
ON THE (NON) EXISTENCE OF VISCOSITY SOLUTIONS

OF MULTI–TIME HAMILTON–JACOBI EQUATIONS

A. DAVINI, M. ZAVIDOVIQUE

Abstract. We prove that the multi–time Hamilton–Jacobi equation in general
cannot be solved in the viscosity sense, in the non-convex setting, even when the
Hamiltonians are in involution.

Introduction

There are two important Hamilton–Jacobi equations associated with a continuous
function H defined on the cotangent bundle of a smooth Riemannian manifold M :
the stationary equation, that is a nonlinear PDE of the kind

H(x, dxu) = c in M,

where c is a real constant and the unknown u is a real function defined on M ; and
the evolutionary equation, which is a time-dependent equation of the form{

∂tu+H(x, dxu) = 0 in (0,+∞)×M

u(0, x) = u0(x), in M,
(1)

where u0 : M → R is an initial datum, and the unknown u is a real function of
variables (t, x) ∈ [0,+∞)×M .

The first problem that naturally arises is that of finding a good notion of solution.
It is in fact well known that such equations do not usually admit classical solutions.
For instance, the method of characteristics provides, for smooth initial data and
under general assumptions on H, classical solutions for (1) only for small times,
until shocks between characteristics occur.

A first idea is to look for Lipschitz functions which solve the equation almost
everywhere. However, such a notion of solution is inadequate since it lacks of good
uniqueness and stability properties, see for instance [2]. That is why two better
notions of weak solutions were introduced.

The first one, introduced by Crandall and Lions in 1983 [10], is that of viscosity
solution and it applies to a wide range of first and second order nonlinear PDE. It is
in some way reminiscent of distributions, in the sense that it uses test functions to
drop derivatives, and permits to name solutions functions that are just continuous,
regardless of their regularity. This notion has revealed to be extremely powerful and
flexible, and it has been generalized since then in many different directions.

The second one, more geometric in nature, is termed variational solution and was
introduced by Chaperon, Sikorav and Viterbo (see [9] or [8] and references therein)
and is more specific of evolutionary equations of the kind of (1). It follows the idea
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of the method of characteristics, taking the graph of the differential of the initial
condition and pushing it with the Hamilton flow. When the image is no longer a
graph, a natural way to cut the obtained Lagrangian manifold, known as the graph
selector, allows to reconstruct a function which is the desired variational solution.

Note that, as can be expected, both those notions often yield almost everywhere
solutions (meaning Lipschitz functions satisfying the Hamilton–Jacobi equation al-
most everywhere). In the case of a Hamiltonian H(x, p) which is convex in the
momentum variable p, it was proved by Zhukovskaya (see [22] and also [5, 19]) that
both notions provide the same solution. However, they may differ in the general case.
Indeed, variational solutions do not necessarily verify the semi–group (or Markov)
property. There is a simple way (proposed by Chaperon) to force variational so-
lutions to verify this property and Wei [19] recently established that the obtained
functions are the viscosity solutions (see also the work of Roos [18] on this matter).

In this paper we will focus on the solvability of the following system of uncoupled
Hamilton–Jacobi equations:

∂tu+H(x, dxu) = 0 in (0,+∞)× (0,+∞)×M

∂su+G(x, dxu) = 0 in (0,+∞)× (0,+∞)×M

u(0, 0, x) = u0(x) on M.

Such a system is known as multi–time Hamilton–Jacobi equation and has its roots
in economics. There is now a consequent literature concerning this problem, where
either one or the other notion of solution has been considered. The issue about
existence and uniqueness of viscosity solutions of the multi–time equation was first
addressed by Lions and Rochet [16] in the case of convex and coercive Hamiltonians
on Rn×Rn only depending on the momentum variable. This work was subsequently
generalized in [3] to Hamiltonians depending on both variables of Rn×Rn, but still
convex and coercive in the momentum. As a counterpart, a commutation hypothesis
is necessary (which is always verified in the case of Lions and Rochet), namely the
vanishing of the Poisson bracket:

{H,G} := ∂pH · ∂xG− ∂pG · ∂xH = 0 in Rn × Rn.

Those results were then extended to less regular settings in [17].
In the framework of symplectic geometry and variational solutions, Cardin and

Viterbo [8] extended these results to a larger class of Hamiltonians that do not satisfy
any convexity assumption in the momentum variable. The authors proved that the
null Poisson bracket condition entails existence and uniqueness of the variational
solutions of the multi–time equation.

Knowing the results of Cardin and Viterbo, and the close link between variational
and viscosity solutions, it seems natural to ask the following question: if two regular
Hamiltonians (non necessarily convex) H and G satisfy the null Poisson bracket
condition, can we solve the multi–time Hamilton–Jacobi in the viscosity sense?

The purpose of this note is to show that the answer to this question is, in general,
negative.

The article is organized as follows. In the first section we recall the definitions of
viscosity and variational solutions and we present the link between the two through
Wei’s result. In the second section we give our main result. More precisely, we show
that, when the convexity condition on one Hamiltonian is dropped, and replaced
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by a concavity condition, the multi–time equation admits a viscosity solution only
for very special choices of the initial datum u0 (see Theorem 2.1 for the precise
statement). Given a pair of such Hamiltonians H and G, the corresponding set of
admissible initial data is typically empty. An example of this fact is provided in
Corollary 2.4.

