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Abstract 

 
 

Antibiotic resistance is one of the biggest public health 

challenges of our time. Bacterial chemoresistance is the 

phenomenon whereby bacteria develop the ability to survive and 

multiply in the presence of an antibacterial drug; the expression 

of a resistant phenotype may be due to three fundamental 

mechanisms, including the expression of enzymes that inactivate 

the antibacterial drug, changes in the membrane permeability to 

antibiotics and the onset of point mutations causing the physical-

chemical alteration of the antimicrobial targets. In recent decades, 

new antibiotic resistance mechanisms have emerged and are 

spreading globally, threatening human health and the ability to 

fight the most common infectious diseases. 

Quinolones, a novel class of antibiotics that bind bacterial 

topoisomerases and inhibit cell replication, have been important 

in limiting the spread of penicillin- and macrolides-resistant 

Streptococcus pneumoniae. However, alarmingly, resistance to 

quinolones is spreading recently. Resistance is caused by the 

appearance of point mutations in the bacterial topoisomerase and 

gyrase. Some mutations are well known, but some are not and 

the information about known molecular mechanisms causing 

resistance is sparse and not systematically collected and 

organised. This means that it cannot be used to infer new 

mutations in newly sequenced bacterial genes and study how 



 

 

they may affect the drug binding. The lack of structured, 

organized, and reusable information about point mutations 

associated with antibiotic resistance represents a critical issue 

and is a common pattern in the field. 

Here, we present a structural analysis of point mutations involved 

in the resistance to quinolones affecting the gyrase and 

topoisomerase genes in Streptococcus pneumoniae. Results, 

extended to other bacterial species, have 

been collected in a database, Quinores3D db, and can now be 

used – through a web server, Quinores3D finder - to analyze both 

known and yet unknown mutations occurring in bacterial 

topoisomerases and gyrases. The development, testing and 

deployment of Quinores3D db and Quinores3D finder are further 

results of this PhD thesis. 

Furthermore, structural data about point mutations associated 

with antibiotic resistance were used to train, test and validate a 

machine learning algorithm for the inference of still unknown 

mutations potentially involved in bacterial resistance to 

quinolone. As the performance of the algorithm, measured in 

terms of accuracy, sensitivity and specificity, is very promising, 

we plan to incorporate it in the web server to allow users to 

predict new mutations associated with bacterial resistance to 

quinolones.
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1. Introduction                           

 
 

1.1. A brief history of antibiotics 

 
 

The word antibiotic was first used by Selman Waksman in 1941 

to describe any small molecule made by a microbe that 

antagonizes the growth of other microbes1. Yet, the use of 

antimicrobial agents can be dated back to 2000 years ago, when 

ancient Greeks and Egyptians were used to apply mouldy bread 

to treat open wounds2. 

The development of anti-infective drugs is widely accredited to 

Paul Erlich, who developed the salvarsan, an arsenic-based pro- 

drugs to treat the agent of syphilis in 19103. Years later, 

Gerhard Domagk at Bayer discovered the sulfonamide prodrug 

Prontosil, which like other sulfonamides was the first effective 

broad spectrum antimicrobial still in use today. 

The turning point came in 1928 with the discover of penicillin by 

Alexander Fleming, which started the golden age of natural 

product antibiotic discovery that peaked in the mid-1950s, 

especially thanks to the studies of Selman Waksman who 

discovered numerous antibiotics made by soil-dwelling 

actinomycetes, including neomycin and streptomycin2. 
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Figure 1.1. Timeline showing the decade new classes of 
antibiotic reached the clinic2. 

 

In just over 100 years antibiotics have drastically changed 

modern medicine and extended the average human lifespan by 

23 years, but then, a gradual decline in antibiotic discovery and 

development and the evolution of drug resistance in many 

human pathogens has led to the current antimicrobial resistance 

crisis2. 
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1.2. Antibiotics: classes and mechanism of action 

 

Antibiotics are kind of antimicrobials commonly used to treat 

bacterial infections. They can either be produced naturally from 

other organism or by synthesis, and they act both killing or 

inhibiting the growth of bacteria4. They 

are commonly classified on the basis of their mechanism of action. 

 
 

1.2.1. Antibiotics targeting the cell wall 

 

Bacterial cells are surrounded by a cell wall made of a sugar 

polymer, the peptidoglycan, which results from the cross-

linking of glycan strands by the action of a transglycosidases. 

The penicillin binding proteins (PBPs) allow the cross-linking 

between the D-alanyl-D-alanine portion of the peptide chains, 

which extend from the sugars in the polymers, and form cross-

links with glycine residues5. 

Drugs like beta-lactam antibiotics and glycopeptides act 

inhibiting the cell wall synthesis. Since beta-lactam ring mimics 

D-alanyl-D-alanine portion, it has been proposed that PBPs 

interacts with the antibiotic and it is not available for the 

synthesis of new peptidoglycan, leading to cell wall lysis. Also 

glycopeptides binds to D-alanyl D-alanine, preventing the 

binding of the subunit with the PBP. 
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1.2.2. Inhibition of protein synthesis 

 

This class is heterogeneous and it includes different compounds 

able to inhibit protein biosynthesis by targeting the 30S or 50S 

subunit of the bacterial ribosome, including aminoglycosides, 

tetracyclines or macrolides. The aminoglycosides (AG) are 

positively-charged molecules which attach to the outer membrane 

leading to formation of pores allowing itself to penetrate inside 

the bacterium. AG's interact with the 16S r-RNA of the 30S 

subunit near the A site through hydrogen bonds, causing 

misreading and premature termination of translation of mRNA. 

Tetracyclines, such as tetracycline, chlortetracycline, 

doxycycline, or minocycline, act upon the conserved sequences of 

the 16S r-RNA of the 30S ribosomal subunit to prevent binding of 

t-RNA to the A site, while chloramphenicol interacts with the 

conserved sequences of the peptidyl transferase cavity of the 23S 

r-RNA of the 50S subunit, preventing binding of t-RNA to the A 

site of the ribosome. 

Compounds like macrolides, lincosamides, and streptogramins 

B affect the translocation, by targeting the conserved sequences 

of the peptidyl transferase center of the 23S r-RNA of the 50S 

ribosomal subunit. 

Oxazolidinones inhibit protein synthesis by binding to 23Sr 

RNA of the 50S subunit and suppress 70S inhibition and interact 

with peptidyl-t-RNA. 
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1.2.3. Folic acid metabolism inhibitors 

 

There are two types of molecules interfering with the biosynthetic 

pathway of the folic acid metabolism: sulfonamides and 

trimethorprim.. The former inhibit the dihydropteroate synthase in 

a competitive manner with higher affinity for the enzyme than the 

natural substrate, p-amino benzoic acid, while the latter inhibits 

the enzyme dihydrofolate reductase. 

 
1.2.4. Inhibitors of DNA replication 

 

Quinolones are a group of broad spectrum synthetic 

antibacterial active against both Gram positive and Gram 

negative bacteria6,7. They act by inhibiting the activity of two 

essential bacterial type II topoisomerases paralogues, DNA 

gyrase and topoisomerase IV, which are involved in the 

modulation of the chromosomal supercoiling required for 

DNA synthesis, transcription and cell division.    
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Fig 1.2. Class of antibiotics according to their mechanism of action5. 

 

1.3. Quinolones and fluoroquinolones 

 

The quinolones are a family of antibiotics containing a bicyclic 

core structure related to the compound 4-quinolone (figure 1.3) . 

Nowadays four generations of compounds have been developed. 

 
Nalidixic acid is considered as the first quinolone antibiotic, 

followed in 1962 by a 6-fluoroquinolone synthetized by the 

Imperial Chemical Industries (ICI)8. Quinolones became a widely 

used drug class in the 1980s with the development of a second 

generation of compounds, the fluoroquinolones, in which the 

structure was modified with the introduction of a fluorine at the 

six position and a major ring substituent at position seven7 (figure 
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1.3), resulting in the increase of their activity. The second 

generation includes enoxacin, norfloxacin, and ciprofloxacin, 

which were further modified by the 

 

 

addition of a piperazine ring to the R7 position and addition of a 

cyclopropyl group to the R1 position (figure 1.3). This 

combination made ciprofloxacin the first choice used against 

Pseudomonas aeruginosa today. 

The third-generation quinolones are commonly used in the 

treatment of community-acquired pneumonia, acute sinusitis and 

acute exacerbations of chronic bronchitis. They include 

levofloxacin, gatifloxacin, moxifloxacin and sparfloxacin, which 

are active against gram-positive organisms, like S. pneumoniae, 

and atypical pathogens such as Mycoplasma pneumoniae and 

Chlamydia pneumoniae9. These drugs result in the addiction of 

several functional groups to the R7 position (alkylated 

piperazine), R5 (–NH2, –OH, and –CH3) and R8 (Cl)8 (Figure 

1.3). 

The fourth generation class added significant antimicrobial 

activity against anaerobes9 due to the presence of nitrogen at 

the R8, while a 2,4 difluorophenyl group at the N position 

improves the overall potency of the drug8. 
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Fig.1.3. Structure-activity relationships of quinolones drugs8. 

 
 

1.3.1. Quinolones target: DNA gyrase and topoisomerase IV 

 

Quinolones act by inhibiting the activity of two essential type II 

topoisomerases, DNA gyrase and topoisomerase IV, which are 

involved in the modulation of the chromosomal supercoiling7,8. 

DNA gyrase uses the energy of ATP hydrolysis to actively 

introduce negative supercoils into DNA, relieving the torsional 

stress that accumulates in front of replication forks and 

promoting local melting needed for transcript initiation by 

RNA polymerase. Topoisomerase IV is only able to relax 

positive supercoils and its major function is decatenation of the 

interlocked daughter chromosomes at the end of 

replication7,10,11. 
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1.3.2. Structure of topoisomerase II enzymes 

 

The general structure of type II topoisomerases is an A2B2 hetero-

tetramer composed of two pairs of identical subunits, GyrA and 

GyrB for gyrase, ParC and ParE for topoisomerase IV7,10. 

The B subunit of E. coli DNA gyrase (GyrB) corresponds to the 

ParE subunit topoisomerase IV and to the N-terminal half of the 

eukaryotic enzymes, whereas the gyrase A subunit (GyrA) aligns 

with the ParC subunit and the C- terminal half of the eukaryotic 

enzymes12. 

 
 

Fig 1.4. Sequence comparisons of topoisomerase IV and DNA gyrase8. 

 
 

We can see that ParC and GyrA subunits consist of an N-

terminal part, comprising a winged-helix domain (WHD), a 

tower domain, and a C- terminal beta-pinwheel domains 

(CTD) (figure 1.5, region coloured in green, blue, and purple). 

These domains bind to DNA and promote DNA 

breakage10,13,14. 
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The N-terminal and C-terminal regions of the highly conserved 

ParE (GyrB) subunits form the ATPase- and Mg2+-binding-

TOPRIM domains, respectively (figure 1.5, yellow and red 

regions)10. TOPRIM domains bind with the WHDs region, 

forming the tetramer. 

 

Fig 1.5. (A) Molecular structure of a bacterial topoisomerase II 

enzyme in complex with DNA (light green). Protein is colored 

according to the different domains15. 

 

The main function of topoisomerases II is the formation of a 

transient DNA break involving a covalent-enzyme DNA 

intermediate named the ‘cleavage complex’10. 
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It has been proposed that the enzyme acts as a protein clamp 

that captures DNA as described in detail in Figure 1.6. 

 

Fig.1.6. Proposed model for topoisomerase II mechanism of 

DNA capture and transport10. The protein, in its open 
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conformation (the ‘open clamp’) binds the G- DNA (1-2). 

Binding of the ATP leads to dimerization of ATPase domains 

resulting in the closing of the N-gate and capturing of the T-

DNA(3-6). The DNA T-segment moves through the opened 

DNA gate, then the G-segment is resealed and the C-gate is 

opened, leading to the release of the T-Segment(7-10). The 

closure of the C-gate  and release of ADP opens the N-gate, 

converting the closed conformation to the open conformation, 

ready for another cycle(11-14). 

