
and elastic solids at the same time. The state law reads [4, 5]

ε (ρ, s, [∇xY ]) =
κ (s)

γ − 1

(
1

ρ
− b
)1−γ

− aρ+
p∞
ρ︸ ︷︷ ︸

general gas

+
χ

ρ

(
trB − 2

)
︸ ︷︷ ︸
neohookean solid

, (5)

5



where κ (s) = exp (s/cv) (s being the entropy), B is defined in (4) and χ,
p∞, γ, a, b are positive constants characterizing a given material. In the
spirit of decomposition (3), the “general gas” part of the model (5) is purely
volumetric. Instead, the“neohookean solid” part gives both a volumetric and
an isochoric contribution.

The energy function (5) includes different physical behaviours. The first
term is the general law of van der Waals gases, modeling the fact that the
internal energy increases with a compression. The p∞ term describes the
physical effect that ε must increase when the density is reduced. This term
models the intermolecular forces that are present in liquids and solids. The
last term is the classic law of a neohookean elastic material, χ being the shear
elastic modulus. It accounts for finite deformations. As shown in Table 1,
classical models are obtained by specific choices of the coefficients.

Material γ a b p∞ χ
[Pa m6/Kg2] [m3/Kg] [Pa] [Pa]

Perfect gas 1.4 0 0 0 0
Van der Waals gas 1.4 5 10−3 0 0
Stiffened gas (water) 4.4 0 0 6.8 · 108 0
Elastic solid (copper) 4.22 0 0 3.42 · 1010 5 · 1010

Table 1: Typical parameters for different materials.

The Cauchy stress tensor σ is then given by (see [31] for the derivation):
σ (ρ, s, [∇xY ]) = −p (ρ, s) I + 2χJ−1

(
B − trB

2
I

)
p (ρ, s) = −p∞ − aρ2 + k (s)

(
1

ρ
− b
)−γ

.

(6)

We remark that when a perfect gas is modeled, it suffices to impose a = b = 0
and χ = p∞ = 0 (as seen in Table 1). The Euler system with the perfect
gas state law closure is easily recovered. For the sake of simplicity, in all the
computations and test cases that follow, we will take a = b = 0.

The computation of the characteristic speeds of system (2) closed by
state law (5) is detailed in previous works as [4, 5]. By considering smooth
flow, the energy equation is substituted by the conservation of entropy. Let
x = (x1, x2) be the coordinates in the canonical basis of R2, u = (u1, u2)
the velocity components. Y i

,j are the components of the tensor [∇xY ] (the
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superscript i indicates the component of Y and the subscript ,j indicates the
direction along which the derivative of Y is calculated) and σij the compo-
nents of the stress tensor σ. By considering variations only along the x1
direction for simplicity, the eigenvalues get the following general expression
[4]:

Λ =

u1, u1, u1 ±
√
A1 ±

√
A2

ρ

 , (7)

with 
A1 =

ρc2

2
+ χ (α + β)

A2 =

(
ρc2

2
+ χ (α− β)

)2

+ 4χ2δ2,

where c is the sound speed and where we have introduced the notation
α =

(
Y 1
,1

)2
+
(
Y 2
,1

)2
β =

(
Y 1
,2

)2
+
(
Y 2
,2

)2
δ = Y 1

,1Y
1
,2 + Y 2

,1Y
2
,2.

(8)

2.2. One dimensional problem formulation

In the present study, we focus on the variations only along direction
x1, thus considering the problem in one dimension. Deformations are still
considered in both the two directions, but the derivatives along x2 are equal
to zero. Tensor [∇xY ] reduces to

[∇xY ] =

[
Y 1
,1 0
Y 2
,1 1

]
.

The problem can be further simplified, since ρ (x, t) = det ([∇xY ] (x, t)) ρ0 (x),
where ρ0 is the initial density. Thanks to this, the equation on Y 1

,1 is equiva-
lent to conservation of mass and thus redundant, having Y 1

,1 = ρ/ρ0.
In this framework, the Cauchy stress tensor (6) has the following two non-

zero components, which are the normal and the tangential stress respectively:

σ11 =− p (ρ, s) + 2χJ−1
(
B

11 − trB

2

)
= −p (ρ, s) + χ

(
1−

(
Y 2
,1

)2 − (ρ/ρ0)
2
)

σ21 =2χJ−1B
21

= −2χY 2
,1.
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We have then the following compact form for the 1D Eulerian model:

∂tψ + ∂x1F (ψ) = 0, (9)

where the vector of conservative variables and the vector of fluxes are both
in R5 and read

ψ =


ρ
ρu1
ρu2
Y 2
,1

ρe

 , F (ψ) =


ρu1

ρu21 − σ11

ρu1u2 − σ21

u1Y
2
,1 + u2

(ρe− σ11)u1 − σ21u2

 .
2.2.1. Non-dimensionalization

In order to non-dimensionalize system (9), we introduce the two speeds:

• the speed of sound, which can be computed in the following way:

c (ρ, s,∇xY ) =

√
∂p

∂ρ

∣∣∣∣
s=const

=
√
γk (s) ργ−1 =

√
γ

ρ
(p+ p∞). (10)

• an “isochoric elastic speed”, which can be defined as:

uiso =

√
2χ

ρ
. (11)

By using these two speeds, two different scales can be distinguished, thus
two different “Mach numbers” are defined:

• the classical acoustic Mach number, which is the ratio between the
acoustic speed and the advective velocity, defined as

M =
u1
c

; (12)

• an isochoric Mach number, which is the ratio between the isochoric
speed (11) and the advective velocity, defined as

Mχ =
u1
uiso

=

√
ρu21
2χ

. (13)
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Inside system (9), we use the sound speed c to non-dimensionalize the
pressure, a reference χ to non-dimensionalize the shear modulus and a ref-
erence normal velocity u1 to non-dimensionalize both u1 and u2. Having
introduced the two Mach numbers M and Mχ, the non-dimensional system
reads:

∂tρ+ ∂x (ρu1) = 0

∂t (ρu1) + ∂x (ρu21) +
∂xp

M2
− χ

2

∂x

(
1−

(
Y 2
,1

)2 − (ρ/ρ0)
2
)

M2
χ

= 0

∂t (ρu2) + ∂x (ρu1u2) + χ
∂xY

2
,1

M2
χ

= 0

∂t
(
Y 2
,1

)
+ ∂x

(
u1Y

2
,1 + u2

)
= 0

∂t

(
1

2
ρu2 +

p+ γp∞
M2 (γ − 1)

+
χ
(
trB − 2

)
2M2

χ

)
+ ∂x

(
1

2
ρ|u|3 +

γ (p+ γp∞)

M2 (γ − 1)
u1

)
+

χ

2M2
χ

∂x

[(
trB − 2− χ

(
1−

(
Y 2
,1

)2 − (ρ/ρ0)
2
))

u1 + 2χY 2
,1u2

]
= 0.