In the appendix we give the proof of a folklore theorem on existence and unique-
ness of viscosity solutions to the evolutionary Hamilton–Jacobi equation. The result
is proved under a set of conditions either more general or different than the ones
usually assumed in the literature. The techniques and ideas employed are by no
means new, however, since they are disseminated in the literature and the adapta-
tion to the case at issue requires some technical work, we felt it might be useful to
gather them in a single reference and provide a neat proof of this fact.

1. Preliminaries

Throughout the paper, we will call Hamiltonian a continuous function defined on
the cotangent bundle of a smooth and compact Riemannian manifold M . We will
say that H is coercive if

lim
|p|→∞

H(x, p) = +∞ for every x ∈M . (C)

For convenience, we will assume that M is the flat n-dimensional torus Tn, however
most results keep holding in the more general setting since they are essentially local
in nature.

In this section, we focus on the case of a single Hamilton–Jacobi equation, i.e.

∂tu+H(x,Dxu) = 0 in (0,+∞)× Tn, (HJ)

where we assume either H or −H to be a coercive Hamiltonian. When H is at
least C1 with Lipschitz derivatives (C1,1 in short), it induces a Lipschitz vectorfield,
called Hamiltonian vectorfield, defined as follows:

XH(x, p) =
(
∂pH(x, p),−∂xH(x, p)

)
for all (x, p) ∈ Tn × Rn.

When well defined (which is the case for coercive Hamiltonians), the flow of this
vectorfield will be denoted by (ϕt).

1.1. Viscosity solutions. Let u be a continuous function in (0,+∞)× Tn.
The function u is called a viscosity subsolution of (HJ) if, for every function ϕ ∈

C1((0,+∞)×Tn) such that u−ϕ attains a local maximum at (t, x) ∈ (0,+∞)×Tn,
we have

∂tϕ(x, t) +H
(
x,Dxϕ(x, t)

)
6 0. (1.2)

Any such test function ϕ will be called supertangent to u at (t, x).
The function u is called a viscosity supersolution of (HJ) if, for every function ϕ ∈

C1((0,+∞)×Tn) such that u−ϕ attains a local minimum at (t, x) ∈ (0,+∞)×Tn,
we have

∂tϕ(x, t) +H
(
x,Dxϕ(x, t)

)
> 0. (1.3)

Any such test function ϕ will be called subtangent to u at (t, x). Last, u is called a
viscosity solution of (HJ) if it is both a sub and a supersolution.

It is well known, see for instance [2], that the notions of viscosity sub and super-
solutions are local, in the sense that the test function ϕ needs to be defined only in a
neighborhood of the point (t, x). Moreover, up to adding to ϕ a quadratic term, such

3



a point can be always assumed to be either a strict maximum or a strict minimum
point of u − ϕ. In this instance, we will say that ϕ is a strict supertangent (resp.,
strict subtangent) to u at (t, x).

One of the main features of the notion of viscosity solution is that it is extremely
stable. Indeed, in rough terms, if ũ is a small perturbation of u and the test function
ϕ is, for instance, a strict subtangent to u at (t, x), then it will also be a subtangent
to ũ at a point (t̃, x̃) close to (t, x). It follows that a continuous function obtained
as local uniform limit of a sequence of viscosity solutions of (HJ) is still a solution
of the same equation. Furthermore, it has the advantage to be a reasonable notion,
in the sense that it yields existence and uniqueness results under mild conditions, as
it is illustrated by the following now classical result

Theorem 1.1. Let H : Tn × Rn → R such that either H or −H is a coercive
Hamiltonian. If u0 ∈ C(Tn), there exists a unique uniformly continuous function
u in [0,+∞) × Rn satisfying u(0, ·) = u0 and solving (HJ) in the viscosity sense.
Furthermore, if u0 is Lipschitz-continuous in Tn, then u is Lipschitz continuous in
[0,+∞)× Rn and its Lipschitz constant only depends on ‖Du0‖∞ and H.

The proof of this result can be always reduced to the case when the Hamiltonian
is coercive thanks to the following simple remark:

Proposition 1.2. Let u be a continuous function in (0,+∞) × Tn. Then u is a
subsolution (respectively, a supersolution) of (HJ) if and only if −u is a supersolution
(resp., a subsolution) of

∂tv −H(x,−Dxv) = 0 in (0,+∞)× Tn.

Theorem 1.1 is known by PDE specialists, however all the the proofs we have
found in literature are given under sets of assumptions somewhat different from the
ones herein considered. For completeness, we have provided in the Appendix a proof
of Theorem 1.1 in a slightly more general form, namely we deal with the case when
Tn is replaced by Rn, see Theorem 2.5. Theorem 1.1 follows from this by taking the
lift of H and of the initial datum u0 to the universal cover of the torus.

In the rest of the paper, we will always assume the initial datum u0 to be Lipschitz
in Tn and we will denote by StHu0(x), or simply by Stu0(x) when no ambiguity is
possible, the unique Lipschitz solution u(t, x) to the evolutionary Hamilton–Jacobi
equation (HJ) with Hamiltonian H and taking the initial datum u0 at t = 0.

