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Abstract

Let FG be the group ring of a group G over a field F . We con-
sider the group of unitary units of FG with respect to the classical
involution. Under suitable restrictions upon F , we show that if the
unitary units of FG are both bounded Engel and solvable, then the
entire unit group of FG is nilpotent. This extends a result of Fisher,
Parmenter and Sehgal.

1 Introduction

Let G be a group and F a field of characteristic p 6= 2. It is a natural problem
to try to determine the structure of the unit group U(FG) of the group ring
FG. In particular, we would like to know the conditions under which U(FG)
satisfies various group identities. This topic has been studied extensively,
and we refer to [8] for an overview.

In particular, it is known when U(FG) is nilpotent. For modular group
rings, Khripta presented the answer in [7]. The case where FG is not modular
was handled independently in Fisher-Parmenter-Sehgal [2] and Khripta [6].

Certain subsets of U(FG) are also interesting. Consider the classical invo-
lution on FG, given by (

∑
g∈G αgg)∗ =

∑
g∈G αgg

−1. The identities satisfied
by the set of symmetric units (namely, those satisfying α∗ = α), have also
received a good deal of attention and again, we refer to [8] for a discussion.
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However, the unitary units are also worthy of study. If R is any ring with
involution ∗, then we let Un(R) = {r ∈ U(R) : rr∗ = 1}. It is easy to see
that Un(R) is a subgroup of U(R). When R = FG, we will always let ∗ be
the classical involution. As such, we note that G is a subgroup of Un(FG).

Only a handful of papers have examined identities satisfied by the unitary
units. Giambruno-Polcino Milies [3] and Broche-Dooms-Ruiz [1] looked at
general results concerning group identities. Gonçalves-Passman [4] discussed
when Un(FG) contains a nonabelian free group. Recently, the authors in
[10] considered group rings whose unitary units form a nilpotent group; as it
turns out, this is usually enough to imply that U(FG) is nilpotent, but there
are exceptions.

However, the Fisher-Parmenter-Sehgal paper did more. Let us establish
some notation. On any group G, let (g1, g2) = g−11 g−12 g1g2 and, recursively,

(g1, . . . , gn+1) = ((g1, . . . , gn), gn+1).

Then, of course, G is nilpotent if, for some n, we have (g1, . . . , gn) = 1 for all
gi ∈ G. We say that G is n-Engel if, for every g, h ∈ G, we have

(g, h, . . . , h︸ ︷︷ ︸
n times

) = 1

and bounded Engel if it is n-Engel for some n. Also, we let (g1, g2)
o = (g1, g2)

and, recursively,

(g1, . . . , g2n+1)o = ((g1, . . . , g2n)o, (g2n+1, . . . , g2n+1)o).

Then G is solvable if, for some n, we have (g1, . . . , g2n)o = 1 for all gi ∈ G. Of
course, every nilpotent group is both bounded Engel and solvable, but even
the bounded Engel property and solvability together are not enough to guar-
antee nilpotence. However, it is shown in [2] that if FG is not modular, then
whenever U(FG) is both bounded Engel and solvable, it is also nilpotent.

Inspired by this result, we ask if it is sufficient to assume that the unitary
units are both bounded Engel and solvable, in order to prove that the entire
unit group is nilpotent. We show that, under certain restrictions upon the
field, this is the case.

Recall that FG is said to be modular if char F = p > 0 and G has an
element of order p. Also, G is p-abelian if G′ is a finite p-group, and 0-abelian
means abelian. Our main theorems are the following.
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Theorem 1. Let F be an infinite field of characteristic p > 2 and G a group,
such that FG is modular. Then the following are equivalent:

1. Un(FG) is bounded Engel and solvable,

2. U(FG) is nilpotent, and

3. G is nilpotent and p-abelian.

When FG is not modular, we record

Theorem 2. Let F be an algebraically closed field of characteristic different
from 2 and G a group, such that FG is not modular. Then the following are
equivalent:

1. Un(FG) is bounded Engel and solvable,

2. U(FG) is nilpotent, and

3. G is nilpotent and the torsion elements of G are central.

Note that if G is torsion and has no 2-elements, then just as in [10,
Theorem 2], we need not insist that F be algebraically closed in Theorem
2. However, in general, some restriction upon the field is needed. Indeed, in
[10, Proposition], we pointed out that if F is the field of 5 elements and G is
the dihedral group of order 8, then Un(FG) is nilpotent; however, U(FG) is
neither bounded Engel nor solvable (see [8, Theorems 5.2.1 and 6.2.2]).