 

1.3.3. Mode of action of quinolones drugs 

 

Quinolones interfere with the topoisomerase II mechanism by 

reversibly binding to the cleavage complexes at the enzyme–DNA 

interface in the cleavage–ligation active site7,8,16 in a non-covalent 

manner8, leading to the formation of a quinolone–topoisomerase–

DNA ternary complex that causes the DNA replication machinery 

to become arrested at blocked replication forks, resulting in an 

inhibition of DNA synthesis. Moreover, when the DNA tracking 

systems collide with these drug–DNA cleavage complexes, 

permanent chromosome breaks are generated, triggering the DNA 

stress responses which activates DNA repair enzymes. The effect 

is bacteriostasis at low concentrations of quinolone or bactericidal 

activity at lethal concentrations7,8. 

Studies on the X-ray crystal structures of topoisomerase 

IV/gyrase- drug- DNA complexes from different organisms 
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revealed that quinolone is hemi- intercalated into each DNA 

strand and stacked against the DNA bases at the cleavage site 

(Figure 1.7). The drug molecule in close register to ParC S79/ 

GyrA S81 and ParC D83/GyrA E85 residues (S. pneumoniae 

numbering), and with a cluster of two glutamates and an arginine 

(E474, E475 and R456) on ParE/GyrB subunit16,17. Moreover, the 

binding occurs through a water– metal ion bridge, where a 

noncatalytic Mg2+ ion coordinated with four water molecules 

forms a bridge for hydrogen bonding between the quinolone and 

the serine and acidic residues that act as anchor points to the 

enzyme7,16. 
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Fig 1.7. Details of binding mode of quinolone compound 

ACHN-245. Figure modified from the original work of 

Laponogov et al16. 

 
1.4. The antibiotic resistance 

 

Antibiotic resistance (AR) is a natural process whereby 

microorganisms acquire the ability to resist the effects of 

antimicrobial drugs, due to the selective pressure that results 

from exposure to these compounds18,19. It is a global public 

health threat and it is estimated to cause around 300 million 

premature deaths by 2050 with a loss of up to $100 trillion to 

the global economy20. 

There are two general strategies for resistance. One comprises 

mechanisms that transfer resistance vertically from a bacterium 

to its progeny, for example mutations in gene(s) often associated 

with the mechanism of action 

of the compound, the other includes the acquisition of external 

genetic determinants of resistance, likely obtained from 

intrinsically resistant organisms present in the environment, 

through horizontal gene transfer like transformation, 

conjugation or transduction19,20. 

During thousands of years of evolution, bacteria have evolved 

sophisticated mechanisms of drug resistance to avoid killing by 

antimicrobial molecules20. These mechanisms include: 
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• modification of the antibiotic molecule, for example by 

enzymes (acquired from horizontal gene transfer or 

synthetized by the bacterium itself) that perform 

chemical reactions like acetylation, phosphorylation, 

adenylation or the destruction of the drug: β- 

lactamases are able to destroy the amide bond of the β-

lactam ring, rendering the antimicrobial ineffective; 

• modification of the drug permeability. Bacteria have 

developed mechanisms to prevent the antibiotic from 

reaching its intracellular or periplasmic target by 

decreasing the uptake of the antimicrobial molecule. 

Permeability modification can be achieved with the 

expression of efflux pumps which actively extrude the 

quinolone or passively by increasing the expression of 

porins; 

• target site alterations, for example bacteria can produce 

proteins like TetM which interacts with the ribosome and 

remove the tetracycline from its binding site in a GTP-

dependent manner, or PBP2a, a PBP that has low affinity 

for all β-lactams, including penicillins, cephalosporins 

and carbapenems. But one of the most common 

alterations are point mutations of the protein target, like 

the ones occurring in the rpoB protein which confer 

resistance to rifamycin, or the well-known point 

mutations associated with quinolone resistance. 
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Fig 1.8. Common mechanisms of antibiotic resistance7. 

 
 

1.5. Mechanisms of quinolone resistance 

 
The acquisition of quinolone resistance is associated with: 

plasmid-acquired resistance genes synthesizing either proteins 

capable of protecting the drug target(s), or drug-modifying 

enzymes or drug efflux pumps pumps7,8; other chromosomal 

mutations lead to reduced drug accumulation by either 

decreased uptake or increased efflux; chromosomal mutations 

that alter the quinolone target enzymes thus decreasing their 

affinity for the drug. 
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1.5.1. Plasmid-mediated quinolone resistance (PMQR) 

 
This kind of resistance is due to plasmids carrying genes of 

resistance such as the Qnr, a protein of the pentapeptide repeats 

family competing with DNA in the binding to the topo IV and 

gyrase enzymes thus inhibiting the quinolone from entering the 

cleavage complex and reducing the number of double- stranded 

breaks on the chromosomes. This results in reduced quinolone 

toxicity to the chromosomes. Also a derivative of aminoglycoside 

acetyltransferase is able to acetylate the drug, thereby decreasing 

the quinolone activity7,8,21. Finally QepA, a plasmid-mediated 

efflux pump, is able to decrease susceptibility to hydrophilic 

fluoroquinolones, especially ciprofloxacin and norfloxacin21. 

 
1.5.2. Reduced drug accumulation 

 
In Gram positive bacteria, quinolone resistance by increased 

efflux is due to the overexpression of three efflux pumps, NorA, 

NorB and NorC, causing four to eight fold increase in bacterial 

resistance to quinolones. In Gram negative organisms, the 

reduced or loss of expression of porins such as OmpF, OmpC, 

OmpD and OmpA or, the overexpression of OmpX, a 

downregulator of porin expression has been implied in increased 

antibiotic resistance to quinolones and other drugs21. 
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1.5.3. Mutations within the QRDRs 

 
The most common mechanism of high-level resistance in 

different bacteria species is due to mutations occurring in a 

specific region of the topoisomerase IV/ gyrase subunits, 

termed the quinolone resistance 

determining region (QRDR)21. Mutations in this region result in 

amino acid substitutions that structurally change the target protein 

and the drug-binding affinity of the enzyme7. The most common 

mutations are located on GyrA/ParC subunits and affect serine 

and acidic residues (aspartic or glutamic acid), Several bacterial 

species present similar mutations at equivalent positions8. In S. 

pneumoniae the replacement of a serine residue in position 79 of 

ParC with a phenylalanine or tyrosine introduces a bulky amino 

acid side chain, which interferes allosterically with drug 

binding11, while in the substitution in alanine, the non-polar side 

chain prevents the interaction with the ligands and/or with the 

magnesium ion, with the subsequent loss of affinity22.  

The additional mutation of the aspartic acid in position 83 of 

ParC can lead to the disruption of the metal ion water bridge 

required for the quinolone- protein interaction7,23. Mutations of 

acidic residues in the QRDR of GyrB as well as in ParE in E. 

coli and other species have been shown to confer quinolone 

resistance, suggesting that they may interfere with charge 

interactions between drug and target21, for example in E. coli it 

has been proposed that the loss of negative charges in GyrB 
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subunit makes it difficult for a positively charged group of 

quinolones to associate with the protein22.  

 
1.6. Bioinformatics resources to fight antimicrobial 

resistance 

 

Given the increasing crisis represented by antimicrobial 

resistance (AMR), several bioinformatics tools and databases 

have been developed in order to better understand the 

underlying molecular mechanisms24. Improvements in next-

generation sequencing technologies and computational methods 

are facilitating rapid antimicrobial resistance gene identification 

and characterization in genomes and metagenomes
25

. 

Bioinformatics approaches can be categorized as those that focus 

on prediction of AMR, for example identifying the presence of 

resistance genes, and in those that study the mechanism of 

resistance, using gene expression profiles, metabolomics, 

structural analysis and so on24. 

Several methods are sequencing – based , in which 

assemblies, genomic contigs or full gene sequences are 

annotated for resistance 

determinants by comparing them against antimicrobial resistance 

reference databases, like the software PointFinder24,26. 

Other methods avoid genome assembly and directly map reads 

(or k-mers) to the reference databases using pairwise alignment 

tools such as Bowtie225. 
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Also machine learning algorithms have been explored to predict 

the presence of genes of resistance. For example logistic 

regression was implemented to differentiate between 

vancomycin-susceptible and vancomycin-intermediate 

Staphylococcus aureus27; Mykrobe predictor uses k-mer 

screening to identify resistant SNPs and genes in M. tuberculosis 

and S. aureus28, while RAST uses AdaBoost classifier and 

PATRIC database for resistant genes annotation29, and 

DeepARGs is a new tool which uses deep learning to identify 

resistant genes30  in several different bacteria. 
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Table 1.1. List of different tools developed for the antibiotic 

resistance identification. Table modified from the original 

published by Boolchandani et al25.

 

Other important resources are public databases collecting 

information about known genetic determinants of resistance and 

Name Accessibility Year Description 

Assembly-based tools 
   

Resfinder31 Web and/or standalone 2012 Acquired AR genes 

identification 

ARG-ANNOT32 Standalone 2014 AR genes identification 

RGI30 
 

Web and/or standalone 

 

2015 

Predict resistomes, AR genes and 
poin mutations 

ARGs-OAP33 
 

Web and/or standalone 

 

2016 

Pipeline for AR genes detection 

ARIBA34 Standalone 2017 AR genes identification  

PointFinder Web and/or standalone 2018 AR point mutations 

identification 

NCBI-AMRFinder35 Standalone 2018 AR genes and point 

mutations identification 

Read-based tools 
   

SRST236 Standalone 2014 Virulence and AR genes 

identification 

SEAR37 

Web and/or standalone 

(archived) 

 

2015 

Pipeline for AR genes identification 

ShortBRED38 Standalone 2015 Protein families profiling 

PATRIC29 Web 2016 Genomic analysis of 

bacterial pathogens 

SSTAR39 Standalone 2016 AR genes predictor 

KmerResistance40 Web 2016 Gene identification 

GROOT41 Standalone 2018 AR genes 
profiling 

DeepArgs42 Web 2018 AR genes 
identification with 
machine learning 
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information from multiple studies that include antimicrobial 

susceptibility testing. Generalized databases (like CARD or 

ARDB) deal with mechanism information and cover several 

classes of antibiotics, while specialized databases focus on a 

specific compounds or bacterial species, for example Lactamase 

Engineering Database (LacED) provide information on β-

lactamases, or MUBII-TB-DB which provides information on 

resistance in Mycobacterium tuberculosis25. 

 
1.6.1. The Comprehensive Antibiotic Resistance Database 

 
CARD30 is a curated database which provides nucleotide and 

protein sequences of genes of resistance, a resistant SNPs 

database, and a controlled vocabulary, the Antibiotic Resistance 

Ontology(ARO). The ARO is organized in three branches: 

determinant of Antibiotic Resistance (ARO:3000000), antibiotic 

molecule (ARO:1000003) and mechanism of antibiotic resistance 

(ARO:1000002)43. Each new AMR determinant is manually 

curated by a dedicated team, and the process includes review of 

the scientific literature, and adding of annotation from external 

publications. As of September 2019 CARD included 4336 

ontology terms, 2923 AMR determinants, 1304 resistant variant 

mutations and 2648 curated publications. 

Moreover, CARD offers its own tool, known as Resistance Gene 

Identifier (RGI), which predicts AMR genes and mutations from 

submitted genomes using different tools such as Prodigal 

BLAST or DIAMOND and curated resistance mutations 
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included with the AMR detection model30. RGI can detect 

functional homologues of antimicrobial resistance proteins and 

mutations conferring antimicrobial resistance25. 

 
1.6.2. PointFinder tool and database 

 
PointFinder has been developed for the detection of point 

mutations associated with drug resistance and it is an extension 

of ResFinder, a well- known web server for the identification of 

acquired antimicrobial resistance genes. 

PointFinder consists of a nucleotide database with reference 

sequences (nucleotide sequences of genes susceptible to 

antibiotics) and a point mutation database containing information 

on codon positions and substitutions. Given a query sequence, the 

tool uses BLASTn to match the sequence in the nucleotide 

database , then the program goes through each alignment 

comparing each position for the query (sequence found in input 

sequence) with the corresponding position in the subject 

(database sequence). All mismatches are compared with the point 

mutation database26 and the variations related with AR are 

highlighted. 

