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ABSTRACT 
The idea of the fusion of plane and solid geometry originated from projective and descriptive geometry, 
which worked with projections in space and sections. Different authors of textbooks (starting from 
Bretschneider in 1844 to Méray in 1874/1903; de Paolis in 1884; Lazzeri & Bassani in 1891, also translated 
into German by Treutlein in 1911) adopted this idea, mixing plane and solid considerations. For instance, 
the chapter on the properties of incidence also referred to the mutual position of a plane and a straight line, 
while homothety was defined in space and then on the plane. Pupils were supposed to have a better intuition 
of spatial relations when passing from space to plane, and to reason by analogy. Moreover, proofs could be 
presented of plane theorems using projections in space of simple known configurations. In the textbook of 
Lazzeri and Bassani we can see that one of the aims of the authors is to prove plane theorems with the help 
of considerations in space that allow to avoid part of the congruence axioms and the theory of proportions. 
This is not a novelty within history of mathematics, the development of conic sections is linked to this point, 
and Monge, too, used it in 1799. The question was also considered at the ICMI Congress of 1911—within 
the more general theme of the fusion of different branches of mathematics—by giving examples of 
successful textbooks (Fehr 1911; Barbin & Menghini 2013). This paper will discuss the methodological 
question of the fusion of plane and solid geometry bringing examples from different textbooks, and 
presenting some of the discussions on the subject, with particular reference to Italy, where there was even 
talk of a fusionist school (Borgato 2006 and 2016). 

1. Introduction 
This paper concerns the fusion of plane and solid geometry in the teaching of 
mathematics, that is the simultaneous use of plane and solid considerations when 
presenting and proving geometric properties at school. In Italy, at the turn of the 19th and 
20th century this methodological question was deeply debated and there was even talk of a 
“fusionist school” (Borgato 2006 and 2016). 

We will consider the history of mathematics education starting from about two 
centuries ago, in the era of Gaspard Monge. However, the method of “fusion” does not 
belong only to the history of mathematics education but to history of mathematics in 
general. Indeed, it was used already by Apollonius to determine plane properties of the 
conic sections. 

In 1911 the first plenary meeting of the International Commission on the Teaching of 
Mathematics (IMUK / ICMI / CIEM) was held in Milan (Italy). On this occasion a 
broader concept of fusion was discussed. The report of the discussion (Fehr 1911) was 
published in the Journal l’Enseignement Mathématique, which was at that time the official 
organ of the Commission. The report, based on an overview presented by Charles Bioche, 
refers to the teaching in various countries, and to the way in which they realize the 
different types of “fusion”: geometry and arithmetic, plane geometry and trigonometry, 
plane and solid geometry (which is of interest for us), solid and descriptive geometry 
(which, as we will see, has also some interest for our question).  



As to the fusion of plane and solid geometry, we read in the report (p. 469) that “the 
fusionists do not wait to have finished the treatment of all plane geometry before starting 
with spatial considerations” 1 , and that “generally the two teachings are separated, 
excluding the entrance classes, because of the programmes.  But “notable works appeared 
on geometric fusionism”. The mentioned textbooks are those written by the German 
Anton Bretschneider (1844), the French Charles Méray (1874/1903), and the Italians 
Giulio Lazzeri & Anselmo Bassani (1891). The report does not say very much about the 
educational pros or cons of the different of proposals.  

Concerning the fusion of solid geometry and descriptive geometry, the report notes that 
these teachings are generally separated, and often not given by the same teacher (the 
report refers mainly to Realschulen in German speaking countries). 

In the same number of the Journal we find a book review (Book review 1911) of 
Lazzeri & Bassani’s Elemente der Geometrie, the German edition of the textbook, 
translated by Peter Treutlein and published by Teubner. 

The review underlines that the idea of the fusion of plane and solid geometry is not new, 
since this methodology had already been presented in the Journal by “one of the main 
founders, Ch. Meray”. 

The first edition of his [Méray’s] book dates back to 1874, while the first Italian work – 
established on different bases – was published by De Paolis in 1884.  The present work 
broadly follows the order traced by De Paolis (Book review 1911, p. 429). 

