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Abstract—In this paper, the problem of stabilizing linear port-
controlled Hamiltonian dynamics through interconnection and
damping assignment in presence of input delays is considered.
The contribution exploits the reduction approach allowing to re-
veal and shape the energy properties of the time-delay dynamics.
Performances are illustrated on a simple mechanical system.

Index Terms—Linear systems, Delay systems, Energy systems.

I. INTRODUCTION

PASSIVITY-BASED control (PBC) of dynamical systems
has been shown to offer a natural and powerful framework

for controlling dynamic systems by exploiting their physical
properties [1], [2]. Basically, when considering stabilization
at the origin, PBC is aimed at injecting energy back through
feedback so to modify and exploit the natural dissipation of
the plant [3]. When considering port-controlled Hamiltonian
systems [4], [5], Interconnection and Damping Assignment
(IDA, [6]) has been introduced to stabilize the system at some
desired new equilibria through passivation: first the energy of
the system is reshaped; then damping is injected to ensure
asymptotic convergence to the desired equilibrium.

If on one side, PBC represents a powerful control approach
at large and several extensions have been proposed in the liter-
ature [7], [8], a very few works are devoted to the investigation
and exploitation of passivity in presence of time delays (e.g.,
[9]–[13]). When considering nonlinear dynamics affected by
discrete input delays of length τ , a new solution concerning
passivity-based control for stabilization at the origin has been
proposed in [14] through reduction [15]–[17]. The main idea
is to construct a new dynamics (the reduced dynamics) that
is free of delays and equivalent, in terms of stabilizability, to
the original delayed one. Such a dynamics preserves the drift
of the retarded one but exhibits a transformed control vector
field explicitly parameterized by the delay. Then, passivity-
based arguments for stabilization at the origin can be fruitfully
applied.

Exploiting the approach proposed in [14], the contribution
of this paper concerns stabilization of linear time-invariant
(LTI) port-controlled Hamiltonian dynamics under input de-
lays at a desired equilibrium through IDA-PBC; namely,
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stabilization is performed by assigning and shaping the energy
dissipation of the time-delay closed-loop system. Assuming
the existence of a solution for the delay-free case, we show
first how to define and compute a reduced dynamics which
preserves the Hamiltonian structure of the original retarded
dynamics together with its dissipation. Then, an IDA-PBC
feedback designed over the reduced dynamics is shown to
asymptotically stabilize the retarded original dynamics at
the desired equilibrium. The designed feedback assigns, to
the reduced dynamics, the same Hamiltonian structure as
the one assigned to the delay-free feedback system. As an
important consequence of this choice, it is shown that the
resulting delayed feedback control system possesses a new
port-Hamiltonian structure which is directly parameterized by
the delay and which recovers the delay-free one as τ falls
to zero. Several extensions are briefly sketched. A simple
example is exploited to illustrate the result and perform
comparisons with respect to classical prediction-based control
laws.

The remainder of this paper is organized as follows. In
Section II, the problem is settled by providing recalls on
standard IDA-PBC and reduction-based control. In Section III,
the main results are given with some sketches on the extension
to further classes of time-delay systems. In Section IV a simple
mechanical LTI system is worked out and simulations show
the performances. Final remarks and perspectives conclude the
paper.

Notations. R and N denote the set of real and natural num-
bers including 0. For any vector z ∈ Rn, ‖z‖ and z> define
respectively the norm and transpose of z. Given a full rank
matrix B ∈ matR(n,m) with n > m, B† = (B>B)−1B> de-
notes the pseudoinverse, while B⊥ its orthogonal complement
verifying B⊥B = 0. Also, ker{B} denotes the nullspace of B.
Given R ∈ MatR(n, n) and z ∈ Rn, the weighted square norm
is defined as ‖z‖2R := z>Rz. I denotes the identity matrix of
suitable dimension. Given a twice continuously differentiable
function S(·) : Rn → R, ∇S(·) represents its gradient vector.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, recalls on reduction for LTI dynamics
dynamics [14], [18] are provided together with standard results
on IDA-PBC for delay-free port-controlled Hamiltonian (pcH)
dynamics [19].