 
1.6.3. NCBI-AMRfinderPlus database 

 
NCBI-AMRFinderPlus35 is a tool for the identification of 

acquired resistance genes using NCBI’s curated AR database and 

curated collection of Hidden Markov Models (HMMs). 
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This database derives from the Pathogen Detection Reference 

Gene Catalog, a non-redundant database of bacterial genes 

related to antimicrobial resistance. This includes highly curated, 

AMR-specific genes and proteins from the Bacterial 

Antimicrobial Resistance Reference Gene Database (BioProject 

PRJNA313047) and point mutations35. 

 
1.7. Structural analysis of point mutations 

 
Amino acid substitution is one of the basic events that can drive 

evolution, leading to a variety of consequences on protein 

stability and function44 or interfering with the binding of a drug 

to its target. Point mutations in a protein sequence may result in a 

change or loss of the native structure or the binding site, which in 

turn may cause a change or loss of function, and ultimately may 

yield different phenotypes45. These effects depend on various 

factors, including the type of protein and the structural context in 

which it occurs. For these reasons, structural analysis is 

necessary to understand and ideally predict the effects of a 

mutation46. 

Amino acid substitutions can have locally repercussions but also 

long ranges effects. The replacement can introduce unfavorable 

hydrophilicity or hydrophobicity, or charges shift, or even 

modify the relative amino acid solvent accessibility47. Moreover 

salt bridges and hydrogen bonds can be affected48, like also 

electrostatic, charge–dipole and dipole–dipole interactions46. 
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Eventually, mutations can cause conformational changes 

perturbing the energy landscape49 and affect the binding affinity 

of the protein to the drug46. 

1.8. Streptococcus pneumoniae as case study 

 
Also known as pneumococcus, this bacterium is a Gram positive, 

extracellular, opportunistic pathogen, regular common colonizer 

of the upper respiratory tract50,51. It causes frequent infections 

associated with the airways, such as otitis media, sinusitis and 

bronchitis and it can be spread through airborne transmission51. S. 

pneumoniae is found predominantly in the mucus layer overlying 

the epithelial surface of the upper respiratory tract, pneumolysin 

induces inflammation which stimulates secretions and increases 

shedding and bacterial load. In this way pneumococcus is spread 

in the environment and it can colonize a new host by evading 

clearance mediated by IgA1( immunoglobulin on mucosal 

surface) via a pneumococcal zinc metalloprotease ZmpA. Then 

the bacterium expresses two enzymes, peptidoglycan-N-

acetylglucosamine deacetylase (PgdA) and attenuator of drug 

resistance (Adr), that modify its peptidoglycan and render it 

resistant to the lytic effects of lysozyme facilitating colonization 

are adherence to host cells and tissues, and evasion of clearance 

by mucociliary flow. Local spread, aspiration or seeding to the 

bloodstream results in invasive inflammatory diseases51. 

According to the World Health Organization (WHO), the 

bacterium is the fourth most frequent microbial cause of fatal 

infection, and the most common cause of bacterial pneumonia and 
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meningitis50. Included as one of 12 priority pathogens, the 

continued high burden of disease and rising rates of resistance to 

penicillin and other antibiotics have renewed interest in 

prevention of the pneumococcal infections51. 

 

Fig 1.9. The life cycle of Streptococcus pneumoniae and 

the pathogenesis of pneumococcal disease51. 

 

 

 



 

 

  

33 

1.9. Machine learning 

Machine learning (ML) is a branch of artificial intelligence that 

is able to learn from experience in order to predict future 

events or scenarios that are unknown to the computer52. 

Experience exists in the form of training datasets, which the 

machine learner uses to build a general mathematical model 

about that domain. 

Nowadays, ML is used in a large number of bioinformatics 

areas such as genomics, proteomics, microarrays, systems 

biology, evolution, text mining53,54. 
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Fig.1.10. Application fields of machine learning in bioinformatics54. 
 

 

ML algorithms may be broadly classified as Supervised learning, 

a learning mechanism that infers the underlying relationship 

between training data and a target variable, minimizing the error 

for a given set of inputs. The training data comprise feature 

vectors and a desired output value (the class label). 
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Unsupervised learning algorithms are designed to discover 

hidden structures in unlabeled datasets, in which the desired 

output is unknown. The goal of ML in this case is to hypothesize 

representations of the input data for efficient decision making, 

forecasting, and information filtering and clustering52. 

There are several steps in the development of a machine learning 

algorithm: 

1) Data collection 

2) Preprocessing of data, like formatting, cleaning 

by removing missing data or by 

normalization/standardization, sampling to 

remove redundancy 

3) Transformation of the data specific to the algorithm, 

for example feature scaling or decomposition 

4) Training on the dataset and evaluation on the test set 

to verify its effectiveness and performance 

5) Application of the validated model to perform an 

actual task of prediction 

 
1.9.1. Common ML algorithms employed in bioinformatics 

Several algorithms are widely used in bioinformatics such as 

logistic regression, support vector machines, classification trees, 

random forest, and nearest neighbour54. Also deep learning is 

being incorporated in vast majority of analysis pipelines, due to 

the advent of the big data era in biology55. 
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For example clustering algorithms have been successfully 

applied to gene expression analysis on sequence data from 

tumors56. Random Forest has gained popularity and it is 

becoming a common standard tool, especially in the 

context of low-dimensional data57. Databases that store 

DNA, RNA, protein sequences and macromolecular 

structures are growing exponentially. The size and 

complexity of these data require the use of advanced 

computational tools, like neural networks58. 

 
1.9.2. K-means clustering 

 
Known as Lloyd’s algorithm, the K-means clustering clusters 

data by separating a set of N samples into K disjoint subsets (or 

clusters) Sj , each described by the mean 𝜇𝑗. The means are 

called ‘centroids’ of the cluster. 

 

𝐾 

𝐽 = ∑ ∑ |𝑥𝑛  − 𝜇𝑗|2 
𝑗=1 𝑛∈𝑆𝑗 

The algorithm consists of a two-step re-estimation process: first data 

point are assigned to the cluster whose centroid is closest to that point, 

then each centroid is recalculated to the mean of all points assigned to 

it. These two steps are repeated until a threshold is reached, such that 

there is no further change in the assignment of data points. In other 

words, it is repeated until the centroids do not move significantly52,59. 

K-means clustering was used in the structural analysis of point 
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mutations related to antibiotic resistance, in order to identify clusters of 

mutations with structural commonalities. 

 
1.9.3. Random forest 

 
Random forest (RF) is a class of methods that use a 

classification tree as the base classifier54. As the name suggests, 

it consists of a number of individual trees that works as an 

ensemble: n predictors are combined to solve a classification or 

estimation problem through averaging52. The basic unit (base or 

weak learner) is a binary tree constructed using recursive 

partitioning scheme and it is typically grown using the 

methodology of the Classification and Regression Tree: starting 

from the root node, the process involves splitting among all the 

possible splits at each node. The resulting 

child nodes are the purest52,60 . RF uses a two-stage 

randomization for the growth. Instead of using all the variables 

to split a three node, the algorithm selects at each node of each 

tree a random set of variables that are used as candidates to find 

the best split60. 

The RF can be summarized in a set of steps52: 

1) From the original dataset n bootstrap samples 

are selected to construct B trees. 

2) For each sample a tree is grown. 

3) At each node of the three: 

a) A subset of features is randomly selected 
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b) Features that provide the best split perform the 

binary split on that node 

c) The next node selects another set of variables 

and performs the preceding steps 

4) Take the majority vote of all the B subtrees. 

In simple terms, each individual tree makes a class prediction: 

the class with the most votes becomes the model’s prediction.  

Compared with logistic regression, k-means and neural 

networks, random forest was the best performing machine 

learning algorithm on our dataset of structural features of point 

mutations associated with antibiotic resistance.  

 
1.9.4. Artificial neural networks 

 
Artificial neural networks (ANNs) are algorithms vaguely 

inspired by biological neural networks61. The basic unit is the 

artificial neuron or ‘perceptron’, a classifier that, using a 

threshold activation function, separates two classes by a linear 

discrimination function54. 
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Fig 1.11. Figure of an artificial neuron52. 

 

The inputs are connected to the neuron through weighted 

connections emulating the dendrite’s structure. The summation 

(Σ), the bias (b), and the activation function (𝜃) play the role of 

the cell body. The propagation of the output is analogous to the 

axon in a biological neuron52. 

In the ANN, the perceptrons are connected together in 

consecutive layers. A layer of neurons is a “column” of 

neurons that operate in parallel, the output of the layer is the 

vector output, which is formed by the individual outputs of 

neurons. 

In order to perform classification, the ANN is trained with a non- 

linear function which express the hidden relationship between the 

features (x) and the label (v), training the parameters (w) and 

making the model fit the data55. The standard algorithm adopted 

is the forward-backward propagation52,54,55. At the beginning the 

network is initialized randomly, then the network run and the 

output is compared with the target value to get the difference 

(loss or error). Then, the error back-propagation and optimization 
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help adjust the parameters of the model, making the output as 

close to the target value 

as possible. 

The most commonly used activation functions are ReLU for the 

inner layer and Softmax for the output layer, loss functions are 

cross-entropy for classification and mean squared error for 

regression. The optimizers include 

stochastic gradient descent (SGD), Momentum, Adam55. 
 

 
 

Fig 1.12. A) Operations inside a single node, B) explanation of 

the forward- backward propagation in a ANN composed of an 
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input layer, an hidden layer of three neurons and an output 

layer55. 

We tested ANN on our dataset but random forest proved to be 

more accurate. 

 

1.9.5. Evaluation methods 

A possibility when developing predictive models is that the 

algorithm is over-fitted on the existing data, resulting in a 

drastic performance drop when it is applied in practical studies 

with novel data62. An example evaluation method is cross-

validation, in which all data are used as both 

training and test dataset. It is considered as a compromise 

solution when the number of available samples is very limited62. 

 
In binary predictors there are two classes (0 or 1, True or False, 

resistant vs susceptible … ) and for each sample in the test set 

we have a real label and a predicted label. The real label 

indicates the class the sample really belongs to, while the 

predicted label is the output of the predictor62. We can count the 

outcomes in the form of false positive (FP), true positive (TN), 

false negative (FN) and true negative (TN) and represent the 

combinations of predicted and actual values in a table called 

confusion matrix52,62. 
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Fig 1.13. Confusion matrix, positive and negatives are the two 

possible classes, TP= outcome is correctly identified as positive, 

TN= outcome is correctly identified as negative, FP=outcome is 

incorrectly identified as positive, FN=outcome is incorrectly 

identified as negative.
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2. Aim of the thesis 

 
The extensive use (and misuse) of antibiotics has led to the spread 

of resistant bacterial pathogen strains, causing a severe problem 

worldwide. Action must be taken quickly in order to stem this 

situation. 

Quinolones are a new class of antibiotics that bind bacterial 

topoisomerases and inhibit bacterial cell replication. They have 

been important in limiting the spread of penicillin- and 

macrolides-resistant bacteria like Streptococcus pneumoniae. 

However, alarmingly, resistance to quinolones has recently 

appeared in S. pneumoniae strains and other bacteria. 

According to the World Health Organization (WHO), S. 

pneumoniae is the fourth most frequent microbial cause of fatal 

infection, and the most common cause of bacterial pneumonia and 

meningitis. Due to the threats this bacterium poses especially for 

the elderly and the children, 

S. pneumoniae was chosen as a case study for this work. 

 
 

This PhD project focuses on characterizing the molecular 

mechanisms of the resistance to quinolones caused by the 

appearance of point mutations, and in using this information to 

develop bioinformatics tools for both the analysis and the 

inference of point mutations associated with antibiotic resistance 

(AR). In this thesis, for brevity, we will refer to point mutations 

associated with AR as “resistant mutations” and to residue types 
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appearing in reference or susceptible sequences as “wild-type 

residues” or “susceptible residues”. 

