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Abstract In this paper we introduce a general framework for defining and
studying essentially non-oscillatory reconstruction procedures of arbitrarily high
order accuracy, interpolating data in a central stencil around a given compu-
tational cell (CWENO). This technique relies on the same selection mechanism
of smooth stencils adopted in WENO, but the pool of candidates for the selec-
tion includes polynomials of different degrees. This seemingly minor difference
allows to compute an analytical expression of a polynomial interpolant, approx-
imating the unknown function uniformly within a cell, instead of just selected
points. For this reason this technique is particularly suited for balance laws
for finite volume schemes, when averages of source terms require high order
quadrature rules based on several points; in the computation of local averages,
during refinement in h-adative schemes; or in the initialization of a timestep
in moving mesh techniques, and in general when a globally defined reconstruc-
tion is needed. Previously, these needs were satisfied by ENO reconstruction
techniques, which, however, require a much wider stencil then the CWENO re-
construction studied here, for the same accuracy.

Keywords high order accuracy, essentially non oscillatory, finite volume schemes,
balance laws, non uniform grids.

1 Introduction

Motivation. Conservation laws arise in many fields in applied mathematics,
such as gas dynamics or magnetohydrodynamics, or even traffic flow. When
a source term is present, these equations are called balance laws, and even a
wider field of applications opens up. Balance laws describe in fact phenomena
in environmental or metheorological fields, plasmas, astrophysics.

In many cases, fast and efficient algorithms are crucial, and this means to be
able to provide robust high order schemes, which yield accurate solutions even
on coarse grids. Moreover, it is important to be able to implement such schemes
on adaptive, and therefore non uniform, grids. This paper is concerned with
the analysis of a class of algorithms which starting from a set of data permit to
reconstruct with high order accuracy a representation in space of the underlying
function.
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We start from a standard balance law

∂tu+

n∑
i=1

∂xi
fi(u) = s(u;x). (1)

In this system of equations u(x, t) : Rn ×R+ → Rm is the unknown function, n
is the number of space dimensions, m is the number of equations, and t denotes
time. The functions fi(u) : Rm → Rm are called fluxes, and usually they are
smooth known functions of u, with Jacobians

∑
i ωif

′
i diagonalizable with real

eigenvalues, along all possible directions ω ∈ Rn. Finally, s : Rm × Rn is the
source term, which is a known, bounded function of the unknown u, but also it
may depend on space (as in the shallow water equations), or even time. Suppose
the equation is defined on a domain D ∈ Rn, with suitable initial and boundary
conditions.

To integrate this system of equations numerically, one must define a grid in
the domain D. In this work, we will propose schemes that are of interest in
particular when the grid is a non uniform cartesian grid, so that D is covered
with the union of rectangles D ∈

⋃
Ωk. Boundary conditions can then be dealt

with immersed boundary techniques, see [SCR16] or [GITW12].
On each cell Ωk, define the cell average of the solution,

uk(t) =
1

µ(Ωk)

∫
Ωk

u(x, t) dx. (2)

Using the method of lines, we integrate the balance law (1) on each of the Ωk,
obtaining the finite volume formulation

d

dt
uk = − 1

Ωk

∫
∂Ωk

f · nk +
1

Ωk

∫
Ωk

s(u;x) dx, (3)

where f = [f1, . . . , fn] and nk is the outward normal to the cell Ωk. To transform
(3) in a Finite Volume numerical scheme, a recipe for the evaluation of the fluxes
across the cell boundary must be provided, together with a numerical method
to integrate the resulting system of ODE’s. But another key point is the fact
that a reconstruction algorithm must be provided, which, starting from the cell
averages at a given time t, reconstructs approximate values of the solution u
in all the quadrature points along the contour ∂Ωk of each cell to evaluate
the numerical fluxes, and in all quadrature nodes within Ωk, to reconstruct
the cell average of the source. The purpose of the present work is to study
a class of reconstructions which provide an approximation of the underlying
solution which is uniformly accurate within the whole cell. In this fashion,
the reconstruction can be evaluated simultaneously on all quadrature points
needed to approximate (3), thus only one reconstruction step is needed for each
evaluation of the right hand side.

Background. A very popular algorithm to compute the reconstruction in
high order FV schemes for conservation and balance laws is WENO (Weighted
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Essentially Non Oscillatory), see the seminal paper [JS96] and the reviews
[Shu98, Shu09], but the literature on this technique is huge. WENO is based on
the computation of a piecewise polynomial reconstruction, which reproduces a
high order polynomial in regions of smoothness (thus providing high accuracy),
using data from a wide stencil, which degrades automatically to lower order
polynomials, when a discontinuity is detected within the large stencil. The
lower order polynomials are based on smaller stencils, chosen in order to avoid
the discontinuity. High accuracy is obtained blending the lower order polyno-
mials together, with carefully designed non linear weights, which reproduce the
value that would be given, at one particular point, by the high order polyno-
mial that would interpolate the data on the wide stencil. Since the high order
optimal polynomial is actually never computed, its values are replicated only
at one or two points, by an ad hoc combination of the low order polynomials.
If the reconstruction is needed at several points, as in the quadratures required
by the integration of (3), then several reconstruction steps must be computed,
each time with different weights.

This problem is particularly severe in balance laws, such as the shallow
water equation, where one needs to evaluate the source at quadrature points
in the interior of the cell. In fact, for WENO 3 optimal weights for the cell
center do not exist and for WENO 5 they exist but are not in [0, 1]. There
is a technique to treat negative weights [SHS02], but it requires to compute
two different reconstructions per point. Also, the evaluation of a posteriori
error indicators may require to compute accurate quadratures of some form
of the local residual, as in the the case of the indicator based on the entropy
production, see [Pup04, PS11, PS16]. Again, the possibility of computing the
reconstruction at interior nodes is crucial.

Moreover, in non-uniform grids, WENO weights depend on the mesh geome-
try. For example, in 1D, the weights depend on the ratio of the sizes of the neigh-
bour and of the current cell, see e.g. [WFS08, PS16], and they additionally also
depend on the disposition of the neighboring cells in 2D [HS99, DK07, PS14].

A source of non uniform grids typically is mesh adaptivity of h-type or
moving mesh algorithms. Both these techniques need the spatial reconstruction
for time advancement, but also to perform another important task. In fact,
they both involve a change in the mesh that occours after the conclusion of
each time step. In these cases, it is necessary to project the solution from one
grid to the new mesh produced by the adaptive algorithm. The cells of the new
grid are subcells of the previous ones in the case of h-AMR ([CRS16, KPL13])
while they lie in more general positions in the case of moving mesh methods
(see e.g.[TT03]). For schemes of order at least 3, one must be able to compute
the subcell averages with the same accuracy of the scheme and this requires
quadrature formulas and thus reconstructions at inner points, see e.g. [CRS16].

Other schemes for which this reconstructions can be of interest are the PNPM

schemes of [DBTM08] in which at each step a reconstruction from cell averages is
required to compute a reliable polynomial reconstruction inside each cell. Here
one needs the functional expression of the polynomial and not just its point
values.
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Summary. The first instance in which the need to have an expression for the
reconstruction polynomial was answered, was in the construction of a third order
central scheme in [LPR99]. There the authors introduced a new reconstruction
procedure of order three. In this paper we extend this idea to a general technique
to obtain a high order, essentially non-oscillatory, interpolation polynomial that
is globally defined in the whole cell. (§3).

The new reconstructions are based on an optimal polynomial defined on
a central large stencil and on a set of lower degree polynomials defined on
sub-stencils of the bigger one. The selection mechanisms of the polynomials
actually employed to compute the reconstruction is similar to the WENO one
(reviewed in §2), but it includes an extra polynomial of the same degree of
the optimal one. For this reason we call the reconstructions Central WENO
(CWENO). The main difference between WENO and CWENO is that the latter
does not compute reconstructed values at given points in the cell but rather a
reconstruction polynomial defined in the whole cell.

The convergence rates of the CWENO reconstructions, when the Jiang-Shu
smoothness indicators of [JS96] are employed, depends on the value chosen for
the small parameter ε appearing in the algorithm. This value must be chosen
according to the behaviour of the smoothness indicators close to local extrema
and is thus present in the WENO setting as well. Many techniques were proposed
to overcome this difficulty in the WENO framework, [HAP05, FHW14, DB13,
ABBM11]. The technique of [ABBM11], consisting in choosing a value for ε as
a function of the mesh size, was extended to the CWENO setting, at order 3, by
[Kol14] on uniform grids and by [CS] on a non-uniform mesh. In §4 we show
that the choices ε ∼ h2 and ε ∼ h guarantee the optimal convergence rate for a
CWENO construction of any order, under the mild condition that no polynomial
involved in the reconstruction is of degree smaller than one half of the desired
accuracy on smooth solutions.

The essentially non-oscillatory behaviour of CWENO when the data to be
interpolated contain a discontinuity is, from a practical point of view, very sim-
ilar to that of WENO. However, from a theoretical point of view, the situation
is quite different, due to the employment of the extra candidate polynomial of
high degree. In §5 we introduce a condition (that we call Property R) that must
be satisfied by this extra high degree candidate polynomial in order to ensure
that the reconstruction has essentially non-oscillatory properties. Furthermore,
we show that this property is satisfied by all the CWENO constructions of or-
der 3,5, and 7 we introduce, under mild conditions on the choice of the linear
weights.

Finally, in §6 we provide extensive numerical evidence of the accuracy and
non-oscillatory behaviour of CWENO constructions of order up to 9. Further-
more, in order to test the reconstruction at points in the interior of the com-
putational cells, we show applications to the Euler gas dynamics equation with
source terms and to the development of well-balanced schemes for the shallow
water equation.
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2 WENO revisited

Fixing a stencil {Ωj−g, . . . ,Ωj+g}, the definition of Prec,j that maximises the ac-
curacy for smooth functions u(x) is clearly the polynomial Popt of degree G = 2g
which interpolates the 2g + 1 cell averages uj−g, . . . , uj+g, which is easily com-
puted following [Shu98]. Obviously, such a polynomial might be very oscillatory
if a jump discontinuity is present in the stencil. In this case, WENO makes use
of polynomials of lower degree (g) whose stencils avoids the discontinuity.