A. The reduction approach for LTI dynamics
Consider a retarded LTI dynamics of the form

ẋ(t) = Ax(t) +Bu(t− τ) (1)



with x ∈ Rn, u ∈ Rm, m ≤ n and τ > 0 a constant and
known time delay. For simplicity, we assume B of full rank
and u(t) = 0 for t ∈ [−τ, 0). As firstly proposed in [18]
with extension to the nonlinear context in [14], the problem of
controlling (1) can be set over a simplified dynamics which is
free of delay. To this end, we introduce the so-called reduction
variable

η(t) = x(t) +

∫ t

t−τ
e(t−τ−`)ABu(`)d` (2)

with initial condition η0 = x0, which can be easily verified to
evolve with the reduced dynamics

η̇(t) = Aη(t) +Bτu(t) (3)

where Bτ = e−τAB. It results that the reduced dynamics (3)
preserves the same drift as (1) with constant control vector
field parameterized by τ , Bτ . Accordingly, from [18], all
feedbacks stabilizing (3) ensure stabilization of (1). Moreover,
by construction, all properties of (1) are preserved by reduction
as, for instance, passivity. This last aspect is clarified by the
following statement recalled from [14].

Proposition 2.1: Let the delay-free (with τ = 0) dynamics
associated to (1) be passive with output y = Cx, C = B>P ,
and storage function H(x) = x>Px, P � 0; then, the
following holds true:

1) the reduced dynamics (3) is passive with output yτ (t) =
Cτη(t) with Cτ = B>τ P and the same storage function
H(η) = η>Pη;

2) if for τ = 0, the delay-free dynamics associated to (1) is
Zero-State-Detectable (ZSD), then the reduced dynamics
(3) with output yτ (t) = Cτη(t) is ZSD;

3) the retarded dynamics (1) is passive with output

yτ (x(t), ut) = Cτx(t) +

∫ t

t−τ
Cτe

(t−τ−`)ABu(`)d`

with ut = ut(θ) = u(t+ θ) for θ ∈ [−τ, 0) and storage
functional

Hτ (x(t), ut) = ‖x(t) +
∫ t

t−τ
e(t−τ−`)ABu(`)d`‖2P .

Remark 2.1: In case of discrete and uniform input delay,
the reduction variable (2) rewrites as η(t) = e−τAx(t + τ)
for x(t + τ) = eτAx(t) +

∫ t
t−τ e

A(t−`)u(`)d`. Accordingly,
reduction can be interpreted as the prediction of the state
brought backward in time through e−τA which defines the
free evolution.

B. IDA-PBC for LTI pcH systems

Consider a delay-free pcH system of the form

ẋ(t) = (J −R)∇H(x(t)) +Bu(t) (4)

verifying, by construction, for all t ≥ 0 the energy-balance
equality

H(x(t))−H(x0) =

∫ t

0

y>(`)u(`)d`− w(t)

where, for some P � 0, w(t) ≥ 0 and y(t) = B>Px(t)
denote the dissipated energy and the corresponding passive
conjugate output, respectively and H(x) = x>Px is the so-
called Hamiltonian.

Let x? ∈ ker{B⊥A} be a desired equilibrium to stabilize
and assign via IDA-PBC with v an exogenous input signal;
one seeks for a control law u(t) = ues(t) + udi(t) + v(t)
with: ues the energy shaping component modifying the total
energy function to assign the desired equilibrium x?; udi the
damping injection component achieving asymptotic stability of
the aforementioned point. The problem is reduced to the com-
putation of matrices F , F?, Jd = −J>d , Rd = R>d � 0 and
Pd = P>d � 0 solutions to the so-called matching equation

(Jd −Rd)∇Hd(x)

− (J −R)∇H(x)−B(Fx+ F?x?) = 0
(5)

so that (4) rewrites, in closed loop, as the pcH system

ẋ(t) = (Jd −Rd)∇Hd(x(t)) +Bv(t)

with new Hamiltonian Hd(x) = (x − x?)
>Pd(x − x?) and

control u = Fx+ F?x? + v. As a consequence, one gets that
the closed-loop pcH system is passive with respect to the new
output yd = B>Pd(x− x?), energy balance equality

Hd(x(t))−Hd(x0) =

∫ t

0

y>d (`)v(`)d`− wd(t)

and x? as a new (asymptotically) stable equilibrium. As well-
known [19], in the LTI case the matching equation (5) is
equivalent to the matrix equalities

(Jd −Rd)Pd − (J −R)P −BF = 0

− (Jd −Rd)Pd +BF? = 0

with Pd, Jd and Rd verifying the so-called matching condition

B⊥[(Jd −Rd)Pd − (J −R)P ] = 0 (6)

that is necessary for solvability of the problem. Under (6) the
control matrices are given by

F =B†[(Jd −Rd)Pd − (J −R)P ]
F? =−B†(Jd −Rd)Pd.

