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Abstract. It has been proved in [10] that the unique viscosity solution of

λuλ +H(x, dxuλ) = c(H) in M, (*)

uniformly converges, for λ→ 0+, to a specific solution u0 of the critical equation

H(x, dxu) = c(H) in M,

where M is a closed and connected Riemannian manifold and c(H) is the critical
value. In this note, we consider the same problem for λ → 0−. In this case,
viscosity solutions of equation (*) are not unique, in general, so we focus on
the asymptotics of the minimal solution u−λ of (*). Under the assumption that

constant functions are subsolutions of the critical equation, we prove that the u−λ
also converges to u0 as λ → 0−. Furthermore, we exhibit an example of H for
which equation (*) admits a unique solution for λ < 0 as well.

1. Introduction and main results

Let M be a connected, closed smooth Riemannian manifold and H : T ∗M → R
a C3 Tonelli Hamiltonian, where Tonelli refers to the fact that H is strictly convex
and superlinear with respect to p. We consider the Hamilton-Jacobi equation:

−λu+H(x, dxu) = c(H) in M, (Aλ)

where λ is a positive parameter and c(H) is the critical value, given by [9]

c(H) = inf
u∈C∞(M,R)

sup
x∈M

H(x, dxu).

We are interested in understanding the asymptotics of the solution(s) to (Aλ) as
λ → 0+. The problem is well understood when λ → 0−, see [10]: when λ < 0, in
fact, equation (Aλ) admits a unique viscosity solution and the latter converges, as
λ→ 0−, to a specific solution of the associated critical equation

H(x, dxu) = c(H) in M. (A0)

The interest of the result relies on the fact that the critical equation (A0) admits
infinite solutions, even up to additive constants in general. We also refer the reader
to [7, 10,15,16,18,19,23,30] for related results.

When λ > 0, the uniqueness of the viscosity solution to (Aλ) fails. For example,
see [27, Example 1.1], the function u1 ≡ 0 and the 1–periodic function u2 satisfying
u2(x) = x2/2 for x ∈ [−1/2, 1/2] are both viscosity solutions of the equation

−u(x) +
1

2
|u′(x)|2 = 0, x ∈ T1 := R/Z.
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Due to this nonuniqueness phenomenon, we will consider the vanishing discount
problem for the minimal viscosity solutions of (Aλ). More precisely, let S−λ be the
set of viscosity solutions of (Aλ) and denote by

u−λ (x) := min
v∈S−λ

v(x).

The function u−λ is a Lipschitz continuous viscosity solution of (Aλ) as well, see [27,
Theorem 1.2]. The asymptotic convergence is established under the assumption that
constant functions are subsolution of the critical equation (A0).

Theorem 1.1. Let us assume that H(x, 0) ≤ c(H) for every x ∈ M . Then u−λ
converges to u−0 uniformly on M as λ → 0+, where u−0 is the unique viscosity
solution of (A0) such that u−0 ≡ 0 on the projected Aubry set A associated with
(A0).

We point out that u−0 is the same function that we obtain when we study the
asymptotics of the solutions of (Aλ) for λ→ 0−, see [10] or Theorem 2.8 below.

When (Aλ) has a unique viscosity solution for each λ < 0, Theorem 1.1 yields in
particular that this solution converges to u−0 uniformly on M as λ→ 0+. It is worth
mentioning that uniqueness of viscosity solutions of (Aλ) still holds under certain
dynamical assumption. For example, the equation

−λu+
1

2
|dxu|2 + U(x) = c, x ∈ T1 := R/Z, λ > 0, (ED)

where U : T1 → R is of class C3 and has a unique maximum point x0 with U(x0) = c
and U ′′(x0) < 0, has a unique viscosity solution, when λ > 0 is small enough, see
Section 4 below.

By [27, Proposition 2.8], v is a backward (resp. forward) weak KAM solution of
equation (Aλ) if and only if −v is a forward (resp. backward) weak KAM solution
of equation:

λu+H(x,−dxu) = c(H) in M, (Bλ)

where backward weak KAM solutions and viscosity solutions are the same. The
same holds for λ = 0 as well.

Let S+
λ be the set of forward weak KAM solutions of (Bλ) and denote

u+
λ (x) := sup

v∈S+λ

v(x).

Based on the correspondence between viscosity solutions of (Aλ) and forward weak
KAM solutions of (Bλ), Theorem 1.1 is equivalent to the following

Theorem 1.2. Let us assume that H(x, 0) ≤ c(H) for every x ∈ M . Then u+
λ

converges to u+
0 uniformly on M as λ → 0+, where u+

0 is the unique forward weak
KAM solution of

H(x,−dxu) = c(H) in M (B0)

such that u+
0 ≡ 0 on the projected Aubry set Ǎ associated with (B0).