2 Some necessary lemmas

Let us gather a few known results. We begin with some group theory. Write
G for a group and T for its set of torsion elements. The following crucial
result is due to Gruenberg (see [5] and [15, Theorem 7.36]).

Lemma 1. If G is both bounded Engel and solvable, then G is locally nilpo-
tent, T is a subgroup and G/T is nilpotent.

We will also need

Lemma 2. Suppose that G has an abelian normal subgroup of finite index
and, for some prime p, an infinite normal p-subgroup of bounded exponent.
Then G contains an infinite direct product A1 × A2 × · · · , where each Ai is
a finite, nontrivial, abelian normal p-subgroup.
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Proof. See [12, Lemma 7].

Next, we need to know the conditions under which U(FG) is nilpotent.
Let F be a field and p ≥ 0 its characteristic.

Lemma 3. If FG is modular, then U(FG) is nilpotent if and only if G is
nilpotent and p-abelian.

Proof. See [8, Theorem 4.2.1].

Lemma 4. If F is infinite and FG is not modular, then U(FG) is nilpotent
if and only if G is nilpotent and its torsion elements are central.

Proof. See [8, Theorem 4.2.9].

We require the famous result of Isaacs and Passman concerning group
rings satisfying a polynomial identity. Recall that if R is an F -algebra,
then R is said to satisfy a polynomial identity if there is a nonzero poly-
nomial f(x1, . . . , xn) in the free algebra on noncommuting indeterminates
F{x1, x2, . . .} such that f(r1, . . . , rn) = 0 for all ri ∈ R.

Lemma 5. The group ring FG satisfies a polynomial identity if and only if
G has a p-abelian normal subgroup of finite index.

Proof. See [14, Corollaries 5.3.8 and 5.3.10].

In order to obtain a polynomial identity, we need a result on group iden-
tities. We say that a group G satisfies a group identity if there is a nontrivial
word w(x1, . . . , xn) in the free group 〈x1, x2, . . .〉 such that w(g1, . . . , gn) = 1
for all gi ∈ G. For instance, an n-Engel group satisfies the group identity

(x1, x2, . . . , x2︸ ︷︷ ︸
n times

) = 1.

We have the following.

Lemma 6. Let F be an infinite field with p > 2 and R an F -algebra with
involution ∗. Suppose that Un(R) satisfies a group identity. Then every
∗-invariant nil ideal of R satisfies a polynomial identity.

Proof. See [1, Theorem 2.3].

Another useful reduction concerning group identities comes from
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Lemma 7. Let R be an F -algebra with involution ∗ and I a ∗-invariant nil
ideal of R. If p 6= 2 and Un(R) satisfies a group identity, then Un(R/I)
satisfies the same group identity.

Proof. See [4, Lemma 1.1].

Finally, we need to know something about a particular polynomial iden-
tity. On any ring R, let

[x1, x2]
o = [x1, x2] = x1x2 − x2x1

and, recursively,

[x1, . . . , x2n+1 ]o = [[x1, . . . , x2n ]o, [x2n+1, . . . , x2n+1 ]o].

We say that a subset S of R is Lie solvable if there exists an n such that
[s1, . . . , s2n ]o = 0 for all si ∈ S. Also, if R is a ring with involution ∗, write
R− for the set of skew elements; that is, R− = {r ∈ R : r∗ = −r}. We have

Lemma 8. Suppose that p 6= 2 and G is a group without 2-elements. If
(FG)− is Lie solvable, then G is p-abelian.

Proof. If G is torsion, then by Zalesskĭı-Smirnov [18, Theorem 3.4], FG is
Lie solvable. If G is not torsion, then the authors proved the same thing in
[9, Proposition 3.5]. (See [11, Section 5] for a discussion.) Thus, by Passi-
Passman-Sehgal [13], G is p-abelian.