 
Specifically, the aim of this thesis consists in: 

 
 

1. performing a sequence and structural analysis of the 

mutations involved in the resistance to quinolones in 

Streptococcus pneumoniae and in 

other bacterial species. Since quinolones bind to the 

gyrase and topoisomerase enzymes involved in DNA 

replication, these enzymes were studied in detail, their 

three-dimensional structure was modelled where needed 

and “resistant mutations” were mapped onto the structure; 

 
2. developing and testing machine learning methods for 

the detection and prediction of mutations involved in 

antibiotic resistance; 

 
3. developing and deploying a database collecting 

structural information on point mutations associated 

with resistance to quinolones; 

 
4. developing, testing and deploying a web server for the 

structural 

analysis, characterization and visualization of variants 

detected in sequence positions associated with quinolone 

resistance. 
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3. Materials and methods 

 
3.1. Topoisomerase and gyrase sequences 

 
Reference nucleotide sequences for the non-pathogenic S. 

pneumoniae R6 strain were retrieved from the NCBI nucleotide 

database63 with the following accession IDs: 

NC_003098.1:752241-754721 for the parc gene, 

NC_003098.1:749887-751830 for pare, 

NC_003098.1:c1097931-1095463 for gyra, 

NC_003098.1:715818-717764 for gyrb. 

Reference protein sequences for S. pneumoniae R6 strain were 

retrieved from the NCBI protein database
63

 with the following 

accession IDs: NP_358351.1 for ParC, NP_358350.1 for ParE, 

NP_358692.1 for GyrA, NP_358309.1 for GyrB. Protein 

sequences associated with quinolone resistance of other bacteria 

(see table 4.1) were obtained from CARD ‘model variants’ 

database30 and redundant sequences were removed. Susceptible 

sequences were obtained from UniprotKB-Swiss-Prot using the 

proteins name (‘GyrA’,’ParC’,’GyrB’,’ParE’) as keywords and 

selecting only proteins from bacteria. Records with the keyword 

‘antibiotic resistance’ and ‘quinolone’ were added to the CARD 

resistant sequences. Among the susceptible sequences, we chose 

the topoisomerase IV and gyrase subunits of the organisms 

analysed as reference sequences from which we extracted the 

susceptible amino acids. When it was not possible to retrieve the 
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wild-type reference sequence for a given bacterium from 

UniprotKB-SwissProt, the reference susceptible sequence 

deposited in CARD was used. We collected all the sequences 

with the point mutations causative of drug resistance from 

CARD , but we noticed that for some variations, the 

corresponding resistant protein sequence with the mutation was 

not present in the database. For this reason, we mutagenized in 

silico the susceptible reference sequence from UniprotKB-

SwissProt, replacing the wild type amino acid with the resistant 

variant. 

 

3.2. Pairwise and multiple sequence alignment 

 
The Blast suite (https://blast.ncbi.nlm.nih.gov/Blast.cgi)64 was 

used to perform several tasks. MakeblastDB was utilized to 

generate the Blast reference nucleotide and protein databases for 

the topoisomerase IV and gyrase proteins. Blastx was 

implemented in the Quinores 3D web server to translate the 

nucleotide query sequence into the corresponding amino acid 

sequence using the Bacterial, Archaeal and Plant Plastid genetic 

code. Blastp also was incorporated into the Quinores3D web 

server and in Quinores3D_pred to perform pairwise alignment 

between the protein query sequence and the reference sequence. 

Multiple sequence alignments of resistant (MSAs) and 

susceptible sequences were carried out using Muscle 3.8.31 

tool65 and Clustal Omega web server 

(‘https://www.ebi.ac.uk/Tools/msa/clustalo/’)66. Muscle 

https://www.ebi.ac.uk/Tools/msa/clustalo/
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software was also installed in the web server to run MSA 

using the user’s input sequence and the susceptible reference 

on the fly. 

For the interpretation of the alignments, we used the Jalview 

version 2 software, a free program for multiple sequence 

alignment editing, visualization and analysis67. MSAs were 

represented with the Clustal color scheme, which highlights 

amino acids according to their properties (e.g. hydrophobic 

residues are shown in blue, positively charged in red, polar in 

green). Also, from Jalview we annotated the amino acid property 

conservation (measurement of the conservation of 

physicochemical properties in a MSA column) and the alignment 

quality. 

 

Since Jalview cannot be embedded in an HTML page, in order 

to show pairwise alignments and MSAs generated by 

Quinores3D, we incorporated a Javascript sequence alignment 

viewer, JSAV68, in the HTML output page. The sequence 

numbering of the reference is shown above the alignment, 

conserved residues are represented as dots, and mutations using 

1-letter code (Figure 4.7 A). 

 
 

3.3. Homology modelling protocol 

 
No experimentally determined structures comprising the whole 

protein are available neither for the S. pneumoniae 

topoisomerase IV nor for the gyrase. For this reason, four 
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separate homology models were built for the subunits ParC, 

ParE, GyrA and GyrB. Homology modelling was performed 

with the software MODELLER v9.2369 and templates’ 

searching was carried out with the HHpred70 server. 

Protein sequences were downloaded from the NCBI with IDs 

NP_358351.1 for ParC, NP_358350.1 for ParE, NP_358692.1 

for GyrA, NP_358309.1 for GyrB. 

These sequences were submitted to the HHpred server to 

search for three – dimensional protein structures in Protein 

Data Bank (PDB)71 to be used as templates. Yet, full 

homologous protein structures are not present in PDB from 

other bacteria. We chose to generate a multi-template model 

for each subunit, including a template covering the N-terminal 

and one the C- terminal regions. From the HHpred output, 

templates were chosen taking into consideration first the 

structures with lowest Evalue, and then among them the 

structures with the best resolution. 

For GyrA the experimentally determined 3D structure PDB 

4Z2C (chain A, resolution 3.19 Å) and 1SUU72 (resolution 1.75 

Å) were chosen as templates for the N-terminal and C- terminal, 

respectively; for GyrB, 4Z2C (chain C) and 3ZKB73 (resolution 

2.90 Å, chain I); for the ParC subunit of 

topoisomerase IV PDB 3RAE74 (chain B, resolution 2.90 Å), PDB 

1ZVU (resolution 3 Å) and 1WP575 (resolution 1.79) were chosen 

as a templates for the N-terminal and C- terminal part 



 

 

 

  

49 

respectively, while for ParE 3RAE chain C and 5J5P76 (resolution 

1.97 Å, chain B). 

To run MODELLER and evaluate the results we used the 

version implemented in Chimera, setting the number of models 

as 20 and selecting also the ‘thorough optimization’ option, 

which optimizes more thoroughly than the default one. 

Resulting models were chosen based on the Discrete Optimized 

Protein Energy (DOPE) score77 and on the QMEAN Z-score78 

calculated with the SWISS-MODEL web server79. Loops were 

refined with the ‘DOPE method’ implemented in MODELLER. 

We also built the full protein – DNA – magnesium – quinolone 

complexes for topoisomerase IV and gyrase with Chimera by 

importing DNA, quinolone and magnesium coordinates from the 

3D structure of 3RAE for the former and the structure of 4Z2C 

for the latter. 

 
 

Protein Sequence ID  template 
ID  

Chain Resolution 
(Å) 

 
ParC 

 
NP_358351.1 

3RAE B 2.90 

1WP5 A 1.7
9 

1ZVU A 3.0
0 

ParE NP_358350.1 
3RAE C 2.90 

5J5P I 1.9
7 

GyrA NP_358692.1 
4Z2C A 3.19 

1SUU A 1.75 

GyrB NP_358309.1 
4Z2C C 3.19 

3ZKB A 2.90 
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Table 3.1. List of PDB IDs, chains, and related resolution of the 

proteins chosen as templates for the four subunits. Protein 

sequence IDs are from   NCBI .

Homology modelling was also implemented in Quinores3D and 

in machine learning pipeline in order to generate the 3D 

structures starting from resistant and susceptible sequences, but 

the protocol was modified: instead of a multi- template model, 

we used the previous generated protein models as templates; 

moreover, we generated just one model using the 

‘fast/approximate’ option. These modifications were required in 

order to speed up the process of model building and simplify its 

integration inside the machine learning and Quinored3D finder 

pipeline. 

 
3.4. Structural analysis 

 
3.4.1. Quinolone binding site analysis 

 
The interactions between residue side chains and the drug were 

analyzed with Chimera both for the wild type and the mutated 

proteins. Variations and the residues at 5 Å of distance were 

selected with the selection (‘sele’) command. Inside a selection, 

hydrogen bonds are calculated with the findhbond function, 

whereas contacts and clashes are detected using the findclash 

function with the following parameters: overlap -0.4 and 

allowance 

0.0 for contacts, overlap 0.6 and allowance 0.4 for clashes. 
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Findclash identifies interatomic clashes and contacts based on 

Van der Waals (VDW) radii, where clashes are unfavorable 

interactions where atoms are too close together and contacts are 

all kinds of direct interactions such as polar and nonpolar, 

favorable and unfavorable (including clashes). The overlap 

between two atoms (i,j) is defined as the sum of their VDW radii 

(VDWr) minus the distance between them (d) and minus an 

allowance, that takes into account the contribution of probable 

hydrogen-bonded pairs: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑖𝑗  =  𝑉𝐷𝑊𝑟𝑖  +  𝑉𝐷𝑊𝑟𝑗 – 𝑑𝑖𝑗  – 𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒𝑖𝑗 

 
 

3.4.2. Electrostatic analysis 

 
Electrostatic analysis was carried out in a region of the protein, 

comprising the position of interest and all residues within 5 Å 

from it. Ligands were not taken in consideration and therefore 

removed. 

Charges and potentials were calculated with the APBS 

(Adaptive Poisson- Boltzmann Solver)80 software, which 

requires as input a PQR file, that is a modified PDB file with 

charges calculated for each atom. This file was generated with 

the PDB2PQR software using the PARSE force field and the 

PDB file containing the residues at 5 Å from the mutation as 

input. 

From the PQR file, APBS generated the potential map and 

calculated the charge density and electrostatic potential. 



 

 

 

  

52 

 
3.4.3. Relative solvent accessible surface analysis 

 
The relative accessibility surface (RASA) for each single amino 

acid in the protein model was calculated using the function 

‘SASA’ in Biopython, which runs the DSSP47 software needed 

for this computation. 

 
3.4.4. Protein structure visualization and analysis 

 
For the interactive visualization and analysis of molecular 

structures, Chimera software was used81. This tool was widely 

utilised  to show the topoisomerase IV and gyrase structures, 

build the 3D models, map the variations, analyze the 

interactions between quinolones and the side 

chains of the mutated amino acids, show bonds and contacts between 

atoms. Chimera was also used to generate high quality figures shown in 

Results. 

Due to the fact that Chimera GUI cannot be used directly in a 

web page we implemented the Quinores3D code with the 

WebGL (https://www.khronos.org/webgl/) applications for 

molecular visualization. These applications were embedded as 

libraries in the result web page to display the protein of interest,  

map the mutations on the structure, show distances from the 

residues and drug or magnesium,  show the quinolone binding 

site and the interactions (H-bonds, contacts), and display the 

electrostatic surface. 

http://www.khronos.org/webgl/)
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3.5. Primer design 

 
Quinores3D Primers allows users to design forward and reverse 

PCR primers given a nucleotide sequence using the open-source 

Primer3 software82. 

Results are outputted in a table reporting, for each primer, the 

sequence, the content in GC, melting temperature, stability of 

any basepairing of that primer to itself, stability of any 

basepairing of the 3' end of the primer to itself, formation of 

hairpin loops. 

We generated a set of primers (forward and reverse) specific for 

mutagenesis purposes. The nucleotide sequences carrying the 

quinolone resistance variations were submitted to Primer X web 

server 

(‘https://www.bioinformatics.org/primerx/documentation.html’) , 

a tool developed for the automated design of mutagenic primers 

for site-directed mutagenesis. Primers with optimum values of 

length and GC content were collected into the Quinores3D 

Database, ‘primers’ table. 

3.6. Annotation of mutations and information retrieval 

 
Several sources were used to gather information and annotate 

mutations, including literature searching and use of specialised 

databases. 

Information was retrieved from the literature by searching 

Pubmed with terms like ‘Streptococcus pneumoniae’, 

https://www.bioinformatics.org/primerx/documentation.html
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‘quinolone’, ’resistance’, ‘mutations’, ‘not efflux’. Scientific 

articles were manually downloaded and inspected; mutations 

occurring in the quinolones targets were manually annotated and 

information about the Minimal inhibitory concentration (MIC) 

and the effect of amino acid replacements on drug-binding were 

collected. 