We point out that Ǎ = A, as we will see in Section 2.
Our analysis is based on an extension of some aspects of Aubry-Mather the-

ory to contact Hamiltonian systems, as developed in [25–28], for which discounted
Hamilton-Jacobi equations serve as special models. Other output in this vein can
be found in a series of papers including [4, 5, 21,22,29].
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The condition that constant functions are subsolutions of the critical equation
(A0), under which the asymptotic convergence is established, is for instance satisfied
whenever the Hamiltonian H is reversible, i.e. H(x, p) = H(x,−p) for all (x, p) ∈
T ∗M , see for instance Proposition 4.1 below. The model example is the mechanical

Hamiltonian H(x, p) = |p|2x
2 + U(x).

Another example is provided by the Mañé’s Hamiltonian H(x, p) := 1
2 |p|

2
x +

〈p,X〉x, where X : M → TM is a smooth vector field and 〈·, ·〉x denotes the stan-
dard inner product in T ∗xM . Clearly, constant functions are solutions of the equation
H(x, dxu) = 0 in M .

Other examples of Hamiltonians for which constant functions are critical subsolu-
tions can be obtained in the following way: according to [2], any C3–Tonelli Hamil-

tonian H admits a C1,1–critical subsolution ϕ. The new Hamiltonian H̃(x, p) :=

H(x, dxϕ+ p) satisfies H̃(x, 0) ≤ c(H) = c(H̃) for every x ∈M . In order to apply

our results to H̃, we need the latter to be of class C3, meaning we need the exis-
tence of a critical subsolution of class C4 on M . This is true under proper dynamical
assumptions, see [3], but it is not a general fact, see [2, Appendix A].

2. Generalities

In this paper, we assume the Hamiltonian H : T ∗M → R to be of class C3 and
to satisfy the following assumptions:

(H1) (strict convexity)
∂2H

∂p2
(x, p) is positive definite as a quadratic form

on T ∗xM , for every x ∈M ;
(H2) (superlinearity)

inf
x∈M

H(x, p)

|p|x
→ +∞ as |p|x → +∞.

We will denote by L : TM → R the Lagrangian associated with H via the Fenchel
transform. The Lagrangian L is of class C3 and satisfies assumptions analogous to
(H1)-(H2). We point out that the C3–regularity is only required in order to apply
the results of [25–28].

Let H be a Hamiltonian satisfying the above assumptions and let us consider an
Hamilton–Jacobi equation of the form

λu+H(x,−dxu) = a in M, (2.1)

where a ∈ R and λ ≥ 0. For the notion of viscosity (sub-, super-) solution of (2.1),
we refer to [1]. Viscosity (sub-, super-) solutions will be always assumed continuous
in the sequel, with no further specification. Set Ȟ(x, p) := H(x,−p) and denote by
Ľ the associated Lagrangian.

2.1. Subsolutions and the critical value. Due to conditions (H1)-(H2), the fol-
lowing equivalence holds, see for instance [10,11,13] and references therein.

Proposition 2.1. Let λ ≥ 0 and v ∈ C(M,R). The following are equivalent facts:

(i) v is a viscosity subsolution of (2.1);
(ii) v ∈ Lip(M,R) and it is an almost everywhere subsolution of (2.1), i.e.

λv(x) +H(x,−dxv) ≤ a for a.e. x ∈M ;
3



(iii) for every absolutely continuous curve γ : [t1, t2]→M we have

eλt2v(γ(t2))− eλt1v(γ(t1)) ≤
∫ t2

t1

eλs
(
Ľ(γ(s), γ̇(s)) + a

)
ds. (2.2)

Let γ : [t1, t2] → R be a curve for which (2.2) holds with an equality for a
subsolution v of (2.1). When v is differentiable at x = γ(a), we have that γ is the
projection on M of an integral curve of the discounted flow generated by{

ẋ = ∂Ȟ
∂p (x, p),

ṗ = −∂Ȟ
∂x (x, p)− λp.

(DH)

Namely, γ(t) = π
(
Φ̌t−a
λ (x, dxv)

)
for all t ∈ [t1, t2], where π : T ∗M →M denotes the

standard projection and Φ̌t
λ denotes the discounted flow generated by (DH).

When λ > 0, equation (2.1) admits a unique solution for every a ∈ R. When
λ = 0, on the other hand, there exists a a unique real constant c(Ȟ), hereafter
called critical, for which the equation

H(x,−dxu) = c(Ȟ) in M

admits viscosity solutions. Such a critical constant c(Ȟ) is also characterized as
follows:

c(Ȟ) = min{a ∈ R | ∃ v ∈ Lip(M,R) such that Ȟ(x, dxv) ≤ a for a.e. x ∈M}.
(2.3)

Since v ∈ Lip(M,R) is an a.e. subsolution of Ȟ(x, dxv) = a in M if and only if −v is
an a.e. subsolution of H(x, dxv) = a in M , it is clear from (2.3) that c(Ȟ) = c(H).

