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Abstract In the realm of 3D–2D dimensional reduction problems, we prove that, up

to an extraction, it is possible to decompose a sequence ðunÞ, whose scaled gradients

raun;
1
en
r3un

� �
are bounded in LUðx� ð�1; 1Þ;R3�3Þ for a suitable Orlicz func-

tion U, as un ¼ vn þ zn, such that vn describes the oscillations,

U ravn;
1
en
r3vn

���
���

� �� �
, is equi-integrable and the remainder zn, accounting for

concentration effects, converges to zero in measure. In particular, we extend to the

Orlicz–Sobolev setting the results contained in Bocea and Fonseca, (ESAIM:

COCV 7:443–470, 2002) and Braides and Zeppieri (Calc Var 29:231–238, 2007).
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1 Introduction

In the study of thin structures, i.e. when one or more dimensions are much smaller

than the others, say of order e\\1, rigorous analysis via dimensional reduction

proves to be a useful tool to deduce properties of thin domains starting from thicker

models. In this analysis one deals with sequences of functions defined on cylindrical

sets with some thin (e sized) dimension. In the 3D setting, thin films are modelled as

x� ð�e; eÞ with x � R2 a bounded open set. In order to perform an asymptotic

analysis as e ! 0, with the aim of deducing a theory settled in x, functions are

usually rescaled to an e-independent reference configuration, so that a new sequence

ðueÞ is constructed, satisfying, in the standard Sobolev setting, some ‘degenerate’

bounds of the form
Z

x�ð�1;1Þ
jrauejp þ

1

ep
jr3uejp

� �
dx�C\þ1; ð1Þ

if the sequence of unscaled gradients ðrweÞ satisfied some corresponding Lp bound

on the unscaled domain x� ð�e; eÞ.
Above and in the sequel ra represents the gradient with respect to the unscaled

coordinates (denoted by xa) and r3 represents the gradient with respect to the thin

coordinate direction denoted by x3. In particular, X :¼ x� ð�1; 1Þ ¼ fðxa; x3Þ :
ðxa; ex3Þ 2 x� ð�e; eÞg and ueðxa; x3Þ ¼ weðxa; ex3Þ:

Bocea and Fonseca in [3] (see also Braides and Zeppieri in [4] for any

dimension) proved an equi-integrability Lemma for scaled gradients satisfying a

bound as (1). Indeed they generalized the Fonseca et al.’s result (see [7, Lemma

1.2], in turn refining the results in [1]) which allows to substitute a sequence ðunÞ,
whose gradients ðrunÞ are bounded in Lp, by a sequence ðvnÞ with ðjrvnjpÞ equi-

integrable, such that the two sequences are equal except on a set of vanishing

measure. The purpose of such a result is due to the fact that when applying the direct

methods of the Calculus of Variations, or some C-convergence argument, it is very

convenient to replace a given sequence with one having better regularity and

integrability properties.

In this note we extend [3, Theorem 1.1, Corollary 1.2] to the Orlicz–Sobolev

setting (see Sect. 2 for details and properties about Orlicz spaces LU and Orlicz–

Sobolev ones W1;U). Our main motivation is to provide new tools, namely the

Lipschitz type approximation for scaled gradients, to the asymptotic analysis of thin

structures whose stored energy can be modelled in terms of Orlicz–Sobolev

functions. Indeed a larger class of materials can be considered, replacing standard

coercivity and growth condtions (i.e. of the type j � jp) for the energy density, by

convex functions [satisfying suitable properties, as (5) and (6)]. We refer to the

recent works [18, 19] aimed to describe thin structures and their bending

phenomena, and to the forthcoming paper [16], where optimal design questions

are addressed in the same spirit of [5, 6]. We believe that our result can have further

applications like those to fluid mechanics and multiscale problems (we refer to [21],

where homogenization of integral functionals was treated, in a very similar setting

to ours).
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Via Young measures techniques, we prove