We end this section by recalling some facts about Tonelli Hamiltonians. We
remind that a Hamiltonian H is termed Tonelli if it is of class C2, satisfies the
following superlinear growth in p:

H(x, p)

|p|
−→
|p|→∞

+∞,

and is strictly convex, in the sense that ∂2ppH is everywhere positive definite as a
quadratic form. We will be interested in some regularity properties of solutions to
the Hamilton–Jacobi equation. Recall that a function f : Tn → R is said to be
locally semi–concave (resp. semi–convex) (with a linear modulus) if it can be locally
written as the sum of a smooth function and a concave (resp. convex) function (see
[7] for a complete presentation). In particular, a locally semi–concave function has
a supertangent at every point. This implies, for example, that the map x 7→ |x|
is not locally semi–concave because of its singularity at 0 which is downward. The
following well-known fact holds, (see for example Lemma 4.2 in [4]):
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Lemma 1.3. Let H be a Tonelli Hamiltonian and u0 an initial datum. Then, for
all t > 0, the function Stu0 is locally semi–concave in Tn.

We also underline for further use that a function is both locally semi–concave
and locally semi–convex if and only if it is C1,1 (C1 with Lipschitz derivative, see
Theorem 6.1.5 in [14]).

Using this idea, Patrick Bernard proved the following result (Proposition 4.10 in
[4]):

Proposition 1.4. Let u0 be a semi–convex function in Tn and H a Tonelli Hamil-
tonian. Then, for t > 0 small enough, Stu0 is C1,1.

Finally, we will need the following beautiful result due to Fathi (Theorem 6.4.1
in [14]):

Theorem 1.5. Let v : Tn → R be a C1 function and H be a Tonelli Hamiltonian
whose flow will be denoted (ϕt). Let L be the graph of the differential of v. If there
is an increasing and diverging sequence (tn)n∈N such that ϕtn(L) is a graph above
Tn for all n ∈ N, then L is invariant by (ϕt). Moreover, it follows that v is C1,1 and
that there exists a constant α[0] ∈ R, only depending on H, such that v is a strong
solution of H(x,Dxv) = α[0] in Tn. In particular

Stv(x) = v(x)− tα[0] for all (t, x) ∈ [0,+∞)× Tn.

The constant α[0] appearing above is called critical value for H. It is characterized
as the only constant a for which an equation of the kind H(x,Dxv) = a in Tn
admits viscosity solutions, see [15]. The viscosity solutions of the corresponding
critical equation were used by Fathi as central objects in the weak KAM and Aubry-
Mather theory (see [14, 13, 4] for introductions), hence they are also known as weak
KAM solutions.

1.2. Variational solutions and their link with viscosity solutions. In this
section we give a very brief overview of the notion of variational solutions. For a
more detailed account we refer to [5, 19] and to the references therein.

We will assume here that H : Tn × Rn → R is a C2 Hamiltonian with compact
levels, meaning that H−1 ({a}) is compact for all a ∈ R. This ensures that H has
what is called finite propagation speed and that all the notions that will be used are
well defined. Moreover, its Hamiltonian flow (ϕt) is complete (indeed, H remains
constant along the trajectories of the flow).

Let us consider a smooth function u0 : Tn → R, and we will denote by Lu0 ⊂
Tn×Rn the graph of the differential of u0. It is a smooth Lagrangian submanifold of
Tn×Rn for its standard symplectic structure. As it is commonly done, we introduce
the Hamiltonian

H : R× Tn × R× Rn → R, (t, x, τ, p) 7→ τ +H(x, p),

so that solving the evolutionary Hamilton–Jacobi equation is equivalent to solving
H(t, x,D(t,x)U) = 0. We also define

Γu0 = {(0, x,−H(x, p), p), (x, p) ∈ Lu0}.
Let us denote by (Φt) the Hamiltonian flow generated by XH = (∂(τ,p)H,−∂(t,x)H).
For every fixed T > 0 we set

LH,u0 =
⋃

t∈[0,T ]

Φt(Γu0).
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It is then known that LH,u0 admits a generating function quadratic at infinity, that
is a function

S : [0, T ]× Tn × Rk → R, (t, x, η) 7→ S(t, x, η),

for some integer k, such that S coincides with a quadratic form outside a compact
set, 0 is a regular value of the mapping (t, x, η) 7→ ∂ηS(t, x, η) and

LH,u0 =
{(
t, x, ∂(t,x)S(t, x, η)

)
: ∂ηS(t, x, η) = 0

}
.

Moreover, the construction of S is done in such a way that if ∂ηS(0, x, η) = 0 then
S(0, x, η) = u0(x). Then, define

V tu0(x) := inf
[σ]=A

max
η∈σ

S(t, x, η),

where A generates some homology group depending on the topology of the sublevels
of S. The function (t, x) 7→ V tu0(x) is the variational solution. This construction
can also be generalized to Lipschitz initial data by limit arguments.

If H is convex in p, then Stu0(x) = V tu0(x) for any Lipschitz continuous initial
datum u0. However, for general Hamiltonians, this is not always the case since
V t ◦ V su0 may differ from V t+su0. This is what is commonly referred to as the
lack of the semi–group property. Recently, Wei [19, 20] established the following link
(which is formulated in a more general way in her thesis):

Theorem 1.6 ([19]). For any Lipschitz function u0 : Tn → R, the following holds:

Stu0(x) = lim
n→+∞

(V t/n)nu0(x) for all (t, x) ∈ (0,+∞)× Tn.