2.2. Forward weak KAM solutions and minimizing sets. Let Ľ : TM → R
denotes the Lagrangian associated with Ȟ via the Fenchel transform. The following
definition is an adaptation to the case of discounted equations of the notion of
forward weak KAM solutions, first introduced by Fathi [12] for the non-discounted
Hamilton-Jacobi equation and subsequently generalized in [27, Definition 2.2] for
fairly general contact Hamiltonian systems.

Definition 2.2. A function v ∈ C(M,R) is called a forward weak KAM solution of
(Bλ) if

(i) for each continuous piecewise C1 curve γ : [t1, t2]→M , we have

eλt2v(γ(t2))− eλt1v(γ(t1)) ≤
∫ t2

t1

eλs
(
Ľ(γ(s), γ̇(s)) + c(H)

)
ds; (2.4)

(ii) for each x ∈ M , there exists a C1 curve γ : [0,+∞) → M with γ(0) = x
such that

eλtv(γ(t))− v(x) =

∫ t

0
eλs
(
Ľ(γ(s), γ̇(s)) + c(H)

)
ds for all t > 0. (2.5)

Let Ľλ(x, ẋ, u) := −λu+ Ľ(x, ẋ). Curves satisfying (2.5) are called (v, Ľλ, c(H))-
calibrated curves. We denote by S+

λ the set of forward weak KAM solutions of (Bλ).
Based on the forward Lax-Oleinik semigroup introduced in [28], we have

Ť+
t,λϕ(x) = sup

γ(0)=x

{
eλtϕ(γ(t))−

∫ t

0
eλs
(
Ľ(γ(s), γ̇(s)) + c(H)

)
ds

}
, (2.6)
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Let us denote by uλ the unique viscosity solution of (Bλ). The following propo-
sition will be employed to show uniqueness of viscosity solutions to(ED).

Proposition 2.3 ( [27]). Let v ∈ S+
λ . The following holds:

(i) Denote by Iλv := {x ∈ M | v(x) = uλ(x)}. Then both v and uλ are of class
C1,1 on Iλv .

(ii) Denote by Ĩλv := {(x, p) ∈ T ∗M | v(x) = uλ(x), p = dxv = dxuλ}. Then Ĩλv
is a non-empty and compact invariant set by the discounted flow Φ̌t

λ generated

by Ȟ. Furthermore, if we denote by

(x(t), p(t)) := Φ̌t
λ(x0, p0) for all t ∈ R

then for each (x0, p0) ∈ Ĩλv , we have p(t) = dx(t)uλ for each t ∈ R.

(iii) Given x0 ∈M , let γ : [0,+∞)→M be a (v, Ľλ, c(H))-calibrated curve with

γ(0) = x0. Let p0 := ∂Ľ
∂ẋ (x0, γ̇(0+)), where γ̇(0+) denotes the right derivative

of γ(t) at t = 0. Then dγ(t)v exists for every t > 0 and

(γ(t), dγ(t)v) = Φ̌t
λ(x0, p0).

Furthermore ω(x0, p0) ⊆ Ĩλv , where ω(x0, p0) denotes the ω-limit set of
(x0, p0) with respect to the discounted flow Φ̌t

λ.

Let w be a Lipschitz continuous function and set

Gw := {(x, p) ∈ T ∗M | w is differentiable at x, p = dxw }.
By [27, Theorem 1.1], Guλ and Gv for each v ∈ S+

λ are backward and forward

invariant by Φ̌t
λ, respectively. Define

Ãλ :=
⋂
t≥0

Φ̌−tλ (Guλ) , Aλ := π
(
Ãλ
)
, (2.7)

where π : T ∗M → M denotes the standard projection. The sets Ãλ and Aλ are
called Aubry and projected Aubry set associated with Ȟλ−c(H) where Ȟλ(x, p, u) :=

λu + Ȟ(x, p), respectively. According to [27, Theorem 1.1], the set Ãλ is invariant
under

(
Φ̌t
λ

)
t∈R. According to [27, Theorem 1.2], we have the following result.

Theorem 2.4. The limit limt→+∞ Ť
+
t,λuλ exists. Let

u+
λ := lim

t→+∞
Ť+
t,λuλ.

Then u+
λ = Ť+

t,λu
+
λ for each t ≥ 0. Moreover, the following holds:

(i) u+
λ is the maximal forward weak KAM solution of (Bλ);

(ii) uλ ≥ u+
λ in M and uλ = u+

λ on Aλ;

(iii) Ãλ = Ĩλ
u+λ

and Aλ = Iλ
u+λ

.