Theorem 1 Let x � R2 be a bounded open set with Lipschitz boundary and

X :¼ x� ð�1; 1Þ. Let U : ½0;þ1Þ ! ½0;þ1Þ be an Orlicz function satisfying (5)

and (6). Let ðunÞ � W1;UðX;R3Þ. Assume that ðenÞ is a sequence of numbers

converging to 0, such that

sup
n

Z
X
ðUðjraun;

1

en
r3unjÞÞdx ¼ C\þ1: ð2Þ

Then there exists a (non-relabelled) subsequence ðunÞ and a sequence ðvnÞ �
W1;UðX;R3Þ such that

(i) sequence ðUðjravn; 1
en
r3vnjÞÞ is equi-integrable,

(ii) vn * u0 in W1;UðX;R3Þ; where u0 is the weak limit of ðunÞ in W1;UðX;R3Þ;
(iii) jfx 2 X : un 6¼ vnorrun 6¼ rvngj ! 0; as n ! þ1;
(iv) vnjox�ð�1;1Þ ¼ u0:

We stress that the above result holds for any sequence of scaled gradients

appearing in any Nd–Kd dimensional reduction problem, besides the proof is

presented for N ¼ 3 and K ¼ 2.

Having in mind the equilibrium problems related to membranes, where the total

energy of the thin film under a deformation we : x� ð�e; eÞ ! R3 is given by

EeðweÞ :¼
Z

x�ð�e;eÞ
WðrweðyÞÞdy�

Z

x�ð�e;eÞ
f eðyÞ � weðyÞdy;

with f e 2 LWðx� ð�e; eÞ;R3Þ an appropriate dead loading body force density (we

refer to [18] for the asymptotic analysis of the above energy), it is important to

prove the existence of an ‘attaining’ sequence for the limit density, which is U-equi-

integrable. Indeed the following result holds.

Theorem 2 Let X and U be as in Theorem 1. Let u0 2 W1;Uðx;R3Þ be an affine

mapping with gradient n0 2 R3�2 and let W : R3�3 ! R be a continuous function

satisfying

bUðjnjÞ � c�WðnÞ� b0UðjnjÞ þ C foreveryn 2 R3�3; ð3Þ

for suitable constant 0\b� b0, c;C[ 0.

Given any sequence ðenÞ of positive real numbers converging to zero, there exist

a subsequence (not relabelled) of ðenÞ, and a sequence of functions ðunÞ �
W1;UðX;R3Þ such that

(i) lim
n!þ1

1
jXj

R
X W raun;

1
en
r3un

� �
dx ¼ QWðn0Þ; where Wðn0Þ ¼ minz2R3

Wðn0jzÞ and QW denotes the quasiconvex envelope of W , namely
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QWðn0Þ ¼ inf
u2W1;1

0
ðQb;R

3Þ
jQbj�1

Z

Qb

Wðn0 þrauðxaÞÞdxa
� �

ð4Þ

for any cube Qb � x;
(ii) lim

n!þ1
kun � u0kLUðX;R3Þ ¼ 0;

(iii) unjox�ð�1;1Þ ¼ u0.

(iv) U raun;
1
en
r3un

���
���

� �
is equi-integrable.

It is worth to observe that such a result can be seen as a counterpart of the

characterization of the Young measures generated by scaled gradients in the Orlicz–

Sobolev setting. Indeed formula (i) is entirely analogous to [14, formula before

(1.16)].

The proof of Theorem 1 develops first by proving a Decomposition Lemma for

standard gradients (see Theorem 4) which relies on properties of maximal functions,

and exploits the Fundamental Theorem of Young measures (see Theorem 3). Then

the proof of Theorem 1 follows as a consequence making use of the fine

homogenization technique introduced in [4]. These are the subject of Sect. 3, while

all the preliminary results, together with properties of Hardy maximal operator are

contained in Sect. 2.