Definition 1. Fix a point x̂ ∈ Ωj and an integer g. The WENO reconstruction
operator is given by

Prec,j(x̂) = WENO(P1, . . . , Pg+1;Popt, x̂) ∈ R,

where the Pk’s, k = 1, . . . , g+1 are polynomials of degree g, Popt is a polynomial
of degree G = 2g which guarantees the required accuracy 2g+1, and is computed
as follows:

1. First, find a set of coefficients d1(x̂), . . . , dg+1(x̂) such that

g+1∑
k=1

dk(x̂)Pk(x̂) = Popt(x̂) and

g+1∑
k=1

dk(x̂) = 1.

These will be called optimal or linear coefficients.

2. Then nonlinear coefficients ωk are computed from the optimal (or linear)
ones as

αk =
dk

(I[Pk] + ε)t
ωk =

αk∑g+1
k=1 αk

, (4)

where I[Pk] denotes a suitable regularity indicator (to be defined later)
evaluated on the polynomial Pk, ε is a small positive quantity and t ≥ 2.

3. Finally

Prec,j(x̂) =

g+1∑
k=1

ωkPk(x̂) (5)

The regularity indicators should measure the “smoothness” of the poly-
nomial Pk on the computational cell Ωj . A regularity indicator is a positive
semidefinite operator from P to R+, which typically depends on the derivatives
of the polynomial as a way to detect its oscillatory behaviour. The classical
example is the Jiang-Shu indicator, defined in [JS96] as

I[P ] =
∑
l≥1

diam(Ω)2l−1

∫
Ω

[P (l)(x)]2dx (6)

Note that the summation is in fact finite, and that on smooth data I[P ] =
O(diam(Ω))2 at most. In this work we will employ the Jiang-Shu indicators,
but other possibilities were explored in [?, ?] . We record here an useful property Complete

these refer-
ences, and
check the O
qui sopra

Complete
these refer-
ences, and
check the O
qui sopra

of these indicators.
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Remark 1. The Jiang-Shu indicator of a polynomial P is Lipschitz continuous
with respect to the cell averages uj−r, . . . , uj+s, with r and s positive integers,
interpolated by P . In fact, P depends linearly on the data and thus IP is a
positive semidefinite quadratic form with respect to uj−r, . . . , uj+s.

Summary 1. The ingredients of the success of the WENO reconstruction are
the following.

1. The regularity indicators (6) which are of size O(h2) on regular data, but
I[P ] � 1 in the case of discontinuous data, where with � 1 we mean “of
the same order of 1, and bounded away from zero”.

2. Thanks to the definition of the nonlinear weights, the reconstruction error
at point x̂ is given by

u(x̂)− Prec,j(x̂) = u(x̂)− Popt(x̂) +
∑
k

(
dk(x̂)− ωk(x̂)

)
Pk(x̂)

= (u(x̂)− Popt(x̂))︸ ︷︷ ︸
O(h2g+1)

+
∑
k

(
dk(x̂)− ωk(x̂)

)
(Pk(x̂)− u(x̂))︸ ︷︷ ︸

O(hg+1)

(7)
where the last equality is true since

∑
k dk =

∑
k ωk = 1. From the above

formula it is clear that the accuracy of the WENO reconstruction equals the
accuracy of its first argument Popt only if dk − ωk = O(hg) in the case of
smooth data. This is ensured by the regularity of the smoothness indicators
and by an appropriate choice of the parameter ε (see [ABBM11, CS]).

3. In the case of discontinous data, suppose that there is one smooth subs-
tencil, so that at least one of the regularity indicators is O(h2). Then, the
renormalization procedure in (4) ensures that for all k such that I[Pk] � 1,
then ωk ' 0. In this way, only the Pk’s with I[Pk] = O(h2) contribute
to the reconstruction. This is the case provided there is one singularity in
the stencil, which does not occour in the central cell.

4. On the other hand, if the discontinuity is in the central cell, each I[Pk] � 1.
In the case of finite differences (see [Shu98, HOEC86]) one can prove that
each candidate polynomial is monotone in the central cell and thus deduce
that the reconstructed value will not increase the total variation. In the
case of finite volumes, instead, the reconstructed data is not guaranteed
to satisfy TVD bounds, although typically spurious oscillations are not
observed.

For example, for reconstructions from point values applied to the case of
Heaviside data, all candidate polynomials are bounded by the values before
and after the jump, see [Shu98, p. 347]. The reconstruction is then total
variation bounded for the case of Heaviside data with a Lispshitz perturbation,
see [HOEC86, Theor 4.1, p. 359].
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This procedure is nevertheless extremely successfull and allowed to con-
struct very high order essentially non-oscillatory schemes (see [Shu09] and ref-
erences therein), but it has a few shortcomings. The linear coefficients dk(x̂)
depend explicitly on the location of x̂ inside the cell Ωj . (Their values have
been tabulated for the cell boundaries in one space dimension for uniform grids
[Shu98, ABBM11]). In order to construct a finite volume scheme, the compu-
tation of linear and nonlinear weights is required at different points on the cell
boundary: two points in one space dimension and at least six (on triangles)
and 8 on a Cartesian mesh for a scheme of oder at least three in two space
dimensions. Even more reconstructions are needed for balance laws, where the
cell average of the source has to be evaluated, and for higher dimensions.

Moreover, for interior points, the linear coefficients may not exist (e.g. WENO3
at cell center) or be non-positive (e.g. WENO5 at cell center). Results on the
existence of dk(x̂) for general x̂ have been proven for example in [CFR06, Ger12].
A procedure to circumvent the appearance of negative weights was proposed in
[SHS02].

From the next section, we study the CWENO schemes which are not affected
by any of these troubles, since the linear coefficients are not needed to guarantee
the accuracy of the reconstruction in smooth cases. Thus they can be chosen
rather arbitrarily and be the same for every reconstruction point in the cell. An
additional advantage is that the computation of the αk and the ωk is performed
only once per cell and not once per reconstruction point.

3 The CWENO operator

In this section we introduce a general setting for introducing the CWENO recon-
struction, which encompasses the one of [LPR99] and all variations published
later in one and more space dimensions, on structured and unstructured grids.
Moreover, this will allow us to propose higher order extensions.

Definition 2. Consider a set of data (point values or cell averages) and a
polynomial Popt of degree G, which interpolates in some sense all the given
data (optimal polynomial). The CWENO operator computes a reconstruction
polynomial

Prec = CWENO(Popt, P1, . . . , Pm̂) ∈ PG

from Popt ∈ PG and a set of lower order alternative polynomials P1, . . . , Pm̂ ∈
Pg, where g < G and m̂ ≥ 1. The definition of Prec depends on the choice of a

set of positive real coefficients d0, . . . , dm̂ ∈ [0, 1] such that
∑m̂
k=0 dk = 1 (called

linear coefficients) as follows:

1. first, introduce the polynomial P0 defined as

P0(x) =
1

d0

(
Popt(x)−

m̂∑
k=1

dkPk(x)

)
∈ PG (8)
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2. then the nonlinear coefficients ωk are computed from the linear ones as

αk =
dk

(I[Pk] + ε)t
ωk =

αk∑m̂
k=0 αk

, (9)

where I[Pk] denotes a suitable regularity indicator (e.g. the Jiang-Shu ones
of eq. (6)) evaluated on the polynomial Pk, ε is a small positive quantity
and t ≥ 2;

3. and finally

Prec(x) =

m̂∑
k=0

ωkPk(x) ∈ PG. (10)

Note that the polynomial P0 ∈ PG is part of the reconstruction, which
provides a polynomial that can be evaluated at any point within the cell, and
all coefficients ωk involved in the reconstruction do not depend on the particular
points where the reconstruction is needed.

Remark 2. In the case of reconstruction from cell averages, from the definition,
it is trivial to check that, if all candidate polynomials satisfy the conservation
property

1
|Ω|

∫
Ω

Poptdx = 1
|Ω|

∫
Ω

Pkdx = uΩ

for k = 1, . . . , m̂, then also P0 and Prec have the same cell average:

1
|Ω|

∫
Ω

P0dx = 1
|Ω|

∫
Ω

Precdx = uΩ.

Remark 3. The previous definitions may be cast in either one-dimensional or
multi-dimensional settings. In the latter case x = (x1, . . . , xn) ∈ Rn and Pg
denotes the space of polynomials in n variables with degree at most g.

Typically, in Finite Volume schemes, the optimal polynomial Popt is taken to
be the polynomial interpolating all the data in the stencil of the reconstruction
in the sense of cell averages. For example in one space dimension, in each cell Ωj ,
the original CWENO construction of [LPR99], is a third order accurate CWENO
procedure with m̂ = 2, Popt = P (2) the parabola defined on the centered 3-

cell stencil Ωj−1,Ωj ,Ωj+1, and P1 = P
(1)
L , P2 = P

(1)
R being the two linear

polynomials interpolating the data in Ωj−1,Ωj and Ωj ,Ωj+1 respectively. The
same reconstruction was recently considered in a non-uniform mesh setting in
[PS16, CS].

A fifth order version CWENO(P (4), P
(2)
L , P

(2)
C , P

(2)
R ) was proposed in [Cap08],

using a centered fourth degree polynomial interpolating the data in Ωj−2, . . . ,Ωj+2

and the same 3 parabulas employed in the classical WENO5 scheme, namely
those interpolating the data in Ωj−2+r,Ωj−1+r,Ωj+r for r = 0, 1, 2 respectively.

Along the same lines, in this paper we will introduce a seventh order recon-

struction CWENO 7 = CWENO(P (6), P
(3)
LL , P

(3)
L , P

(3)
R , P

(3)
RR), where the optimal
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polynomial is the sixth order P (6) = Popt interpolating the data in Ωj−3, . . . ,Ωj+3

and P1 = P
(3)
LL , P2 = P

(3)
L , P3 = P

(3)
R , P4 = P

(3)
RR are the third order polynomials

interpolating uj−3+r, . . . , uj+r for l = 0, 1, 2, 3.
Similarly, we will also propose the ninth order reconstruction CWENO 9 with

m̂ = 5, Popt the eigth order polynomial interpolating the data in Ωj−4, . . . ,Ωj+4

and P1, . . . , P5 are fourth order polynomials interpolating uj−4+r, . . . , uj+r for
l = 0, 1, 2, 3, 4.

A few two-dimensional CWENO reconstructions can be found in the litera-
ture, including those of [LPR00] where this technique was proposed and [CRS16]
where it is generalized to non cartesian grids.