The review lists the contents of the book but does not describe the methodology used. 
Rather, it seems aimed at proving the priority of Méray (who died in 1911) with respect to 
“fusionism”. 

But the important sentence in the review is “established on different bases”. What does 
it mean? 

We do not know what the author of the review was meaning, but surely we can 
distinguish between two kinds of approach: 

- a methodological/educational approach based on a “new order” of the content 
allowing a “neighbourhood” of analogous properties in plane and space (mainly the one of 
Bretschneider, but also of Méray and de Paolis, with some exceptions). We describe this 
approach in section 3.  

- a mathematical/foundational approach based on the proof of plane theorems by means 
of space configurations (mainly the one of Lazzeri & Bassani). 

This second approach is shown in the next chapter. 

2. Proofs by means of space configurations 
The link between plane and space dates back to the beginning of the history of conic 

sections, which are defined as plane sections of a solid. It is not only a question of 
definitions: their properties can be proved looking at their position with respect to the cone. 

 
2. 1 Apollonius 

One of the major works about conic sections is The Conics by Apollonius of Perga (3rd - 
2nd cent. B.C.). In Book 1, Proposition XI (ver Eecke 1963, p.22) we find a sort of 
“equation of the parabola”. 
                                                             
1 All the translations are by the author. 



The cone is defined by Apollonius as the set of straight lines that join a point A (the 
vertex) to the points of a circumference. It is therefore an oblique circular double cone. 
Fig. 1 (taken from Ver Eecke 1963, p.22) represents the case in which the cone’s section 
yields a parabola. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  
Figure 2 

 
To slightly simplify the proof, let us consider a right circular cone, where BC is the 

diameter of the base circumference. In Fig. 2 we consider 
EF ⊥ BC; H =  EF ∩ BC; VH ∥ AC. 

The plane EFV is therefore parallel to a generatrix of the cone and cuts it in a parabola. 
Now we chose any circumference whose diameter B’C’ is parallel to BC, and take MN 

on the circumference and on EFV so that MN ∥ EF and K = MN ∩ B’C’  
Euclid’s “geometric mean theorem” holds for triangle B’C’M: 

MK2=B’K▪KC’ 
What does it mean to find the equation of the parabola? We need a relation between 

two mutually perpendicular segments, in this case MK and KV, 𝑀𝐾  ⊥ 𝐾𝑉 , which 
correspond to our x and y. 

To find this relation Apollonius considers the similarities between VB’K and ABC, and 
between AVS and ABC, obtaining      
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In the previous formulas we replaced B’V by KV (two sides of an isosceles triangle, 

note that this is the only point in which we use the fact that the cone is a right cone) and 
VS by KC’ (two opposite sides of a parallelogram).  Substituting in the formula for the 
geometric mean theorem we obtain 

MK2 = 𝐾𝑉 ∙ 𝑉𝐴 ∙ !"
!"

!
  !  x2 = p ∙ y 



In the previous equality we have considered that MK and KV are variables which 
depend on the changeable circumference whose diameter is B’C’. All the rest is constant 
and depends on the cone and the point in which the plane of the parabola cuts the cone. 

The original proof is of course more difficult because Apollonius uses only proportions 
between geometric objects (for instance our p of the last equation corresponds to a 
segment –named Θ  in Fig. 1– with certain properties). Apollonius finds analogous 
relations for the ellipse and the hyperbola, but what is interesting for us is that starting 
from a space definition and considering (always in space) elementary geometric properties 
we find a relation between two segments in the plane. 

2. 2 Gaspard Monge 

In 1799 the Géométrie Descriptive by Gaspard Monge was published. The book is  “pour 
l’usage des èlèves de la première Ècole Normale” and is devoted to future teachers. 

Descriptive geometry deals with the representation of three-dimensional objects 
through drawings in two dimensions by projection and section (its first aim). In a certain 
sense it can be seen as a generalization of conic sections: the latter rise from a projection 
of a circle from a point and a successive section with a plane. Descriptive geometry deals 
with parallel or central projections of different geometric objects, and plane sections. The 
second aim of descriptive geometry is, according to Monge, “to research truth in 
geometry”. The exactness of drawings and the research for truth render the content 
important for all the students of the French educational system (Barbin, to appear).  So we 
have again to do with the history of mathematics education. 