2 Notation and preliminaries

We will use the following notation:

– |A| denotes the Lebesgue measure of a set A in RN , N � 2, and it will be clear

from the context;

– the symbol dx will also be used to denote integration with respect to the

Lebesgue measure LN , N� 3;

– the symbol dxa will be used to denote integration with respect to the Lebesgue

measure L2;

– the symbol rau denotes the derivatives with respect to xa :¼ ðx1; x2Þ of a given

field u;

– C represents a generic positive constant that may change from line to line;

– a matrix n 2 R3�3, will be often written as ðna; n3Þ where na stands for the first

two columns and n3 represents the third;

– the Euclidean norm of a vector or of a matrix will be described as j � j and it will

be clear from the context;

– a sequence ðfnÞ is said to be U-equi-integrable if the sequence ðUðjfnjÞÞ is equi-

integrable.

We say that U : ½0;þ1Þ ! ½0;þ1Þ is an Orlicz function whenever it is

continuous, strictly increasing, convex, vanishes only at 0 and limt!0þ UðtÞ=t ¼
0; limt!þ1 UðtÞ=t ¼ þ1: This statement is equivalent to demanding that UðtÞ ¼
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R t

0
/ðsÞds for some right-continuous, non-decreasing / s.t. /ðtÞ ¼ 0 () t ¼ 0 and

limt!þ1 /ðtÞ ¼ þ1:
We say that U satisfies D2 (denoted by U 2 D2) condition whenever

there exist C[ 0 and t� t0 such that Uð2tÞ\CUðtÞ for all t� t0: ð5Þ

Orlicz functions U possess the complementary Orlicz function WðsÞ :¼ UHðsÞ,
where the latter denotes the standard Fenchel’s conjugate of U, i.e.

WðsÞ :¼ sup
t� 0

fst � UðtÞg; s� 0;

and, it results that WðsÞ ¼
R s

0
/�1ðsÞds; where /�1 stands for right inverse function

of /.

Clearly WH ¼ ðUHÞH ¼ U.

If W 2 D2 then (see [17, Theorem 4.2])

there exist C[ 0 and t0 � 0 such that UðtÞ� 1=ð2CÞ UðCtÞ for any t[ t0: ð6Þ

Given two Orlicz functions U and U0, U dominated U0 near infinity (U0 	 U or

U 
 U0 in symbols) if there exists C[ 1 and t0 [ 0 such that U0ðtÞ�UðCtÞ for all

t[ t0.

For an arbitrary set of positive Lebesgue measure E � RN we define the Orlicz

class LUðEÞ of functions u on E as functions satisfying inequality
Z

E

UðjujÞdx\þ1

In general the class LUðEÞ is not a linear space, and the Orlicz space LUðEÞ is

defined as the linear hull of LUðEÞ. It is easy to check that (see [17, Theorem 8.2])

Orlicz class LUðEÞ coincides with its Orlicz space LUðEÞ if and only if U 2 D2:
Orlicz spaces are equipped with the Luxemburg norm, namely

jjujjLUðEÞ ¼ inf
k[ 0

Z

E

Uðjuj=kÞ� 1 ð7Þ

and are complete (see [17, Theorems 9.2 and 9.5]).

The following properties hold.

Lemma 1 Let U be an Orlicz function satisfying the D2 condition (i.e. (5)) and let

E be a bounded open set in RN . Then

(i) C1
c ðEÞ is dense in LUðEÞ [10, Theorem 1];

(ii) LUðEÞ is separable [17, point 4 at page 85] and it is reflexive when U
satisfies (6) [17, Theorem 14.2];

(iii) the dual of LUðEÞ is identified with LWðEÞ, (W ¼ UH) and the dual

norm on LWðEÞ is equivalent to k � kLW [17, Theorem 14.2];
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(iv) given u 2 LUðEÞ and v 2 LWðEÞ, then uv 2 L1ðEÞ and the following

generalized Hölder inequality holds [17, Theorem 9.3 and formula

(9.24)] Z

E

uvdx

����
����� 4kukL/kvkLW ;