2. The multi–time Hamilton–Jacobi equation

We will only be interested in systems of two equations. Therefore, in the following,
H and G will be two smooth and proper Hamiltonians on Tn × Rn. Note that
no convexity assumptions are taken in the momentum variable. Given a Lipschitz
function u0 : Tn → R, we are looking for a real function u(t, s, x) defined on [0,+∞)×
[0,+∞)× Tn which solves

∂tu+H(x,Dxu) = 0 in (0,+∞)× (0,+∞)× Tn

∂su+G(x,Dxu) = 0 in (0,+∞)× (0,+∞)× Tn

u(0, 0, x) = u(x) on Tn
(2.1)

in the viscosity sense. As first remarked in [3], a necessary condition for viscosity
solutions of (2.1) to exist, for any Lipschitz initial datum, is that H and G commute,
in the sense that their Poisson bracket vanishes, i.e.

{H,G} := ∂pH · ∂xG− ∂pG · ∂xH = 0 in Tn × Rn.
This can be derived by differentiating the equation and by using the method of
characteristics (for smooth initial data), see for instance Appendix C in [12]. When
the Hamiltonians are convex and coercive in the momentum variable, this condition
is sufficient as well, as it is proved in [3]. In the more general case when the Hamil-
tonians are proper but not necessarily convex in the momentum, it is proved in [8]
that the null Poisson bracket condition implies the existence of variational solutions
to the multi–time equation. Knowing the links between variational and viscosity
solutions (Theorem 1.6), it seems natural to wonder if the vanishing of {H,G} also
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implies the existence of solutions to (2.1) in the viscosity sense. Using the semi–
group property and Theorem 1.1, it is easily seen that this is equivalent to requiring
that, for any Lipschitz u0 : Tn → R, the following hold:

u(t, s, ·) = StH ◦ SsGu0 = SsG ◦ StHu0 for every s, t > 0.

We will prove the following theorem:

Theorem 2.1. Let H and G be two commuting Hamiltonians on Tn×Rn such that
both H and −G are Tonelli. Then there exists a solution to the multi–time equation
(2.1) with Lipschitz initial datum u0 : Tn → R if and only if u0 is C1,1 and the graph
of its differential is invariant by both the Hamiltonian flows of H and G. Moreover,
in this case, there are two constants cH and cG such that

H(x,Dxu0) = cH and G(x,Dxu0) = cG, for every x ∈ Tn,
which means that

StH ◦ SsGu0 = SsG ◦ StHu0 = u0 − tcH − s cG for every s, t > 0.

Remark 2.2. Note that cH = αH [0] and cG = −α−G[0], where αH [0] and α−G[0]
are the critical values associated with H and −G.

Before proving this theorem, we establish a simple lemma:

Lemma 2.3. Let G : Tn × Rn → R such that either G or −G is a coercive Hamil-
tonian. Let us set

G(x, p) := −G(x,−p) for every (x, p) ∈ Tn × Rn.
Then, for any Lipschitz function u0 : Tn → R, the following holds :

SsGu0 = −Ss
G

(−u0) for every s > 0.

In particular, if −G is Tonelli, then SsGu is locally semi–convex for any s > 0.

Proof. The first assertion follows from Proposition 1.2, while the second is a conse-
quence of Lemma 1.3. �

In the next proof, recall that if w : Tn → R is any C1 function, we denote by
Lw ⊂ Tn × Rn the graph of its differential.

Proof of Theorem 2.1. Let u0 be an initial condition for which there exists a solution
to the multi–time equation. We have seen that in this case

SsG ◦ StHu0 = StH ◦ SsGu0 for every s, t > 0.

In particular, as the left hand side is locally semi–convex by Lemma 2.3 and the right
hand side is locally semi–concave, by Lemma 1.3, we deduce that for all s, t > 0, the
function SsG ◦ StHu0 = StH ◦ SsGu0 is C1,1.

Let s > 0 be fixed. For ε > 0, set vε = SsG ◦ SεHu0 ∈ C1,1. It follows from [14,
Proposition 4.11.1 and Theorem 6.2.2] that

ϕtH(Lvε) = LSt
Hvε

for every t > 0.

In particular, we may let t go to infinity and use Fathi’s theorem 1.5, yielding the
existence of cH such that

StHvε = vε − tcH for every t > 0.

Now letting ε→ 0+ and passing to the limit, we deduce that

StH ◦ SsGu0 = SsGu0 − tcH for every t > 0. (2.2)
7



By continuity, the above identity holds for s = 0 as well.
Let us now fix t > 0. The same argument applied to H, G and −u0 yields the

existence of a constance cG such that

SsG ◦ StHu0 = StHu0 − scG for every s > 0. (2.3)

By continuity, the above identity holds for t = 0 as well. Putting (2.2) and (2.3)
together we get

StH ◦ SsGu0 = u0 − scG − tcH = SsG ◦ StHu0 for every s, t > 0,

finally showing that u0 is C1,1 and a strong solution of the stationary equations
associated with H and with G. �

Even if for a Tonelli Hamiltonian H there are always weak KAM solutions, they
may all fail to be C1,1. In this instance, the previous theorem implies that there are
no global solutions to the multi–time equation for H and −H (nor in fact for H and
−G for any Tonelli Hamiltonian G).