(14)
Here all variables are non-dimensional (in order to simplify the notation we
did not introduce “ad hoc” symbols for non-dimensional variables).

2.2.2. Low Mach limits and wave speeds

For gas dynamics problems, the low Mach limit stiffness is brought by the
pressure gradients, which are of the order O (1/M2). In our Eulerian model,
non-dimensionalization (14) shows that if at least one between M and Mχ

tends to zero the problem becomes stiff due to the gradients of the Cauchy
stress tensor σ. The gradient of the part of σ depending on the pressure is
of the order O (1/M2), exactly as in gas dynamics problems. The gradient
of the elastic part of σ (the one depending on B and [∇xY ]) is of the order
O
(
1/M2

χ

)
. Therefore, when M → 0 is verified, the stiffness is only due to

the pressure gradients and when Mχ ' M → 0 the stiffness is due to both
the pressure gradients and the elastic deformation gradients.

In the 1D formulation (9) we distinguish five waves [4, 5]:

1. two longitudinal waves (relative to the normal stress) with speed

λ1,5 = u1±
√
c2/2 + χ/ρ (α + β) + 1/ρ

√
(ρc2/2 + χ (α− β))2 + 4χ2δ2;

(15)
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2. two shear waves (relative to the tangential stress) with speed

λ2,4 = u1±
√
c2/2 + χ/ρ (α + β)− 1/ρ

√
(ρc2/2 + χ (α− β))2 + 4χ2δ2;

(16)

3. one material wave with speed λ3 = u1, namely the flow velocity.

In (15)-(16) we are using the notation introduced in (8). It is clear that
longitudinal waves are always faster than shear waves. By setting χ = 0,
we recover the wave speeds of the classic Euler system for gases and liquids:
longitudinal waves are only acoustic and shear waves are not present.

According to notation (8), in the 1D formulation we have δ = Y 2
,1. Then,

in the case of a small deformation, we can set δ ' 0. With this “small
deformation approximation”, the speeds (16) of shear waves reduce to only
the isochoric contribution proportional to χ. Longitudinal waves still consist
in a compression and an elastic contribution. Then, two different “low Mach”
limits can be distinguished:

1. acoustic and shear low Mach regime: M � 1 and Mχ � 1. Both the
pressure gradient and the elastic deformations (through the gradients of
[∇xY ]) are responsible for the stiffness of this regime. Having O (M) '
O (Mχ) means c ' uiso and p+ p∞ ' χ. Thus, longitudinal and shear
waves are all consistently faster than the material wave;

2. only acoustic low Mach regime: M � 1 and M � Mχ. The pressure
gradient is the only responsible for the stiffness of this regime. Having
c� |u1| and c� uiso corresponds to p+ p∞ � χ. Longitudinal waves
are consistently faster than all the other waves.

For the considered Eulerian model, the low Mach regime consists in having a
low acoustic Mach number, as for the classic Euler system for perfect gases.
In this limit, the isochoric Mach number can also be low (of the order of the
Mach number), thus introducing additional stiffness to the problem.

3. The relaxation method

The resolution of the low Mach regime is difficult due to the stiffness of the
Cauchy stress tensor gradients (see sections 2.2.1-2.2.2) and due to the high
velocities of acoustic and shear waves. To allow for an efficient and robust
numerical procedure, we adopt a relaxation approach (for references on the
relaxation method see [32, 33, 28, 34, 35, 36]). In the same spirit of [28, 37],
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we build a linear hyperbolic relaxation system that approximates the original
system (9) with a small dissipative correction. Due to the linearity of the
advection terms, the numerical solution does not require the introduction of
sophisticated solvers, allowing for a simpler implementation of implicit time
discretizations. This is our main reason for choosing this specific relaxation
approach.

By introducing the relaxation variables vector v ∈ R5 (same dimension
of the conservative variables vector ψ of system (9)), the relaxation system
reads: ∂tψ + ∂xv = 0

∂tv + A∂xψ =
1

η
(F (ψ)− v) , η > 0,

(17)

where A = diag{ai}, i = 1, .., 5 is a positive diagonal matrix. The small
positive parameter η is called relaxation rate. The right hand side of the
second equation is a stiff lower order source term and it is the only non-
linear part.

With a Chapman-Enksog expansion of the variables for small η, the be-
haviour of system (17) at different orders is assessed. At leading order (small
relaxation limit), the original system is recovered, with the relaxation vari-
ables equal to the fluxes: {

v = F (ψ)

∂tψ + ∂xF (ψ) = 0.
(18)

The first order approximation in the expansion is the following:{
v = η

(
A− F′ (ψ)2

)
∂xψ

∂tψ + ∂xF (ψ) = η∂x
((

A− F′ (ψ)2
)
∂xψ

)
,

(19)

where F′ (ψ) is the Jacobian matrix of the flux function. In order to en-
sure the dissipative nature of system (19), it is necessary to respect the Liu
subcharacteristic condition [32, 38]

A− F′ (ψ)2 ≥ 0 ∀ψ (20)

when building the relaxation system. For ψ varying in a bounded domain,
this condition is satisfied by choosing A = diag{ai}, i = 1, .., 5 sufficiently
large. The construction of the relaxation matrix A is detailed in Sec. 3.1.
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Initial and boundary conditions have to be imposed in a way that initial
and boundary layers are not introduced [28]. Thus, these conditions need to
be consistent with the equilibrium state (18).

The relaxation approach can be extended to multi-dimensional problems,
as described in [28]. The method consists in a “dimension-by-dimension”
relaxation of the fluxes, which allows to reduce the problem complexity.

3.1. The relaxation matrix

The relaxation matrix A is diagonal and it is built by imposing the sub-
characteristic condition (20). The wave speeds of the relaxation system are
the following

µj = ±
√
ai, i = 1, ..5, j = 1, ..10. (21)

Condition (20) states that the eigenvalues λi of the original system need to
lie between the eigenvalues µj of the relaxation system.On the other hand,
the CFL constraint has to be enforced on the speeds (21) of the relaxation
system. Therefore, the smallest A satisfying (20) is needed.

In the present work, we avoid the easy choice A = aI, a being a constant,
in order to have distinct eigenvalues (21). This means reproducing all the
wave speeds of the original system. In particular, we construct A by a-
priori estimating the wave speeds λi of each specific problem. Then, we
take the maximum over the domain for every speed: A ' Λ2

max, where
Λmax = diag{maxxλi}. The jacobian of the flux can be diagonalized as
F′ (ψ)2 = RΛ2R−1, where R is the matrix of the right eigenvectors and
Λ = diag{λi}. This way, the first order correction derived in Eq. (19)
becomes

∂tψ + ∂xF (ψ) ' η
(
Λ2
max −RΛ2R−1

)
∂xxψ.