The first part of the book deals with the method of projections and shows how to 
determine the position of a point in space. The second part concerns tangent planes and 
normals to surfaces. It requires the capacity of seeing relations in the space. Here we find 
very interesting proofs of plane theorems made with the help of space considerations. 

Let’s for instance consider one of the properties proved by Monge (1847, p. II, n. 39, 
see Fig. 3). Our prove follows the notation of Fig. 4.  

 

Figure 3  
 
 
 
 

 



 
 
 
Let’s take a line and points on it Q, Q’, etc.. From each point Q, Q’, … we draw 

tangents to a given conic section (e.g. an ellipse E). For each pair of tangents, we draw 
line r cutting the ellipse in two points R and R’. All the lines constructed in the same way 
pass through a same point P. 

 
Figure 4 

 
Figure 5 

 
Proof: let the ellipse rotate about one of its axes, thus obtaining an ellipsoid. A cone with 
vertex Q touches the surface in an ellipse C (Fig. 5). 

If the two tangent planes trough the line QQ’ touch the ellipsoid in two points P1, P2 
(see Fig. 6, taken from https://commons.wikimedia.org, where P and P1 are exchanged), 
the ellipse C passes through P1 and P2. 

Figure 6 
 

The plane of C is ⊥ to 𝜋1 (the plane containing the original ellipse E), and C∩E = R, R’ 
(note that C is any circumference rotating about the line P1P2, while the dark 



circumference indicated with Δ in figure 6 is a limit case of C when Q is the point at 
infinity of the line common to the two planes) The intersection P1P2 ∩ RR’ yields the 
point P. This happens for any point Q, so the theorem is proven. 

2. 3 Pierre Germinal Dandelin 

In a paper of 1822 Pierre Germinal Dandelin, a former student of the Ecole Polytechnique, 

Figure 7     Figure 8 
 
presents a well-known proof that links the definition of a conic as a section of a cone to its 
definition as a locus of points. We are in a period in which the development of descriptive 
geometry brings with it also a revival of synthetic geometry. 

For the proof, Dandelin considers two spheres tangent to a cone and to the plane that 
yields a conic section (Fig. 7, from Dandelin 1822, p. 169). We will consider the case of 
an ellipse, following the notation of Fig. 8 (taken from 
https://xavier.hubaut.info/coursmath/2de/belges.htm): 

A plane cuts a cone in an ellipse E. The sphere S touches the cone in a circumference 
C, and touches the plane containing E in f. The sphere S’ touches the cone in a 
circumference C’ and touches the plane containing E in f’. Take p on E. The generatrix 
trough p touches S in s, and S’ in s’. It holds 

pf = ps; pf ’ = ps’ (equal tangent segments to the spheres) 
! pf + pf ’ = ps + ps ’ =  ss’ 

 



The distance ss’ = constant. We thus obtain that for any point p on E the sum of the 
distances pf + pf ’ is constant. This is the definition of an ellipse as locus of points. As for 
the proof by Apollonius, we used elementary geometric properties in space to find a 
relation in the plane. 

This proof can be found in some textbooks, but strangely I did not find it in books 
which present a fusionist approach, instead I found it in the part concerning solid geometry 
of books as Henrici & Treutlein (1891/1901) and Cateni & Fortini (1958). 

3. A new order in the textbooks 

3. 1 Carl Anton Bretschneider 

One of the first textbooks to present a new order allowing a better integration of plane and 
space considerations is the one by Carl Anton Bretschneider in 1844. The aim is clearly 
stated in the introduction:  

Basing the synthetic part of my book on the division into geometry of position, of form, 
measure, and organic geometry, which is offered by the nature of this science, the 
separation of the matter into the two main sections of plane and solid geometry could not 
be allowed anymore […] The pedagogical value cannot be denied (Bretschneider, 1844, 
p. VI). 