Let v ∈ S+
λ . We will call Mather measure associated with v any Borel Φ̌t

λ-invariant

probability measures supported in Ĩλv . We shall denote by Mv the set of such

measures. Since Ĩλv is a non-empty and compact invariant set, Krylov-Bogoliubov’s
theorem, see [20, §II, Theorem I], guarantees that Mv is non-empty. The Mather
set associated with v is given by

M̃λ
v =

⋃
µ∈Mv

supp(µ),
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where supp(µ) denotes the support of µ. A classical argument shows that there

exists ν ∈Mv such that M̃λ
v = supp(ν), yielding that M̃λ

v is also a non-empty and
compact invariant set. Indeed, it suffices to define ν as a convex combination of a
dense sequence of measures in Mv. Following [27], the Mather set of (DH) is defined
as

M̃λ := M̃λ
u+λ
, (2.8)

where u+
λ denotes the maximal forward weak KAM solution of (EI). Such a Mather

set M̃λ is maximal, in the sense that M̃λ
v ⊆ M̃λ

u+λ
and v = uλ on Mλ

v for each

v ∈ S+
λ . This is a straightforward consequence of the fact that Ĩλv ⊆ Ĩλu+λ

and v = uλ

on Iλv in view of Proposition 2.3 and Theorem 2.4.

The following holds.

Proposition 2.5. Let v ∈ S+, x0 ∈ M and γ : [0,+∞) → M be a (v, Ľλ, c(H))-

calibrated curve with γ(0) = x0. Let p0 := ∂Ľ
∂ẋ (x0, γ̇(0+)), where γ̇(0+) denotes the

right derivative of γ(t) at t = 0. Then

ω(x0, p0) ∩ M̃λ
v 6= ∅,

where ω(x0, p0) denotes the ω-limit set of (x0, p0) with respect to the contact Hamil-
tonian flow Φ̌t

λ.

Proof. Let us assume by contradiction that ω(x0, p0) ∩ M̃λ
v = ∅. Since ω(x0, p0)

is a non-empty, compact and invariant subset of Ĩλv , see Proposition 2.3, by apply-
ing Krylov-Bogoliubov’s theorem [20, §II, Theorem I] we would find a new Mather

measure supported on ω(x0, p0), in contradiction with the very definition of M̃λ
v . �

As a consequence, we derive the following result.

Proposition 2.6. Let v1, v2 be forward weak KAM solutions of (Bλ). If v1|O = v2|O
, where O denotes a neighborhood of Mv1, then v1 ≤ v2 in M .

Proof. Pick x0 ∈ M and let γ : [0,+∞) → M be a (v1, Ľλ, c(H))-calibrated curve

with γ(0) = x0. Let p0 := ∂Ľ
∂ẋ (x0, γ̇(0+)), where γ̇(0+) denotes the right derivative

of γ(t) at t = 0.
Based on Proposition 2.5, there exists a t > 0 such that γ(t) ∈ O. From the

hypothesis that v1 = v2 on O we infer that v1(γ(t)) = v2(γ(t)). From the fact that
vi = T+

t,λvi on M for i ∈ {1, 2} and (2.6) we get

eλtv1(γ(t))− v1(x0) =

∫ t

0
eλs
(
Ľ(γ(s), γ̇(s)) + c(H)

)
ds ≥ eλtv2(γ(t))− v2(x0),

yielding v1(x0) ≤ v2(x0) since v1(γ(t)) = v2(γ(t)). The assertion follows since x0

was arbitrarily chosen in M . �

2.3. Viscosity solutions of (B0). Viscosity solutions to equation (B0) are not
unique, even up to additive constants in general. A uniqueness set for equation (B0)
is given by the so-called projected Aubry set Ǎ: it is a closed subset of M that can
be characterized by the following property, see [13]:

y ∈ Ǎ iff any subsolution v of (B0) is differentiable at y. (A)

Since v is a subsolution of (B0) if and only if −v is a subsolution of (A0), we easily
derive that Ǎ = A, where A is the projected Aubry set associated with equation
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(A0). In the sequel, we will always write A in place of Ǎ. The following properties
hold, see for instance [12–14]:

Proposition 2.7.

(i) Let y ∈ A. Then H(y,−dyv) = c(H) and dyv = dyw for any pair v, w
of subsolutions to (B0).

(ii) Let y ∈ A. Then there exists a unique curve γ : R→ A ⊆ M with γ(0) = y
such that

v(γ(b))− v(γ(a)) =

∫ b

a

(
Ľ(γ(s), γ̇(s)) + c(H)

)
ds for every a < b,

for any subsolution v of (B0).
(iii) Let u, v be viscosity solutions of (B0). If u = v on A, then u = v on M .

We end this section by recalling the following result proved in [10], see Propositions
1.4 and 4.4 therein.