The matrix Λ2
max −RΛ2R−1 is positive definite, thus the subcharacteristic

condition is respected. Moreover, we can control and limit the diffusion of
the relaxation by approximating all the original waves.

The a-priori estimation of the eigenvalues can be easily performed, since
the sound speed and the elastic coefficients of the most common materials
are well-known. The explicit formula for the eigenvalues is given in Sec. 2.

4. Numerical schemes

System (17) is discretized with finite volumes on a Cartesian mesh. For
one dimensional problems, let ∆x = xi+1/2 − xi−1/2 be the grid spacing and
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∆t = tn+1 − tn the time stepping. wn
i denotes the approximate cell average

of a quantity w in the cell
[
xi−1/2, xi+1/2

]
at time tn and wn

i+1/2 denotes the
approximate point value of w in x = xi+1/2 and at t = tn.

For the discussion of the numerical schemes it is convenient to treat the
spatial discretization and the time discretization separately, as in the method
of lines. With this approach, we briefly revisit the standard explicit relax-
ation scheme of [28]. Then, we present our novel implicit relaxation scheme,
designed with the aim of solving problems with Mach numbers ranging from
very small to order of unity. We point out that in deriving the numerical
scheme only the acoustic Mach number M is used, because it is always lower
than Mχ.

4.1. Standard explicit relaxation scheme

Jin and Xin propose a scheme where the space derivatives are explicit and
only the stiff source relaxation term is implicit [28]. This discretization falls
in the IMEX schemes category, which are specifically designed for problems
where a stiff part is present and are widely used for relaxation systems (see,
for example, [29, 39, 40, 41]).

At first order, the relaxation system is discretized in time as follows:
ψn+1 −ψn

∆t
+ ∂xv

n = 0

vn+1 − vn

∆t
+ A∂xψ

n =
1

η

(
F
(
ψn+1

)
− vn+1

)
.

(22)

The solution can be approached in a sequential manner: the unknowns ψn+1

are calculated by solving the first equation and then are put inside the stiff
source term to compute vn+1. This means that at every time step the relax-
ation variables vn+1 are projected on the fluxes F

(
ψn+1

)
. At second order,

we adopt the IMEX scheme proposed in [29] (Butcher tableau of Table 2).

(a) Explicit

0 0
1 0

1/2 1/2

(b) Implicit

γ 0
1− 2γ γ

1/2 1/2

Table 2: Butcher tableau of the IMEX scheme proposed in [29], γ = 1− 1/
√

2.
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4.1.1. Upwind spatial discretization

In general, the spatial discretization for system (17) reads
∂tψi +

vi+1/2 − vi−1/2
∆x

= 0

∂tvi + A
ψi+1/2 −ψi−1/2

∆x
=

1

η
(F (ψi)− vi) .

(23)

For sufficiently accurate space discretizations, this approximation has an ac-
curacy of O (∆x2), because the flux is averaged in the following way:

F (ψi) = F

(
1

∆x

∫ xi+1/2

xi−1/2

ψdx

)
=

1

∆x

∫ xi+1/2

xi−1/2

F (ψ) dx+O
(
∆x2

)
= Fi+O

(
∆x2

)
.

The variables at the interfaces xi+1/2 inside (23) have to be computed with
an “ad hoc” stable scheme. For an explicit time stepping, a possible choice
leading to a stable scheme is the upwind discretization.

We build the upwind scheme as in [28]. System (17) has two characteristic
variables v ± A1/2ψ, travelling at the frozen speeds ±A1/2. The upwind
spatial approximation is applied to the linear system on the two characteristic
variables, obtaining the interface values as follows:{

ψi+1/2 = 1
2

(
ψi+1 +ψi

)
− 1

2
A−1/2 (vi+1 − vi)

vi+1/2 = 1
2

(vi+1 + vi)− 1
2
A1/2

(
ψi+1 −ψi

)
.

Plugging this into discretization (23) gives the first order upwind approxi-
mation:

vi+1/2 − vi−1/2
∆x

=
1

2∆x
(vi+1 − vi−1)−

A1/2

2∆x

(
ψi+1 − 2ψi +ψi−1

)
ψi+1/2 −ψi−1/2

∆x
=

A−1/2

2∆x

(
ψi+1 −ψi−1

)
− A1/2

2∆x
(vi+1 − 2vi + vi−1) .

(24)
For a second order approximation, a Van Leer MUSCL (Monotonic Upstream-
Centered Scheme for Conservation Laws) scheme is employed.

The presented upwind discretization is classically used in explicit relax-
ation schemes. The explicit-upwind relaxation scheme is stable provided that
the stability CFL condition on the fastest wave (acoustic CFL) is verified [28].
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4.2. Implicit relaxation scheme

We propose a fully implicit relaxation scheme, with the goal of getting
rid of acoustic CFL constraints. The linearity of the spatial derivatives in
the relaxation system allows for a straightforward use of implicit time dis-
cretizations.

The implicit time discretization at first order is a simple backward Euler
scheme and reads:

ψn+1 −ψn

∆t
+ ∂xv

n+1 = 0

vn+1 − vn

∆t
+ A∂xψ

n+1 =
1

η

(
F
(
ψn+1

)
− vn+1

)
.

(25)

For a second order implicit approximation, a BDF (Backward Differentiation
Formula) of second order is adopted.

The treatment of the non-linear fluxes F (ψ) is dealt with applying one
iteration of the Newton’s method, namely the fluxes are approximated with
a Taylor expansion in the following way:

F
(
ψn+1

)
= F (ψn) + F′ (ψn)

(
ψn+1 −ψn

)
. (26)

F′ (ψn) is the Jacobian of the flux and can be computed analytically. For
system (9) it reads

F′ (ψ) =



0 1 0 0 0

−u21 − σ11
,ψ1

2u1 − σ11
,ψ2

−σ11
,ψ3

−σ11
,ψ4

−σ11
,ψ5

−u1u2 u2 u1 2χ 0

u1Y 2
,1 + u2

ρ

Y 2
,1

ρ

1

ρ
u1 0

−Eu1 + σ11u1

ρ
− u1σ11

,ψ1
+
σ21u2

ρ

E − σ11

ρ
− u1σ11

,ψ2
−u1σ11

,ψ3
−
σ21

ρ
−σ11

,ψ4
u1 + 2χu2 u1

(
1− σ11

,ψ5

)