CARD, PointFinder and NCBI pathogens databases were also 

downloaded and quinolone resistance variations reported for 

bacteria other than S. pneumoniae were extracted. All the raw 

data were organized in a dataframe using the Pandas library. 

Then after careful inspection, data were re- organized as the 

Quinores3D Database. 

Quinores3D Database is a relational database developed in MySQL 

version 

8.0.21. The database is organized in six tables (refer to Table 3.2): 
 

 
Table Description 

eitable Values from electrostatic analysis 

homologtable Homologous position and known 

resistant mutations in bacteria 

intable Mechanisms of resistance 

mictable Values of MIC calculated for 

different strain 

primermutable Site specific mutagenesis primers 
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Table 3.2. Short description  of Quinores3D database tables. 

 
3.7. Web server technical specification  

 
The Quinores3D server has been deployed on the 

Cloud@ReCaS-Bari (http://cloud.recas.ba.infn.it/) IaaS 

(Infrastructure as a Service) cloud platform, on a virtual server 

with 4 virtual CPUs, 8 GB of RAM and a public IP address. 

Three virtual volumes (120 GB total disk space) have been 

added to the virtual machine, to store data of the MySQL 

database, of the BLAST database, and of the Apache web 

server, respectively. 

The choice of deploying the service on cloud resources has been 

made in order to warrant scalability and elasticity, since it is 

possible to transparently and quickly enlarge or shrink the 

resources assigned to the virtual machine, and split the 

components of the logical architecture (web server, DBMS, 

scripts) on different servers, if needed. This approach will also 

allow in the future the possibility to easily migrate the service to 

another cloud resource provider, without any lock-in problem. 

Future plans include the refactorization of the involved software 

using a microservice architecture, in which each component is 

executed in a Docker83
 

sasatable Values for relative accessible 

surface 

http://cloud.recas.ba.infn.it/
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container on a Mesos/Chronos cluster, and the web frontend is 

deployed on a different machine with respect to the one(s) 

hosting the MySQL and BLAST databases, which are isolated on 

private networks. 

The creation of the corresponding Docker images is currently 

undergoing. All code is open source and fully available on 

GitHub platform (https://github.com/) that provides hosting 

for software development and versions control. 

 
3.8. Data analysis and code scripting 

 
Python version 3.6.5 (https://www.python.org/) was used for data 

manipulation, parsing, analysis and web server development. The 

Python CGI (Common Gateway Interface) module was used to 

write the main code of the web server, to generate dynamically 

webpages and to interact with external programs incorporated in 

the server. Pandas library (https://pandas.pydata.org/) was used 

for data analysis while Matplotlib (https://matplotlib.org/) for data 

representation and graph plotting. 

For sequence and structure analysis, Biopython was used84. It was 
largely 

implemented in the web server but also for all the script 

developed for the mutations analysis or for the machine learning 

preparation, using modules such as SeqIO for sequence parsing, 

AlignIO for Blast result and MSA manipulation, PDB module 

for the structural analysis. 

 

https://github.com/)
http://www.python.org/)
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3.9. Application of information theory on sequence analysis 

 
Conservation analysis from a MSA can be used for predicting 

functionally important residues in protein sequences and in ligand 

binding85. Also variability provides important information about 

proteins86. 

Shannon entropy (H) can be used as a measure of residue 

diversity and residue conservation87. It can be defined as a 

measure of uncertainty about the identity of objects in an 

ensemble: 

 
𝑁 

𝐻(𝑋) = − ∑ 𝑃𝑖𝑙𝑜𝑔𝑃𝑖 

𝑖=1 

where Pi was the probability of given amino acids and N was 

the number of letters in a sequence88. To normalize between 0 

and 1 the logarithm is taken to base 20. 

In our work, Shannon entropy was applied to study the 

conservation of the key positions involved in drug resistance 

among the bacteria. 

 

3.10. Machine learning 

 
Machine learning algorithms were developed with the Python 

library Keras (https://keras.io/) and scikit-learn59 using Google 

Colab89 service. 

 

https://keras.io/


 

 

 

  

58 

3.10.1. Feature encoding for the predictor model 

 
Each amino acid was represented as a vector of numeric 

descriptors. We used the AAindex database90 and the iFeature 

package91 to encode the following features: hydrophobicity, 

hydrophilicity, side chain mass, residue volume 

(BIGC670101),steric parameter (CHAM820101), SASA in 

folded structure (CHOC760102), molecular weight 

(FASG760101), size of side chain (DAWD720101), normalized 

Wan der Vaals volume (FAUJ880103), Net charge of amino acid 

(KLEP840101), hydropathy index according to Kyte – Doolitle 

(KYTJ820101), Polarity (GRAR740102), Bulkiness 

(ZIMJ680102), Side-chain contribution to protein stability 

(kJ/mol) (TAKK010101), Free energy of solution in water, 

kcal/mole (CHAM820102), charge transfer capability 

(CHAM830107_list). Moreover, relative solvent accessibility 

calculated with DSSP, electrostatic potential, net charge, charge 

density calculated with APBS at a range of 5 Å, distance from 

drug and magnesium were added as structural features. 

Finally, we divided the amino acids according to their 

physicochemical properties into 5 groups, assigning for each 

group a unique number (apolar:0, aromatic:1, polar:2, positively 

charged:3, negatively charged:4). This number was added as 

additional descriptor. 
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3.10.2. K-means clustering 

Cluster analysis was performed with the K-means algorithm 

implemented in scikit-learn with the following parameters: max 

iterations 300, relative tolerance 1e-4 , initial step 10. The number 

of clusters was chosen using the ‘elbow method’83 implemented in 

the kneed library (‘https://pypi.org/project/kneed/’) . For 

clustering the following features were selected: relative solvent 

accessibility, electrostatic potential, net charge, charge at a range 

of 5 Å, distance from drug and magnesium, residue volume 

(BIGC670101), hydrophobicity index according to Argos et al., 

1982 (ARGP82010), free energy of solution in water, kcal/mole 

(CHAM820102), steric parameter (CHAM820101), residue 

accessible surface area in tripeptide (CHOC760101), relative 

mutability (DAYM780201), solvation free energy (EISD860101), 

molecular weight (FASG760101), polarity (GRAR740102), side 

chain volume (KRIW790103), hydropathy index according to 

Kyte – Doolitle (KYTJ820101), surrounding hydrophobicity in 

folded form (PONP800101), amphiphilicity index(MITS020101), 

bulkiness (ZIMJ680102), radius of gyration of side chain 

(LEVM760105), and amino acid groups as descriptors. 

 
3.10.3. Training, validation and test set 

For both clustering and predictor models the data set was 

represented by the residues  collected as described above, for a 

total of 362 residues. Among them, 22 were removed because 

their phenotypic effect was unknown. After the structural analysis 
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we decided to also remove positions that were unlikely to be 

involved in drug resistance, for a final set of 201 resistant 

variations and 115 wild type ones. 

For the classifier algorithms, we oversampled the original data with the 

SMOTE function from Imbalanced learn package 

(‘https://imbalanced- learn.readthedocs.io/en/stable/’), in order to 

obtain a proportion of 50% resistant and 50% susceptible 

residues. 

The dataset was randomly splitted into training and validation 

sets, with a proportion of 70% for the training and 30 % for 

the validation set, using the sklearn train_test_split function. 

The test set was obtained taking all the resistant and wild type 

sequences from CARD and UniprotKB SwissProt that were not 

used in the training set. 

Point mutations were selected as described above. In order to avoid 

incorrect assessment, we randomly choose 500 resistant and 500 

susceptible residues for the test set. 

Data were normalized using the MinMaxScaler function from sklearn. 

 
 

3.10.4. Random forest and neural network 

model The random forest classifier was set with the 

following parameters: n_estimators=300, 

criterion='entropy', n_jobs=-1, random_state=0. 
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The neural network model is composed of three hidden dense layer: 

• First dense layer with shape 16 and ‘ReLU’ activation function 

• Dropout layer with a dropout rate of 20% 

• Second dense layer of shape 8 and ‘ReLU’ activation function 

• Output layer with 1 node and sigmoid activation function 

For the compiler the ‘adam’ optimizer was used and for the loss 

measure the ‘binary crossentropy’ function. Accuracy and loss for 

training and validation were used as metrics to evaluate the 

performance of the model. 

Model was trained for 200 epochs with a batch size of 32. 

 

3.10.5. Metrics and statistical tests 

 
For the structural analysis we adopted the Mann–Whitney U test 

implemented in the SciPy library92 to select the most relevant 

features. Features with a p-value higher than 0.05 were 

considered not statistically significant and they were not included 

in the analysis. 

 
For the evaluation of our machine learning models, k -fold cross 

validation, accuracy, logarithmic loss, F1-score, precision, recall, 

confusion matrix and ROC curves were used. 

 
In the k-fold cross-validation, the dataset was randomly 

partitioned into k parts of equal size. Each fold is left out of the 

design process and used as a test set. The model is trained k times, 
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for each k-round the k-th part is used as the test dataset, while the 

remaining k – 1 parts form the training dataset. 

After all k rounds of training and testing, every sample in the 

dataset was used as a testing sample once and only once. The 

prediction performance can be estimated by averaging the 

prediction results over the whole dataset52,54,62. We adopted a 5- 

fold cross validation, in which our training and test set were 

evaluated 5 times. 

 
Referring to the Introduction section for the definition of false 

positive (FP), true positive (TN), false negative (FN) and true 

negative (TN), the performance measures can be defined as : 

- Accuracy (AC) 

The number of data points correctly classified by the 

classification algorithm. 

 

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

- Precision (P) 

The frequency of true positives among all positive outputs. 

𝑇𝑃 
𝑃 = 

𝑇𝑃 + 𝐹𝑃 
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- Recall (R) 

Recall or sensitivity is the frequency of correctly 

predicted positive samples among all real positive 

samples. 

 
 

 

𝑇𝑃 
𝑅 = 

𝑇𝑃 + 𝐹𝑁

- F1 Score 

F-measure measure Recall and Precision at the same time using 

the Harmonic Mean. 

𝐹1 = 
2 ∙ 𝑅 ∙ 𝑃 

 
 

𝑅 + 𝑃 

It can be used to compare two classifiers. 

 
 

ROC curve describes the relationship between the 

sensitivity and false positive rate (FPR). The FPR can be 

defined as 

𝐹𝑃 
𝐹𝑃𝑅  = 

𝐹𝑃 + 𝑇𝑁 
 
 

Given a scoring scheme, the values of R and FPR will change 

along with the threshold values and for every cut-off value, a dot 

can be plotted (coordinates FPR,R). The curve connecting the 

dots is the ROC curve, with a diagonal that is called the line of 

no-discrimination. The more the ROC curve is close to the 
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diagonal, the more the predictor is close to a random guess, 

whereas the more it is close to the top left corner, the more the 

performance is good62. We can use 

the area under the curve (AUC) to measure the performance of 

the predictor. AUC of an ROC curve is equal to the probability 

that a randomly selected positive sample gets higher scores than a 

randomly selected negative sample. 
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4. Results 

 
4.1. Three-dimensional modelling of 

topoisomeraseIV and gyrase protein 

structures 

 

Full three-dimensional (3D) structures of the Streptococcus 

pneumoniae topoisomerase IV and gyrase in complex with DNA, 

magnesium and the drug (quinolone) are not available in the PDB 

database. Indeed, the available structures of the topoisomerase IV 

ParC and gyrase GyrA subunits lack the C- terminal regions, 

which comprises ~300 residues. The topoisomerase IV ParE and 

gyrase GyrB subunits lack the N-terminal region (~350 residues). 

In order to map all the mutations, a complete protein structure was 

required. 3D protein models were obtained using MODELLER69, 

a tool developed for homology modelling . C-terminal and N-

terminal protein templates were searched with the HHPRED web 

server70, using the reference sequences for S. pneumoniae gyrases 

and topoisomerases IV proteins. 

We generated the 3D models of the ParC, ParE, GyrA, GyrB 

subunits, each in complex with DNA, magnesium and the drug. 

For each sequence position associated with antibiotic resistance 

in S. pneumoniae (see Table 4.1) we also built models replacing 

the wild-type residue (corresponding to the non- resistant 

phenotype) with the other 19 possible amino acids. The same 

procedure (with little modification, see Materials & Methods) 
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was repeated for topoisomerase IV and gyrase of the bacteria 

showing antibiotic resistance to quinolones, generating a total of 

413 models. 