We note that the coefficients dk appearing in Definition 2 do not need to
satisfy accuracy requirements and they can be thus arbitrarily chosen, provided
that they are positive and add up to 1. A possible choice of coefficients is
described just below.

We start assigning weights to the low degree polynomials, biasing towards
the central ones, because they would yield a smaller interpolation error. A
reconstruction of order G = 2g − 1 is composed of m̂ = g + 1 polynomials
of degree g. These are the m̂ polynomials which would compose a WENO
reconstruction of order G. Let j = 1, . . . , m̂ be the indices of the low degree
polynomials. We start computing temporary weights

d̃j = d̃m̂+1−j = j, for 1 ≤ j ≤ m̂+ 1

2
. (11)

Then we choose the linear coefficient d0 ∈ (0, 1) of the high order polynomial
P0. The final weights are given by

dj =
d̃j∑m̂
i=1 d̃i

(1− d0).

The value of d0 must be bounded away from 0 and from 1. In fact, when
d0 is too close to 0 the polynomial P0 becomes unbounded. On the other hand,
when d0 is close to 1, the reconstruction polynomial Prec will almost coincide
with Popt, irrespectively of the oscillation indicators.

In this paper we will mainly consider the two cases d0 = 1
2 and d0 = 3

4 . For
instance, when G = 5, and d0 = 3

4 , we have the left and right parabola with
weight d1 = d3 = 1

16 and d2 = 1
8 .

3.1 Implementation of the reconstruction in 1D

The main task for computing a CWENO reconstruction efficiently is to optimize
the computation of the coefficients of the interpolating polynomials. In WENO
the reconstruction is computed only at one point at a time and thus the Lagrange
form of the interpolating polynomials is well suited to the task, see [Shu98]. In
contract, here we need the functional representation of the polynomials and
therefore it is more convenient to start from the Newton basis and finally get
the reprentation of the polynomials in the basis of the monomials.

9
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Let us denote by uj the cell average of u(x) on the generic cell Ωj of the
grid, of size hj . In order to compute the CWENO reconstruction in the j-th cell,
we need the explicit expression of the polynomial of degree k that interpolates
the cell averages uj−r, . . . , uj−r+k. Here r denotes the offset of the stencil with
respect to the j-th cell. Note that for a typical CWENO reconstruction one needs
g + 1 polynomials of degree g with r = 0, . . . , g and a polynomial of degree 2g
with offset r = g. Note also that g out of the g + 1 polynomials of degree g
employed in the reconstruction for cell Ωj are used also for the reconstruction
in the cell Ωj+1, so that one needs to compute only one new polynomial per
cell.

It is thus convenient to compute all divided differences of the set of cell
averages as a preprocessing stage to the computation of the reconstruction. In
particular, denote the divided differences of the cell averages by

δ̃j,1 = uj , δ̃j,p =
δ̃j+1,p−1 − δ̃j,p−1∑j+p−1

i=j hi
for p > 1. (12)

For later convenience, let

δj,p = δ̃j,p

∣∣∣
∀i:hi=1

(13)

These latter are the undivided differences which are useful for computations on
uniform grids.

Following [Shu98] we note that a polynomials p(x) of degree k interpolating
a set of consecutive cell averages can be easily computed by differentiating the
polynomial q(x) of degree k + 1 that interpolate the quantities Si =

∑
l≤i hlul

in the interpolation nodes xi + hi/2. It is easy to see that, for the sake of
computing p(x), the zero order term in q(x) is not relevant. Thus the only
divided differences that are needed are the ones listed in (12).

From now on, let us focus on a reference cell j = 0 and assume that its cell

center is at x0 = 0. Let p
(k)
r (x) be the degree k polynomial with stencil offset

r. Applying the Newton interpolation, one finds that its primitive is

q(k+1)
r (x) =

k+1∑
i=1

δ̃−r,i

i−1∏
l=0

(x− x−r−1/2+l) + constant term (14)

and we write it in the basis of the monomials as

q(k+1)
r (x) =

k+1∑
i=1

δ̃−r,i

i∑
m=0

γ̃kr,i,mx
m + constant term (15)

where γ̃kr,i,m is the weight of the divided difference of order i and offset −r
(i.e. δ̃−r,i) appearing into the coefficient of the monomial xm. Note that only
the coefficients γ̃kr,i,m for m > 0 appear in the derivative of q(x). By direct
comparison of the last two equations one finds for the linear term that

γ̃kr,1,1 = 1, γ̃kr,i,1 = (−1)i−1
i−1∑
n=0

∏
l=0,...,i−1

l 6=n

xl−r−1/2, i > 1

10
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and in general

γ̃kr,i,m = (−1)i−m
i−1∑
n1=0

i−1∑
n2=n1+1

· · ·
i−1∑

nm=nm−1+1

∏
l=0,...,i−1
l 6=n1,...,nm

xl−r−1/2, m < i

γ̃kr,m,m = 1,

γ̃kr,i,m = 0, m > i.

(16)

Finally, the sought polynomial p
(k)
r is found differentiating q

(k+1)
r and it can

be written as

p(k)
r (x) =

k+1∑
i=1

δ̃−r,i

i∑
m=1

Γ̃kr,i,mx
m−1, Γ̃kr,i,m = mγ̃kr,i,m (17)

Note in particular that the values of γ̃kr,i,0 are not needed in the expression for

p
(k)
r (x).

Equation (16) can be simplified exploiting the identity

xl−r−1/2 = −
−1∑

i=l−r

hi + sign(l − r)h0

2
+

l−r−1∑
i=1

hi

Note also that in the above expression, one of the two summations is always
empty, depending on the sign of l − r.

Of course considerable simplifications occur on uniform grids, where one can
write

q(k+1)
r (x) =

k+1∑
i=1

δ̃−r,i

i−1∏
l=0

(x− (−r − 1/2 + l)h) + constant term

=

k+1∑
i=1

δ−r,i

i−1∏
l=0

(x̂− (−r − 1/2 + l)) + constant term

(18)

where we recall that δ−r,i are the undivided differences and x̂ = x/h. The above
polynomial can be put in the form (15) with

γ̃kr,i,m = (−h)i−m
i−1∑
n1=0

i−1∑
n2=n1+1

· · ·
i−1∑

nm=nm−1+1

∏
l=0,...,i−1
l 6=n1,...,nm

(l − r − 1/2). (19)

An alternative form is

q(k+1)
r (x) =

k+1∑
i=1

δ−r,i

i∑
m=0

γkr,i,mx
m + constant term (20)

11
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Γ3,i,m =



1
6 2

71/4 15 3
22 43 24 4
−71/16 45/2 105/2 30 5

27/8 −341/8 −45 25 30 6
−225/64 1813/16 777/16 −245/2 −175/4 21 7



Γ2,i,m =


1
4 2

23/4 9 3
−1 7 12 4
9/16 −25/2 −15/2 10 5


Γ1,i,m =


1
2 2
−1/4 3 3

0 −5 0 4

 Γ0,i,m =


1
0 2
−1/4 −3 3

1 7 −12 4


Table 1: Table of the Γ coefficients of (22) used in the computation of CWENO
reconstructions up to order 7 on uniform grids.

with

γkr,i,m = (−1)i−m
i−1∑
n1=0

i−1∑
n2=n1+1

· · ·
i−1∑

nm=nm−1+1

∏
l=0,...,i−1
l 6=n1,...,nm

(l − r − 1/2). (21)

Finally,

p(k)
r (x) =

k+1∑
i=1

δ−r,i

i∑
m=0

Γkr,i,mx
m−1, Γkr,i,m = mγkr,i,m (22)

In Table 1 we list the values of the coefficients Γkr,i,m needed for the CWENO
reconstructions up to order 7. The coefficients for the higher order cases can be
computed using (22) and (21).

If the final accuracy of the reconstruction is p = 2g + 1, we need the stencil
Ω−g, . . . ,Ωg. Here we must compute the polynomial Popt which has offset g and
contains monomials of degree m up to 2g and all polynomials of degree k = g
with offset r = 0, . . . , g. Note that the elements of Γkr,i,m are independent of k.
Therefore they can all be stored in a matrix Γr,i,m and the coefficients needed
for the polynomial of degree k with shift r are in the top-left (k + 1)× (k + 1)
submatrix of the matrix Γr,i,m, listed in Table 1.

For example, for CWENO 7, we need all coefficients of Γ3,i,m to build Popt

and also the top 4× 4 submatrices from each Γr,i,m (including Γ3,i,m) to build
the coefficients of the four cubic polynomials which compose the reconstruction.

12
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4 Analysis of the CWENO reconstruction in the
smooth case

This topic corresponds to point 2 in the list of Summary 1. In order to perform
the analysis of the CWENO reconstruction, let us focus on a fixed computational
cell Ω0 and assume that its cell center is x0 = 0. The CWENO procedure
will be applied to the set of exact cell averages uj of a given function u(x).
Let us assume that Popt ∈ PG interpolates the cell averages of Ω0 and of a
suitable number of neighbours, so that its approximation order is O(hG+1), if
the function u(x) is sufficiently regular. Furthermore the polynomials Pr ∈ Pg
are typically chosen to interpolate g+ 1 < G+ 1 cell averages inside the stencil
of Popt and their approximation order is O(hg+1). The reconstruction error at
a point x ∈ Ω0 is thus given by

u(x)− Prec(x) = u(x)− Popt(x) +

m̂∑
r=0

(dr − ωr)Pr(x)

= (u(x)− Popt(x))︸ ︷︷ ︸
O(hG+1)

+

m̂∑
r=0

(dr − ωr) (Pr(x)− u(x))︸ ︷︷ ︸
O(hg+1)

(23)

where the last equality is true since
∑
r dr =

∑
r ωr = 1. From the above

formula it is then clear that the accuracy of the CWENO reconstruction equals
the accuracy of its first argument Popt only if (dr − ωr) = O(hG−g) in the case
of smooth data, as in standard WENO.

As we will see, CWENO, exactly as WENO, can be influenced by the chosen
value chosen for ε in (4) and (9). While obviously a value that is too large will
promote the onset of spurious oscillations, a value that is too small may induce
a degradation of the convergence order close to local extrema. This effect was
first noticed in the WENO setting in [HAP05] and a technique consisting in a
post-processing of the WENO weights known as WENO-Z was proposed in the
same paper and later extended to higher order in [FHW14]. Another approach
involving additional smoothness indicators, known as WENO-Z has also been Qui ci sono

due WENO-Z
che fanno cose
diverse. Da
correggere

Qui ci sono
due WENO-Z
che fanno cose
diverse. Da
correggere

studied (see [DB13] and references therein). In [ABBM11] the authors devise a
way to relate the value of ε to the mesh size in order to guarantee the correct
convergence order and this technique has been extended to the CWENO setting
in [Kol14] for uniform meshes and exploited also on non-uniform meshes in one
and two space dimensions, [CS] and [CRS16], respectively.