(7)

Remark 2.2: Typically, one usually sets the dissipation
matrix as Rd = κBB> with κ > 0, that is the one
resulting from damping injection from the new passive output
yd = B>Pd(x− x?).

C. Problem formulation and outline of the results

From now on, we assume that (1) is a port-Hamiltonian
dynamics of the form

ẋ(t) = (J −R)∇H(x(t)) +Bu(t− τ) (8)

with J = −J>, R = R> � 0, H(x) = x>Px, P � 0
and A = (J − R)P . In addition, we refer to (4) as the
corresponding delay-free system deduced from (8) when τ = 0
under the following standing assumption which is typical of
the time-delay context.



Assumption 1: There exists a stabilizing IDA-PBC solution
for the delay-free dynamics (4); namely, there exist Jd =
−J>d , Rd = R>d � 0, Hd(x) = (x − x?)

>Pd(x − x?),
Pd = P>d � 0 solution to the matching equality (5) with
the feedback u = Fx+F?x?+v with F and F? in (7), which
asymptotically stabilizes x? ∈ ker{B⊥A }.

In the following, we seek to assign a desired equilibrium
x? to the retarded system (8) by assigning a desired energy
behavior in closed loop despite the effect of the delay τ > 0.
In particular, exploiting reduction arguments and Assumption
1, we show that a suitable IDA-PBC problem can be set and
solved over the reduced model to fulfill the specification over
the delayed pcH dynamics (8). In this sense, we underline
that Assumption 1 is not restrictive as IDA-PBC is generally
relying on the free evolution of the system rather than on
its forced component. The following items outline the design
procedure:

1) construct the reduced model associated to (8), that is

η̇(t) = (J −R)∇H(η(t)) +Bτu(t); (9)

2) set an IDA-PBC control problem over (9) to assign and
stabilize a suitably defined reduced equilibrium η? ∈
ker{B⊥τ P} uniquely corresponding to x? ∈ ker{B⊥A};
i.e. compute Fτ , Fτ? , Jd,τ = −J>d,τ , Rd,τ = R>d,τ � 0

and Pd,τ = P>d,τ � 0 solutions to the reduced matching
equation

(Jd,τ −Rd,τ )∇Hd,τ (η)

− (J −R)∇H(η)−Bτ (Fτη + Fτ?η?)] = 0.
(10)

The closed-loop reduced-model gets the form

η̇(t) = (Jd,τ −Rd,τ )∇Hd,τ (η(t)) +Bτv(t)

with reduced Hamiltonian Hd,τ (η(t)) = ‖η − η?‖2Pd,τ
and u(t) = Fτη(t) + Fτ?η? + v.

Accordingly, the contributions of the paper are given below:
1) under Assumption 1 a solution to the IDA-PBC control

problem under input delay is shown to exist for all
τ > 0 for the reduced model (9); the defined feed-
back stabilizes the suitably defined reduced equilibrium
η? ∈ ker{B⊥τ A} and preserves the same Hamiltonian,
damping and interconnection matrices as in the delay-
free case (Proposition 3.1);

2) the controller designed on the reduced model assigns
and stabilizes the desired equilibrium x? ∈ ker{B⊥A}
of the original delayed dynamics (8) by assigning a new
Hamiltonian structure (Theorem 3.1).

III. REDUCTION-BASED IDA-PBC

A. Main result

As mentioned above, the objective is to regulate the state
of the time-delay pcH dynamics (8) to a desired admissible
equilibrium x? ∈ ker{B⊥A} through IDA-PBC over the
reduced dynamics (9). To this end, it is first necessary to
characterize the correspondence among admissible equilibria
x? ∈ ker{B⊥A} for (8) and admissible equilibria η? ∈

ker{B⊥τ P} for the reduced pcH dynamics (9). The result
below serves this purpose.