We furnish an example to conclude.

Corollary 2.4. There exists a Tonelli Hamiltonian H : T × R → R such that the
multi–time equation (2.1) with G := −H does not admit viscosity solutions, for any
Lipschitz initial datum u0.

Proof. According to Theorem 2.1, we just need to exhibit a Tonelli Hamiltonian H
that does not admit weak KAM solutions of class C1,1. The example that follows is
classical, see for instance [14, Section 4.14].

Consider the pendulum equation, corresponding to

H(x, p) =
1

2
|p|2 + cos(2πx), on T1 × R.

The Hamiltonian vector-field is then given by XH(x, p) =
(
p, 2π sin(2πx)

)
. It pos-

sesses 2 fixed points, (12 , 0) which is an elliptic fixed point, and (0, 0) which is hy-
perbolic. The stable and unstable manifold are given by the two separatrices which

equations are p = ±
√

2
(
1− cos(2πx)

)
= ±2 sin(πx). Those separatrices bound an

elliptic island filled with periodic trajectories. In this case, it is known that α[0] = 1.
Moreover, the only weak KAM solution (up to addition of a constant) is given by

u(x) =


∫ x

0
2 sin(πt)dt =

2

π

(
1− cos(πx)

)
, ∀x ∈

[
0,

1

2

]
,

2

π
−
∫ x

1
2

2 sin(πt)dt =
2

π

(
1 + cos(πx)

)
, ∀x ∈

(1

2
, 1
)
,

which is not of class C1,1. Indeed, the graph of the derivative of any other weak
KAM solution v must stay on the union of the two separatrices, the fact that v is
semi–concave means that this graph may only ”jump downwards”, therefore it may
possess only one discontinuity, and in order for v to be 1-periodic, this jump must
occur at 1/2. Hence v′ = u′, that is v − u is constant. �

It is proved in [21, 11] that two commuting Tonelli Hamiltonians have the same
weak KAM solutions, therefore the previous theorem is consistent with this fact, in
the sense that it is normal that whenever H has a C1,1 weak KAM solution, it will
be the same for G.
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Let us conclude with one last speculation. The previous results, in order to be
global, are stated for two Tonelli Hamiltonians. However, when a single Hamiltonian
is convex in the fibers in some areas (say for x in an open set U of the torus), and con-
cave in others (say for x in an open set V of the torus), the previous discussions show
that variational solutions of the evolutionary equation will be either semi–concave
(resp. semi–convex) in U (resp. V ) for small times, i.e. as long as the method of
characteristics applies and the latter do not leave those open sets. This need not
remain true in the long time. On the other hand, due to the semi–group property
and the finite speed propagation, the viscosity solutions always remain semi–concave
in U (resp. semi–convex in V ). These two different kinds of regularity might give a
new insight as to detecting when variational solutions differ from viscosity solutions
and thereby do not verify the semi–group property. We also mention the recent work
[?] on very similar issues.

Appendix

In this Appendix, we want to give a proof of Theorem 1.1 in a slightly more
general setting. In what follows we will denote by UC(X) and BUC(X) the space
of uniformly continuous and bounded uniformly continuous real functions on the
metric space X, respectively.

We consider the following evolutionary Hamilton–Jacobi equation:

∂tu+ F (x,Dxu) = 0 in (0,+∞)× Rn, (A)

where the Hamiltonian F : Rn × Rn → R satisfies the following conditions:

(F1) F ∈ BUC(Rn ×BR) for every R > 0;

(F2) inf
x∈Rn

F (x, p)→ +∞ as |p| → +∞.

We will prove the following result:

Theorem 2.5. Let F : Rn × Rn → R be a Hamiltonian satisfying (F1)-(F2) and
let u0 ∈ UC(Rn). Then there exists a unique function u ∈ UC([0,+∞) × Rn) with
u(0, ·) = u0 that solves (A) in the viscosity sense. If u0 is Lipschitz in Rn, then u
is Lipschitz continuous in [0,+∞)× Rn and its Lipschitz constant only depends on
‖Du0‖∞ and F .

We need to generalize the notions of viscosity sub and supersolution given at the
beginning of Section 1.1 to the case of discontinuous functions. Let Ω be an open
subset of (0,+∞)×Rn and let u : Ω→ R be a possibly discontinuous locally bounded
function. We define the upper and lower semicontinuous envelope of u, denoted by
u∗ and u∗ respectively, as follows:

u∗(t, x) := lim sup
(s,y)→(t,x)

u(s, y), u∗(t, x) := lim inf
(s,y)→(t,x)

u(s, y)

for every (t, x) ∈ Ω. We say that u∗ is a (non–continuous) viscosity subsolution of
(A) in Ω if (1.2) holds for any supertangent ϕ to u∗ at the point (t, x) ∈ Ω. The
gradient of any such supertangent ϕ at the point (t, x) is called supergradient of u∗

at (t, x). We will denote by D+u∗(t, x) the set consisting of all supergradients of u∗

at (t, x). Analogously, we say that u∗ is a supersolution of (A) in Ω if (1.3) holds
for any subtangent ϕ to u∗ at the point (t, x) ∈ Ω.