For this reason we are mainly interested in the choice

ε = ε̂hp, for p = 1, 2 (24)

where h is the mesh size.
We state here a general result on the accuracy of the polynomial P0 computed

in step 1 of the CWENO reconstruction.

13
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Remark 4. P0 is of degree G, but its accuracy is:

P0(x)− u(x) =
1

d0

Popt(x)−
∑
r≥1

drPr(x)− d0u(x)


=

1

d0

Popt(x)−
∑
r≥1

drPr(x)−

1−
∑
r≥1

dr

u(x)


=

1

d0

(
Popt(x)− u(x)

)
+

∑
r≥1 dr

d0

(
u(x)− Pr(x)

)
.

Thus the accuracy of P0 will coincide with the smallest accuracy of the Pr’s.

In order to prove that the accuracy of CWENO is O(hG+1) on smooth data,
one has to show that ωr − dr is at least O(hG−g). This study can be performed
extending to our case the technique introduced by [ABBM11] in the case of
WENO and which allows to rewrite ωr − dr in terms of differences among the
indicators of the candidate polynomials.

The CWENO procedure starts by computing

α0 =
d0

(ε+ I[P0])t

αr =
dr

(ε+ I[Pr])t
=

dr
(ε+ I[P0])t

[
1 +

I[P0]− I[Pr]

ε+ I[Pr]

t−1∑
s=0

(
ε+ I[P0]

ε+ I[Pr]

)s]
, r = 1, . . . , m̂

(25)
In order to proceed, we need the Taylor expansions of the differences between

the indicators I[Pr] for r = 0, . . . , m̂ and we focus on the classical Jiang-Shu
indicators of (6). First note that the Jiang-Shu indicator in terms of the coeffi-
cients of a generic polynomial, centered in 0, is given by

I

[
g∑
i=0

aix
i

]
=

g∑
l=1

g−1∑
j=l

g∑
i=j,

i+j even

j!i!

(j − l)!(i− l)!
22l+1−j−i−δi,j

j + i− 2l + 1
ajaih

j+i (26)

where δi,j denotes the Kronecker delta.
If the polynomial

∑g
i=0 aix

i of degree g is interpolating the cell averages of
a smooth enough function u(x), then its coefficients satisfy

ai =
1

i!
u(i)(0) +O(hg−i+1), i = 0, 1, · · · , g. (27)

If the polynomial is centred in 0, as in the formula above, then the property above re-
quires the derivative to be evaluated in 0, not in x0, otherwise one should write the poly-
nomials as

∑
ai(x − x0)i, but I don’t know where the x0 would eventually go in the for-

mulas. This is why I chose to compute all derivatives in 0.

14
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Note that (27) holds true also for the polynomial P0 ∈ PG, but only for

i = 0, . . . , g. In fact, letting Popt =
∑G

0 bix
i and Pr =

∑g
0 ar,ix

i and using the
definition of P0, one finds

P0(x) =

G∑
i=0

a0,ix
i =

G∑
i=0

(
bi
d0
−

m̂∑
r=1

ar,i
dr
d0

)
xi.

Next, using (27) for Popt and Pr for r = 1, . . . , m̂ one gets

a0,i =
1

d0i!

((
1−

m̂∑
r=1

dr

)
u(i)(0) +O(hg−i+1)

)

and finally

a0,i =
1

i!
u(i)(0) +O(hg−i+1), i = 0, . . . , g. (28)

It follows that for r = 0, . . . , m̂,

I[Pr] =

g∑
l=1

g−1∑
j=l

g∑
i=j,

i+j<g+2,
i+j even

j!

(j − l)!(i− l)!
22l+1−j−i−δi,j

j + i− 2l + 1
u(j)(0)u(i)(0)hj+i+O(hg+2).

(29)
We now turn to the terms appearing in (25). Recalling (24) and (29), we have Perche’ nella

29 c’e’ un j!
scritto in blu?

Perche’ nella
29 c’e’ un j!
scritto in blu?t−1∑

s=0

(
ε+ I[P0]

ε+ I[Pr]

)s
=

t−1∑
s=0

(
ε̂hp + I[P0]

ε̂hp + I[Pr]

)s
= t+O(hg+2−p). (30)

Qui, e nel seguito, mi aspetterei di veder comparire almeno u′(0), o almeno a1. Mi sem-
bra che se a1 sia uguale a zero dovrebbe cambiare qualcosa, ma è puramente a naso,
perché ammetto che i vostri conti non li ho rifatti.

For the terms
I[P0]− I[Pr]

ε+ I[Pr]
(31)

we observe that (29) holds true for all polynomials involved in the reconstruc-
tion. Thus for the numerator we have that

I[P0]− I[Pr] = O(hg+2).

Instead for the denominator of (31), we observe that (26) implies that I[Pr] =
a2

1h
2 +O(h4) and, recalling the choice of ε in (24), we find

ε̂hp+I[Pr] = Ahp

1 +

g∑
l=1

g−1∑
j=l

j 6=p−1

g∑
i=j,

i+j even

j!i!

(j − l)!(i− l)!
22l+1−j−i−δi,j

j + i− 2l + 1

ajai
A

hj+i−p



15
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where A = ε̂ if p = 0, 1 and A = ε̂+ a2
1 if p = 2. Now Dice Matteo:

Verificare che
valga anche
per p = 0 ed
eventualmente
aggiustare.

Dice Matteo:
Verificare che
valga anche
per p = 0 ed
eventualmente
aggiustare.

Aggiungo io
(G): ma se
queste stime
valgono an-
che per p = 0,
perchè la gente
si dovrebbe
dannare con
gli ε? Ep-
pure si sa che
con ε = ch0

l’accuratezza
può saltare. O
forse salta solo
per WENO e
non per noi?

Aggiungo io
(G): ma se
queste stime
valgono an-
che per p = 0,
perchè la gente
si dovrebbe
dannare con
gli ε? Ep-
pure si sa che
con ε = ch0

l’accuratezza
può saltare. O
forse salta solo
per WENO e
non per noi?

1

ε̂hp + I[Pr]
=

1

Ahp
(1 +O(hp))

so that
I[P0]− I[Pr]

ε+ I[Pr]
=
O(hg+2)

Ahp
(1 +O(hp)) = O(hg+2−p)

Recalling (30) and (25), we have

m̂∑
0

αr =
1

(ε+ I[P0])t

[
1 +

m̂∑
0

dr
I[P0]− I[Pr]

ε+ I[Pr]

t−1∑
s=0

(
ε+ I[P0]

ε+ I[Pr]

)s]

=
1

(ε+ I[P0])t
[
1 +O(hg+2−p)

(
t+O(hg+2−p)

)]
=

1

(ε+ I[P0])t
[
1 +O(hg+2−p)

]
and thus

1∑m̂
i=0 αi

= (ε+ I[P0])t
[
1 +O(hg+2−p)

]
.

Finally, using (25) and the previous relation we have

ωr =
αr∑m̂
s=0 αs

= dr
[
1 +O(hg+2−p)

]
. (32)

Questo non è un todo: è una confessione: mi fido di voi e non ho rifatto i conti

We thus have the following

Proposition 1. The CWENO reconstruction with Popt of degree G and P1, . . . , Pm̂
of degree g is 2G order accurate on smooth solutions, provided that G ≤ 2g and
ε = ε̂hp with p = 0, 1, 2.

Proof. The above discussion leading to equation (32) shows that ωk − dk =
O(hg+2−p) and thus the accuracy is maximal provided that g+2−p ≥ G−g.

Dice Matteo: Verificare p = 0. Se non funziona, toglierlo e mettere invece qui un Remark
in cui si dice che con p = 0 tutto funziona almeno quando ε̂ � h2. Forse è più facile che
introdurre il caso p = 0 perché a questo punto quale dei due sia il termine dominante nei
raccoglimenti dipende dalla grandezza relativa di ε̂ e degli I[P ].

Anche perchè, aggiungo ancora io (G), da quanto si scrive sopra sembrerebbe che p =
0 sia proprio la scelta ottimale. Questa storia di p = 0 va un po’ ripensata, anche se le
osservazioni sotto mi sembrano motivi sufficienti per non prendere p = 0.

We point out that, starting from (27), all expressions hold in the limit h→ 0.
Obviously, for finite values of h, the behaviour of the reconstruction is deter-
mined by the relative size of ε̂hp and the indicators. Especially in the case p = 0,
when ε̂ is too small with respect to h, one typically observes a degradation in

16
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the convergence rate. On the other hand, if ε̂ is too large, one might observe
spurious oscillations, since ε̂ would override the indicators.

Another case where the size of ε can change the behaviour of the reconstruc-
tion is close to a local extremum. It typically happens that the local extremum
does not lie in the stencil of all Pr’s. Suppose that an extremum is located
only in the stencil of Pr̂ for some r̂ ∈ {1, . . . , m̂}. In this case, we would have
I[Pr̂] = O(h4) but I[Pr] � h2 for r 6= r̂. Unless ε + h4 � ε + h2, the compu-
tation of the non-linear weights will give ωr̂ ≈ 1 and ωr ≈ 0 for r 6= r̂ and the
reconstruction would be of order g instead of being of order G. For this reason
we suggest to employ ε ≈ h2 or even ε ≈ h, as in [CS, CRS16].

5 Analysis in the discontinous case

This section contains a discussion of the behaviour of CWENO in the case of
discontinuous data. While the discussion of the previous section on the smooth
case extends to reconstructions of arbitrary order of accuracy, partial contribu-
tions of previous authors, the discontinous case, to the best of our knowledge,
has never been analyzed in detail. In this section we will consider CWENO as an
interpolation algorithm, of a known function u(x). Thus we will suppose that
it is possible to choose the mesh size to ensure that at most one discontinuity
is present in the stencil of Popt.

If a discontinuity is present in the stencil of Popt, then the reconstruction is
expected to degrade to a combination of the Pk’s whose stencil lie in smooth
regions. In this respect, the reconstruction behaves as WENO. In the WENO
setting, this fact is almost trivial: only the Pk’s contribute to the reconstruction
and they are all interpolating polynomials, thus the behaviour of their indicators
matches exactly the presence or absence of a discontinuity in the corresponding
stencil.