(v) for every v 2 LUðEÞ the linear functional Iv on LWðEÞ defined as

IvðuÞ :¼
Z

E

uðxÞvðxÞdx

belongs to the dual of LWðEÞ with kvkLU �kLvk½LWðEÞ�0 � 2kvkLU [17,

Theorem 9.5, formula 9.24];

(vi) given U and ~U, the continuous embedding LUðEÞ,!L
~UðEÞ holds iff

U 
 ~U [17, Theorem 8.1];

(vii) in view of (vi) LUðEÞ,!L1ðEÞ,!L1
locðEÞ,!D0ðEÞ;

(viii) the product of d identical copies of LUðEÞ, ðLUðEÞÞd :¼ LUðEÞ � . . .�
LUðEÞ endowed with the norm kvkðLUðEÞÞd :¼

Pd
i¼1 kvikLUðEÞ is an

Orlicz space (i.e. the norm is equivalent to the LUðtd
1EÞ norm, where t

stays for sum of disjoint copies of the set).

Sobolev–Orlicz spaces W1;UðEÞ are defined as follows

W1;UðEÞ :¼ fu 2 D0ðEÞ : u 2 LUðEÞ;ru 2 ðLUðEÞÞNg

endowed with the norm

jjujjW1;UðEÞ :¼ jjujjLUðEÞ þ jjrujjðLUðEÞÞN ;

thus they are Banach spaces.

The Sobolev–Orlicz space W1;UðE;RdÞ, d 2 N is defined as the Banach space of

Rd valued functions u 2 LUðE;RdÞ with distributional derivative

ru 2 LUðE;RN�dÞ, equipped with the norm

kukW1;UðE;RdÞ :¼ kukLUðE;RdÞ þ krukLUðE;RN�dÞ;

where the meaning of the norm k � kLUðE;R�Þ is easily understood from (viii) in

Lemma 1. On the other hand, all the other properties in Lemma 1 extend with

obvious meaning to the vectorial setting.

If E has Lipschitz boundary, then the embedding

W1;UðE;RdÞ,!LUðE;RdÞ ð8Þ

is compact (see [2] and [9, Theorems 2.2 and Proposition 2.1]).

For Sobolev–Orlicz space W1;UðEÞ; where E has a Lipschitz boundary and

U 2 D2, there exists a linear continuous trace operator Tr : W1;UðEÞ ! LUðoEÞ [11,

Theorem 3.13].
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Let M be a (centred) Hardy maximal operator, i.e. for any f 2 L1
locðEÞ \ LUðEÞ

let

Mf ðxÞ :¼ sup
r

jBðx; rÞj�1

Z

Bðx;rÞ\E
jf ðxÞjdx:

The following result will be exploited in the sequel.

Proposition 1 (Weak estimate on Hardy’s operator) Let U be an Orlicz function

satisfying (5) and (6). For any f 2 LUðEÞ there exists a constant C ¼ C
	
E;U



such

that

jfMf [ tgj� C

UðtÞ

Z

E

Uðjf jÞdx; ð9Þ

for every t[ 0.

Proof We start with standard Chebyshev inequality

jfMf [ tgj ¼
Z

fMf [ tgdx�
R
fMf [ tg

UðMf ÞUðtÞdx;

where we use the fact that Orlicz function U is increasing and UðMf Þ is integrable.

This latter property, in turn, relying on the integrability of Uðjf jÞ, (5) and result the

continuity of Hardy’s operator in [8]. Assuming that U satisfies (5), (6), [12, The-

orem 1] (with applied weight w � vfMf [ tg note that condition (2) is obviously

satisfied) shows that there exists a constant C[ 0 such that

Z

fMf [ tgUðMf ÞUðtÞdx� C

UðtÞ

Z

fMf [ tgUðjf jÞdx;

for every t[ 0. h

It is worth to observe that the result holds with the same proof in the vectorial

case.