,

(27)

where σjk,ψi stands for the derivative of the jk, j, k = 1, 2 component of the
tensor σ with respect to the conservative variable ψi, i = 1, ..5. In deriving
(27), we have used the fact that σ21

,ψ1
= σ21

,ψ2
= σ21

,ψ3
= σ21

,ψ5
= 0 and σ21

,ψ4
=

−2χ. The derivatives of σ11 have the following expressions:

σ11
,ψ1

=− (γ − 1)

(
1

2

(
u21 + u22

)
− 2χρ

ρ20
+

2χ

ρ0

)
− 2χρ

ρ20
,

σ11
,ψ2

= (γ − 1)u1, σ11
,ψ3

= (γ − 1)u2,

σ11
,ψ4

= (γ − 1) 2χY 2
,1 − 2χY 2

,1, σ11
,ψ5

= − (γ − 1) .
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4.2.1. Centered spatial discretization

It has been proved that upwind spatial discretizations present an exces-
sive numerical viscosity when approximating low Mach phenomena [12, 13].
In the case of the Euler equations, these discretizations lead to pressure
fluctuations of order O (M), while in the continuous case the pressure fluc-
tuations are of order O (M2) (see system (14)). Instead, centered spatial
discretizations of the pressure gradient in the Euler equations avoid the ex-
cess of viscosity on any mesh, when dealing with low Mach regimes [13, 42].
In the adopted Eulerian model, this corresponds to centering the stiff parts
of σ in the non-dimensional system (14).

A centered discretization of the spatial derivatives can be employed with-
out stability problems in the implicit scheme just introduced. The interface
values inside (23) are computed as follows:{

ψi+1/2 = 1
2

(
ψi+1 +ψi

)
vi+1/2 = 1

2
(vi+1 + vi) .

Then, the centered implicit scheme reads
ψn+1
i −ψn

i

∆t
+

vn+1
i+1 − vn+1

i−1

2∆x
= 0

vn+1
i − vni

∆t
+ A

ψn+1
i+1 −ψn+1

i−1

2∆x
=

1

η

(
F
(
ψn+1
i

)
− vn+1

i

)
.

(28)

This scheme possesses the following zero relaxation limit η → 0+:

ψn+1
i −ψn

i

∆t
+

F
(
ψn+1
i+1

)
− F

(
ψn+1
i−1
)

2∆x
= 0, (29)

which is a consistent and unconditionally stable discretization of system (9).
Unconditional stability is easily proven for linear advection with the Von
Neumann stability analysis [43]. Therefore, scheme (28) is unconditionally
stable, namely a stability condition on the time step is not required. More-
over, by centering the whole fluxes, also the gradient of σ is centered. Hence,
the accuracy in space of scheme (29) does not depend on the Mach number.

4.2.2. Hybrid spatial discretization

The centered approximation (28) accurately solves low Mach flows, be-
cause the correct Mach number order on the stress tensor gradients is re-
spected by the scheme. Nevertheless, we aim at deriving an all-speed scheme.
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When solving problems at high velocities (Mach number of order one or
more), the centered discretization does not provide enough numerical viscos-
ity, thus spurious numerical oscillations can arise. In this spirit, an hybrid
spatial discretization is introduced, through a convex combination of the up-
wind and centered schemes described in Secs. 4.1.1-4.2.1. The combination
is based on the local Mach number of the specific flow.

Let u be a general variable. For the sake of simplicity, we introduce the
notation D (∂xu) ' ∂xu, D (∂xu) being the numerical discretization of the
spatial derivative of u. The main idea of the scheme consists in defining the
hybrid discretization D (∂xu)hyb as follows:

D (∂xu)hyb = f (Mloc) D (∂xu)upw + (1− f (Mloc)) D (∂xu)cent , (30)

where D (∂xu)upw is the upwind spatial discretization (24) and D (∂xu)cent is
the centered one. Mloc is the local Mach number, which can be computed on
the numerical solution at the previous time step. The function f (Mloc) has
to meet the criterion 0 ≤ f (Mloc) ≤ 1. Two different f are adopted:

• minimum function: f (Mloc) = min{1,Mloc}

• arctangent function: f (Mloc) =
arctan (Mloc)

π/2
.

The two choices for f have proved to be equivalent in the numerical results.
The hybrid spatial discretization reads:

D (∂xv)hyb =
1

2∆x
(vi+1 − vi−1)−

f (Mloc)

2∆x
A1/2

(
ψi+1 − 2ψi +ψi−1

)
D (∂xψ)hyb =

1

2∆x

(
ψi+1 −ψi−1

)
− f (Mloc)

2∆x
A−1/2 (vi+1 − 2vi + vi−1) .

(31)
We underline the fact that combination (30) essentially produces a centered
finite difference scheme. An upwind numerical viscosity is introduced inside
the scheme when the Mach number is not close to zero. This is shown
by analyzing relation (31). The centered scheme is second order accurate,
therefore for low Mach flows the convex combination keeps the same accuracy.
In the case of smooth solutions, the slopes can be calculated without the
introduction of non-linear limiters. In presence of discontinuities, the non-
linear slope limiters could be computed with a predictor-corrector approach.
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The relaxation all-speed scheme is thus derived. The hybrid spatial dis-
cretization (31) is adopted with the implicit time discretization (25), having:

ψn+1 −ψn

∆t
+

1

2∆x

(
vn+1
i+1 − vn+1

i−1
)
− f (Mloc) A1/2

2∆x

(
ψn+1
i+1 − 2ψn+1

i +ψn+1
i−1
)

= 0

vn+1 − vn

∆t
+

A

2∆x

(
ψn+1
i+1 −ψn+1

i−1
)
− f (Mloc) A1/2

2∆x

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1
)

=

1

η

(
F
(
ψn+1

)
− vn+1

)
.

(32)
This scheme will be referred to as “implicit relaxation scheme” in what

follows.

4.2.3. Linear system structure

Linearization (26) introduces a coupling among all the equations. Thus,
the following linear system has to be solved:{

MΨn+1 + NVn+1 = r

PΨn+1 + QVn+1 = s,
(33)

where Ψn+1 and Vn+1 are the vectors containing the grid point values of
the five conservative and of the five relaxation variables respectively. The
matrices structure comes from the spatial discretization defined in Sec. 4.2.2.
With our linearization, the implicit stiff source produces additional terms
only on the diagonals of the blocks. A constant term proportional to 1/η
appears on the diagonal of Q and the Taylor expansion introduces terms on
the diagonals of the sub-blocks of P. Therefore the computational effort in
the inversion algorithms is not excessively increased.