In the CWENO setting, the same final result can be proven only if an addi-
tional property is verified by the indicators. In fact, in CWENO, also the high
order polynomial P0 contributes non trivially to Prec and thus the behaviour of
its indicator should be taken into account as well. However, P0 is not an inter-
polating polynomial and thus, for the correct behaviour of the reconstruction
in the discontinuous case, it is important that the following holds.

Definition 3 (Property R). We say that a reconstruction CWENO(Popt, P1, . . . , Pm̂)
satisfies Property R if I[Popt] � 1 when h→ 0 implies that also I[P0] � 1.

We will prove that Property R holds in each individual case. Here we show
a general result of the impact of Property R on the behaviour of CWENO on
discontinuous data.

Theorem 1. Assume that Property R holds true for a CWENO procedure. If the
reconstruction is applied to discontinuous data, but at least one of I[P1], . . . , I[Pm̂]
is of size O(h2), then ωk ∼ 0 for every k ∈ {0, . . . , m̂} such that I[Pk] � 1.

17



CWENOpaper_v4.tex 17-12-2020 17:38

Proof. Since the data are discontinuous, then I[Popt] � 1 and, thanks to Prop-
erty R, also I[P0] � 1. Let K be the set {k : I[Pk] � 1}. Then the hypothesis
guarantees that there exists at least one l 6∈ K for which I[Pl] = O(h2). There-
fore αl is at least of magnitude h−2 and thus from (9) we find that ωl � 1 and
ωk = O(h2) for every k ∈ K.

As a corollary, provided that at least one of P1, . . . , Pm̂ insists on a smooth
stencil, the reconstruction degrades to a combination of the Pk’s with smooth
stencil and thus will be Essentially Not Oscillatory. With reference to Summary
1, Property R corresponds to point 1 and Theorem 1 to point 3.

Notice that Property R is not trivial, despite the fact that P0 is a convex
combination of the interpolating polynomials Popt and of all the Pk’s. In fact,
at least for the Jiang-Shu indicators, the square inside the integrals in equation
(6) mixes in a nonlinear way the contributions of all the polynomials involved.
For example, even with m̂ = 1, we have P0 = αPopt + (1− α)P1 (for α = 1/d0)
and

I[P0] = α2I[Popt] + (1−α)2IP1
+α(1−α)

∑
l≥1

diam(Ω)2l−1

∫
Ω

P
(l)
opt(x)P

(l)
1 (x)dx.

(33)
In the formula above, I[Popt] and I[P1] are always non-negative, but there is no
way to control the sign of the cross terms.

When proving that Property R holds, we have to prove that, when a dis-
continuity occours in the stencil, the ratio of the indicators of P0 and Popt is
finite and stays away from zero. Typically it is easy to compute explicitly and
study the ratio of the indicators if the data are the cell averages of a Heaviside
function with the jump located inside the reconstruction stencil. We thus prove
now a perturbation result that will allow us to extend easily our proofs from
the Heaviside data to the general case.

Lemma 1. Consider u(x) = H(x) + v(x) where H(x) is the Heaviside function
and v(x) a Lipschitz continuous function. Let P1 and P2 denote polynomials
depending smoothly on the cell averages of u(x) such that both I[P1] � 1 and
I[P2] � 1. Then

I[P1]

I[P2]
=
I[P1]

I[P2]

∣∣∣∣
v≡0

+O(h)

when the cell size h→ 0.

Proof. The thesis follows easily from Remark 1, which implies that I[P ] =
I[P ]|v≡0 +O(h).

We now turn to the verification of Property R on CWENO reconstructions
of order 3, 5 and 7 with weights chosen simmetrycally. Note that in particu-
lar this is the case if the weights are chosen according to equation (11). The
CWENO 9 scheme can be handled similarly, but the computations become quite
cumbersome.

We start from the case in which the discontinuity in the data does not occour
in the central cell.
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5.1 CWENO 3

We start from the third order CWENO reconstruction of [LPR99]. We recall that
in this case the stencil consists of the three cells Ωj+l, l = −1, 0, 1, P (2) = Popt ∈
P2 is the parabola interpolating in the sense of cell averages a given function

u(x) on the whole stencil, while P
(1)
L and P

(1)
R are the two left and right linear

functions interpolating the cell averages uj−1, uj and uj , uj+1, respectively.

Proposition 2. Consider the operator CWENO(P (2), P
(1)
L , P

(1)
R ), with dL = dR.

Suppose that a discontinuity is present in the stencil of the reconstruction, but
does not occour in the central cell, then

I[P0]

I[Popt]
=

I[P0]

I[P (2)]
>

13

16
(and thus I[P0] � I[Popt]).

Proof. Thanks to Lemma 1, we may restrict the analysis to the application of
CWENO to the cell averages of a Heaviside function. Using the hypothesis on
the location of the discontinuity, without loss of generality, we consider

uj−1 = 1 uj = 0 uj+1 = 0.

In this case, by direct computation one finds that

I[P0]

I[P (2)]
=

3d2
0 − 6d0 + 16

16d2
0

. (34)

Since the derivative of (34) vanishes at d0 = 16/3 and d0 ∈ [0, 1], this expression
attains its minimum on the boundary and precisely at d0 = 1, where it attains
the value 13/16. Moreover, this ratio is clearly continuous provided d0 ≥ δ > 0.
Thus we have that for every choice of 0 < δ ≤ d0 ≤ 1, I[P0] � 1 whenever
I[P (2)] � 1.

Mi è venuto un dubbio: dire I[P0] � 1 whenever I[P (2)] � 1 mi sembra voglia dire sia

che
I[P0]

I[P (2)]
debba essere bounded away from zero, che è quello che con santa pazienza

avete dimostrato, sia che quel rapporto deve essere bounded, che invece manca. In re-
altà è molto semplice: basta dire che il rapporto è continuo e limitato se d0 è bounded
away from zero. Ho aggiunto questa precisazione a tutte le properties che dimostrano
la proprietà R. Per far questo, bisogna tagliare via una fettina di spessore δ > 0, cioè
d0 ≥ δ > 0, che mi sembra davvero innocuo. Se vi sembra che non serva, togliete queste
aggiunte.

5.2 CWENO 5

We now turn to CWENO 5. We recall that in this case the stencil consists of
the five cells Ωj+l, l = −2, . . . , 2, P (4) = Popt ∈ P4 is the quartic interpolating
in the sense of cell averages a given function u(x) on the whole stencil, while

P
(2)
L , P

(2)
C and P

(2)
R are the three left, central and right parabolas interpolating

the cell averages uj−2, uj−1, uj ; uj−1, uj , uj+1 and uj , uj+1, uj+2, respectively.
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In the paper [Cap08], the linear coefficients are fixed to d0 = 1/2, dL =
1/8, dC = 1/4, dR = 1/8, but here we assume only that they are symmetric,
namely that dL = dR = (1− d0 − dC)/2.

Proposition 3. Consider the operator CWENO(P (4), P
(2)
L , P

(2)
C , P

(2)
R ) , with

dL = dR. Suppose that a discontinuity is present in the stencil of the recon-
struction, but does not occour in the central cell, then

I[P0]

I[Popt]
=

I[P0]

I[P (4)]
> 0.6 (and thus I[P0] � I[Popt]).

Proof. Thanks to Lemma 1, we may restrict the analysis to the case of the cell
averages of a Heaviside function. Since we only know that the discontinuity is
not in the central cell, without loss of generality, we take

uj−2 = 1 uj−1 = D ∈ [0, 1] uj = 0 uj+1 = 0 uj+2 = 0.

Observe that as D grows from 0 to 1 the discontinuity moves from the interface
between Ωj−2 and Ωj−1 to the interface between Ωj−1 and Ωj . With the help
of Matlab’s symbolic toolbox, we computed the desired ratio R(d0, dC ;D) :=
I[P0]/I[Popt] which is given by

R(d0, dC ;D) = (10500D2d2
0 + 26880D2d0dC − 28896D2d0 + 23100D2d2

C − 52752D2dC

+ 123359D2 − 7980Dd2
0 − 20160Dd0dC + 21672Dd0 − 12180Dd2

C

+ 27216DdC − 64693D + 1680d2
0 + 3360d0dC − 3612d0

+ 1680d2
C − 3612dC + 8840)/(d2

0(104963D2 − 51001D + 6908)).
(35)

We need to show that the above ratio is finite and bounded away from 0. To
this end we study its extrema. Solving ∂R

∂d0
= 0 with respect to d0, one finds

d0 = z(dC ;D) :=(−23100D2d2
C + 52752D2dC − 123359D2 + 12180Dd2

C − 27216DdC

+ 64693D − 1680d2
C + 3612dC − 8840)/(42(40dC − 43)(8D2 − 6D + 1)).

We show that z(dC , D) /∈ [0, 1], for any (dC , D) ∈ [0, 1]2 and thus the minima
and maxima of R occour only along the boundary of [0, 1]2. First, z(dC , D) 6= 0.
In fact, solving z(dC , D) = 0 with respect to D, we would obtain real solutions
only if ∆1 ≥ 0, where

∆1 = −21(60d2
C − 80dC + 287)(5460d2

C − 12768dC + 29333),

which is negative for all dC ∈ [0, 1]. Next, z(dC , D) 6= 1 since, solving z(dC , D) =
1 with respect to D, we would obtain real solutions only if ∆2 ≥ 0, where

∆2 = −21(327600d4
C − 1202880d3

C − 3810840d2
C + 4855216dC − 7797307). (36)

A plot of ∆2 with respect to dC is shown in Figure 1a, which shows that ∆2

is negative for all dC ∈ [0, 1]. Finally, observe that z(dC , D) has an essential
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Figure 1: Supporting graphs for the proof of Proposition 3. Left: the function
∆2(dC) is always negative in [0, 1], see (36). Right: plot of R(1, dC ;D) of (34)
on [0, 1]2, showing that R > 0.6

discontinuity in D = 1/4 and in D = 1/2, but it is otherwise continuous. It thus
suffices to show that z(dC , D) is outside [0, 1] in each of the strips [0, 1]× [0, 1/4],
[0, 1] × [1/4, 1/2] and [0, 1] × [1/2, 1]. Since we have already shown that z cannot
cross 0 and 1, we just evaluate z in a point in each strip. We find

z(1/2, 0) > 1, z(1/2, 3/8) < 0, z(1/2, 1) > 1,

and therefore we can conclude that z(dC , D) /∈ [0, 1], for all (dC , D) ∈ [0, 1]2.
The above argument shows that R has no extrema for d0 ∈ [0, 1], and there-

fore it is monotone with respect to d0 in the domain of interest. Furthermore,
it is easy to verify that the denominator in (35) never vanishes and thus R is
continuous, except at d0 = 0, where R→ +∞. Therefore R must be decreasing
with respect to d0 and as a consequence, it attains its minimum for d0 = 1. To
evaluate this minimum, in Figure 1b, we plot the restriction of R to the domain
d0 = 1 and (dC , D) ∈ [0, 1]2 from which it is clear that the minimum is always
larger than 0.6, thus concluding the proof.