We quote the Fundamental Theorem on Young measures, which will be invoked

in the proof of our main results, for more details we refer to [20] (and regarding

Young measures generated by gradients to [13, 15]).

Theorem 3 Let E � RN be a measurable set of finite measure and let ðznÞ be a

sequence of measurable functions, zn : E ! Rm. Then there exists a subsequence

ðznkÞ and a weak * measurable map m : E ! MðRmÞ such that the following hold:

(i) mx � 0; kmxkMðRmÞ¼
R
Rm

dmx � 1
for a.e. x 2 E;

(ii) one has (i0) kmxkM¼1 for a.e. x 2 E if and only if

lim
R!þ1

sup
k

jfjznk j �Rgj ¼ 0

Orlicz equi-integrability
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(iii) if K � Rm is a compact subset and distðznk ;KÞ ! 0 in measure, then

suppmx � K for a.e. x 2 E;

(iv) if (i0) holds, then in (iii) one may replace ’‘f’ with ’‘if and only if’;

(v) if f : E � Rm ! R is a normal integrand, bounded from below, then

lim inf
n!þ1

Z

E

f ðx; znkðxÞÞdx�
Z

E

Z

Rm

f ðx; yÞdmxðyÞdx

(vi) if (i0) holds and if f : E � Rm ! R is Carathéodory and bounded from

below, then

lim
n!þ1

Z
E

f ðx; znkðxÞÞdx ¼
Z
E

Z
Rm

f ðx; yÞdmxðyÞdx

if and only if ðf ðx; znkðxÞÞÞ is equi-integrable. In this case

f ðx; znkðxÞÞ *
Z

Rd

f ðx; yÞdmxðyÞinL1ðEÞ:

The map m : E ! MðRmÞ is called the Young measure generated by ðznkÞ.

3 Proofs of Theorems 1 and 2

This section is devoted to the proof of our main result.

We start by proving a Lemma which generalizes [20, Lemma 8.13] to the Orlicz

setting.

Lemma 2 Let U be an Orlicz function satisfying (5) and (6). Let E � RN be a

Lebesgue measurable set of finite measure and let ðunÞ be a uniformly bounded

sequence in LUðE;RmÞ: For any r[ 0 define the standard truncature operators

sr : R ! R as

srðtÞ :¼
t wheneverjtj � r;

r
t

jtj otherwise:

8<
: ð10Þ

Then there exist a (non-relabelled) subsequence ðunÞ and an increasing sequence of

positive numbers rn ! þ1 such that srn  un are U-equi-integrable and the mea-

sure jfx 2 E : srn  un 6¼ ungj ! 0:

Proof By (i) in Theorem 3, we may assume that ðunÞ generates the Young measure

mx and (iii) therein guarantees that
Z

E

Z

Rm

UðjzjÞdmxðzÞdx\þ1:

So we have
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lim
r!þ1

lim
n!1

Z

E

Uðjsr  unjÞdx ¼ lim
r!þ1

Z

E

Z

Rm

U
	
jsrðzÞj



dmxðzÞdx ¼

Z

E

Z

Rm

UðjzjÞdmxðzÞdx:

where the first equality relies on (vi) of Theorem 3, and the second one on Lebesgue

Monotone Convergence theorem. Take rn such that

lim
n!þ1

Z

E

Uðjsrn  unjÞdx ¼
Z

E

Z

Rm

UðjzjÞdmxðzÞdx:

As rn ! þ1 and ðunÞ is bounded, one has

jfx 2 E : srn  un 6¼ ungj ! 0:

Thus, we can conclude that ðsrn  unÞ generates the same Young measure as ðunÞ
(see [20, Corollary 8.7]).