Theorem 2.8 ( [10]). For each λ > 0, let uλ be the viscosity solution of (Bλ). Let
us assume that H(x, 0) ≤ c(H) for every x ∈M . Then uλ ≥ 0 in M for every λ > 0
and uλ ↗ u0 uniformly on M as λ↘ 0, where u0 is the unique viscosity solution of
(B0) such that u0 ≡ 0 on A.

As a corollary we infer

Corollary 2.9. For each λ > 0, the function uλ is a viscosity subsolution of (B0).
In particular

(i) uλ ≡ 0 on A;
(ii) uλ is differentiable on A and dxuλ ≡ 0 on A.

Proof. From the fact that uλ ≥ 0 in M we get

H(x,−dxuλ) ≤ λuλ +H(x,−dxuλ) = c(H) in M

in the viscosity sense, namely uλ is a viscosity subsolution of (B0). Item (i) follows
from the inequality 0 ≤ uλ ≤ u0 on M and the fact that u0 ≡ 0 on A, while item
(ii) follows directly from Proposition 2.7 and the fact that any constant function is
a subsolution of (B0). �

3. Asymptotic convergence

This section is devoted to the proof of Theorem 1.2. We prove some preliminary
results first.

Lemma 3.1. The family {u+
λ }λ∈(0,1] is equi-bounded and equi-Lipschitz continuous.

Proof. First, we prove the equi-bounded character of {u+
λ }λ∈(0,1]. By Theorem 2.4,

u+
λ ≤ uλ on M for each λ ∈ [0, 1]. By Theorem 2.8, uλ converges uniformly to a

function u0 ∈ C(M,R), in particular there exists C > 0 such that ‖uλ‖∞ ≤ C for
each λ ∈ [0, 1]. It follows that the {u+

λ }λ∈(0,1] are equi-bounded from above. Let us

prove they are equi-bounded from below. By Proposition 2.3, we have u+
λ = Ť+

t,λu
+
λ

for each t ≥ 0. Take x0 ∈ Iu+λ = {x ∈ M | uλ(x) = u+
λ (x)}. Let α : [0, 1] → M be
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a geodesic connecting x to x0, parameterized by constant speed |α̇(s)| := d(x, x0) ≤
diam(M) for each s ∈ [0, 1]. Let

C ′ := max
x∈M,|ẋ|≤diam(M)

(
Ľ(x, ẋ) + c(H)

)
.

By (2.6),

u+
λ (x) = Ť+

1,λu
+
λ (x) ≥ eλuλ(x0)−

∫ 1

0
eλs
(
Ľ(α(s), α̇(s)) + c(H)

)
ds ≥ eλ

(
uλ(x0)− C ′

)
,

which implies u+
λ is bounded from below for each λ ∈ (0, 1]. Thus, there exists

K > 0 such that ‖u+
λ ‖∞ ≤ K for all λ ∈ (0, 1].

Next, we prove the equi-Lipschitz continuity. For each x, y ∈M , let β : [0, d(x, y)]→
M be a geodesic of length d(x, y), parameterized by arclength and connecting x to
y. Let

C ′′ := sup{Ľ(x, ẋ) + c(H) | x ∈M, ‖ẋ‖x = 1}.
In view of (2.4), we have

eλd(x,y)v(x)− eλd(x,y)v(y) ≤ v(y)(1− eλd(x,y)) +
C ′′

λ
(eλd(x,y) − 1),

which yields from 0 < λ ≤ 1 and 1− e−h ≤ h for all h ∈ R,

v(x)− v(y) ≤ v(y)(e−λd(x,y) − 1) +
C ′′

λ
(1− e−λd(x,y))

≤ (C ′′ +K)
1− e−λd(x,y)

λ
≤ (C ′′ +K)d(x, y).

We complete the proof by exchanging the roles of x and y. �

Next, we show the following result.

Proposition 3.2. Let us assume that H(x, 0) ≤ c(H) for every x ∈ M . Then
projected Aubry set A associated with (B0) is contained in Aλ for every λ > 0.

Remark 3.3. From the previous proposition and the fact that dxuλ ≡ 0 on A in
view of Corollary 2.9, we get in particular that

{(y, 0) ∈ T ∗M | y ∈ A} ⊆ Ãλ.

Proof. Let us fix λ > 0 and pick x ∈ A. According to Corollary 2.9, the function
uλ is differentiable at x, so (x, dxuλ) ∈ Guλ , and by Proposition 2.7 there exists a
unique curve γ : R→ A ⊆M such that γ(0) = x and

uλ(γ(b))− uλ(γ(a)) =

∫ b

a

(
Ľ(γ(s), γ̇(s)) + c(H)

)
ds for all a < b.

In particular,

Ľ(γ(s), γ̇(s)) + c(H) = 〈dγ(s)uλ, γ̇(s)〉 =
d

ds
uλ(γ(s)) for all s ∈ R.