Lemma 3.1: For all fixed τ > 0, each admissible equi-
librium x? ∈ ker{B⊥A} of the original retarded system (8)
corresponds to η? = e−τAx? as admissible equilibrium of the
reduced dynamics (9).

Proof. The result is proved by fixing B⊥τ = B⊥eτA with
A = (J − R)P and the (constant) feedback uτ? = −B†τAη?
assigning η? = e−τAx?. Accordingly, by definition of reduc-
tion in (2), one gets that for all t ≥ 0

x(t) = e−τAx? +

∫ t

t−τ
eA(t−`)d`BτB

†
τAe

−τAx?

so that one needs to prove that, for all t ≥ 0

x? = e−τAx? +

∫ t

t−τ
eA(t−`)d`BτB

†
τAe

−τAx?

and thus the quality

(I− e−τA)x? =
∫ t

t−τ
eA(t−`)d`BτB

†
τAe

−τAx?.

By exploiting the definition of pseudo-inverse and the fact that
e−τAx? ∈ ker{B⊥τ A} one gets∫ t

t−τ
eA(t−`)d`BτB

†
τAe

−τAx? =

∫ t

t−τ
eA(t−`)d`Ae−τAx?

=

∫ τ

0

eAsdsAe−τAx?

=(I− e−τA)x?

so getting the result. �

We are now ready to prove the following result.

Proposition 3.1: Consider the pcH dynamics (8) affected by
a discrete input delay of length τ > 0 with x? ∈ ker{B⊥A }
a desired equilibrium to be assigned and stabilized. Let (8)
verify Assumption 1 with matrices Jd = −J>d , Rd = R>d � 0
and Pd = P>d � 0. Let (2) be the reduction variable associated
to (8) with reduced model (9) and equilibrium η? = e−τAx?
to be assigned. Then, the reduced matching equation (10) is
solved by Jd,τ = Jd, Rd,τ = Rd, Hd,τ (η) = Hd(η) = (η −
η?)
>Pd(η−η?) and the feedback law u(t) = Fτη(t)+Fτ?η?+

v(t) with

Fτ =B†τ [(Jd −Rd)Pd − (J −R)P ] (11a)

Fτ? =−B†τ (Jd −Rd)Pd (11b)

making the closed-loop reduced model of the form

η̇(t) = (Jd −Rd)∇Hd(η(t)) +Bτv(t). (12)

In addition, the closed-loop reduced dynamics (12) with output
yd,τ (t) = B>τ Pd(η(t)− η?) is passive.

Proof. The proof works out by showing that Jd, Rd and
Pd solve the reduced matching condition

B⊥τ [(Jd,τ −Rd,τ )Pd,τ − (J −R)P ] = 0. (13)

To this end and with a slight abuse of notation, setting B⊥τ =
B⊥eτA with A = (J − R)P and Ad = (Jd − Rd)Pd, one



gets B⊥τ [Ad − A] = B⊥eτA[Ad − A]. Rewriting now eτA =

I+
∑
i>0

τ i

i! A
i and exploiting, by Assumption 1, the equality

B⊥A = B⊥Ad it is a matter of computations to verify that
B⊥eτAAd = B⊥Ade

τA for all τ > 0, that is B⊥AiAd =
B⊥Ai+1 for all i = 0, 1, . . . . This can be proved by induction
assuming that this holds for i ≥ 0. Accordingly, it is a matter
of computations to check that the ith order equality rewrites
as B⊥AiAd − B⊥Ai+1 = B⊥Ai+1

d − B⊥Ai+1 = B⊥(Aid −
Ai)(Ad+A) = 0 so that B⊥Ai+1Ad−B⊥Ai+2 = B⊥Ai+2

d −
B⊥Ai+2 = 0 and thus the result. �

Remark 3.1: It is worth to note that the prediction-based
feedback up(t) = Fx(t+ τ)+F?x? with F , F? as in (7) and
x(t + τ) = eτAη(t) solves the reduced matching condition
(13) with Ad,τ = (Jd,τ −Rd,τ )Pd,τ = e−τA(Jd−Rd)PdeτA.
In particular, Jd,τ = e−τAJde

τA, Rd,τ = e−τARde
τA and

Pd,τ = e−τAPde
τA that is neither symmetric nor positive

semidefinite in general. In addition, such prediction does not
yield an IDA-PBC control under reduction as not ensuring a
closed-loop pcH structure for (9) for J 6= 0.