3 Proofs of the theorems

We can now prove our results. A portion of the proof of Theorem 1 is similar
to part of the proof of [10, Theorem 1], but for the sake of clarity, we shall
include it in full. Let us introduce some notation. Write ζ for the centre of
G. Also, if H is a finite subgroup of G, let Ĥ =

∑
h∈H h, and if H = 〈h〉,

then write ĥ = Ĥ. Finally, if N is a normal subgroup of G, write ∆(G,N)
for the kernel of the natural homomorphism FG→ F (G/N).

Proof of Theorem 1. In view of Lemma 3, we only need to prove that (1)
implies (3). Suppose that Un(FG) is bounded Engel and solvable. Take any
a, b ∈ G. We claim that if Un(FG) is pn-Engel, then ap

n+1
b = bap

n+1
. To

prove this, it is sufficient to work in H = 〈a, b, c〉, where c is any element of
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order p in G. Note that H is a finitely generated subgroup of Un(FG); thus,
by Lemma 1, H is nilpotent. Therefore, as H contains an element of order
p, it contains a central element z of order p. Let η = ẑ.

Take any x, y ∈ H. Then notice that

(1 + η(x− x−1))−1 = 1− η(x− x−1) = (1 + η(x− x−1))∗.

Thus, 1 + η(x− x−1), y ∈ Un(FH). Therefore,

1 = (1 + η(x− x−1), y, . . . , y︸ ︷︷ ︸
pn times

) = 1 + η(y−p
n

(x− x−1)ypn − (x− x−1)).

(See [8, Lemma 4.1.1].) Thus, by [17, Proposition III.4.18],

y−p
n

(x− x−1)ypn − (x− x−1) ∈ ∆(H, 〈z〉).

Let H̄ = H/〈z〉. Then working in FH̄,we have

(ȳ)−p
n

(x̄− (x̄)−1)(ȳ)p
n − (x̄− (x̄)−1) = 0̄.

This leaves two possibilities. If (ȳ)−p
n
x̄(ȳ)p

n
= (ȳ)−p

n
(x̄)−1(ȳ)p

n
, then (x̄)2 =

1̄. Otherwise, (ȳ)−p
n
x̄(ȳ)p

n
= x̄, in which case x̄ and (ȳ)p

n
commute. Let us

assume that (x̄)2 = 1̄, and prove that the same conclusion is reached.
Assuming that H̄ is not the trivial group (for otherwise, there is nothing

to do), we note that H̄ is still nilpotent and, therefore, has a nontrivial central
element. Suppose there is a central element v̄ with (v̄)2 6= 1̄. Then replacing
x with xv, we see that (x̄v̄)2 6= 1̄, and therefore (ȳ)p

n
commutes with x̄v̄, and

hence with x̄. Thus, we may assume that the centre of H̄ has exponent 2.
By [16, 5.2.22], H̄ is a 2-group. If ū ∈ H̄ has order greater than 2, then by
our earlier discussion, ū commutes with (t̄)p

n
, for every t̄ ∈ H̄. But as H̄ is

a 2-group, this means that ū is central, and we can let v = u. If no such ū
exists, then H̄ has exponent 2, in which case it is abelian.

Therefore, in any case, we have (ȳ)−p
n
x̄(ȳ)p

n
= x̄. In other words,

y−p
n
xyp

n
= xzi, for some integer i. Conjugating by yp

n
an additional p − 1

times, we get y−p
n+1
xyp

n+1
= xzip = x, proving our claim.

As n was independent of the choice of a and b, we now know that G/ζ is
a p-group of bounded exponent. By a theorem of Schur (see [17, Corollary
I.4.3]), we see that G′ is a p-group of bounded exponent.