By multiplying the above equality by eλs and by integrating (by parts) in (a, b) we
get∫ b

a
eλs
(
Ľ(γ(s), γ̇(s)) + c(H)

)
ds = eλbuλ(γ(b))− eλauλ(γ(a))−

∫ b

a

(
eλs
)′
uλ(γ(s)) ds,
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hence, by taking into account that γ(R) ⊆ A and uλ ≡ 0 on A, we get

eλbuλ(γ(b))− eλauλ(γ(a)) =

∫ b

a
eλs
(
Ľ(γ(s), γ̇(s)) + c(H)

)
ds.

This shows that γ is the projection on M of an integral curve of the flow Φ̌t
λ generated

by (DH), i.e. γ(t) = π
(
Φ̌t
λ(x, dxuλ)

)
for all t ∈ R. In particular, we get that

x ∈ π
(
Φ̌−tλ (Guλ)

)
for all t ≥ 0, i.e. x ∈ Aλ, as it was asserted. �

Proof of Theorem 1.2. In view of Lemma 3.1 and of Ascoli-Arzelá’s theorem, it is
enough to show that, if u+

λn
converges to u∗ uniformly on M as λn → 0+, then

u∗ = u+
0 on M . In view of the correspondence between forward and backward,

or viscosity, solutions, see [27, Proposition 2.8], we know that −u+
λn

is a viscosity

solution of (Aλ). By the stability of the notion of viscosity solution, −u∗ is a
viscosity solution of (A0), which means that u∗ is a forward weak KAM solution
of (B0). Furthermore, by Corollary 2.9, Theorem 2.4 and Proposition 3.2, we know
that u+

λn
≡ 0 on A, hence u∗ ≡ 0 on A. Hence, −u∗ and −u+

0 are both viscosity

solutions of (A0) with −u∗ ≡ −u+
0 on A. We conclude that u∗ ≡ u+

0 on M by
Proposition 2.7. �

4. On the example (ED)

By the recalled equivalence between viscosity, or backward weak KAM, solutions
of (Aλ) and forward solutions of (Bλ), see [27, Proposition 2.8], it suffices to show
the uniqueness of the forward weak KAM solution of

λu+
1

2
|dxu|2 + U(x) = c, x ∈ T1 := R/Z, λ > 0, (EI)

where T1 is a flat circle with the standard metric. For any two points x, y ∈M , we
use |x− y| to denote the distance induced by the flat metric on T1. We recall that
U : T1 → R is of class C3 and has a unique maximum point x0 with U(x0) = c,
which is furthermore assumed to be non-degenerate, i.e. U ′′(x0) < 0. When U(x) =
cos(2πx), (EI) corresponds to the dissipative pendulum.

To obtain this uniqueness result, we need some preliminary material that we will
develop in the next section.

4.1. Some preliminary facts. We start by the following known fact about re-
versible Hamiltonians.

Proposition 4.1. Let us assume that H is reversible, i.e. H(x, p) = H(x,−p) for
all (x, p) ∈ T ∗M . Then

(i) H(x, p) > H(x, 0) for every x ∈M and |p| 6= 0, moreover c(H) = maxx∈M H(x, 0),
in particular, H(x, 0) ≤ c(H) for every x ∈M ;

(ii) the projected Aubry set A associated with (A0) is given by

A = {y ∈M | H(y, 0) = c(H)};

Proof. Let us prove (i). Since H is reversible, we have ∂H
∂p (x, p) = −∂H

∂p (x,−p) for

each (x, p) ∈ T ∗M . In particular, ∂H
∂p (x, 0) = 0. Combining with ∂2H

∂p2
(x, p) > 0, we

have for each x ∈M ,

H(x, p) > H(x, 0) = min
p∈T ∗xM

H(x, p) for all x ∈M and p ∈ T ∗xM \ {0}. (4.1)
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Let us set c := maxx∈M H(x, 0). Since any constant function v on M is a subsolution
of H(x, dxv) = c in M , we have c(H) ≤ c in view of (2.3). On the other hand, if v
is subsolution of H(x, dxv) = c(H) in M , we have in particular

H(x, 0) = min
p∈T ∗xM

H(x, p) ≤ H(x, dxv) ≤ c(H) for a.e. x ∈M ,

yielding c = maxx∈M H(x, 0) ≤ c(H). This shows that maxx∈M H(x, 0) = c(H).
(ii) Let us denote by E the set appearing at the right-hand side of the equality in

(ii). The function v0 ≡ 0 satisfies H(x, dxv0) ≤ c(H) for every x ∈M , with a strict
inequality holding when x 6∈ E . This shows that A ⊆ E in view of Proposition 2.7.
Let now v be a subsolution of H(x, dxv) = c(H) in M . Then the Clarke generalized
gradient ∂cv(x) of v at x satisfies ∂cv(x) ⊆ {p ∈ T ∗xM | H(x, p) ≤ c(H)} for every
x ∈ M , see for instance [24]. In particular, it is a singleton whenever x ∈ E . This
implies that v is (strictly) differentiable at any x ∈ E , see [8, Proposition 2.2.4]. This
show that E ⊆ A by (A). �

We focus now on the properties enjoyed by the Mather set M̃λ associated with
equation (EI). We start with a general fact for reversible Hamiltonians.