Remark 3.2: A further solution to the reduced matching
equality (13) is provided by Pd,τ = Pd, Jd,τ = Jd and
Rd,τ = κτBτB

>
τ with κτ > 0, that is the one resulting

from performing damping injection over the new passivating
reduced output yτ = B>τ Pd(η − η?). Such a solution assigns
to the closed-loop time-delay systems the damping matrix
R̃d,τ = Rd = BB>.

Proposition 3.1 shows that, when IDA-PBC can be applied
to stabilize a desired equilibrium x? ∈ ker{B⊥A} for the
delay-free pcH system (4), an IDA-PBC control can always be
computed over the reduced model in presence of input delays.
Although the structure of the closed-loop reduced model is
the same as the delay-free one, the corresponding feedback
laws are not. In addition, even more importantly, the reduction-
based feedback assigns different pcH and energetic structures
to the time-delay system (8) with respect to the delay-free
case. Thus, the following question naturally arises: what is the
structure that the reduction-based IDA-PBC feedback assigns
to the original retarded dynamics (8)? The answer is provided
by the result below.

Theorem 3.1: Consider the pcH dynamics (8) affected by a
discrete input delay of length τ > 0 with x? ∈ ker{B⊥A }
a desired equilibrium to be assigned and stabilized via IDA-
PBC. Let (8) verify Assumption 1 with matrices Jd = −J>d ,
Rd = R>d � 0 and Pd = P>d � 0. Then, the reduction-
based IDA-PBC feedback (11) makes the system (8) a port-
Hamiltonian system of the form

ẋ(t) = (J̃d − R̃d)∇H̃d(x(t)) +Bv(t− τ) (14)

with J̃d=eτAJdeτA
>
=−J̃>d , R̃d = eτARde

τA>
= R̃>d � 0,

H̃d(x) = (x−x?)>e−τA
>
Pde
−τA(x−x?) and asymptotically

stable equilibrium at the desired x? ∈ ker{B⊥A} with A =
(J −R)P .

Proof. To investigate this latter aspect, we consider the
delayed pcH dynamics (8) under the reduction-based IDA-

PBC feedback in Proposition 3.1 (computed for simplicity at
v = 0)

ẋ(t) = Ax(t) +B[B†τ (Ad −A)η(t− τ)−B†τAde−τAx?]

with A = (J − R)P and Ad = (Jd − Rd)Pd. By exploiting
Remark 2.1, one gets η(t− τ) = e−τAx(t) so getting

ẋ(t) =Ax(t) +BB†τ [(Ad −A)e−τAx(t)−Ade−τAx?]
=Ax(t)+eτAe−τABB†τ [(Ad−A)e−τAx(t)−Ade−τAx?]
=Ax(t) + eτA[(Ad −A)e−τAx(t)−Ade−τAx?]
=eτAAde

−τA(x(t)− x?).

The form above is a pcH dynamics with Hamiltonian H̃d(x) =

(x − x?)
>e−τA

>
Pde
−τA(x − x?) and new damping and

interconnection matrices J̃d = eτAJde
τA>

= −J̃>d , R̃d =

eτARde
τA>

=R̃>d � 0. �

Remark 3.3: Contrarily to the prediction discussed in Re-
mark 3.1, the proposed reduction-based feedback assigns a
new structure to the retarded pcH dynamics (8) with new
damping and interconnection matrices that are directly pa-
rameterized by τ . However, as τ → 0 the proposed solution
naturally recovers the delay-free one.

Remark 3.4: Along the lines of Proposition 2.1 and the
results in [14], for Ad = (Jd −Rd)Pd the time-delay closed-
loop system (14) is passive with respect to the output

yd,τ (x(t), vt) =B
>
τ Pd(x(t)− x?)

+

∫ t

t−τ
B>τ Pde

Ad(t−τ−`)v(`)d`.