We claim that G′ is, in fact, finite. Suppose otherwise. Let P be the
set of p-elements in G. As G′ ⊆ P , we know that P is a subgroup of
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G. Notice that ∆(G,P ) is a nil ideal. Indeed, any element of the ideal
is surely in ∆(K,K ∩ P ), where K is some finitely generated subgroup of
G. But by Lemma 1, K is nilpotent, hence K ∩ P is finitely generated and,
therefore, finite. By [8, Lemma 1.1.1], ∆(K,K∩P ) is a nilpotent ideal. Thus,
∆(G,P ) is nil. It is also invariant under the classical involution. Thus, by
Lemma 6, ∆(G,P ) satisfies a polynomial identity, f(x1, . . . , xn) = 0. But as
G′ ≤ P , we note that FG/∆(G,P ) is commutative. Therefore, FG satisfies
the polynomial identity f([x1, x2], . . . , [x2n−1, x2n]) = 0. By Lemma 5, G has
a p-abelian normal subgroup A of finite index.

As we have just observed, ∆(G,A′) is nilpotent. Thus, by Lemma 7, the
group Un(F (G/A′)) is bounded Engel and solvable. Also, to prove our claim,
it is sufficient to show that (G/A′)′ = G′/A′ is finite. Therefore, let us assume
that A is abelian. Lemma 2 then presents us with an infinite direct product
A1 × A2 × · · · of nontrivial finite normal p-subgroups in G. As Un(FG) is
solvable, let us say that it satisfies (x1, . . . , x2n)o = 1. Then letting ηi = Âi

and taking any gi ∈ G, we observe that 1 + ηi(gi − g−1i ) ∈ Un(FG). Thus,

1 = (1 + η1(g1 − g−11 ), . . . , 1 + η2n(g2n − g−12n ))o

= 1 + η1 · · · η2n [g1 − g−11 , . . . , g2n − g−12n ]o

(see [8, Lemma 6.2.4]).
Now, letting B = A1 × · · · × A2n , we have η1 · · · η2n = B̂. Thus, [g1 −

g−11 , . . . , g2n − g−12n ]o annihilates B̂ and, as we have seen before, this means
that [g1 − g−11 , . . . , g2n − g−12n ]o ∈ ∆(G,B). Letting Ḡ = G/B, we have

[ḡ1 − ḡ−11 , . . . , ḡ2n − ḡ−12n ]o = 0̄

for all ḡi ∈ Ḡ. As (FḠ)− consists of the linear combinations of the terms
ḡ − ḡ−1, we conclude that (FḠ)− is Lie solvable.

If we can show that (G/B)′ = G′B/B is finite, then as B is finite, we
will know that G′ is finite as well. Therefore, we will replace G with Ḡ and
assume that FG is Lie solvable. Now, as G is locally nilpotent, its 2-elements
form a normal subgroup Q. Also, (F (G/Q))− must be Lie solvable. Thus, by
Lemma 8, (G/Q)′ is a finite p-group. But (G/Q)′ = G′Q/Q ' G′/(G′ ∩Q).
However, as G′ is a p-group, G′∩Q = 1. Thus, G′ is a finite p-group, proving
our claim.

We have now deduced that G is locally nilpotent and p-abelian, say |G′| =
pm. If L is any finitely generated subgroup of G, then L is nilpotent and
L′ ≤ G′. In particular, there is a fixed upper bound upon the nilpotency
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class of any such L, as the terms in the lower central series must get strictly
smaller until they reach 1. So let us say that any such L must satisfy

(L,L, . . . , L︸ ︷︷ ︸
r times

) = 1.

If G does not satisfy this same identity, then choose g1, . . . , gr ∈ G such that
(g1, . . . , gr) 6= 1. Then letting L = 〈g1, . . . , gr〉, we observe that L does not
satisfy the identity either. This gives us a contradiction. Therefore, G is
indeed nilpotent and p-abelian. The proof is complete.

When FG is not modular, we can use essentially the same proof as in
[10].

Proof of Theorem 2. It again suffices to show that (1) implies (3). But here,
nearly all of the work was done in [10]. Indeed, we notice that Lemmas 6,
7 and 8 in [10] all work just as well if each instance of “nilpotent” in the
statement is replaced with “locally nilpotent”. Furthermore, [10, Lemma 9]
holds for any group identity. Now, we follow the proof of [10, Theorem 3]
and deduce that the torsion elements of G form a central subgroup T . But
Lemma 1 tells us that G/T is nilpotent. Thus, G is nilpotent, and we are
finished.
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