 
4.1.1. Topoisomerase IV ParC subunit model: a case study 

for the homology modelling procedure 

 
The ParC subunit was chosen as case study to establish the protocol for 

the homology modelling. 

The subunit is composed of two domains: an N- terminal domain 

of about 440 residues (from position 30 to 470 on the 

S.pneumoniae sequence), which contains the catalytic residues of 

the enzyme (see Introduction) and a C-terminal domain (residues 

from 500 to 800), which contains residues that are involved in 

non-specific DNA binding. Structures deposited in the PDB 

database only comprise the N-terminal domain in complex with 

DNA and the drug, so it is impossible to map and study a 

mutation if it falls in the C-terminal domain. As specified in 

Materials & Methods, we searched for templates by HHpred, 

selecting the PDB ID 3RAE chain B as a template for the N-

terminal, and the PDB ID 1ZVU and 1WP5 as templates for the 

C-terminal region (see Table 3.1). These structures were used to 

generate 20 models, each of them was inspected with Chimera 

and submitted to the Swiss – model web server79 to assess the 

quality of the model with the QMEAN function78. 

The best model has a QMEAN value of -3.56 (Figure 4.1.) It can 

be observed that the N-terminal has a good quality level (blue 
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region from residue 30 to 470), while local quality starts do 

decrease in the C-terminal region (residues colored in red, starting 

from residue 500). Positions related to drug resistance (79 and 83) 

are characterized by a good quality estimation. 

 

Figure 4.1 Snapshot of the quality evaluation result from the 

Swiss – model web server79. Protein sequence is colored 

according to local quality, from red (poor quality) to blue (high 

quality). 

 

Finally, we reconstructed the protein in complex with DNA, 

magnesium and levofloxacin (a quinolone compound) by 

superposing our model to the protein 3RAE and importing the 

coordinates for the heteroatoms. 
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Fig 4.2 ParC model in complex with DNA (in orange), 

magnesium (represented as green sphere) and levofloxacin 

(represented as sticks). N- terminal domain is coloured in 

blue and the C- terminal in green. 

4.2. Point mutation characterization and structural analysis 

 
Amino acid substitutions may result in structural changes in the 

target protein, possibly affecting the drug-binding affinity of the 

enzyme. For this reason, we performed different kinds of 

structural analysis in order to evaluate the effects of the side 

chain replacements in protein positions associated with 
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resistance, with the aim of understanding if and how the 

modifications may potentially affect the interaction of the 

enzymes with the quinolone molecule. 

In order to perform a structural analysis, the mutations were 

first mapped onto the protein structure (see Methods section 

3.4.4), then the following properties were calculated: average 

distance between the residue side chain atoms and the drug 

atoms and the magnesium, types of bonds and interactions 

between the quinolone and the residue side chains, relative 

accessible surface area (SASA), electrostatic properties, and 

physico- chemical features (e.g. hydrophobicity). 

 
4.3. Quinores3D: a web server for the structural 

analysis of the molecular mechanisms of 

resistance to quinolones 

 

Quinores3D is a web server developed for the identification and 

characterization of point mutations associated with quinolone 

resistance in S. pneumoniae topoisomerase and gyrase proteins. 

The web server is hosted at the INFN ReCaS DataCenter and can 

be reached using the following URL 

‘http://bioinfoibpm.cloud.ba.infn.it/quinores3d/index.html’. 

It comprises a database (Quinores3D db), a tool to identify and 

analyse variations in topoisomerases/gyrases subunits 

(Quinores3D finder) and a tool to generate PCR primers specific 

for a gene of interest (Quinores3D primers). 

 

http://bioinfoibpm.cloud.ba.infn.it/quinores3d/index.html
http://bioinfoibpm.cloud.ba.infn.it/quinores3d/index.html
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4.3.1. Quinores3D db 

 
Quinores3D db is a relational database specifically developed for 

the collection of data permitting the study of the molecular 

mechanisms of resistance to quinolones in Streptococcus 

pneumoniae. Quinores3D db contains a large amount of sequence 

and structural information on the point mutations occurring in 

GyrA, GyrB, ParC, and ParE sequence positions associated with 

bacterial resistance to quinolones. Table 4.1 reports the mutations 

and their corresponding sequence positions collected in 

Quinores3D db. The information was partly retrieved from the 

literature and partly obtained as the result of computational 

analyses. For each position related to quinolone resistance in the 

four gene (GyrA, GyrB, ParC, and ParE) sequences, the wild-

type residue (i.e. the residue present in the reference sequence of 

the non-resistant strain) was artificially replaced with the 19 

amino acids, and a 3D model of both the wild type and each 

mutated sequence was built, obtaining a total of 80 3D predicted 

structures. Structural annotation was generated for the wild type 

and each mutation (see Methods and Table 4.1). 

Thirty seven mutations are known from both the literature and 

specialized resources (e.g. CARD30) to be explicitly associated 

with quinolone resistance in S. pneumoniae. For each of these 

mutations, we also collected the values of the MIC from the 

bacterial strains carrying the mutation from available scientific 

studies. Moreover, we identified the type of interaction (e.g., 

hydrogen bond, water-ion bridge, electrostatic) established 
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between the residue side chain and the drug and the magnesium 

for both the wild type and the mutated residue, in order to study 

the structural changes introduced by the mutation. We also 

identified positions and variations associated with quinolone 

resistance homologous to the ones in S. pneumoniae from other 

resistant bacteria, resulting in a collection of 116 mutations from 

18 organisms. 

 

Bacteria Sp. seq pos Org. seq pos Mutation 

    

 

 

 

 

 

 

 

 

Streptococcus pneumoniae 

GyrA  
81 81 S --> C,I,F,Y 
85 85 E --> G,K 

GyrB  
435 435 D --> N 
474 474 E --> K 
475 475 E --> K 

ParC  
63 63 A --> T 
79 79 S --> A,I,L,F,Y 
83 83 D -->A,N,H,,V 

ParE  
435 435 D --> N,H 
474 474 E --> K 
475 475 E --> A 

    

 

 

Acinetobacter baumannii 

GyrA  
79 71 G --> C 
81 81 S --> L 

ParC  
83 79 S --> L 

    

 

Bartonella bacilliformis 

GyrA  
81 91 S --> A 
85 95 D --> N 

    

 

Burkholderia_dolosa 

GyrA  
79 76 G --> D 
81 83 T --> I 
85 87 D --> H 
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Campylobacter jejuni 

GyrA  
81 86 T --> A,I,K,V 
85 90 D --> A,N,T,Y 

    

Capnocytophaga gingivalis 
GyrA  

79 80 G --> N 

    

 
 

Clostridium difficile 

GyrA  
81 82 T --> I,V 

GyrB  
435 426 D --> N,V 
475 466 E --> K,V 

    

 
 
 

Enterococcus faecalis 

GyrA  
81 83 S -->R,I,N,L,Y 
85 87 E --> G,K,L 

ParC  
79 80 S -->R,I 
84 83 E --> A,K,T 

 
 
 

Enterococcus faecium 

GyrA  
81 83 S --> R,N,I,L,Y 
85 87 E --> G,K,L 

ParC  
79 80 S -->R,I 
84 83 E --> A,K,T 

    

 
 
 
 

Escherichia coli 

GyrA  
81 83 S --> A,I,L,F,W,V 
85 87 D -->A,N,G,H,Y,V 

GyrB  
435 426 D --> N 

ParC  
79 80 S --> I,L,F,V,W 
83 84 E --> A,G,K,V 

    

 
 
Haemophilus parainfluenzae 

GyrA  
81 84 S --> Y 

ParC  
79 84 S --> F 

    

 GyrA  
81 83 S --> L,F 
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Klebsiella 

ParC  
79 80 S --> I 
83 84 E --> K 

    

 
Mycobacterium leprae 

GyrB  
435 464 D --> N 
475 504 E --> V 

    

 
 

Mycobacterium tuberculosis 

GyrA  
81 91 S --> A 
85 94 D --> 

GyrB  
475 540 E --> V 

    

 
 

 
Mycoplasma genitalium 

GyrA  
81 95 M --> I 

ParC  
78 82 D --> N 
79 83 S --> I,R 
83 87 D --> G,N,H,Y 

    

Mycoplasma hominis 
ParC  

79 91 S --> I 

 
 

 
Neisseria gonorrhoeae 

GyrA  
81 91 S --> F 
85 95 D --> N,G 

ParC  
79 87 S -->R 
83 91 E --> Q,G,K 

    

 
Propionibacterium acnes 

GyrA  
81 101 S --> L 
85 105 D --> G 

    

 
 

Pseudomonas aeruginosa 

GyrA  
81 83 T --> I 
85 87 D --> N,G,H 

ParC  
79 80 S --> L 
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Salmonella 

GyrA  
81 83 S --> A,F,Y 
85 87 D --> N,G,K,Y 

GyrB  

435 426 D --> N 
ParC  

79 80 S -->R,I 
83 84 E --> G,K 

    

 

 

 

 

Staphylococcus aureus 

GyrA  

81 84 S --> L 
85 88 E --> A,K 

ParC  

79 80 S --> F,Y 
83 84 E --> G 

GyrB  

435 434 D --> N,H 

    

 

Ureaplasma urealyticum 

ParC  

79 83 S --> L 
83 87 E --> Q 

 

Table 4.1. Variants and their corresponding sequence positions  

associated with drug resistance in bacteria collected in Quinores3D db. 

For each organism we reported the sequence position of the mutation(s) 

in the bacterium (‘Org seq pos’), the homologous sequence position in 

S.pneumoniae (‘S.p. seq pos’) and the mutations in the format WT 

list of amino acids causative of resistance. 

 
Quinores3D db contains mutations associated with drug  resistance 

in S. pneumoniae; for each variation, information is also collected 

about MIC, electrostatic potential and charges calculated in a range 

of 5 Å, as well as the relative solvent accessible surface, the 

mechanism of resistance, the homologous mutations in other 
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bacteria and the PCR primers specifically designed to amplify the 

nucleotide region containing the mutation. 

The database can be queried via a dedicated web page using keywords 

like the protein name, the position or a specific mutation. For example 

a user who is interested in the study of the mutation S79F in the 

topoisomerase IV ParC subunit , and wishes to retrieve the following 

information:  

- the minimal inhibitory concentration (MIC)  

- description of the molecular mechanism of resistance  

- results of the structural analysis. 

can type ‘parc S79F’ in the searching bar and mark  the 

checkboxes ‘MIC’, ‘Interactions’, ‘EP’, ‘SASA’, ‘Homologous 

positions’ ( Figure 4.4) . 

Results can also be downloaded in tabular format as text files. 

The result is a web page divided in different sections (‘MIC’, 

‘Structural information’ … ) with the information organized in tables 

(Figure 4.4). 

 

Figure 4.3. Query example‘S79F’ and ‘ParC’ as keywords. Users can mark the 

checkboxes to include MIC values, structural analysis (comprising interactions 
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and electrostatic analysis, and relative ASA calculation) and homologous 

positions in other bacteria. 

 
 

 

 
Figure 4.4 Results for query ‘ParC S79F’ & MIC values, structural analysis, 

and homologous positions. ‘Id’: unique identifier for the mutation, ‘Position’ is 

relative to S. pneumoniae sequence numbering, ‘Wt’: wild type amino acid, 

‘Mut’: mutation, ‘Drug’: compound for which the MIC (‘MIC’ field) is given. 

‘PMID’: article identifier from which we retrieved the minimal inhibitory 

concentration, ‘Note’: annotation from the authors of the database, 

‘Interactions’: the mechanism of resistance, ‘EP’, 

‘Net_charge’,’Charge_map’: charge analysis, ’SASA’: relative ASA 

respectively. 
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4.3.2. Quinores3D finder 

Quinores3D finder can be used to identify amino acidic 

variations occurring in the topoisomerases and gyrases subunits. 

The server home page is shown in Figure 4.3 

 
 

Figure 4.5. Quinores3D finder homepage. 

 
It is structured in three sections: input form, optional information 

and examples. In the input form, users have to select the subunit 
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of interest (GyrA, GyrB, ParC, or ParE) and the type of input 

text file they will upload: a protein or nucleotide sequence, the 

complete bacterial genome or a list of point mutations. Table 4.2 

reports the different input options and formats. 