We will need the following comparison result between discontinuous sub and su-
persolutions.
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Proposition 2.6. Let v and u be, respectively, an upper and lower semicontinuous
function on [0,+∞) × Rn. Let us assume that, for every α > 0, there exists a
constant Mα > 0 such that, for every (t, x) ∈ (0,+∞)× Rn,

(v0) v(t, x) > v(0, x)− (α+Mαt),

(u0) u(t, x) > u(0, x)− (α+Mαt).

If v is a subsolution and u is a supersolution of (A), we have

sup
[0,+∞)×Rn

(
v − u

)
6 sup

Rn

(
v(0, ·)− u(0, ·)

)
.

Remark 2.7. While condition (u0) is necessary for the comparison principle, see for
instance Example 4.9 in [6], the analogous condition (v0) is redundant. It is assumed
to avoid further technical details. We remark that conditions (u0) and (v0) are always
fulfilled if u and v are both absolutely continuous in [0,+∞) × Rn. In particular,
Proposition 2.6 entails uniqueness of the solution of (A) in UC ([0,+∞)× Rn).

For the proof of Proposition 2.6, we will need to regularize the subsolution v
through the following sup–convolution in time, see [1]: for every fixed δ > 0, define

vδ(t, x) := sup
s>0

{
v(s, x)− |t− s|

δ

}
, (t, x) ∈ [0,+∞)× Rn. (2.4)

For every (t, x) ∈ [0,+∞)×Rn, we denote by Mδ(t, x) the set of s > 0 that realize
the supremum in the definition of vδ(t, x). We set

Ωδ := int

{
(t, x) ∈ (0,+∞)× Rn : vδ(t, x) > v(0, x)− t

δ
,

}
,

that is, Ωδ is the largest open subset of (0,+∞) × Rn made up of points (t, x) for
which 0 6∈ Mδ(t, x). Last, we set µ := max{1, supRn×Rn −F}, which is finite by
assumption (F2). The following holds:

Proposition 2.8. Let us assume that v is upper semicontinuous on [0,+∞) × Rn
and a non-continuous subsolution of (A). Then for every δ < 1/µ we have:

(i) v(t, x) 6 vδ(t, x) 6 v(0, x) + µt for every (t, x) ∈ [0,+∞)× Rn.

(ii) For every (t, x) ∈ [0,+∞)×Rn the set Mδ(t, x) is nonempty and contained
in [0, 2t/(1−δµ)]. In particular, vδ is upper semicontinuous in [0,+∞)×Rn.

(iii) If (t0, x0) ∈ Ωδ, then

D+vδ(t0, x0) ⊆ D+v(s0, x0) for every s0 ∈Mδ(t0, x0).

In particular, vδ is an upper semicontinuous subsolution of (A) in Ωδ.

(iv) The function vδ(·, x) is 1/δ–Lipschitz continuous in [0,+∞) for every fixed
x ∈ Rn. Moreover, there exists a positive constant Lδ such that

|Dxv
δ(t, x)| 6 Lδ for a.e. (t, x) ∈ Ωδ.

(v) Let us assume that v satisfies (v) for some positive constants α and Mα.
Then for every δ > 0 small enough[

2α
δ

1− δMα
,+∞

)
× Rn ⊂ Ωδ

10



Proof. (i) The first inequality is obvious. To prove the second inequality, we first
observe that v satisfies

∂tv 6 −F (x,Dv) 6 µ in (0,+∞)× Rn

in the viscosity sense. We infer

v(s, x) 6 v(τ, x) + µ(s− τ) for every x ∈ Rn and 0 < τ < s,

in particular, by letting τ → 0+ and by using the upper semicontinuity of v, we get

v(s, x) 6 v(0, x) + µs for every (s, x) ∈ [0,+∞)× Rn. (2.5)

For δ < 1/µ we get

vδ(t, x) 6 v(0, x) + sup
s>0

{
µs− |t− s|

δ

}
= v(0, x) + µt.

(ii) Let us fix (t, x) ∈ [0,+∞)× Rn. The fact that Mδ(t, x) is nonempty follows
from (2.5) and the upper semicontinuity of v. Pick s ∈Mδ(t, x). From the definition
of vδ(t, x) and (2.5) we have

v(0, x)− t

δ
6 vδ(t, x) = v(s, x)− |s− t|

δ
6 v(0, x) + µs− |s− t|

δ
.

A straightforward computation shows that s 6 2t/(1 − δµ). The upper semiconti-
nuity of vδ readily follows from this and from the upper semicontinuity of v.

(iii) First note that (t0, x0) ∈ Ωδ impliesMδ(t0, x0) ⊂ (0,+∞). To prove the first
assertion, it suffices to observe that, if ϕ is a supertangent to vδ at (t0, x0) ∈ Ωδ,
then the function (t, x) 7→ ϕ(t + (t0 − s0), x) is a supertangent to v at (s0, x0) for
every fixed s0 ∈ Mδ(t0, x0). Since vδ is upper semicontinuous by (ii) and F is
time–independent, we infer that vδ is an upper semicontinuous subsolution of (A)
in Ωδ.