Let’s see in which way Bretschneider groups the various topics; in the following list of 
contents the chapters 1, 3, 4 of Book one concern plane geometry, the other concern 
geometry of space. In Book 2, the first five chapters are about plane geometry, the others 
about solid geometry. 

 
Book 1. Geometry of position 
Ch. 1 the straight line 
Ch. 2 the plane 
Ch. 3 plane angles 
Ch. 4 parallelism in the plane 
Ch. 5 wedges [dihedral angles in the 

space] 
Ch. 6 Angles between lines and planes 
Ch. 7 parallelism in space 

Book 2. Geometry of form 
Ch. 1 plane figures 
Ch. 2 plane triangles 
Ch. 3 quadrilaterals 
Ch. 4 circles 
Ch. 5 circumscribed and inscribed circles 
Ch. 6 solid angles 
Ch. 7 polyhedra in general 
Ch. 8 pyramids 
Ch. 9 prisms 
Ch. 10 the sphere 

 
Book 3 concerns the Geometry of measure and also contains the theory of proportions 

and of similarity. The first 6 chapters are about plane measures, the 4 last chapters are 
about volumes and surfaces and lengths in the space. 

The second part of the book is on analytic geometry, more precisely: 
Book 4 and 5 are on plane goniometry and trigonometry,  
Book 6 is on coordinates, and Ch. 5 considers coordinates in space. 
Then we find five appendices, about geometric constructions in the plane; geometric 

loci in the plane, in particular conics; the method of projections; the area of a parabola and 
of an ellipse; the area of spherical triangles. 



 
 

The Appendix 3 deserves a particular attention. It presents the method of projections 
(the “new geometry”) in plane and space and contains interesting propositions, including 
the proofs of Apollonius for parabola, ellipse and hyperbola. Other plane propositions, 
proved by Monge using 3D geometry, are proved here using the theory of polars in the 
plane.  

So, we can see that in the textbook of Bretschneider there is still a separation between 
plane and solid considerations, but similar topics are – when possible - the one near the 
other. The only really “fusionist” argumentations are the proofs by Apollonius, which are 
presented using the proportions among similar triangles, as shown in chapter 1. 

3. 2 Charles Méray 

Another very interesting book is the one by Charles Méray, written in 1874, which 
reached its major success in 1901, when it was revived thanks to the new programmes for 
the teaching of mathematics of France. 

In the introduction Méray criticizes the “disorder” of Euclid’s Elements. In particular, 
he states that the division between plane geometry and solid geometry makes no sense, 
because nature only presents objects in space (Méray 1874, p. XI). In his text, Méray 
substitutes most axioms with intuitive properties of motions in space (folding a piece of 
paper on itself, translating an object, rotating about a line). 

The subdivision of the matter is not very different from Bretschneider, as in all other 
fusionist books, but in some chapters there is a better integration of plane and space 
thanks to the use of geometric transformations.  

The chapters from 1 to 4 deal with intersection, perpendicularity, and parallelism of 
lines and planes, and with plane and dihedral angles.  

Translation is defined as a motion of figures in space. Two lines are parallel if a 
translation maps the one onto the other (independently from being in a plane or in space). 
The same for parallel planes, and for lines parallel to a plane. 

A plane is perpendicular to a line if it is mapped onto itself by the rotation about the 
line. Two lines are perpendicular if they meet and each of them is on a plane perpendicular 
to the other. 

So, we can see that in these chapters plane and space are treated simultaneously and, 
for instance, perpendicularity between straight lines is defined using the perpendicularity 
between a plane and a line. 

Not all chapters present such an 
integration, but we find it again in chapter 
5, dealing with the comparison of 
segments. The intercept theorem (Thales 
theorem) about the proportion of 
segments is given both for plane and 
space. In chapter 10 areas are compared 
by means of a projection of an area on a 
plane (using trigonometry) (Méray 1874, 
p. 96, see Fig. 9). 

Figure 9 



In chapter 13 homothetc figures and similarity are treated both in plane and in space. 
(ibid. p. 122, see Fig. 10) 

 

 
Figure 10 
 

Let us note that Méray presents separately the parabola, hyperbola and ellipse referring to 
their eccentricity. He never uses the term “conic sections”. Indeed, we can suppose that - 
being his a fusionist book – he would be then obliged to link the eccentricity to the 
definition of these figures as sections of the cone. 