We consider the case of a 1D problem on a uniform mesh. At first order,
the blocks M, N and Q are tridiagonal. Then the inverse of M can be
computed with a direct solver thanks to its structure. System (33) can be
split into two linear systems that are solved sequentially by calculating Vn+1

and then Ψn+1 in the following way:{
Vn+1 = (Q−PM−1N)

−1
(s−PM−1r)

Ψn+1 = M−1 (r−NVn+1) .
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4.3. CFL conditions

Among the wave speeds (21), let µmax =
√
amax ≥ max|λ1|, λ1 being

the speed of the longitudinal waves (15) and µmat =
√
amat ≥ max|λ3| =

max|u1|. We define two different CFL conditions that can be enforced to
choose the time step.

Definition 4.1. The acoustic Courant number is defined on the speed of the
fastest wave as νac = µmax∆t/∆x. An acoustic CFL condition is enforced by
setting νac ≤ 1.

Definition 4.2. The material Courant number is defined on the speed of the
material wave as νmat = µmat∆t/∆x. A material CFL condition is enforced
by setting νmat ≤ 1.

Remark. For system (9), taking µmax ' |u1 + c + uiso| (approximation of
the longitudinal speed (15)) we get

νac '
∆t

∆x
|u1|

(
1 +

1

M
+

1

Mχ

)
' νmat

(
1 +

1

M
+

1

Mχ

)
. (34)

For the Euler equations (namely χ = 0 and no deformation), taking µmax '
|u1 + c| we get

νac '
∆t

∆x
|u1|

(
1 +

1

M

)
' νmat

(
1 +

1

M

)
. (35)

For standard explicit schemes as the ones of Sec. 4.1, an acoustic CFL
condition is needed for stability. As shown by expressions (34)-(35), this
constraint provides an extremely small ∆t when M → 0.

The implicit scheme (32), instead, is stable without a CFL constraint.
Nevertheless, ∆t has to be chosen accordingly to the required accuracy. Thus,
a material CFL condition is recommended in order to reproduce the prop-
agation of material waves. Since the material CFL does not depend on the
speed of the fast waves, these waves are not captured in the low Mach limit.

4.4. Numerical viscosity

We study he numerical viscosity by applying the “modified equation”
method [10] to schemes at first order on linear transport. As it is well-known
in literature, we get the modified equation ∂tu + µ∂xu = D∂xxu. Here µ
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is the speed of the wave (for system (17) is defined in (21)). The diffusion
coefficient D for the explicit-upwind scheme is the following:

Dexpl−upw = µ
∆x

2
− µ2∆t

2
= (1− ν)

µ∆x

2
, (36)

where ν is the Courant number, which needs to be acoustic for this scheme.
For the implicit-centered scheme, D can be written as:

Dimpl−cent = µ2∆t

2
=
µ∆x

2

µ∆t

∆x
= ν

µ∆x

2
. (37)

The two coefficients shows that for ν = νac . 1 the implicit-centered scheme
has a slightly higher diffusion.

The accuracy in approximating the different waves depends on the chosen
∆t due to numerical viscosity. With our novel implicit scheme, a material
CFL is enforced. For gas flows, the diffusion coefficient (37) on material
waves becomes:

Dmat =
µmat∆x

2

µmat∆t

∆x
' |u1|∆x

2
νmat. (38)

This formulation explains how the scheme is accurate on material waves also
when enforcing material CFL constraints on ∆t, namely the accuracy is not
reduced by a large time step.

Instead, on acoustic waves, the diffusion coefficient (37) reads as follows:

Dac =
µmax∆x

2

µmax∆t

∆x
' |u1 + c|∆x

2
νac '

|u1 + c|∆x
2

νmat

(
1 +

1

M

)
,

(39)
where we have used relation (35) for the last equality. In the limit M → 0,
the numerical diffusion of the scheme becomes large on acoustic waves when
a material CFL condition is used (large ∆t). However, in low Mach flows
applications, acoustic waves carry a small amount of energy, thus the low
accuracy in their approximation can be acceptable. If accuracy on these
waves is needed, acoustic CFL constraints on ∆t can be applied.

Additional viscosity is also introduced by the relaxation method itself.
The first order correction (19) shows the dissipative nature of the relaxation
system [28]. In the present work, we control this diffusion by taking η equal
to 10−8 and by building A as explained in Sec. 3.1.
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5. Numerical results

In this section, the implicit relaxation scheme (32) is validated at all
speeds. We show and discuss several tests by carrying out a thorough com-
parison with the results of the standard relaxation scheme of Sec. 4.1 (for
simplicity of notation, we refer to this scheme as “explicit”). In all compu-
tations the relaxation parameter is η = 10−8 and A is built as explained in
Sec. 3.1.

We first present steady test cases on the Euler equations (flow in a nozzle)
with different state laws. Then, we study the propagation of material waves
in compressible media, with the simulation of the full Eulerian model (9).

5.1. Laval nozzle flow

The Laval nozzle is a converging-diverging duct. It is widely used for
achieving steady supersonic flows in a variety of systems such as rocket mo-
tors and wind tunnels. The sketch of a nozzle is drawn in Fig. 1(a).

The simplest analytic model for compressible flow in a Laval nozzle is the
quasi one-dimensional duct flow approximation [44]:

∂t (Sρ) + ∂x (Sρu) = 0

∂t (Sρu) + ∂x (S (ρu2 + p)) = p∂xS

∂t (Sρe) + ∂x (Su (ρe+ p)) = 0.

(40)

The quasi one-dimensional assumption consists in taking the cross sectional
area as a smooth function of the axial coordinate, S = S (x). Hence, all
flow variables are functions of the axial coordinate and not of the other
coordinates. After a few manipulations, system (40) can be rearranged in
such a way that the Euler system is obtained, with a non linear source:

∂tρ+ ∂x (ρu) = −ρu∂xS
S

∂t (ρu) + ∂x (ρu2 + p) = −ρu2∂xS
S

∂t (ρe) + ∂x (u (ρe+ p)) = −u (ρe+ p)
∂xS

S
.

(41)

Formulations (40)-(41) are equivalent and both conservative because the cross
section S (x) of the nozzle is a smooth function of x. System (41) can be
rewritten in the general framework (9) with no deformation and with an
additional a non-linear source depending on S.
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We simulate perfect gas and stiffened gas (water) flows through a Laval
nozzle. Steady state is reached evolving system (41) in time until the differ-
ence of the solution between two consecutive time steps gets under a certain
tolerance (this tolerance is usually taken of order 10−9). All the nozzle re-
sults are obtained with 512 grid points unless otherwise stated and on the
computational domain [0, 1]. For all computations, we use the function S (x)
plotted in Fig. 1(b).