 

 

 

Input Options Description 

Choose 

Quinolone 

Resistant 

Protein 

GyrA, GyrB, ParC, 

ParE 

The gyrase or 

topoisomerase 

subunit on which the 

user wants to perform 

the analysis 

Select your type of 

input 

genome 

gene 

protein 

mutation 

DNA or protein 

sequence in fasta 

format 

(.fa, .fasta, .fna); a 

complete genome in 

fasta format 

(.fa, .fasta, .fna, .gbf

f);mutations 

described as 

AApositionAA 

(e.g. 

S70F) in text format 

(.txt) 

 

Table 4.2. Quinores3D Finder input form options and formats. 
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Upon submission, the input file is pre-processed: nucleotide or 

genome sequences are firstly converted into protein sequences 

using Blastx. In the case of a genome sequence, the nucleotide 

sequence of the protein of interest is extracted from the genome 

with Blastn and then translated into protein. If a list of mutations 

is provided, the reference protein sequence available in 

Quinores3D db is mutagenized in silico, i.e. user-supplied 

variations are inserted in the reference sequence of the specified 

gyrase or topoisomerase subunit. 

 

 

 

Fig 4.6. Example of a web server run: the user uploaded the 

ParC protein sequence for the analysis. 
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A three-dimensional structure is generated by homology 

modelling from the user sequence with MODELLER69. The 

identification of point mutations in the user sequence is carried 

out according to the following protocol: the user sequence is 

aligned with the reference using Blastp, then the resulting 

pairwise alignment between the user sequence and the reference 

sequence is parsed in order to identify the point mutations. All 

the variations found are compared with the mutations listed in 

Quinores3D db: if the mutation is known to be related to drug 

resistance, the corresponding information is retrieved from the 

database and displayed in the result web page, otherwise a 

structural analysis is carried out on the fly and the results are 

displayed in the result web page. 

The output is a HTML page reporting the sequence alignment and 

the blast scores (score, sequence identity, sequence similarity, e-

value, …), a table with the mutations annotated and a viewer 

developed in WebGL showing the protein structure with the 

mutations identified in the query sequence. For each mutation 

occurring in the protein, a specific web page is generated, 

containing the results of the structural analysis. If the variation is 

known to be associated with quinolone resistance, the 

corresponding information is retrieved from Quinores3D db. The 

result page will display a customized description of the effect of 

the mutation in the form of a table reporting:  the minimum 

inhibitory concentration (MIC) values retrieved from literature 

and specific for the bacteria containing the mutated protein, the 
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values of the residue relative accessibility to the solvent, values of 

the residue net charge, electrostatic potential and charge, as well 

as hydrogen bonds and contacts. Moreover, the user can explore 

the protein structure in great detail thanks to the molecular viewer 

embedded in the web page. 

If the amino acid change is not described in the literature, but it 

occurs at a sequence position known to be related to drug 

resistance, a structural ad hoc analysis is performed on the fly. 

The results page will be different: the MIC table is replaced by a 

summary table reporting structural values (solvent accessibility, 

net charge, etc..) for the wild-type and the mutated residue. 

This allows users to see whether the mutation has introduced important 

structural changes or not. Moreover, distances from drug, 

magnesium and the QRDR positions are calculated and shown in 

the viewer. 
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Fig 4.7.A) Output page for the analysis of a ParC resistant 

sequence. The sequence was carrying the mutation S79F known 

to be related with quinolone resistance. The output summarizes 

the blast result with the pairwise alignment and all the variations 

identified by comparing the sequence with the reference.
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Fig 4.7.B) Web server results:  focus on the structural analysis. 

Left: wild type (‘wt’ green) and Right: mutant (‘S79F’ red). The 

table summarizes the structural analysis, e.g, mechanism of 

resistance (‘Interactions’), charge analysis (‘Electrostatic 

Energy’, ‘Net Charge’, Charge Distribution’ ) and relative 

solvent accessibility (‘Solvent Accessibility Surface). 

4.3.3. Quinores3D primers. 

This tool can be used to generate PCR primers specific for the 

gene of interest using the open-source Primer3 software
82

 with 

default options. The output is a table with the sequence of the 

forward and reverse primers and other useful information such as 

temperature of melting, length of the primer, content of GC. 
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4.4. Analysis of point mutations associated with 

quinolone resistance 

 
Due to the importance of point mutations in the rising of 

antibiotic resistance, several studies have been conducted 

including analyses of genomic sequences and/or structures, in 

order to better understand this complex phenomenon and face 

the challenge of developing new drugs. 

Yet, most studies focus on single mutations in specific 

organisms, and so far a general study or classification seems to 

be missing. The aim of this work consisted in extracting and 

analysing the  structural features shared by  mutations associated 

with resistance to quinolones in using S.pneumoniae as a case 

study, in order to establish a pipeline for automated analysis of 

other variations associated with drug resistance. 

Mutations were analyzed both manually and computationally in 

order to highlight interesting features. A machine learning 

approach was also explored with the aim of developing a tool to 

predict point mutations associated with drug-resistant 

phenotypes in unknown sequences. 

Firstly, we focused our attention on single point mutations, 

integrating data from the literature and the results from our 

computational analysis, then we searched for physico-chemical 

and structural features common to different mutations occurring 

in sequence positions associated with antibiotic resistance. 

Finally, the features extracted were used to train and test 
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different machine learning algorithms in order to identify an 

accurate predictive model. 

All the mutations known to be associated with quinolone 

resistance were manually retrieved both from the literature and 

from specialized databases such as CARD
30

, PointFinder
26

, the 

NCBI Resistance 

Gene Database
35 as described in Materials & Methods. Data was 

annotated and stored in the Quinores3D db. Indeed, in order to 

compare amino acidic residue types appearing in the susceptible 

phenotype with those observed in resistant phenotypes, the amino 

acids at antibiotic-resistant positions in the reference and the 

mutated sequences from 21 bacterial species resulting in a dataset 

of 363 residues from different organisms (see Table 4.1). We 

worked on this set of bacteria because quinolone resistant 

variations for these organisms are well annotated in the 

previously mentioned databases. 
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134 wild type amino acids were labelled as susceptible, 206 

substitutions were labelled as resistant, and 19 were labelled as 

unknown as, despite they were reported in CARD to be 

associated with resistance, it was not possible from the literature 

to clearly understand if they were directly causative of resistance 

or not. They correspond to positions GyrA 61, 70, 91,102,117, 

ParC 78,99, GyrB 147,398,408,421,432,456 and ParE 447,489 

referring to S. pneumoniae sequence numbering and were 

removed from our dataset. 

Fig 4.8. Number of amino acids in the dataset according to their 

category. 

 

Since machine learning methods require numeric variables, each 

residue was encoded in a set of numeric values, each 

representing a different physicochemical, biochemical and 

structural property.  

In order to calculate structural properties, a 3D structure was 

required. So, for each sequence carrying the resistant mutation 
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we generated a protein model with homology modelling. 

Similarly, we generated the models from the ‘reference’ 

sequences, that are the wild type and susceptible sequences. 

Overall we generated 207 protein models. From each of these 

proteins we calculate the relative solvent accessibility, 

electrostatic potential, net charge and charges distribution, 

distance from drug and magnesium for the amino acid of interest 

(see Materials & Methods). We decided to generate several 

models and just not to perform the analysis only on S. 

pneumoniae structures because we are working with proteins from 

different bacteria, which can have small but significant 

differences in sequence and structure impacting on the structural 

properties. 

 
4.5. Cluster analysis of mutations associated with bacterial 

AR 

 
Mutations associated with drug resistance are located in different 

regions of proteins, in particular at specific key positions in 

different subunits of gyrase and topoisomerase IV (see Table 4.1). 

In order to identify commonalities and differences among key 

positions we performed a clustering analysis on the residue types 

occurring at these positions in the reference sequences (i.e. 

sequences belonging to susceptible bacteria). This made it 

possible to obtain a picture of the characteristics of the key 

positions in the wild type gyrase and topoisomerase IV subunits. 

Then, 
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for each cluster identified we studied the variations related to 

AR in the cluster to highlight properties shared by the 

substitutions and make a comparison with the wild type (and 

therefore susceptible) amino acids. Finally, we characterize 

each position in the cluster in terms of the physico- chemical 

and structural features of residues associated with antibiotic 

resistance, merging the results of our analysis with what has 

already been studied from the literature. 

For the structural analysis we focused our attention on the 

following physico- chemical and structural features: relative 

solvent accessibility, electrostatic potential, net charge and 

charges distribution, distance from drug and magnesium, 

residue volume, hydrophobicity and hydrophilicity index, 

molecular weight of the side chain, polarity index, side chain 

volume, bulkiness, (see Materials and methods). 

Using the k-means clustering method implemented in scikit 

learn46 (see Materials & Methods), five separated clusters were 

identified. 

Cluster Protein Position 

 

I 

GyrA E85 

GyrB E474,E475 

ParC E83 

ParE E474,E475 

II 
GyrA G79 

ParC G77 

 

III 

GyrA D80,D85 

GyrB D435,N473 

ParC D83 
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ParE D435 

 
IV 

GyrA M81 

ParC A63 

ParE P454 

V 
GyrA S81/T81 

ParC S79 

Table 4.3. Clusters identified with the k-means algorithm. For 

each protein in the cluster the positions are reported in the format 

wild type – position numbering. 

 

 

Fig. 4.9. Representation of the five clusters . The centroid 

(red cross) represents the center of the cluster. We can 

observe an heterogenic distribution of the cluster number 1 

and 3 (blue square and green arrow). 
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Referring to fig 4.9., we can see how cluster 5 (red dots) and 

cluster 2 (yellow dots) are well separated, while cluster 1 (blue 

square) and cluster 3 (green arrow) tend to overlap. Interestingly, 

the wild types in cluster I and III are all acid and negatively 

charged. Due to these considerations, we decided to group 

together the cluster I and cluster III and analyze it as a single 

cluster. 

 

4.5.1. Cluster I_III characterization 

 
 

The cluster comprises 164 observations, 100 are marked as 

resistant and 64 as susceptible. The positions grouped together 

correspond to positions GyrA 80, GyrA85 / ParC83, GyrB435 / 

ParE435, GyrB474 / ParE474, GyrB475 / ParE 475. Wild type 

amino acids are mostly negatively charged (ASP or GLU) except 

for some organisms in which in position GyrB 474 there is a 

polar amino acid (GLN). 
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Fig 4.10. A) Percentage of wild type and resistant amino acids 

according to their chemical properties in cluster I_III; B) 

Frequency of different amino acid types in the mutated positions 

in resistant organisms. 

 
As we can see from Figure 4.11, these positions mapped in 

different regions of the two subunits, with a mean distance 

from the quinolone of 8 Å, while the mean distance from 

magnesium can vary from 5 Å to more than 15 Å, due to the 

fact that the GyrB/ParE subunits are distant from the ion 

complexed with the drug while GyrA/ParC is very close. 

 

 

Fig 4.11. Analysis of Cluster I-III: quinolone resistance-

associated mutations (A) in the ParC subunit (in red) and (B) the 

ParE subunit (in red). Magnesium is represented as a sphere (in 

green) and the quinolone (Levofloxacin) as sticks. 

 

It has been proposed that residues in this cluster interact with the 

drug by bearing a charge complementary with the positively 
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charged nitrogens in the quinolone22,93 (refer to Figure 1.7), so 

we explored the effect of charge variations introduced by the 

mutations. We calculated the electrostatic potential, charge 

density and net charge value in a radius of 5 Å from the position. 

Most of the variations lead to the substitution of the negative 

amino acids with apolar or positive side chains (Figure 4.10), 

probably perturbing the charge distribution. For the single point 

mutation analysis we focused our attention on position 83/85, 

435, 475. For position 474 and 80 the few data available did not 

permit a valid statistical analysis, since the p-value calculated 

for electrostatic potential and charges was above 0.05. 