3. 3 Riccardo De Paolis 

The textbook by the Italian Riccardo De Paolis of 1884 is mentioned in the review of the 
textbook by Lazzeri & Bassani published in 1911 in l’Enseignement Mathématique (see 
section 1). 

In his introduction De Paolis writes: 
There is a big analogy between certain figures in the plane and certain figures in the 

space; by studying them separately we renounce to know all that we can learn from this 
analogy, and we fall into useless repetitions. If we look for the properties of a line or a 
surface without being able to use the geometrical entities placed outside the line and the 
surface, we limit the forces we can dispose of and we renounce to geometric tools that 
would help to simplify constructions and proofs. In fact, how can you construct the 
midpoint of a given segment without leaving the segment itself? Instead, using the 
geometrical tools of a plane that contains it, the construction is known and very simple. 
How can one construct an isosceles triangle that has each of the two angles equal to twice 
the third? The triangle is easily constructed, and without applying the theory of 
equivalence or proportions, if we use the geometric objects placed outside its plane (page 
92) (De Paolis 1884, p. III-IV). 

 
The proof mentioned by De Paolis is not as easy as he states, but what is important in 

this last sentence is the fact that proofs can be performed without applying the theory of 
equivalence or proportions. Indeed, it is necessary to observe that if – as was the case in 



Italy – the textbooks follow the books of Euclid, the theory of proportions takes much 
time and is quite difficult. Therefore the possibility to avoid it has a particular value.  

 
Do not object that for beginners it is easier to conceive a plane angle than a dihedral 

angle; it is exactly because the mind of the students is forced to think and draw only flat 
figures in the first years of their geometric studies, that they find difficulties afterwards  
(ibid. p.IV). 

 
In his book De Paolis gives much importance to geometric transformations, as Méray 

does. He also presents many interesting exercises and problems. But his proofs are often 
too long, being the author also much interested in rigour. 

As in Méray, the first part of the book concerns properties of incidence and parallelism. 
Let’s look, for instance, at the following theorem: 

 
The angles formed by two intersecting lines are equal to those formed by two lines 

parallel to them, which meet (ibid., p. 33) 
 
The formulation does not state if we are 

speaking of a plane theorem or of a theorem 
in solid geometry. This means that the 
theorem holds in both cases. The first part 
of the proof is performed in space and is 
based on the sliding of the pair of lines APC 
and BPD on the dihedral angle formed by 
the two couples of parallel lines AC, A’C’ 
and BD, B’D’ …(Fig. 11) 

Only afterwards De Paolis presents the 
proof for lines lying all in the same plane, 
which refers to previous theorems based on 
the properties of parallel lines.  

 
Figure 11 

 
A further theorem presents what we could call a “fusionist” proof: 
Given 𝐴𝐵𝐶,𝐴′𝐵′𝐶′. Suppose that 𝐴𝐴!,𝐵𝐵!,𝐶𝐶′ all meet in 𝑃, and that 𝐴𝐵 ∥ 𝐴′𝐵′ and 

𝐴𝐶 ∥ 𝐴′𝐶′; we want to prove that 𝐵𝐶 ∥ 𝐵′𝐶′ (ibid., p. 92). 
 

Figure 12 
 
If the given triangles are not on the 

same plane, the proof is obvious: the 
two planes 𝐴𝐵𝐶,𝐴!𝐵!𝐶!  are parallel, 
because of the hypotheses, and hence 
also  𝐵𝐶 ∥ 𝐵′𝐶′ (Fig. 12). 

If 𝐴𝐵𝐶 and 𝐴!𝐵!𝐶!  are on a same 
plane, take two points 𝑄,𝑅 on any line 



(in space) through P, from which we project the triangles. So we have twice the solid 
case. For the transitivity of parallelism, the proof is completed  (Fig. 13). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 
 

To follow the second part of the proof, we need to consider the same configuration of the 
first case, but looking at it differently: in the first case we “see” a solid configuration, in 
the second case a plane one.   