(a) Nozzle (b) S (x)

Figure 1: Left: Laval nozzle general sketch. Right: geometry of the simulated nozzle.

5.1.1. Perfect gas nozzle flow

The case of a perfect gas nozzle flow is considered. At the inlet the
total pressure (which is given by the Bernoulli principle) and temperature
are imposed Ptot = 1Pa and Ttot = 1K. At the outlet, a certain pressure pout
has to be imposed and determines the regime of the nozzle. We study two
different configurations:

• test 1 : pout = 0.9Pa. The flow is subsonic, with a Mach number varying
in the range M ∈ [0.45; 0.7];

• test 2 : pout = 0.99999Pa. The flow is subsonic, with a low Mach
number in the range M ∈ [4 · 10−3; 9 · 10−3].

We remark that the pressure and temperature values imposed for these con-
figurations are chosen in the spirit of having suitable validation tests of the
scheme in different regimes.

In both cases, for the explicit relaxation scheme the results are obtained
by enforcing acoustic CFL conditions: νac = 0.9 at first order and νac = 0.4 at
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(a) Velocity (b) Velocity

(c) Pressure (d) Pressure

(e) Density (f) Density

Figure 2: Perfect gas nozzle flow test 1 : velocity, pressure and density. Left column:
explicit relaxation scheme. Right column: implicit relaxation scheme.

second order. For the implicit scheme, instead, the constraint is not required
and the presented results are obtained with νac = 100.
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(a) Velocity (b) Velocity

(c) Pressure (d) Pressure

(e) Density (f) Density

Figure 3: Perfect gas nozzle flow test 2 : velocity, pressure and density. Left column:
explicit relaxation scheme. Right column: implicit relaxation scheme.

The results of test 1 are presented in Fig. 2. Here we compare the
velocity, pressure and density profiles obtained with the standard relaxation
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scheme of Sec. 4.1 (left column) and with the novel implicit scheme (right
column). The simulated flow is subsonic, with a Mach number close to one.
The two schemes produce very similar results. The convergence analysis for
this test (see Fig. 4(a)) shows that the implicit scheme is more precise than
the explicit scheme at order one. Nevertheless, at second order, the precision
is the same for the two schemes.

(a) Test 1 (b) Test 2

Figure 4: Perfect gas nozzle flow: L∞ numerical error on pressure. Left panel: gas nozzle
flow test 1. Right panel: gas nozzle flow test 2.

Test 2 is a low Mach flow simulation. The results are presented in Fig.
3, where again the comparison between the results of the two schemes is
carried out. The density and pressure profiles obtained with the explicit
scheme at first order results are shifted with respect to the exact solution
and they present some oscillations at the boundaries. This is due to the
wrong numerical viscosity of the upwind spatial discretization. Instead, the
implicit relaxation scheme is able to overcome these problems: the pressure
and the density curves are superimposed to the exact ones.

The convergence analysis of Fig. 4(b) confirms these observations. The
implicit scheme is more precise if compared to the explicit scheme, at both
first and second order. This is due to the adopted spatial discretization
(31), which provides the correct numerical viscosity also when solving low
Mach flows. The two proposed tests prove that the novel implicit scheme
can provide very accurate solutions in different regimes. The computational
effort of the two schemes for the case of 512 grid points is compared in Table
3. Computationally, the implicit scheme is more expensive due to the simple
direct linear solver used. The CPU time could be reduced by employing

25



preconditioned iterative methods. On the other hand, techniques such as
local time stepping and multigrid (see for example [45, 46]) could accelerate
the convergence of the explicit scheme for the specific nozzle application.
However, this analysis shows the numerical error on the low Mach solution
is reduced of a factor of 10 with the implicit scheme.

(a) Test 1

Explicit Implicit

error 2.75·10−3 6.75·10−4

CPU time 15 712
iterations 22667 79

(b) Test 2

Explicit Implicit

error 1.64·10−6 1.95·10−7

CPU time 78.3 552
iterations 113914 51

Table 3: Comparison of numerical error, CPU time and iterations needed to reach con-
vergence for 512 grid points with the two schemes.

(a) Error ' 7.9 · 10−7

Explicit Implicit

grid points 2950 128
CPU time 353.1 8.1
iterations 135402 48

(b) Error ' 3.8 · 10−7

Explicit Implicit

grid points 9000 256
CPU time 3464.5 64.8
iterations 448809 58

Table 4: Comparison of computational time and iterations needed by the two relaxation
schemes to reach the same precision at steady state for test 2 (low Mach flow).

Moreover, the CPU time of the explicit scheme is much larger than for
the implicit scheme to reach the same accuracy on the solution. The com-
parison of computational times, grid points and iterations needed by the
two schemes to reach the steady state are shown in Table 4. We obtain
the correct numerical solution with the explicit relaxation scheme only when
employing extremely refined grids. Consequently, the computational times
increase enormously. We remark that for the computation of the steady
state solution, the time dependent problem is solved as an iterative method
(such as the Richardson method) until steady state is reached. Therefore,
the number of iterations needed to converge corresponds to the number of
time steps.

5.1.2. Stiffened gas nozzle flow

With the state law of a stiffened gas, we simulate a water flow inside a
Laval nozzle. The flow is low Mach and almost incompressible, due to the
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(a) Velocity (b) Velocity

(c) Pressure (d) Pressure

(e) Density (f) Density

Figure 5: Water nozzle flow: velocity, pressure and density. Left column: explicit relax-
ation scheme. Right column: implicit relaxation scheme.

presence of the p∞ term in the state law. For this simulation, we impose at
the inlet Ptot = 10Pa and Ttot = 280K, at the outlet pout = 1Pa. The Mach
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number varies in the interval M ∈ [7.26 · 10−5; 8.67 · 10−5] approximately
inside the nozzle.

In Fig. 5, the profiles of the density, pressure and velocity obtained with
the two schemes are compared with the exact solution. Once again, the
oscillations and the shift from the exact solution that can be observed in Fig.
5(c) are due to the excessive numerical viscosity of the upwind discretization.
The novel implicit relaxation scheme improves the precision of the solution
thanks to the hybrid spatial discretization (31).

Figure 6: Water nozzle flow: L∞ numerical error on pressure.

The convergence analysis is carried out in Fig. 6. The implicit scheme is
always more precise with respect to the explicit one. The convergence rates
are the correct ones. In the computations of this test case, the acoustic CFL
for the explicit scheme is νac = 0.4 at first and second order and for the
implicit scheme is νac = 100 at first and second order.

5.2. Simulation of material waves

We address the simulation of material waves by solving different Riemann
problems in pipes filled with perfect gases, water and hyperelastic solids
in different regimes (Table 5). The results are obtained with the explicit
relaxation scheme and the novel implicit scheme at first order in all tests.