Proposition 4.2. Let us assume that H is reversible and let µ be a Φ̌t
λ-invariant

probability measure on T ∗M . Then

supp(µ) ⊆ {(x, 0) ∈ T ∗M | x ∈M}.

Proof. Fix (x, p) ∈ T ∗M . For every t ∈ R we have

d

dt
H
(
Φ̌t
λ(x, p)

)
= −λ〈p(t), ∂Ȟ

∂p

(
Φ̌t
λ(x, p)

)
〉 ≤ 0

by convexity, with equality holding if and only if p(t) = 0 in view of (4.1). If µ is
Φ̌t
λ-invariant, we infer

0 =

∫
T ∗M

H
(
Φ̌1
λ(x, p)

)
dµ(x, p)−

∫
T ∗M

H
(
Φ̌t
λ(x, p)

)
dµ(x, p)

=

∫ 1

0

(∫
T ∗M

d

ds
H
(
Φ̌s
λ(x, p)

)
dµ(x, p)

)
ds = −λ

∫
T ∗M
〈p, ∂Ȟ

∂p
(x, p) dµ(x, p),

yielding

〈p, ∂Ȟ
∂p

(x, p)〉 = 0 for µ–a.e. (x, p) ∈ T ∗M .

The assertion follows in view of (4.1). �

We exploit the previous result to derive the following information.

Proposition 4.3. Let M̃λ be the Mather set associated with equation (EI), where
U : T1 → R is of class C3 and has a unique maximum point x0 with U(x0) = c,
which is furthermore assumed to be non-degenerate, i.e. U ′′(x0) < 0. Then (x0, 0)
is a hyperbolic fixed point for the discounted flow (DH) and, for λ > 0 small enough,

M̃λ = {(x0, 0)}.

Proof. The fact that (x0, 0) a hyperbolic fixed point for the discounted flow (DH) is

easily checked. For every fixed λ > 0, let us pick (xλ, 0) ∈ M̃λ and set (xλ(t), pλ(t)) :=
10



Φ̌s
λ(xλ, 0). By taking into account Proposition 4.2 together with M̃λ ⊆ Ĩuλ and

Proposition 2.3, we infer that

0 = pλ(t) = dxλ(t)uλ, ẋλ(t) = pλ(t) = 0, 0 = ṗλ(t) = −∂U
∂x

(xλ(t), pλ(t))

for all t ∈ R, namely xλ(t) = xλ for all t ∈ R and xλ is a critical point for U .
Furthermore, the static curve xλ(t) = xλ for all t ∈ R is optimal for uλ(xλ), i.e. for
any a ≤ b,

eλbuλ(xλ(b))− eλauλ(xλ(a)) =

∫ b

a
eλs
(
Ľ(xλ(s), ẋλ(s)) + c

)
ds.

By taking b = 0 and a→ −∞ we get

uλ(xλ) =

∫ 0

−∞
eλs
(
Ľ(xλ, 0) + c

)
ds =

c− U(xλ)

λ
≥ 0.

Since uλ is converging to u0 as λ → 0+ by Theorem 2.8, we necessarily have that
xλ → x0 as λ → 0. Since x0 is an isolated critical point by the non-degeneracy
condition, we infer that there exists λ0 > 0 such that xλ = x0 for every λ ≤ λ0. �

Remark 4.4. In the dissipative pendulum case, i.e. when U(x) = cos(2πx), the
statement of Proposition 4.3 holds for any λ > 0. This follows as a consequence
of [21, Example 2] together with Theorem 2.4-(iii). This is not true for a potential
U of more general form. In fact, let w(x) be a smooth function on T1. Let x0 be
its unique global minimum point with w(x0) = 0, w′′(x0) > 0 and let x1 be another
critical point such that w′(x1) = 0 and w(x1) > 0. Set U(x) := −w(x) − 1

2 |dxw|
2.

Then x0 is the unique global maximum point of U(x) with U(x0) = 0, U ′′(x0) < 0.
For λ0 = 1, w is a smooth solution (hence both forward and backward weak KAM
solution) of

λ0u+
1

2
|dxu|2 + U(x) = 0.

However, one has {(x0, 0), (x1, 0)} ⊆ M̃λ0.