 Let us also note that this theorem is a particular case of the Desargues theorem, 
corresponding to the situation in which the intersection points of correspondent sides are 
on a line at infinity (i.e., correspondent sides are parallel). Hilbert shows that the 
Desargues theorem can be proven using only the incidence axioms for the space, and 
avoiding the congruence Axiom III, 5 (Hilbert, 1899).                              

3. 4 Giulio Lazzeri e Anselmo Bassani 

We arrive now to the last and most important book presenting a fusionist approach: the 
book by Lazzeri and Bassani, which was written in 1891 for the pupils of the Accademia 
Navale (naval academy) in Livorno – at that time a secondary technical school – and had a 
second edition in 1898 devoted also to the Lycées. 

The introduction is very similar to the one of De Paolis. The authors mention - as their 
predecessors - Bretschneider, De Paolis, Angelo Andriani (Andriani 1887; another Italian 
fusionist book) and – above all – Monge, 

who showed the utility of the fusion by proving, with the help of three-dimensional 
figures, many theorems concerning plane figures in a very simple way (Lazzeri & Bassani 
1891, p. X).  

Moreover, they add that this method of proving plane theorems with the help of solid 
geometry  “is well accepted today in projective geometry […] and has now been realized 
also in elementary geometry” (ibid.). 

Indeed, in the book by Lazzeri & Bassani the method is very often applied. 
Substantially there is no chapter in which plane and space are separated. Moreover, they 
state that they "succeeded in making many questions independent from the theory of 
proportions and of measures" (ibid., p. XI). A first example is given by the following 
theorem: 



 
Two lines r and r’ are given, with r parallel to r’, and A, B, C, D on r.  Consider a point 

O and the lines OA, OB, etc. which cut r’ in A’, B’, C’, D’. We want to prove that if AB = 
CD then A’B’ = C’D’. 

The theorem could be easily proven using proportions and similarity. But we can find a 
different proof that avoids the theory of proportions: 

 
 
 
 
 
 
 
 

Figure 14 
 
 
 
with reference to Fig. 14, move OAB to O’CD, so that A’B’ = A”B”. 
Take V not on the plane of the figure, and consider the tetrahedra OCDV and O’CDV 

and a plane containing r’ parallel to the plane VO'O": this plane intersects the triangle 
VCD (common to the two tetrahedra) in HK.  

A previous theorem states that in a tetrahedron we can always 
consider a plane parallel to two opposite edges and at an intermediate 
distance from them. This plane cuts the tetrahedron in a 
parallelogram (fig. 15). Thanks to this theorem we have that HKC’D’ 
and HKA”B” are parallelograms; therefore HK = A”B”= A’B’; HK 
= C’D’, hence A’B’ = C’D’. 

This proof only involves questions of parallelism and intersection. 
It is not a difficult proof, if we have the habit to “see” in space. 

 
Figure 15 

 
Let us look at second example, with the following theorem: 
 
Given two circumferences 𝑐!, 𝑐! (𝑐! ≠  𝑐!) on the plane, the locus of points such that 

the tangent segments led from each point to the two circumferences are equal is a straight 
line perpendicular to the line joining 
the two centres, and external to the 
circumferences if the 
circumferences are the one external 
to the other (Fig. 16) 

 
Figure 16 

 



The proof refers to Fig. 17, which is taken from Lazzeri & Bassani (1891, p. 188). 
Consider two equal spheres 𝑆!, 𝑆! passing through 𝑐!, 𝑐!, with centres 𝑂!! ,𝑂!! . Take 𝛽 ⊥ 
𝑂!!𝑂!!  in its midpoint (plane of reflection of 𝑆!, 𝑆!).  