Finally (vi) in Theorem 3 ensures U-equi-integrability. h

Now we prove a Decomposition Lemma for gradients and then we extend this

result to scaled ones.

Theorem 4 Let E � RN be a bounded open set with Lipschitz boundary. Let U be

an Orlicz function satisfying (5) and (6), and let ðunÞ � W1;UðE;RdÞ be a sequence

of functions converging to u0 weakly in W1;UðE;RdÞ. Then there exists a

subsequence ðunkÞ and a sequence ðvkÞ � W1;1ðRN ;RdÞ such that ðvkÞ converges

to u0 weakly in W1;UðE;RdÞ, and

jfx 2 E : vkðxÞ 6¼ ukðxÞorrukðxÞ 6¼ rvkðxÞgj ! 0ask ! þ1

and ðUðjrvkjÞÞ is equi-integrable.

Proof Since

sup
n

kunkW1;UðE;RdÞ �C

and by (5),

sup
n

Z

E

ðUðjunjÞ þ UðjrunjÞÞdx
� �

�C;

it follows that from the continuity of the maximal operator [8, Theorem 2.1], and the

passage to an equivalent norm, that

sup
n

Z

RN

UðMðjunj þ jrunjÞvEÞdx
� �

�C;

where Mððjunj þ jrunjÞvEÞ is the maximal function of ðjunj þ jrunjÞvE. By

Lemma 2, there exists an increasing sequence tn ! þ1 such that ðUðjstn 
ðMððjunj þ jrunjÞvEÞÞjÞÞ is equi-integrable, where stn is as in (10).

Define

Orlicz equi-integrability
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An :¼ fx 2 E : jM
	
ðjunj þ jrunjÞvE



j[ tng: ð11Þ

By [20, Theorem 4.32], there exists ðvnÞ � W1;1ðRN ;RmÞ such that

kvnkW1;1 �Ctn;

where C depends on E and N, and such that vn ¼ un LN a.e. on E n An and by (9)

jAnj �
C

UðtÞ

Z

RN

Uðjunj þ jrunjÞdx:

In order to show that ðUðjrvnjÞÞ is equi-integrable we observe that for LN a.e. x in

E n An

jrvnj ¼ jrunj �Mððjunj þ jrunjÞvEÞ ¼ jstn Mððjunj þ jrunjÞvEÞj

while if x 2 An then

jrvnj �Ctn �Cjstn Mððjunj þ jrunjÞvEÞj:

It remains to prove the weak convergence of ðvnÞ to u0 in W1;UðE;RdÞ. To this end,

first we observe that (11) and (9) ensure

Z

E

Uðjvnj þ jrvnjÞdx ¼
Z

EnAn

Uðjunj þ jrunjÞdxþ
Z

An

Uðjvnj þ jrvnjÞdx

�
Z

EnAn

Uðjunj þ jrunjÞdxþ CUðtnÞjAnj

�C

Z

E

Uðjunj þ jrunjÞdx:

Next the reflexivity of W1;UðE;RdÞ under (5), (6) (see Lemma 1) and the Banach–

Alaoglu–Bourbaki theorem ensure that vn * v0 in W1;UðE;RdÞ. Thus, since jfx 2
E : vn 6¼ unorrun 6¼ vngj ! 0 as n ! þ1 we can conclude, via the compact

imbedding (see (8)) that v0 ¼ u0 LN-a.e. in E. h

Proof of Theorem 1 The proof of the claims (i) and (iii) follows line by line as in

[4, Theorem 3.1]. Namely, we define ûn :¼ unðx1; x2;
x3

ej
� 1Þ (so it is a shifted and

scaled version of un, and it is defined on x� ð0; 2enÞ) and observe that

sup
j

e�1
j

Z

x�ð0;2enÞ
UðjrûnjÞdx ¼ C; whereCisexactlylikeinð1:2Þ:

We now extend ûn by reflection to x� ð�2en; 2enÞ and then produce its periodic

extension to x� ð�1; 1Þ:
For such constructed sequence one can obtain the uniform bound of the norm in

W1;Uðx� ð�1; 1ÞÞ as in [4, formula (3.6)]. Thus we apply Theorem 4 and obtain a

sequence ðv̂nÞ with ðrv̂nÞ U-equi-integrable. The use of de la Vallée Poussin Cri-

terion (see [20, Theorem 2.29]) and an ingenious computation (see [4, formula
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(3.7)]) gives us the sequence ð�vnÞ satisfying claim (i) and (iii).