B. Further remarks and extensions

1) An insight on robustness analysis: Contrarily to
prediction-based feedback [20], reduction is well-known to
be robust with respect to uncertainties in the knowledge of
the delay. To this end, assume that τ ∈ (0, τn] is unknown but
bounded by a known and constant τn > 0. In this case, the pcH
structure of the closed-loop feedback under reduction-based
feedback is not preserved. Still stabilization of the desired
equilibrium might still hold under u(t) = Fτnη(t) + Fτn? η?
computed over the nominal reduction

η(t) = x(t) +

∫ t

t−τn
eA(t−τn−`)Bu(`)d` (15)

evolving with perturbed closed-loop reduced model

η̇(t)=(Jd−Rd)Pdη(t)+BFτn(η(t−τ)−η(t−τn)). (16)

To investigate robustness of the closed-loop system (8) under
the nominal reduction-based feedback it is hence enough to
investigate robust stability of the perturbed reduced dynamics
(16). To this end, as commented in Remark 2.2, one can set
Rd = κBB> and look for κ > 0 preserving stability of (16)
and hence of (8) in closed loop despite the delay mistmatch.
This can be done exploiting standard Lyapunov-Krasovskii
arguments [21] rewriting (16) as

η̇(t)=(Jd−Rd)Pdη(t)+BFτn
∫ t−τ

t−τn
η̇(`)d`



with the functional

V(ηt) = Hd(η(t)) +
ε

τn

∫ t

t−τn

∫ t

`

‖η̇(s)‖2dsd`, ε > 0.

Remark 3.5: As well known, prediction-based feedback
suffers from initialization issues as, setting z(t) = x(t + τ),
one gets z0 = x(τ) = eτAx0. This is crucial when the delay
is uncertain since the initial condition for prediction cannot
be exactly fixed apriori. As underlined so far, this issue is
overcome by the reduction approach yielding η0 = x0.

2) Extensions to further classes of time-delay systems: The
proposed result applies to dynamics affected by multi-channel
delays described by

ẋ(t) = (J −R)∇H(x(t)) +

m∑
i=1

biui(t− τi)

with τi > 0 for i = 1, . . . ,m. As a matter of fact, one
introduces the reduction and the reduced dynamics as

η(t) =x(t) +

m∑
i=1

∫ t

t−τi
e(t−τi−`)Abiui(`)d`

η̇(t) =(J −R)∇H(η(t)) +

m∑
i=1

e−τiAbiui(t).

Also, the case of dynamics affected by distributed delays
can be dealt using the proposed arguments. In particular,
considering the time-delay pcH dynamics

ẋ(t) = (J −R)∇H(x(t)) +

∫ τ

0

B(`)u(t− `)d`

one gets the reduction and the reduced dynamics

η(t) =x(t) +

∫ t

t−τ

∫ τ

t−s
e(t−s−`)AB(`)u(s)d`ds

η̇(t) =(J −R)∇H(η(t)) +

∫ τ

t−τ
e−`AB(`)d`u(t).

Remark 3.6: Note that the proof of Lemma 3.1 easily
extends the aforementioned classes of time-delay systems.
As a matter of fact, in case of one discrete and uniform
delay, such a proof might be simplified as follows: because
η(t) = e−τAx(t + τ) and x? is an admissible equilibrium
assigned by a constant control u?, one easily gets η(t) =
e−τAx(t+ τ) = e−τAx? = η?.

IV. A SIMULATED EXAMPLE

For illustrating the result we consider a simple mass-spring-
damper LTI mechanical system of the form(

q̇(t)
ṗ(t)

)
=

(
0 1
−1 −r

)
∇H(q(t), p(t))+

(
0
1

)
u(t− τ) (17)

with Hamiltonian H(q, p) = 1
2M p2 + 1

2Kq
2, mass M > 0,

stiffness K > 0 and q, p ∈ R are the position and the
momentum of the mass. One computes the matrices

J =

(
0 1
−1 0

)
, R =

(
0 0
0 r

)
, P =

(
K 0
0 1

M

)
.

Let x = (q p)> and x? = (q? 0)> be the desired equilibrium
to stabilize via IDA-PBC and reduction.