(iv) The fact vδ is 1/δ–Lipschitz in t is apparent by definition. By using (iii) we
get

F (x,Dvδ) 6 −∂tvδ 6
1

δ
in Ωδ,

and the estimate on |Dxv
δ| in Ωδ follows from the coercivity of F , see Lemma 2.5

in [2].
(v) Pick δ < 1/Mα and set Tδ := 2δα/(1−δMα). Then every (t, x) ∈ (Tδ/2,+∞)×

Rn satisfies

v(0, x)− t

δ
< v(0, x)− (Mαt+ α) 6 v(t, x) 6 vδ(t, x),

in particular [Tδ,+∞)× Rn ⊂ Ωδ, as it was to be shown. �

Proof of Proposition 2.6. The proof is divided in two steps.

Step 1. We first assume v Lipschitz continuous in [0,+∞) × Rn, i.e. there exists
L > 0 such that

|v(t, x)− v(s, y)| 6 L(|x− y|+ |t− s|) for every (t, x), (s, y) ∈ [0,+∞)× Rn.

For notational convenience, we introduce two functions χ, Φ : ([0,+∞)× Rn)2 → R
by setting

χ(t, x, s, y) :=
1

2ε

(
|x− y|2 + |t− s|2

)
+ β

(
〈x〉+ 〈y〉

)
+ η(t2 + s2),

Φ(t, x, s, y) := v(t, x)− u(s, y)− χ(t, x, s, y),
11



where 〈x〉 :=
√

1 + |x|2, η is a positive constant that will be suitably chosen, and ε,
β are positive parameters that will be sent to 0.

We set A := sup
Rn

(
v(0, ·) − u(0, ·)

)
< +∞ and we assume that A < +∞. Let us

suppose by contradiction that there exists (t̂, x̂) ∈ (0,+∞)× Rn such that

v(t̂, x̂)− u(t̂, x̂) = A+ γ for some γ > 0.

We choose η > 0 and β > 0 small enough such that

2β〈x̂〉+ 2ηt̂2 6
γ

2
.

Then

sup
([0,+∞)×Rn)2

Φ > Φ(t̂, x̂, t̂, x̂) = A+ γ −
(
2β〈x̂〉+ 2ηt̂2

)
> A+

γ

2

We proceed to show that such a supremum is attained. Indeed, choose 0 < α < γ/4
and M = M(α) > 0 such that

u(s, y) > u(0, y)− (α+Ms) for every (s, y) ∈ [0,+∞)× Rn.

Then

Φ(t, x, s, y) 6 A+ L(t+ |x− y|) + (α+Ms) (2.6)

− 1

2ε

(
|x− y|2 + |t− s|2

)
− β (〈x〉+ 〈y〉)− η(t2 + s2).

It is easily seen that Φ(t, x, s, y) → −∞ when (|x| + |y|) + (t + s) → +∞, so there
exists (tε, xε, sε, yε) ∈ ([0,+∞)× Rn)2 such that

Φ(tε, xε, sε, yε) = max
([0,+∞)×Rn)2

Φ > A+
γ

2
(2.7)

This maximum point also depends on the parameters η and β, but such dependence
is omitted to ease notations.

Claim 1: there exists ε0 > 0 such that

tε + sε >
γ

4(L+M)
=: θ for every ε 6 ε0.

We make use of (2.7) and exploit the estimate (2.6). Since for all positive Y , the
following holds

Y

(
L− Y

2ε

)
6 L2 ε

2
,

we get (with Y = |xε − yε|)

A+
γ

2
6 Φ(tε, xε, sε, yε) 6 A+ (L+M)(tε + sε) + α+ L2 ε

2

i.e.

(L+M)(tε + sε) >
γ

2
−
(
α+ L2 ε

2

)
.

Since α < γ/4, the claim follows provided ε0 > 0 is chosen small enough.

Claim 2:
|tε − sε|2

ε
6
L2 +M2

η
for every ε 6 ε0.

12



From (2.7) and (2.6) and by arguing similarly as above we get

A+
γ

2
6 A+ α+ tε(L− ηtε) + sε(M − ηsε) +

ε

2
L2 − |tε − sε|

2

2ε

6 A+ α+
L2

4η
+
M2

4η
+
ε

2
L2 − |tε − sε|

2

2ε
,

i.e.
|tε − sε|2

2ε
6
L2

4η
+
M2

4η
−
(γ

2
−
(
α+

ε

2
L2
))

<
L2 +M2

2η

This shows that |tε − sε| → 0 as ε → 0+, hence, by Claim 1, tε > 0, sε > 0 for
ε > 0 small enough. We can now exploit the fact that ϕ(t, x) := χ(t, x, sε, yε) is
a supertangent to v at (tε, xε) ∈ (0,+∞) × Rn and ψ(s, y) := χ(tε, xε, s, y) is a
subtangent to u at (sε, yε) ∈ (0,+∞) × Rn. Since v is an upper semicontinuous
subsolution and u is a lower semicontinuous supersolution of (A), we get

∂tϕ(tε, xε)− ∂sψ(sε, yε) 6 F
(
yε, Dψ(sε, yε)

)
− F

(
xε, Dϕ(tε, xε)

)
(2.8)

An easy computation shows that

∂tϕ(tε, xε)− ∂sψ(sε, yε) = 2η(tε + sε) > 2ηθ,

where the inequality follows from Claim 1, while

|Dϕ(tε, xε)−Dψ(sε, yε)| 6 2β.