Up to an extraction of a subsequence one may immediately deduce claim (ii).

To get (iv) we argue as in [3, Corollary 1.2]. We define sets

xj :¼ fx 2 x : distðx; oxÞ\1=jg ð12Þ

and cut-off functions hj 2 C1
0 ðx; ½0; 1�Þ, equal to 1 on x n xj, vanishing in a

neighbourhood of ox, and such that jrhjj\Cj for some constant C. We set then

vn;j :¼ u0 þ hj�vn. Via compact imbedding (see (8)) and diagonal argument we may

find a sequence n(j) such that nðjÞ ! þ1 as j ! þ1 and

jjvnðjÞ;j � u0jjLUðX;R3Þ ! 0 and jjvnðjÞ;jjjLUðX;R3Þ\
1

j2
:

To obtain (iv), it suffices to define vj :¼ vnðjÞ;j: It remains to deduce (i)–(iii) for this

latter sequence. To prove (iii) we just observe that

jfx 2 X : uj 6¼ vjorruj 6¼ rvjgj
� jfx 2 X : uj 6¼ �vjorruj 6¼ r�vjgj þ jfx 2 X : �vj 6¼ vjorruj 6¼ r�vjgj;

and the claim follows from the control of the latter two sets. For (i), it suffices to

exploit the definition of uj and the U-equi-integrability of vj, (see also [3, formula

(4.8)]). Up to the extraction of the subsequence we may know deduce (ii). h

Proof of Theorem 2 It can be deduced from [3, Corollary 1.2]. We sketch the main

points for the readers’ convenience. First let us observe that from density of smooth

functions and properties of quasiconvex envelope and definition of W it can be

easily proven that

inf
e;ujox�ð�1;1Þ�u0

1

jXj

Z

X
Wðrau;

1

e
r3uÞdx ¼ QWðn0Þ: ð13Þ

Now let us assume that x is a square ð�c=2; c=2Þ2
. Let ðwn; LnÞ be the infimizing

sequence of the left-hand side in (13). We may thus assume that, up to a reflection

and then a periodic extension, functions ðwn � u0Þ are already defined on R2 �
ð�1; 1Þ: We define wn;jðxÞ :¼ ejLnðwn � u0Þð

	
ejLnÞ�1

xa; x3



and observe that wn;j *

0 and

lim
n!1

lim
j!1

1

jXj

Z

X
W
	
rau0 þrawn;j;

1

ej
r3wn;j



¼ QWðn0Þ:

By a diagonal procedure and (8) we may choose j(n) such that (denoting wn;jðnÞ as ~wn

and ejðnÞ as ~en), lim ~wn ¼ 0 in LUðXÞ, and

lim
n!1

1

jXj

Z
X
Wðra ~wn;

1

~en
r3 ~wnÞdx ¼ QWðn0Þ:

The latter equality together with (2) gives us bound on the norm of ~wn in

W1;UðX;R3Þ. Up to an extraction of the subsequence (not relabelled) we may still
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assume that ~wn * 0.

Applying Theorem 1 we obtain a sequence ðvnÞ satisfying (ii)–(iv). (i) follows

from triangle inequality, U-equi-integrability of ðvnÞ, point (iii) and the fact that

jxjj ! 0 (see (12)).

To generalize the result to x with Lipschitz boundary we refer to the second step

of the proof of [3, Corollary 1.2]. h
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