Initial conditions and parameters are listed in Table 6, where L is the
length of the tube and x0 is the initial position of the contact discontinuity.
The discontinuous initial conditions are smoothed with an arcotangent func-
tion in order to overcome the problem of the computation of non-linear flux
limiters on the discontinuity.

For all test cases we use “freeflow” boundary conditions, namely we im-
pose ∂ψ

∂n

∣∣
x=0

= ∂ψ
∂n

∣∣
x=L

= 0 (n being the outward normal to the boundary) on
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Test Material Regime γ p∞ χ
(Pa) (Pa)

1 perfect gas M ' 0.9 1.4 0 0

2 perfect gas M ' 6 · 10−3 1.4 0 0

3 water M ' 2.5 · 10−3 4.4 6.8 · 108 0

4 copper M ' Mχ ' O
(
10−3

)
4.22 3.42 · 1010 5 · 1010

5 hyperelastic solid M ' 3 · 10−3, Mχ ' 0.15 4.4 6.8 · 108 8 · 105

Table 5: Parameters for the material waves test cases: materials and regime on the contact
wave.

Test L x0 tend ρL ρR u1,L u1,R u2,L u2,R pL pR
(m) (m) (s) (Kg/m3) (Kg/m3) (m/s) (m/s) (m/s) (m/s) (Pa) (Pa)

1 1 0.5 0.1644 1 0.125 0 0 0 0 1 0.1
2 1 0.5 0.25 1 1 0 0.008 0 0 0.4 0.399
2.1 400 200 150 1 1 0 0.008 0 0 0.4 0.399

3 1 0.5 10−4 103 103 0 15 0 0 108 0.98 · 108

3.1 400 200 0.095 103 103 0 15 0 0 108 0.98 · 108

4 2 1 6 · 10−5 8.9 · 103 8.9 · 103 0 0 0 100 109 105

4.1 500 250 0.04 8.9 · 103 8.9 · 103 0 0 0 100 109 105

5 100 50 0.016 1 · 103 1 · 103 0 10 0 40 108 0.98 · 108

Table 6: Parameters for the material waves test cases: initial state.

the conservative variables. Since ∂v
∂n

= F′ (ψ) ∂ψ
∂n

, on the relaxation variables
we impose ∂v

∂n

∣∣
x=0

= ∂v
∂n

∣∣
x=L

= 0.

5.2.1. Perfect gas

Test 1 is a Sod shock tube filled with a biatomic perfect gas. The flow is
accelerated, characterized by an expansion wave, a contact discontinuity and
a shock. The Mach number on the contact wave is M ' 0.9. The profiles
obtained with the explicit and the implicit relaxation schemes are similar,
as shown by Fig. 7. Both schemes provide results in good agreement with
the exact solution, are oscillation free and have the correct shock strength
and speed. The explicit relaxation scheme is solved with νac = 0.4. For the
implicit scheme we impose νmat = 0.3, corresponding to νac = 0.9, since the
sound speed and the flow velocity are of the same order.

Test 2 is a perfect gas low Mach flow, with M ' 6 · 10−3 on the contact
wave. In the tube, a small pressure ratio and a small velocity on the right
are imposed. The gas is expanded in both directions and the contact wave
moves very slowly [11].

In Fig. 8 we show the influence of the time step on the density profile
computed with the implicit scheme. The contact wave is always kept sharp
thanks to spatial discretization (31). The numerical viscosity on this wave
does not increase when taking a bigger time step, as shown by relation (38).
All the three waves are accurately reproduced when an acoustic constraint
νac = 0.9 is enforced. With a grid spacing ∆x = 10−3, this condition gives a
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(a) Velocity (b) Pressure

(c) Density

Figure 7: Test 1 : Sod shock tube with perfect gas (1000 grid points).

small time step ∆t = 1.2 · 10−3s (orange line), thus producing long computa-
tional times. Material CFL conditions νmat = 0.1, νmat = 0.2 and νmat = 0.4
reduce the computational time, since they give ∆t = 1.1 · 10−2 (green line),
∆t = 2.2 · 10−2 (blue line) and ∆t = 4.4 · 10−2 (grey line) respectively. The
acoustic waves are smoothed due to the numerical diffusion (39).

The time step of the implicit scheme is not imposed by stability issues,
but has to be chosen accordingly to the accuracy needed on the acoustic
waves. If the focus is the approximation of material waves, a material CFL
condition can be adopted in order to reduce the computational time. If
instead a good resolution of fast waves is needed, the use of an acoustic CFL
is recommended.

In Figs. 9(a)-9(b)-9(c) we compare velocity, pressure and density obtained
by the implicit scheme with νmat = 0.2, giving ∆t = 2.2 ·10−2 (blue line) and

30



Figure 8: Density profiles for different time steps of the implicit scheme for test 2 (1000
grid points). CFL constraints: ∆t = 4.4 · 10−2 given by νmat = 0.4, ∆t = 2.2 · 10−2 by
νmat = 0.2, ∆t = 1.1 · 10−2 by νmat = 0.1, ∆t = 1.2 · 10−3 by νac = 0.9.

by the explicit scheme, giving ∆t = 5.3 ·10−4 (red line). This latter condition
gives . After 0.25s, the contact discontinuity has only moved from x0 = 0.5m
to x0 = 0.501m, namely it has crossed 1 cell for a grid spacing ∆x = 10−3.
The implicit scheme is consistently more accurate than the explicit scheme
in the approximation of the contact wave.

The ability of the scheme in capturing travelling waves is then tested
with a simulation for longer times (test 2.1 in Table 6). In Fig. 9(d) we
show a zoom on the contact wave in a tube of length L = 400m. After
150s the contact discontinuity has moved from x0 = 200m to x0 = 200.71m,
namely it has crossed 7 cells for the employed grid spacing ∆x = 10−1. The
explicit relaxation scheme is completely smoothing the contact discontinuity.
It is evident that the implicit scheme is superior in capturing the travelling
material wave.

5.2.2. Stiffened gas

Test 3 simulates a water flow in a pipe where a very small pressure ratio
is imposed. The Mach number on the contact wave is M ' 2.5·10−3. In Figs.
10(a)-10(b)-10(c), the explicit scheme presents some small oscillations on the
rarefactions due to the stiffness of the problem. These results are obtained
with νac = 0.4 having ∆t = 2.14 · 10−7s on a grid of 1000 points. The
results of the implicit scheme are obtained with a material CFL νmat = 0.15,
which gives a time step ∆t = 9.4 · 10−6s for the chosen grid. The contact
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(a) Velocity (b) Pressure

(c) Density (d) Density after long time

Figure 9: Test 2 : Low Mach tube with perfect gas (1000 grid points). Panel (d): zoom
on the material wave obtained for test 2.1 (4000 grid points).

discontinuity is kept sharp and has the correct speed. As expected, the
acoustic waves are smoothed due to the large time step. In these results the
contact wave has moved from x0 = 0.5 to x0 = 0.5008m, which means that
on the chosen grid it has not even crossed one cell yet.