4.2. Uniqueness of the forward weak KAM solution. Let us now come back
to the analysis of equation (EI). In view of Proposition 4.3, the uniqueness of the
forward weak KAM solution to equation (EI) is a consequence of the following more
general result.

Proposition 4.5. Let H : T ∗T1 → R be a C3–Hamiltonian, satisfying hypotheses
(H1)-(H2). Let us assume that the Mather set M̃λ associated with the discounted
Hamilton-Jacobi equation

λu+H(x,−dxu) = c(H) in T1 (4.2)

reduces to {(x0, 0)} and that (x0, 0) is a hyperbolic fixed point for the discounted
flow generated by (DH). Then equation (4.2) admits a unique forward weak KAM
solution.

Proof. Let us denote by S+
λ be the set of all forward weak KAM solutions of (4.2).

For each v ∈ S+
λ , we have M̃λ

v ⊆ M̃λ. Since M̃λ
v is nonempty, we necessarily have

M̃λ
v = {(x0, 0)}.

This means v(x0) = 0 and dx0v = 0.
11



We denote for simplicity, the stable submanifold of (x0, 0) with respect to Φ̌t
λ by

W s(x0, 0) := {(x, p) ∈ T ∗T1 | lim
t→+∞

d(Φ̌t
λ(x, p), (x0, 0)) = 0},

where d(·, ·) is a Riemannian metric on T ∗T1. Given ε > 0, we denote the local
stable submanifold of (x0, 0) with respect to Φ̌t

λ by

W s
ε (x0, 0) := {(x, p) ∈W s(x0, 0) | d(Φ̌t

λ(x, p), (x0, 0)) < ε, ∀t ≥ 0}.

Since Ȟ ∈ C3, by the stable manifold theorem [17], there exist δ > 0, h ∈ C2 with
h(x0) = 0 such that

[x0 − δ, x0 + δ] ⊆ π
(
W s
ε (x0, 0), W s

ε (x0, 0) = {(x, h(x)) | x ∈ [x0 − δ, x0 + δ]},

where π : T ∗T1 → T1 denotes the standard projection.
For each v ∈ S+

λ , v is Lipschitz continuous. Furthermore, it is semiconvex. Indeed,
−v is a solution to

H(x, dxu) = c− λv(x) in T1,

so it is semiconcave in view of the results in [6]. Denote D be the set of all
differentiable points of v. Pick x̄ ∈ D ∩ (x0 − 1, x0) and set p̄ := dx̄v. Let
(x(t), p(t)) := Φ̌t

λ(x̄, p̄) for all t ≥ 0. By Proposition 2.3, dx(t)v = p(t) for all
t ≥ 0. In view of Proposition 2.5, (x0, 0) ∈ ω(x̄, p̄). Thus, there exists a diverging
sequence (tn)n such that either x(tn) → x0 or x(tn) → x0 − 1 as tn → +∞. We
assert that the map t 7→ x(t) is monotone in [0,+∞). Let us assume for definiteness
that x(tn) → x0. We claim that ẋ(t) ≥ 0 for all t > 0. In fact, let us assume by
contradiction that ẋ(t0) < 0 for some t0 > 0. By the fact that x(tn)→ x0, one can
find t1 > t0 such that x(t0) = x(t1) =: x̂ and ẋ(t1) ≥ 0, a contradiction to the fact
that

ẋ(t0) =
∂Ȟ

∂p
(x̂, dx̂v) = ẋ(t1).

The monotonicity of t 7→ x(·) implies that x(t)→ x0. Furthermore, v is differentiable
at x0 and at x(t) for every t > 0. By semiconvexity, we infer that dx(t)v → dx0v = 0
as t→ +∞, i.e.

Φ̌t
λ(x̄, p̄)→ (x0, 0) as t→ +∞.

That implies (x̄, p̄) ∈W s(x0, 0). For each x̃ ∈ D∩ [x0− δ, x0 + δ], we have (x̃, dx̃v) ∈
W s
ε (x0, 0). Moreover, dxv = h on D∩ [x0− δ, x0 + δ]. Note that D has full Lebesgue

measure on T1. It follows that, for each x ∈ [x0 − δ, x0 + δ],

v(x) =

∫ x

x0

dyv(y)dy =

∫ x

x0

h(y)dy.

This shows dxv = h on [x0 − δ, x0 + δ].
For any v1, v2 ∈ S+

λ , we have v1(x0) = v2(x0) = 0 and dxv1 = dxv2 = h on
[x0 − δ, x0 + δ]. That yields v1 = v2 on [x0 − δ, x0 + δ]. By Proposition 2.6, v1 = v2

on T1, namely (4.2) has a unique forward weak KAM solution. �
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Dip. di Matematica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma,
Italy

Email address: davini@mat.uniroma1.it

Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
Email address: linwang@tsinghua.edu.cn

14