If the jump discontinuity is located in the cell Ωj−2, one computes

R(d0, dC , D = 0) = (420d2
0+840d0dC−903d0+420d2

C−903dC+2210)/(1727d2
0).

Note that R(1, dC , D) can also be studied analytically and, by lengthy com-
putations, one finds the exact location of the minimum and its corresponding
value which is min(R(1, dC , D)) ≈ 0.632.

Moreover, R is clearly continuous provided d0 ≥ δ > 0. Thus we have that
for every choice of 0 < δ ≤ d0 ≤ 1, I[P0] � 1 whenever I[P (4)] � 1.

5.3 CWENO 7

We now consider the CWENO 7 reconstruction. We recall that in this case
the stencil consists of the seven cells Ωj+l, l = −3, . . . , 3, P (6) = Popt ∈ P6
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is the sixth degree polynomial interpolating in the sense of cell averages a
given function u(x) on the whole stencil. The reconstruction can be writ-

ten as CWENO(P (6), P
(3)
LL , P

(3)
L , P

(3)
R , P

(3)
RR), where the P (3) are cubic polyno-

mials interpolating in the sense of cell averages the function u(x) on the stencil

Ωj−r, . . . ,Ωj−r+3, with r = 3 for P
(3)
LL , r = 2 for P

(3)
L , r = 1 for P

(3)
R , and r = 0

for P
(3)
RR.

To carry out the analysis of the discontinuous case for this reconstruction,
we need to verify that Property R holds also for the CWENO 7 procedure. To
this end, we first state the following Lemma in order to show a general property
satisfied by the ratio I[P0]/I[Popt] and then we prove Proposition 4 below for a
particular position of the jump discontinuity in the reconstruction stencil.

Lemma 2. Let the linear coefficients {dk}k=LL,L,R,RR of the CWENO 7 proce-
dure be linear functions of the coefficient d0. Then

∂

∂d0

I[P0]

I[Popt]
=
L(d0)

d3
0

where L(d0) is a linear function of d0.

Proof. Since the coefficients {dk}k=LL,L,R,RR are linear functions of d0, say
dk = Lk(d0), we can write (see Definition 2)

P0(x) =
Popt(x)−

∑
k Lk(d0)Pk(x)

d0
.

Recalling that Popt does not depend on the dk’s and that the polynomials enter
in the Jiang-Shu indicator (6) at most quadratically, we can write

I[P0]

I[Popt]
=
Q(d0)

d2
0

where Q(d0) is a quadratic function of d0. The thesis now follows easily.

Remark 5. The above Lemma requires that the linear coefficients dk be linear
functions of d0. Since CWENO 7 has many free coefficients, requiring a linear
relation among them does not seem to be overly restrictive. Note also that the
linear dependence of the other coefficients on d0 already occurs in CWENO 3
and CWENO 5 for reasons of symmetry. In the case of CWENO 7 the following
reasonable choices of the linear coefficients satisfy the hypothesis of the Lemma:

dLL = dL = dR = dRR, 2dLL = dL = dR = 2dRR.

The second of these is the setup considered in the numerical tests. In this case,
the central two cubics are weighted more than the two external ones, because
they will provide a smaller interpolation error.
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Proposition 4. Consider CWENO(P (6), P
(3)
LL , P

(3)
L , P

(3)
R , P

(3)
RR), with dLL, dL, dR

and dRR depending linearly on d0. Assume further that the coefficients are cho-
sen respecting the following symmetries: dL = dR and dLL = dRR. Suppose
that a discontinuity is present in the stencil of the reconstruction, but does not
occour in the central cell, then

I[P0] � I[P (6)] = I[Popt].

Proof. Thanks to Lemma 1, we may restrict the analysis to the case of the cell
averages of a Heaviside function. Observe that the statement has to be proved
for three different positions of the jump discontinuity, which can be located in
the cell Ωk, for k = j − 3, j − 2, j − 1 (and obviously in symmetric positions to
the right of Ωj). Without loss of generality, we need to consider two different
cases:

uj−3 = 1 uj−2 = D ∈ [0, 1] uj−1 = uj = uj+1 = uj+2 = uj+3 = 0.

and

uj−3 = uj−2 = 1 uj−1 = D ∈ [0, 1] uj = uj+1 = uj+2 = uj+3 = 0.

In the first case, as D moves from 0 to 1, the discontinuity moves from the
interface between Ωj−3 and Ωj−2, to the interface between Ωj−2 and Ωj−1,
while in the second case, as D moves from 0 to 1, the jump moves from the
interface between Ωj−2 and Ωj−1, to the interface between Ωj−1 and Ωj .

Case 1 Here, we start showing the explicit computations for the first case,
namely when the jump discontinuity is located in the cell Ωj−2.

Let d := dL = dR and dLL = dRR = (1 − d0 − 2d)/2. Computing the
indicators of P0(x) and Popt(x), one finds that

R(d0, d,D) :=
I[P0]

I[Popt]
=(439271910D2d2

0 + 1936962720D2d0d− 1100058300D2d0

+ 2183448960D2d2 − 2513221920D2d+ 3588778953D2

− 242120340Dd2
0 − 1030102920Dd0d+ 582205635Dd0

− 1091724480Dd2 + 1242687600Dd− 1310085264D

+ 34116390d2
0 + 136465560d0d− 76797765d0

+ 136465560d2 − 153595530d+ 126751871)/

(d2
0(2927992563D2 − 969999969D + 84070496)).

We need to show that the above ratio never vanishes, for d0 ∈ (0, 1]. To this
end we study its extrema. Thanks to the previous lemma, ∂R

∂d0
= 0 leads to a

linear equation in d0, whose solution is

d0 = z(d,D) :=(4366897920D2d2 − 5026443840D2d+ 7177557906D2 − 2183448960Dd2

+ 2485375200Dd− 2620170528D + 272931120d2 − 307191060d

+ 253503742)/(495(4D − 1)(555585D + 275688d− 978264Dd− 155147)).
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Figure 2: Supporting graphs for the proof of Proposition 4. Left: domains
where z(d,D) is negative and above 1 for Case 1. Middle: plot R(1, d,D) for
Case 1 on [0, 1]2 showing that R > 0.9. Right: plot R(1, d,D) for Case 2 on
[0, 1]2 showing that R > 0.9.

In order to show that z(d,D) /∈ [0, 1], for any (d,D) ∈ [0, 1]2, we prove that
there cannot be an extremum inside the interval [0, 1]. We follow the same line
of argument already used in the proof of Proposition 3. First, z(d,D) 6= 0 since,
solving z(d,D) = 0 with respect to D, we obtain a second degree equation with
discriminant

∆1 = −11(518448774382920d2 − 563258885649790d+ 260642395562461),

which is negative for all d ∈ R. Next, z(d,D) 6= 1 since, solving z(d,D) = 1
with respect to D, we obtain a second degree equation with discriminant

∆2 = −11(8222158841526720d2 − 4065334566415120d+ 1438597144251301),

which is again negative for all d ∈ R. Finally, observe that z(d,D) has essential
discontinuities onD = 1/4 and along the curveD = (275688d−155147)/(978264d−
555585). The above curves divide the square [0, 1]2 in five regions in which z is
continuous. Evaluating z at a point in each of these regions (see Fig 2a) we find

z(0.1, 0.1) > 1, z(0.9, 0.1) < 0, z(0.1, 0.9) > 1, z(0.9, 0.9) < 0, z(0.1, 0.26) < 0

and thus z never takes values in [0, 1] for all (d,D) ∈ [0, 1]2.
The above argument shows thatR, for each (d,D) ∈ [0, 1]2 fixed, is monotone

with respect to d0 in the domain of interest. Furthermore, the denominator in
the definition of R does never vanish and thus R is continuous, except at d0 = 0,
where R → +∞. Thus R must be decreasing with respect to d0 and therefore
its minimum must occour in d0 = 1. Finally, the restriction of R to the domain
d0 = 1 and (d,D) ∈ [0, 1]2 is shown in Figure 2b and it is clear that it is always
bounded away from 0, thus concluding the proof of case 1.

The function R(1, d,D) can also be studied analytically and, with lengthy
computations, one can find the exact location of the minimum and that its value
is approximately 0.978.
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Case 2 Similar considerations hold for the case of the jump discontinuity
located in the cell Ωj−1. In fact, one can prove again that the extremum is in
the restriction of R to the domain d0 = 1 and it is always bounded away from
0, see Figure 2c. Again R(1, d,D) can also be studied analytically and one can
find that the minimum is approximately 0.966.

Clearly, R is a continuous and bounded function of d0, provided that d0 ≥
δ > 0, so again the ratio R is bounded, and bounded away from zero in the
region of interest.

5.4 Discontinuity in the reconstruction cell

We now turn to point 4 of Summary 1. Let us consider the case in which the
reconstruction is sought for the cell averages of a function with a discontinuity
sitting inside the central cell. Clearly in this case all stencils of the polynomials
involved in the reconstruction contain the troubled cell. Without loss of gen-
erality we restrict to the case in which uj = 1 for j < 0, u0 = D ∈ (0, 1) and
uj = 0 for j > 0.

We compute the CWENO reconstruction for D ∈ [0, 1], d0 ∈ (0, 1] at a
generic point x in the central cell. For CWENO 3 we choose the remaining
coefficients symmetric, i.e. dL = dR = (1 − d0)/2, as in Proposition 2. For
CWENO 5 we have one more parameter and we take dL = dR = dC/2, i.e.
dC = (1−d0)/2, dL = dR = (1−d0)/4. For CWENO 7 we again give more weight
to the central stencils taking dL = dR = (1−d0)/3 and dLL = dRR = (1−d0)/6,
see also (11).