Moreover, by the fact that v is L–Lipschitz and ϕ is a supertangent to v at (tε, xε),
we get ∣∣Dϕ(tε, xε)

∣∣ =

∣∣∣∣xε − yεε
+ β

xε
〈xε〉

∣∣∣∣ 6 L,
yielding in particular that |xε − yε| → 0 as ε → 0+. We now send ε and β to 0
in (2.8) and we make use of (F1) and of the above inequalities to get 2ηθ 6 0, in
contrast with the definition of θ.

Step 2. Let us prove the result in the general case. Let us fix α > 0 and let
us accordingly choose Mα > 0 in such a way that condition (v0) holds. Let us
set Tδ := 2δα/(1 − δMα). According to Proposition 2.8, for δ > 0 small enough
the function (t, x) 7→ vδ(Tδ + t, x) is a Lipschitz continuous subsolution of (A) in
[0,+∞)× Rn, hence we can apply Step 1 to infer

sup
[0,+∞)×Rn

(vδ(Tδ + ·, ·)− u) 6 sup
Rn

(
vδ(Tδ, ·)− u(0, ·)

)
.

Moreover, we know that

v(t, x)− Tδ
δ
6 vδ(t, x)− Tδ

δ
6 vδ(Tδ + t, x) 6 v(0, x) + µ(Tδ + t),

so

sup
[0,+∞)×Rn

(v − u) 6 sup
Rn

(
v(0, ·)− u(0, ·)

)
+

2α

1− δMα
(1 + µδ).

The assertion follows by sending δ → 0+ and since α > 0 was arbitrarily chosen. �

The proof of Theorem 2.5 is standard. It follows from Proposition 2.6 by making
use of Perron’s method.

Proof of Theorem 2.5. We only need to show the existence of a solution, for the
uniqueness comes from Proposition 2.6, see also Remark 2.7.
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Let us first assume u0 ∈ Lip(Rn). In view of the assumptions (F1)-(F2), there
exists a positive constant M such that M > sup{|F (x, p)| : |p| 6 ‖Du0‖∞ }. Then
the functions

u(t, x) := u0(x)−Mt, u(t, x) := u0(x) +Mt, (t, x) ∈ [0,+∞)× Rn

are, respectively, a sub and a supersolution to (A). We denote by S the family of
continuous functions on [0,+∞) × Rn that are subsolutions of (A) and we set, for
every (t, x) ∈ [0,+∞)× Rn,

u(t, x) = sup {v(t, x) : v ∈ S , u 6 v 6 u on [0,+∞)× Rn} .
Then u∗ and u∗ are, respectively, a sub and a supersolution of (A), see Theorem
2.14 in [1], and satisfy u∗(0, ·) = u∗(0, ·) = u0 on Rn. By applying the comparison
principle stated in Proposition 2.6, we infer u∗ 6 u∗ on [0,+∞) × Rn. Since the
other inequality is obvious by definition, we get that u is continuous on [0,+∞)×Rn,
solves (A) in the viscosity sense and takes the initial datum u0 at t = 0. It is left to
show the Lipschitz continuity of u. By the comparison principle and the definition
of u we get

‖u(t+ h, ·)− u(t, ·)‖L∞(Rn) 6 ‖u(h, ·)− u(0, ·)‖L∞(Rn) 6M h.

In other words, the function u is M -Lipschitz in t. Using the fact that u is a
subsolution of (A), we get that u satisfies

F (x,Dxu) 6 −∂tu 6M in (0,+∞)× Rn

in the viscosity sense. By the coercivity of F , we conclude that u(t, ·) is Lipschitz for
every t > 0, with a constant only depending on u0 and F , see for instance Lemma
2.5 in [2].

If u0 ∈ UC(Rn), we can find, for instance by sup-convolution, see [1], a sequence
of Lipschitz functions uk0 : Rn → R that uniformly converge to u0 on Rn. Let us
denote by uk : [0,+∞)× Rn → R the corresponding Lipschitz solution of (A) with
initial datum uk0. By the comparison principle we have

‖um − uk‖L∞([0,+∞)×Rn) 6 ‖um0 − uk0‖L∞(Rn),

that is, (uk)k is a Cauchy sequence in [0,+∞)× Rn with respect to the sup–norm.
Hence the Lipschitz functions uk uniformly converge to a function u on [0,+∞)×Rn,
which is therefore uniformly continuous. By the stability of the notion of viscosity
solution, we conclude that u is a solution of (A) with initial datum u0. �
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[2] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi, volume 17 of Mathématiques
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Boston Inc., Boston, MA, 2004.

[8] F. Cardin and C. Viterbo. Commuting Hamiltonians and Hamilton-Jacobi multi-time equa-
tions. Duke Math. J., 144(2):235–284, 2008.
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1993.

Dip. di Matematica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma,
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IMJ-PRG (projet Analyse Algébrique), UPMC, 4, place Jussieu, Case 247, 75252
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