1) The delay-free design: When τ = 0, standard delay-
free IDA-PBC applies with B⊥ = (1 0), setting Hd(q, p) =
1

2M p2 + 1
2K(q − q?), Pd = P , Jd = J and

Rd =

(
0 0
0 r+κ

)
, κ > 0.

Accordingly, the feedback

udf(t)=−
κ

M
p(t) +Kq? (18)

asymptotically stabilizes the closed-loop equilibrium.

2) Reduction-based design: As τ > 0, setting η =
(ηq ηp) ∈ R2, α = −r/M , ω = −α

√
1− 4ω2

n/α
2,

ωn =
√
K/M and computing

e−τA=e−ατ

(
cos(ωτ)+ α

ω sin(ωτ) − 1
ωM sin(ωτ)

M
ω2
n

ω sin(ωτ) cos(ωτ)− α
ω sin(ωτ)

)
the reduced model gets the form of (9) with

Bτ =e−ατ
(

− 1
ωM sin(ωτ)

cos(ωτ)− α
ω sin(ωτ)

)
. (19)

At this point, the result in Theorem (3.1) applies by setting

η? =

(
ηq?
ηp?

)
= q?e

−ατ

(
cos(ωτ) + α

ω sin(ωτ)

M
ω2
n

ω sin(ωτ)

)
B⊥τ =eατ

(
α
ω sin(ωτ)− cos(ωτ) 1

ωM sin(ωτ)
)

and βτ = 1+α2M2

ω2M2 sin2(ωτ)+cos2(ωτ)− 2α
ω sin(ωτ) cos(ωτ),

the feedback law

ur(t) =−B†τRdPη(t)−B†τ (J −Rd)Pη? + v(t)

=− κeατ

βτM
[cos(ωτ)− α

ω
sin(ωτ)]ηp(t)

+
q?
βτ

(
K cos2(ωτ)− 1

ω2
(Kα2 + (r

+ κω2
n −

ωn
M

) sin2(ωτ)− ((r + κ)ω2
n

− 2Kα) sin(ωτ) cos(ωτ)
)
+ v(t).

3) Simulations: We compare the proposed reduction-based
control with standard prediction (as discussed in Remark 3.1)
over (17). Also, the delay-free closed-loop system under the
standard IDA-PBC (18) is reported for completeness. In all
cases, we fix x0 = (q0 p0)

> = (−20 − 1)>, u(t) = 0 as
t ∈ [−τ, 0), the desired equilibrium x? = (20 0)>, m = 1,
K = 4, r = 0.1, and κ = 1. Two scenarios are considered:
(i) the delay is exactly known (Figure 1); (ii) the delay is
small although uncertain (Figure 2) with τ 6= τn. In the latter
case, as the delay is unknown, the prediction-based feedback
cannot be exactly initialized while this problem is overcome
by reduction.

In case (i), both controllers get to successfully stabilize
the desired equilibrium after a small transient for t ∈ [0, τ)
in which the control is zero. However, in this particular
case performances ensured by the reduction-based IDA-PBC
control are significantly improved even with an acceptable
control effort. Also, the reduced-dynamics clearly shows that
the equilibrium to be stabilized for the reduction is shifted as
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Fig. 1. Known known delay τ = τn = 5 s.
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Fig. 2. Small uncertain delay with τ = 0.15 s and τn = 0.2 s.

proved in Lemma 3.1. We underline that further simulations
show that, as τ is small, performances under both prediction
and reduction are similar and satisfying.

In case (ii), the reduction-based IDA-PBC control (com-
puted at the nominal τn) stabilizes the desired equilibrium
despite the delay mismatch with acceptable performances as
well. However, in this same scenario and even under small
delay, prediction fails to stabilize the required equilibrium.
As a matter of fact, as shown in Figure 2 the controlled
dynamics does not converge to the desired x? under prediction
highlighting the improved robustness ensured by reduction.

V. CONCLUSIONS

The problem of regulating the state of linear port-controlled
Hamiltonian systems under input-delays via IDA-PBC has

been considered. Assuming the problem solvable in case of no
delay, an IDA-PBC feedback has been constructed based on
reduction. Future works concern the extension of this approach
to nonlinear Hamiltonian systems, possibly, under sampling
using the concepts introduced in [22], [23].
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