We are thus left with the free parameters D and d0 and applying the recon-
struction we obtain a function U(x;D, d0). From these data, we fix d0 and we
extract md0(D) = minx U(x;D, d0) and Md0(D) = maxx U(x;D, d0). Figure
3 shows the plots of md0(D) and Md0(D) for all schemes and for several val-
ues of d0 which are typical, namely d0 = 0.5 (often employed in the literature),
d0 = 0.75 (used in the numerical experiments of this paper), and d0 = 0.9 (which
overweights the central polynomial). It is clear that for all values considered,
the reconstructed data are bounded by [0, 1] for all values of D and thus no
spurious oscillations are created and the total variation remains bounded.

It is noteworthy that the functions md0(D) and Md0(D) depend so weakly on
d0. Moreover, we found comparable results for other choices of the coefficients
in CWENO 5 and CWENO 7. Obviously, for d0 close to 0 or 1, md0(D) and
Md0(D) would change significantly. However, taking extreme values for d0 does
not make sense in practice: for d0 → 0, P0 becomes undefined, while the limit
d0 → 1 leads to Prec → Popt irrespectively of the oscillation indicators.

6 Numerical experiments

The purpose of the tests appearing in this section is to study the accuracy of the
reconstructions proposed in this work, and to verify the non oscillatory proper-
ties of the resulting schemes. Thus we will consider the standard tests which are
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Figure 3: Discontinuity in the reconstruction cell. Minimum and maximum
values attained by the reconstruction polynomial in the cell, as a function of
the location D of the discontinuity, for several values of d0. Left: CWENO 3 with
dL = dR = (1 − d0)/2. Middle: CWENO 5 with dC = (1 − d0)/2, dL = dR =
(1−d0)/4. Right: CWENO 7 with dL = dR = (1−d0)/3, dLL = dRR = (1−d0)/6.

commonly used in the literature on high order methods for conservation laws:
linear advection of smooth and non smooth waves, shock formation in Burgers’
equation and Riemann problems from gas dynamics. In all these cases, we will
compare our results with solutions obtained with WENO schemes. Here, our
results are comparable with standard WENO.

Next, we will consider problems with sources, where our reconstructions are,
we think, an improvement over standard WENO, because we easily evaluate the
reconstructions at all quadrature points simultaneously. Again, we exhibit con-
vergence histories, and non oscillatory properties, using problems from shallow
water and gas dynamics with source terms. Finally, we study the well balancing
of the new reconstructions.

We construct numerical schemes applying the method of lines and the Lo-
cal Lax-Friedrichs flux with the CWENO 3, CWENO 5 and the newly proposed
CWENO 7 and CWENO 9 reconstructions. The time integrators are Runge-
Kutta schemes of matching order. In particular, the third order scheme em-
ploys the classical third order (strong stability preserving) SSP Runge-Kutta
with three stages [JS96], the fifth order scheme the fifth order scheme with six
stages of [But08, §3.2.5], the scheme or order seven relies on the nine-stages
scheme of [But08, pag 196] and the scheme of order nine employs the scheme
with eighteen stages of order ten of [Cur75]. Clearly, multistep schemes and
different Riemann solvers could be used as well.

Source terms are integrated with a Gaussian quadrature formula matching
the order of the scheme when well-balancing is not an issue. In the case of
the shallow water equations, we employ a scheme which is well-balanced for
the lake at rest solution, constructed with the hydrostatic reconstruction tech-
nique of [ABB+04], the desingularization procedure proposed in [KP07] and the
Richardson extrapolation for the quadrature of the source term. With reference
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Figure 4: Convergence rates for CWENO and WENO schemes of order 3, 5, 7
and 9, Test 1.

to the latter, we employ the following quadratures S(q) of order q

S(4) = (4S2 − S1)/3

S(6) = (64S4 − 20S2 + S1)/45

S(8) = (4096S8 − 1344 ∗ S4 + 84S2 − S1)/2835

S(10) = 1.450463049417298S16 − 0.481599059376837S8 + 0.031604938271605S4

− 0.000470311581423S2 + 0.000001383269357S1,

where Sn denotes the quadrature of the source term computed with the com-
posite trapezoidal rule with n intervals on each cell. The first of these formulas
was published in [NPPN06] and the othere ones were derived by us following
the same ideas of that paper.

Test 1. Linear transport of smooth data, low frequency case.

The convergence rates appearing in Fig. 6 are obtained using an initial con-
dition from[ABBM11]. We solve ut +ux = 0, on [−1, 1] with periodic boundary
conditions, up to T = 2, with initial condition

u0(x) = sin

(
πx− 1

π
sin(πx)

)
.

The low order CWENO3 scheme has d0 = 1
2 , while for the higher order

schemes we show results with d0 = 1
2 (empty circles) and d0 = 3

4 (dots). Each
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Figure 5: Convergence rates for CWENO and WENO schemes of order 3, 5, 7
and 9, Test 2.

group of curves is characterized with the desired slope (3, 5, 7 and 9 respectively,
dashed black lines). The black solid curves are the reference results, obtained
with the classical WENO scheme of the same order. Note that in all cases the
errors almost coincide, with a very slight edge for the CWENO schemes with
d0 = 3

4 .

Test 2. Linear transport of smooth data, high frequency case.

This test is drawn from [SCR16]. It studies the propagation of a sine wave
with a high frequency localized perturbation. As before, we solve ut + ux = 0,
on [−1, 1] with periodic boundary conditions, up to T = 2, but now the initial
condition is

u0(x) = sin (πx) + 1
4 sin(15πx) e−20x2

.

Again, the correct rates are achieved in all cases. Note the high gain in accuracy
obtained with the high order schemes even on coarse grids.

Test 3. Burgers’ equation: shock interaction

This is a test on shock formation and shock interaction. We consider Burgers’
equation in [−1, 1] with initial condition

u0(x) = 0.2− sin(πx) + sin(2πx)

and periodic boundary conditions. The exact solution develops two shocks,
which eventually collide, merging into a single discontinuity. We show three
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Figure 6: Burgers’ equation and shock interaction: CWENO schemes. Evolution
of the solution (left). Zoom slightly before (middle) and after (right) shock
interaction.
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Evolution of the solution (left). Zoom slightly before (middle) and after (right)
shock interaction.

snapshots on the same panel in Figg. 6 and 7, with two zooms, which are
enlarged on the right. The dashed black curve is the initial condition. The
second curve is the solution at the time in which the two shocks develop (T =
1/(2π)). The third curve is slightly before shock interaction (T = 0.6), with a
detail enlarged in the figure appearing in the center (zoom 1). The last curve
is taken shortly after shock interaction (T = 1), and a zoom of the interaction
region is shown in the right panel (zoom 2).

Fig. 6 shows the results obtained with CWENO schemes, with order 3,
5, 7, and 9 (black, blue, green and red curves respectively). The number of
grid points is N = 160. It is clear that the schemes do not produce spurious
oscillations, and have an excellent resolution of discontinuities. As the order is
increased, the profiles become sharper. For comparison, we also show the same
results, obtained with the WENO scheme in Fig. 7. Note that the results are
very similar.

Test 4. Gas dynamics: Lax’ Riemann problem

The equations of gas dynamics for an ideal gas in one space dimension are

∂t

 ρ
ρu
E

+ ∂x

 ρu
ρu2 + p
u(E + p)

 = 0,

where ρ is the gas density, u the velocity, p the pressure, and E the energy
per unit volume. The pressure is linked to the other variables through the
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Figure 8: Lax’ test. Zoom on the density peak. CWENO 3 (left) and CWENO 5
(right) on several grids. The reconstruction is computed along characteristic
directions (continuous lines) and on conservative variables (dotted lines).

equation of state of an ideal gas, namely p = (E − 1
2ρu

2)(γ − 1), and we take
γ = 1.4. The Riemann problem by Lax has the following left and right states:
ρL = 0.445, uL = 0.6989, pL = 3.5277 and ρR = 0.5, uR = 0, pR = 0.571.
The solution develops a rarefaction wave travelling left, a contact discontinuity
and a shock, with positive speeds. The most interesting region is the density
peak which occurs between the contact and the shock wave, where high order
essentially non oscillatory schemes are known to develop spurious oscillations.
For this reason, we show only a zoom on the density peak. It is well known
that essentially non oscillatory and WENO schemes develop oscillations with
amplitude decreasing under grid refinement, while their amplitude increases
with the order of the scheme, at a given mesh width.

The oscillations are originated by the interaction between waves in the first
stages of the solution, when the discontinuities are so close that the algorithm
cannot find a smooth stencil. Thus, they can be partly cured computing the
reconstruction along characteristic fields, where the waves are approximately
decoupled, [QS02].

Aggiungere la soluzione esatta nel density peak!

Fig. 8 contains the density peak obtained with CWENO3 (left) and CWENO5
(right) schemes. The continuous lines correspond to reconstructions computed
along characteristic directions, for which the data in the whole stencil are pro-
jected along characteristic direction, before the reconstruction is computed,
while the dashed curves are the standard reconstruction on conservative vari-
ables. Each figure contains the data obtained with N = 100, 200 and 400 grid
points (black, blue and red curves, respectively). The improvement obtained
with characteristic projection is quite dramatic, especially for the higher order
schemes. In these two cases, the spurious oscillations disappear. Note also the
improvement in the resolution of the waves with the high order CWENO5.

The following figure (Fig. 9) contains the results obtained with CWENO7
and CWENO9 (top row). As a comparison, the same results with the standard
WENO 7 and WENO 9 schemes are included in the bottom row plots of the same
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Figure 9: Lax’ test. Zoom on the density peak. CWENO 7 (top left) and
CWENO 9 (top right), WENO 7 (bottom left) and WENO 9 (bottom right) on
several grids. The reconstruction is computed along characteristic directions
(continuous lines) and on conservative variables (dotted lines).

figure. As expected, the spurious oscillations become wilder for these high order
schemes, unless the reconstruction is computed along characteristic directions.
Aggiungere la soluzione esatta nel density peak!

The results discussed so far show that the new reconstructions are compara-
ble to standard WENO reconstructions, not only as far as accuracy is concerned,
but also in terms of non oscillatory, or essentially non oscillatory, properties. In
both cases, for high order schemes, it is essential to employ characteristic pro-
jections, which could also be done in an adaptive way, as suggested in [Pup03]
and[PS11].