The density profile in Fig. 10(d) is computed after long times (test 3.1 :
tube of L = 400m). At time t = 0.095s the contact wave has moved from
x0 = 200m to x0 = 200.76m, namely it has crossed 8 cells for a grid spacing
∆x = 10−1. The explicit relaxation scheme is not reproducing the travelling
material wave. Instead, the position and the velocity of the wave are captured
by the implicit scheme, even if there is not a perfect superimposition due to
the stiffness of the problem.

5.2.3. Hyperelastic solids
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(a) Velocity (b) Pressure

(c) Density (d) Density after long time

Figure 10: Test 3 : tube with water (1000 grid points). Panel (d): zoom on the material
wave profile obtained for test 3.1 (4000 grid points).

The scheme is tested on the deformation of hyperelastic solids. The 1D
system (9) is fully simulated and the isochoric and the volumetric contribu-
tions in (5) are both present. Test 4 simulates the deformation of a pipe
of length L = 2 filled with copper (see Tables 5 and 6 for parameters and
initial conditions). Copper is at rest and at higher pressure on the left part.
A tangential velocity discontinuity is imposed, so five waves appear. On the
contact wave, the acoustic Mach number is M ' 2.6 · 10−3 and the elastic
Mach number is Mχ ' 3.15 · 10−3. Since the two numbers are of the same
order, this test is representative of the “shear and acoustic low Mach limit”
case, due to intrinsic copper properties p∞ ' χ ' O (1010).

In Fig. 11 we compare the density and pressure profiles obtained with
the implicit scheme for different time steps. All five different waves can be
distinguished when the time step is acoustic (black line): the fastest waves
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(a) Density

(b) Pressure

Figure 11: Density and pressure profiles for different time steps of the implicit scheme for
test 4 (2000 grid points on the domain [0, 2]). CFL constraints: ∆t = 1.7 · 10−5 given by
νmat = 0.3, ∆t = 8.3 · 10−6 by νmat = 0.15, ∆t = 1.7 · 10−7 by νac = 0.9.

are those relative to the normal stress, the middle one is the material wave,
and the two intermediate waves are those relative to the tangential (shear)
stress. The time step chosen for this simulation is ∆t = 1.7 · 10−7, given by
enforcing νac = 0.9. The other results of the implicit scheme are obtained
with νmat = 0.15, giving ∆t = 8.3 · 10−6 (blue line) and νmat = 0.3, giving
∆t = 1.7 · 10−5 (green line). With these latter constraints, the number of
time steps and, consequently, computational times are reduced. Longitudinal
and shear waves are smoothed due to numerical diffusion (39). Nevertheless,
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(a) Normal velocity (b) Transverse velocity

(c) Normal stress (d) Tangential stress

Figure 12: Test 4 : tube with copper (2000 grid points on the domain [0, 2]).

(a) Density (b) Pressure

Figure 13: Test 4.1 : density and pressure for long times (4000 grid points on the domain
[0, 500]).
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for every choice of ∆t, the implicit scheme keeps sharp the material wave,
reproducing it more accurately than the explicit scheme. The results of the
explicit scheme are calculated with νac = 0.4 giving ∆t = 8.7 · 10−8(red line).
In Fig. 12 we compare the other fields computed by the two schemes. For
the implicit scheme, here we use νmat = 0.15. After 6 ·10−5s the contact wave
has moved from x0 = 1m to x0 = 1.001m, not even crossing one cell with the
grid spacing ∆x = 10−3.

We simulate the same problem for longer times (test 4.1 ). At time t =
0.04s, the discontinuity has moved from x0 = 250m to x0 = 250.65m in a tube
of length L = 500m. The results in Fig. 13 confirm that the implicit scheme is
accurately capturing the travelling material wave, instead the explicit scheme
is not reproducing this wave anymore.

As a last peculiar case, we approach the “only acoustic low Mach limit”.
Test 5 simulates the deformation of an hyperelastic material characterized
by p∞ = O (108)� χ = O (105) (for the material parameters and the initial
conditions see Tables 5 and 6). These parameters were specifically chosen to
obtain this particular regime. The two Mach numbers on the contact wave
are then M ' 3 · 10−3 and Mχ ' 0.15. By imposing a tangential velocity on
the right, two slow shear waves arise. The material and the shear waves are
almost stationary, whereas the longitudinal waves are extremely fast due to
the the stiff p∞ term.

The ability of the implicit scheme in reproducing the slow waves is proven
in Fig. 14. Here we show the main profiles in the central region of the domain.
By observing the transverse velocity, the tangential stress and the pressure,
it is clear that the implicit scheme is superior in capturing the shape and
the speed of the shear waves, even if small amplitude oscillations are present.
The explicit scheme, instead, does not resolve them. In the density profile
obtained by the implicit scheme, the presence of the three slow waves is
recognizable, whereas the explicit scheme does not make a distinction (Fig.
14(d)).

For the explicit scheme, we employ νac = 0.4, giving ∆t = 6.89 · 10−6s on
a grid spacing ∆x = 4 ·10−2. The results of the implicit scheme are obtained
with a time step ∆t = 2.325 · 10−4s, which is around 300 times bigger than
the explicit ∆t. A small time step is here needed due to the presence of
three slow waves, which remain very close to each other. In order to limit
the oscillations ∆t could be further reduced.
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(a) Transverse velocity (b) Tangential stress

(c) Pressure (d) Density

Figure 14: Test 5 : transverse velocity, tangential stress, pressure and density (2500 grid
points). Zoom on the center of the full domain.

6. Conclusions and future developments

We have proposed an all-speed relaxation scheme for the numerical sim-
ulation of compressible materials. The scheme has proved to be accurate in
the computation of steady state solutions and also in the approximation of
material waves in different Mach regimes. The correct numerical viscosity
is recovered at all speeds, as shown by the nozzle flow tests. The scheme is
applicable to compressible flows inside gases, liquids and hyperelastic solids.
We have shown a consistent improvement in the approximation of material
waves at slow velocity with respect to explicit schemes.

In the future the scheme will be extended to solve two and three dimen-
sional material wave propagation cases. The all-speed property will allow
the simulation of heterogeneous multimaterial problems where the speeds
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can vary consistently from one medium to another.
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