  Figure 17 
 

Call r = β ∩ α; r is the locus on α such that the tangent segments led from each point to the 
two spheres are equal and hence also to the two circles. We show that 𝑟 ⊥ 𝑂!𝑂!: the 
perpendiculars to α through 𝑂!! ,𝑂!!  meet α in 𝑂!,𝑂! and form a plane γ ⊥ α , containing 
𝑂!𝑂! ,𝑂!!𝑂!!  . Also β is perpendicular to 𝛾 being 𝛽 ⊥ 𝑂!!𝑂!!  , so planes α and β meet in a 
line 𝑟 ⊥ 𝛾 and hence 𝑟 ⊥ 𝑂!𝑂!. 
The book by Lazzeri and Bassani presents very interesting and beautiful proofs. It is not 
easy to judge its difficulty without knowing in depth the teaching methods of such a topic 
in that period, and in particular of Lazzeri himself, who was a teacher in the naval 
academy. Indeed, at the time the book was well considered by teachers, but the question 
does not have a definite answer, as we can see in the next section. 

4. Discussions about the question 
In 1899 the Journal l’Enseignement Mathematique published a paper by Giacomo 
Candido, where the author describes the debate that takes place in Italy, presenting the 
arguments against fusion and the arguments in favour of fusion (Candido, 1899). 

Against the fusion are the programmes of the Lycées, which present stereometry only in 
the third year, following the same order of Euclid; moreover the fusion seems too difficult, 
too much linked to systematization (with reference both to De Paolis and to the book of 
Andriani, who – according to Candido – found “non-existing connections” between plane 
and space). 

In favour of fusion are the fact that it is time saving (it is not necessary to repeat certain 
parts of the school programs) and allows a simplification of some considerations on 
planimetry by explaining them through considerations in space. Furthermore, it allows a 
major harmony between the study of mathematics and that of other topics. 

The author mentions the book by Lazzeri & Bassani among the arguments in favour of 
fusion. Indeed, it contains better proofs “through” space. The success in a technical 
institute (the Accademia Navale of Livorno, where Lazzeri was a teacher) brought the 
book to be used also in Lycées (Candido, 1899). 

The Italian association of mathematics teachers Mathesis published different 
discussions and also asked to change the programs so as to allow fusion (Borgato 2006 
and 2016). 



Again in l’Enseignement Mathematique, Méray presents the 1903 edition of his 
Eléments (Méray, 1904) with a big critique to Euclid, as contained in the introduction of 
the book (see 3.2). He mentions the great Italian “fusionist” school, but notes that his book 
was written earlier. 

In the second book of the series on Elementary Mathematics from a higher standpoint, 
first published in 1908 with a new English translation in 2016, Felix Klein presents the 
book by Scheffers & Kramer (1925): 

 
The text is based on the view that for the development of the best possible space 

intuition, the fusion between planimetry and stereometry has to be dealt with more 
systematically and from an earlier time in school than has happened so far. If we start to 
realise this idea of fusion, we encounter soon the necessity to perform spatial 
constructions graphically and to imagine solids on the plane. The planimetry-stereometry-
fusion urges therefore a broader notion of fusion, which comprises descriptive geometry 
(Klein, 2016, p. 303). 

 
In a book of 1928 discussing the teaching of geometry in German schools Kuno Fladt 

states: 
Already in the 1840s the need was felt of merging stereometry closely with planimetry. 

Even if too much weight was given at that time to a scientific systematization, there was 
anyway an educational idea: that the pupil who has to do only with planimetry is almost 
educated to “space blindness”. Both types of reasons lead in Italy to an extended 
“fusion” of planimetry and stereometry. But there was a setback: the too early and 
extended employment of stereometry turned out to be too difficult. 

This does not exclude that, on the one hand, in the first teaching of geometry plane 
objects are shown on solids, from which they are then abstracted, and that, on the other 
hand, when presenting new plane figures, we always consider and present the solid bodies 
in which they can be found. This is a “moderate fusion” as now required in the new 
programmes of Würtenberg of 1926/27 (Fladt 1928, p. 126) 

 
A compromise is indeed often a good solution, and this can happen also in the case of 

fusionism. A presentation of the incidence properties as presented in the first chapters by 
Méray is surely a wonderful help to space representation. 

In the case of conic sections, proofs as the one by Apollonius or by Dandelin allow the 
link between different definitions of conic sections, which is not usual in schools. 

But also other suggestions come from this historical overview, which could help the 
construction of a curriculum that avoids “space blindness”. 
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