We now turn to balance laws, where the new reconstructions permit to com-
pute the cell averages of the source term with a single reconstruction.

Test 5. Shallow water equations: convergence rates on a non-flat riverbed

Now, we consider the shallow water system, namely

u =

(
h
q

)
f(u) =

(
q

q2/h+ 1
2gh

2

)
g(u, x) =

(
0

−ghzx

)
. (37)

Here h denotes the water height, q is the discharge and z(x) the bottom topog-
raphy, while g is the gravitational constant.
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CWENO 3 CWENO 5 CWENO 7 CWENO 9
N error rate error rate error rate error rate
16 4.62e-02 5.53e-03 1.34e-03 6.92e-04
32 1.04e-02 2.16 4.13e-04 3.74 7.39e-05 4.18 2.83e-05 4.61
64 2.10e-03 2.30 1.75e-05 4.56 6.74e-07 6.78 1.23e-07 7.85

128 3.14e-04 2.74 5.78e-07 4.92 5.02e-09 7.07 3.45e-10 8.48
256 3.55e-05 3.15 1.82e-08 4.99 3.91e-11 7.00 7.44e-13 8.86
512 2.42e-06 3.88 5.71e-10 4.99 3.08e-13 6.99

Table 2: Errors and convergence rates for SW convergence on a non flat riverbed.

Following [XS05], we compute the flow with initial data given by

z(x) = sin2(πx) h(0, x) = 5 + ecos(2πx) q(0, x) = sin(cos(2πx)), (38)

with periodic boundary conditions on the domain [0, 1]. At time t = 0.1 the
solution is still smooth and we compare the numerical results with a reference
solution computed with the fourth order scheme and 16384 cells. The 1-norm
of the errors appears in Table 2. The well balanced quadrature is computed
using Richardson’s extrapolation, based on the trapezoidal rule. This means
that to achieve 5th order accuracy 3 points are needed per cell, while for 7-th
and 9-th order accuracy 9 and 17 nodes respectively are used in each cell. We
emphasise that all these reconstructed data are computed from a single CWENO
reconstruction polynomial, using the same weights for all coefficients. Note that
the order of accuracy is perfectly met, until machine precision is reached.

This test would be extremely demanding on a standard WENO reconstruc-
tion, since the non linear weights must be changed for each quadrature node.

Check the number of nodes of the quadrature formulas!! (I 3, 9 17 che ho scritto sopra!!

Test 6. Shallow water equations: well-balancing test on a rough bottom

This is a classical test, to explore the well balancing properties of a scheme,
see [NPPN06]. We consider a flat lake z(x) + h(x) ≡ 1.5, with water at rest.
The bottom cell averages are randomly extracted from a uniform distribution
on [0, 1]. Thus the function z(x) is extremely irregular, but nonetheless the
exact solution preserves the flat surface, and the water should remain still. A
well balanced scheme preserves this solution at machine precision.

We report in Table 3 the values of the discharge computed by all CWENO
schemes tested in this work for several grids. It is clear that in all cases the
discharge is zero within machine precision, so that the quadrature of the source
is indeed well balanced in all cases, notwithstanding the fact that, again, it is
computed with a single polynomial for all quadrature nodes.

The data on the water height have the same precision, and are not reported
for brevity.

Test 7. Shallow water equation: dam-break
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method error in q
N=100 N=200 N=400 N=800

CWENO 9 7.4471e-16 1.4354e-15 1.8279e-15 2.5115e-15
CWENO 7 2.1206e-15 3.0564e-15 7.1562e-15 1.6473e-14
CWENO 5 1.7490e-15 3.0874e-15 5.3284e-15 9.9496e-15
CWENO 3 1.9032e-15 3.5655e-15 4.7854e-15 7.6668e-15

Table 3: Well balancing errors on a rough lake at rest. Discharge

This test studies the movement of a shock and a rarefaction on a shallow
water problem, with non constant bottom topography. The initial condition for
the water surface H(x) = h(x) + z(x) and the discharge is

H(x, t = 0) =

{
1.5 x < 0

0.5 x > 0,
q(x, t = 0) ≡ 0,

on [−2, 2], and the bottom topography is z(x) = 0.3 e−10x2

. The final time is
t = 0.2. This set up contains a discontinuity on the amount of water, in corre-
spondance with a hump in the bottom topography. As the solution develops, a
shock moves towards the right, while a rarefaction wave travels left.

The results on the water surface are shown in Fig. 10, with zooms on the
most difficult parts of the solution for the CWENO 5, 7 and 9 schemes. Again,
the numerical solution exhibits spurious oscillations behind the shock (red curve,
with + markers), which can be levelled out using the characteristic projection,
before evaluating the reconstruction (black solid lines). The same behaviour
can be observed in the solution for the discharge.
Mancano i dati sulla griglia, qui e anche in altri posti. A proposito, la CFL è sempre la
stessa? O ci sono dei miglioramenti usando RK via via più alti?

Test 8. Gas dynamics: Riemann Problem in spherical cohordinates

In the case of radial symmetry, the gas dynamics equations can be written
as a 1D system, with a source term, which takes into account the geometrical
effect, [Tor09, §1.6.3]. Radially symmetric solutions of the Euler equations in
Rn may be computed by solving

∂t

 ρ
ρu
E

+ ∂r

 ρu
ρu2 + p
u(E + p)

 = −n− 1

r

 ρu
ρu2

up

 .

We compute the so-called “explosion problem”, which has a shock tube like
initial data. In our case, we take the classical Sod’s test, namely (ρL, uL, pL) =
(1, 0, 1) for r < 0.5 and (ρR, uR, pR) = (0.125, 0, 0.1) for r > 0.5. The final time
of the simulation is t = 0.25.

In order to avoid difficulties with the boundary conditions in the singular
point r = 0, and taking into account that the computed solution will have null
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Figure 10: Dam break over a hump. Top left: water height at time t = 0.2.
The remaining plots are zooms on the tail of the rarefaction and the jump, for
CWENO 5, 7 and 9. The black solid line is with characteristic projections.
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Figure 11: Sod’s explosion problem: density profiles for several CWENO schemes
(left), zoom on the contact and shock wave with the reconstruction computed
along conservative variables (middle), and along characteristic variables (right).

velocity u (and thus null source term) close to r = 0, because of the initial
data, we computed the solutions for r ∈ [−1, 1] with symmetric initial data and
free-flow boundary conditions. Gaussian quadrature formulas of appropriate
order are employed to compute the cell average of the source term and the
grid is chosen in order to avoid quadrature nodes at the singular point x = 0.
The solution at final time is shown in the picture 11, restricted to the domain
r ∈ [0, 1]. Again, we show the density profiles, since the density contains the
main features of the flow. The zoom in the density profile centered on the contact
wave is shown for the reconstruction computed along conservative variables
(central plot of the figure), and along characteristic variables (right plot). Here
too the dramatic improvement obtained with the projection along characteristic
variables is striking. Each plot contains the solution obtained with all four
different schemes tested in this work. The cyan curve is given by CWENO 3,
and the improvement in the resolution of the contact wave obtained increasing
the accuracy of the scheme is quite apparent. Here too, only one reconstruction
polynomial is needed for each Runge Kutta stage.

7 Conclusions

In this paper we introduced a class of spatial reconstruction procedures that are
charaterized by computing a reconstruction function whose accuracy is uniform
across the whole cell, instead of reconstructed point values, as in the standard
WENO reconstruction. This class of algorithms contains the already proposed
CWENO 3 of [LPR99], CWENO 5 of [Cap08] and the two-dimensional third order
reconstruction of [CRS16].

In particular, within this framework, we focused on one-dimensional recon-
struction procedures of any odd order 2g+1 (which were never considered before
for g > 2) and proved that the nonlinear mechanism for stencil selection guar-
antees the desired accuracy of order 2g + 1 when the procedure is applied to
smooth enough data. The non-oscillatory properties of the reconstruction in
the presence of discontinuities in the input data are studied more deeply than
in previous papers and a sufficient condition (property R) is given, to direct
the choice of the parameters appearing in the reconstruction, to avoid spurious
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oscillations. Moreover, it is shown that the one-dimensional CWENO schemes
studied in this paper satisfy property R, for orders up to 7 and under mild
assumptions on the linear weights.

We think that this is the first time that the potential of these reconstructions
is explored in the case of balance laws, and their properties are systematically
studied.

The new schemes perform on par with WENO reconstructions regarding
accuracy on smooth data and the production of spurious oscillations close to
discontinuities, but they are, in our opinion, more versatile than WENO, because
they result in a whole reconstructing polynomial which can be evaluated where
needed. This is very important on balance laws, non uniform grids, moving mesh
algorithms. In fact, in CWENO schemes, the accuracy requirements involve
only the degree of the candidate polynomials and not the values of suitably
chosen linear coefficients. This means that, in a CWENO procedure, the linear
coefficients can be chosen independently of the point at which the reconstruction
is to be evaluated and independently of the relative size of the neighbouring cells.

With these new schemes, unlike WENO, it is possible to compute boundary
value reconstructions on uniform or non-uniform grids (to compute numerical
fluxes), and, at the same time, evaluate the reconstruction at points in the
interior of the computational cells, for evaluating quadratures of source terms,
with the same reconstruction polynomial. The same polynomial can also be used
to compute operations that employ quadrature formulas in the cell, as in the
initialization of cell averages after a grid refinement on h-adaptive schemes or
after mesh movement in moving mesh techiques. Another important application
is the computation of cell averages of functions of the conserved variables arising
in the computation of local residuals for a posteriori error control, as in the case
of the numerical entropy error indicator. A very important application can
be found in finite volume schemes for balance laws, in the computation of cell
averages of source terms. This latter application in particular is tested in this
paper, for accuracy orders up to 9.

In this paper we also introduce formulas to compute the reconstructions, in
one space dimension, from the divided differences of the data in the case of non-
uniform grids, and we provide tables of coefficients, obtained from undivided
differences in the case of uniform grids. We note that the structure of these
tables, whose entries do not depend on the degree of the polynomial to be
computed, allows easily to raise or lower the degree of the reconstruction. The
exploitation of this feature for p-adaptivity will be the subject for future work.

This paper is mainly concerned on CWENO reconstructions in 1D. The ex-
tension to multiD in the case of Cartesian grids is straightforward, but it is also
possible to extend these techniques to unstructured grids.
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