 

4.5.1.1. Characterization of the ParC 83 / GyrA 85  

position 

 
ParC 83 is equivalent to GyrA 85 and it is often associated with 

quinolone resistance7. In S. pneumoniae in position 83 the wild 

type amino acid is an aspartic acid, whereas in the GyrA 85 there 

is a glutamic acid. The multiple sequence alignment (MSA) in 

figure 4.12 shows that the position is well conserved among 

bacteria, while resistant strains are highly variable in that 

position, as highlighted by the normalized Shannon entropy, 

which is greater than 0.8 (figure 4.11) 
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Fig 4.12 A) Multiple sequence alignment for GyrA/ParC 

reference sequences showing positions from 69 to 79 and colored 

using the Clustal color scheme. The red arrow indicates ParC 83 / 

GyrA 85 position. B) Comparison between the normalized 

Shannon entropy for wild type (blue) and mutated sequences (red) 

over the QRDR region. 

 
It was proposed that the mechanism of resistance related to this 

position is due to the disruption of the magnesium water bridge 

that anchors the drug to the protein7,21. Characterization of the 

charges calculated on different bacteria reveal that wild type 
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holds an average net charge of -1 e and a mean density charge of -

11282,60 e/Å3, complementary with the positive charge of the 

magnesium. Mutations lead to the loss of the negative charge, 

with net charge average near to 0 e and the density charge 

becoming positive (calculated as 7498,30 e/Å3 ). Figure 4.13 

summarizes our results: A) represents the plot of 

the kernel density estimation (KDE) for the net charge calculated 

in a radius of 5 Å from position 83/85. A KDE plot is a method 

for visualizing the distribution of observations in a dataset, 

analogous to a histogram, using a continuous probability density 

curve. We can interpret the plot as follows: values from -1.5 to -

0.5 e are very likely to be associated with susceptible phenotype 

(blue area), while resistant residues assume positive values (the 

spike at 0 and the little bump at 1, red area). Mutations increase 

the net charge, which results in a shift from negative to positive 

density charge (Figure 4.13. B). 
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Fig 4.13. A) KDE of the net charge calculated for position 83/85, 

showing clearly that susceptible residue charge is mostly 

negative (blue bar) while resistant residues are associated with 

positive values. B) Box plot of mean values of the charge density 

for susceptible and resistant residues. 

 
Our findings support the hypothesis that the positive charge 

introduced by the mutation, and the corresponding loss of 

negative charge affects quinolone binding by repulsing the 

divalent metal ion that is chelated by the drug in sensitive 

organisms, as proposed by Aldred et al23 (Figure 4.14). 



 

 

 

  

98 

 
 

Fig 4.14. Comparison of electrostatic surface for wild type 

ASP83 (ParC) and 3 resistant mutations (ALA,ASN,LYS). 

The color of electrostatic potential values ranges from blue 

(positively charged) to red (negatively charged). 

 
4.5.1.2. Characterization of the ParE 435 / Gyrb 435 

position 

 
Unlike the other mutations analyzed so far, this position is located 

in the ParE and GyrB subunits. The MSA shows a very high 

conservation among the organisms under study (Fig 4.14). 

The wild type residue is an aspartic acid that is ~ 7.5 Å distant 

from the drug and more than 14 Å from the magnesium; the 

aspartic acid is supposed to interact with the drug through 

electrostatic interactions21. Mutations replace the negatively 

charged side chain with positively charged side chains (Lys, Asn) 
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and apolar residues (Ala), leading to a local increase of positive 

charges 

and a potential disruption of the drug binding. 
 

 

 

Fig 4.15 Frequency of susceptible amino acids and resistant 

mutations according to their physicochemical properties. 
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B 
 

 

 
 

Fig 4.16 A) Multiple sequence alignment for GyrB/ParE 

reference sequences coloured using the Clustal colour scheme. 

The red arrow indicates position ParE / GyrB 435. B) 

Comparison between normalized Shannon entropy for wild 

type (blue) and mutated sequences (red). 

 
The loss of the negative charge may affect the binding with the 

positive charge of the fluoroquinolone compound, resulting in the 

destabilization of the interaction between the drug and the 

enzyme. The mean net charge for the wild types is -1.28 e and the 

mean electron density is -11445 e/Å3, whereas resistant variations 

display a mean net charge of -0.6 e and a mean electron 

density of -700 e/Å3 (refer to figure 4.17 C and D). 
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Fig 4.17. A) Electrostatic surface analysis for wild type D435 and 

B) mutated residue (D435N). The color of the electrostatic 

potential values ranges from blue (positively charged) to red 

(negatively charged) C) represent the mean box plot for the 

charge density and D) the KDE plot for the charge density. 

 
4.5.1.3. Characterization of the ParE/GyrB 475 and 

ParE/ GyrB 474 positions 

Similarly to positions ParC 83 / GyrA 85 and ParE 435 / GyrB 

435 , position Par E 475 / GyrB 475 is characterized by the 

negatively charged glutamic acid, which is extremely conserved 
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across bacteria (Figure 4.18 A) and is relatively close to 

quinolone (~5.5 Å). 

 
 

B 
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Fig 4.18 A) Multiple sequence alignment of ParE / GyrB 

reference sequences colored using the Clustal color scheme. 

The red arrow indicates position ParE / GyrB 475 and green 

arrow position 474; B)comparison between normalized 

Shannon entropy in wild type (blue) and mutated sequences 

(red). 

Variations lead to the substitution of the negative side chain with 

positively charged and apolar side chains (Fig 4.21), resulting in 

the loss of the interaction with the positively charged drug In 

particular, the replacement of the glutamate with a lysine 

introduces a positive charge and the replacement with an alanine 

leads to the loss of negative charge. 

The result is an overall change from a marginally positively 

charged environment (mean net charge: 0.70 e) to a definitely 

positively charged one (as mean net charge: 1.70 e), with the 

introduction of +1 positive charge (Fig 4.19). 
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Fig 4.19. A) Comparison of the electrostatic surface of the 

wild type position (E475) and the mutated position: B) 

E475K, C) EA475A. The structure is PDB 

3RAE chain D. The color of the electrostatic potential values 

ranges from blue (positively charged) to red (negatively 

charged). D) Net charge distribution KDE. 
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Position ParE 474 / GyrB 474 is less conserved than position 

ParE 475 / GyrB 475 (Figure 4.17). Indeed, the wild type 

displays several different amino acid types (Fig 4.21), including 

polar (glutamine and threonine) and negatively charged residues 

(aspartic and glutamic acid). Mutations introduce aromatic and 

positively charged side chains, thus modifying the negatively 

charged environment to a more positive one, possibly 

destabilizing the interactions between the protein and the 

antibiotic molecule (Fig 4.20). 

Fig 4.20. Comparison of the electrostatic wild type A) E474 and 

B) mutated K474. The color of the electrostatic potential values 

ranges from blue (positively charged) to red (negatively 
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charged). C and D represent the box plot for the mean charge 

distribution and the KDE plot 

for the net charge distribution. Blue area represents values 

associated with susceptible residues while red area with resistant. 

 
 

Fig 4.21 Frequency of susceptible amino acids and resistant 

mutations according to their physicochemical properties for 

position A) 475 and B) 474. 

 

4.5.1.4. Characterization of the ParC 78 position 

 
 

ParC 78 is highly conserved and the mutations replace the 

aspartic acid with apolar and polar amino acids (Fig 4.22). The 

position is also relatively close to the drug (6.42 Å) and the 

magnesium (8.5 Å ). Based on the net charge change shown in 

figure 4.23 C, we hypothesize that the loss of a negative charge 

modifies the overall charge distribution in the region, resulting in 

the destabilization of 

the interactions between the mutated residue and the drug. 
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Fig 4.22 A) Multiple sequence alignment of ParC/GyrA reference 

sequences colored using the Clustal color scheme. The red arrow 

indicates position ParC 78. B) Frequency of susceptible amino 

acids and resistant mutations according to their physicochemical 

properties for position 78. 

 
 

 

A 
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Fig 4.23. A) Comparison of the electrostatic surface for wild type 

A) ASP78 and B) mutated ASN78. C) The bar plot represents the 

frequency of net charge values in our dataset, we can clearly 

observe that susceptible residues are associated with a negative 

net charge, while resistant residues lead to loss of a negative 

charge (from -2.00 e to -1.00 e). 

 
4.5.2. Cluster II characterization 

 
This cluster corresponds to ParC 77 / GyrA 79 positions, yet 

mutations associated with AR occurring at position ParC 77 / 

GyrA 79 are very few and are only found in Burkholderia dolosa, 

Mycoplasma genitalium, and Escherichia coli. The wild type 

sequence in position ParC 77 / GyrA 79 presents a very well 

conserved glycine residue. The only mutations reported in CARD 

B 
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are changes from glycine to aspartic acid, cysteine and histidine 

(Fig 4.24). 

Similarly to position ParC 78, position ParC 77 / GyrA 79 is relatively 

close 

to the drug (mean distance 5.78 Å) but it does not seem 

to be directly involved in the binding. 

Replacement of a glycine residue with a residue with a bulkier 

side chain may result in steric hindrance and in modification of 

the relative solvent accessibility (Box plot Figure 4.25 D) , 

possibly interfering with the serine in position ParC 79 / GyrA 

81 which is necessary for drug binding. 

 

 

Fig 4.24. A) Map of ParC 77 Gly (in red) on the model, B) the 

multiple sequence alignment and the logo with the amino acid 

frequency for the region of interest. The position ParC 77 is 

indicated by a red arrow. 

 B 
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Fig 4.25. Representation of the resistant mutant A) histidine , B) 

cysteine and 

B) aspartic acid. In D) it is represented the box plot of the mean 

values of the relative ASA calculated for resistant and 

susceptible residues at position 77. 

4.5.3. Cluster IV characterization 

 
Identifying a pattern of resistance in this cluster proved 

difficult due to the heterogeneity of wild type and mutated 

residues and little data available. 

 



 

 

 

  

111 

 

 

Fig 4.26. Frequency of susceptible amino acids and resistant 

mutations according to their physicochemical properties. 

 
GyrA M81I was only found in the GyrA subunit of M. 

genitalium, where the reference sequence has a methionine 

instead of a serine. It was proposed that the wild type enzyme is 

partially resistant to quinolone and the change of the methionine 

into an isoleucine residue was associated with moxifloxacin (a 

quinolone of 4th generation) treatment failure in one patient94. 

Since a polar amino acid is required to bind quinolones, we can 

hypothesize that apolar amino acids can disrupt the binding, 

with a mechanism similar to the one described for Cluster II 

mutations. 
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ParC A63T and A67S were found in S. pneumoniae and E. coli, 

respectively, but they were associated with drug resistance only 

after the introduction of the above resistant mutations in ParE 

and GyrB subunits, implying that this mutation alone is not 

causative of resistance but can contribute to increase it8. 

Moreover, it is distant from the drug, the magnesium and 

positions ParC 79 and 83 ( > than 15 Å). It is unlikely that 

mutations at this position can interfere with the quinolone 

binding directly. 

 
ParE P454S was found in S. pneumoniae, but even though it has 

been reported as causative of resistance in CARD, there is no 

evidence that this mutation can be associated with drug 

resistance95. Also, the distance from the drug (more than 9 Å) or 

other residues involved in quinolone binding is large enough to 

suggest that this position cannot interfere with drug binding. 

 
4.5.4. Cluster V characterization 

 
 

The cluster comprises 84 observations, 60 are marked as resistant 

and 24 as susceptible. All the observations refer to position 79 of 

ParC, corresponding to position 81 of GyrA (position numbers 

refer to S. pneumoniae sequence numbering). The position is well 

conserved among bacteria, with a calculated normalized Shannon 

entropy below 0.3 . Wild type amino acid is generally a serine 

(74%), followed by alanine (12%), threonine (6%) and 
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methionine (3%) (Fig 4.27). The mean distance from the drug is 

3.2 (𝛿𝑥 0.12)Å and 4.4 (𝛿𝑥 0.12) Å from magnesium, with 𝛿𝑥 

standard error of the mean. 

 

Fig 4.27 a) Multiple sequence alignment for ParC/GyrA 

reference sequences colored using the Clustal  color scheme. The 

position ParC 79 is indicated by a red arrow; b) comparison 

between normalized Shannon entropy for the wild type (blue) 

and mutated sequences (red). 

 
Position ParC 79 /GyrA 81 is a well-known hotspots for 

quinolone resistance and several substitutions related to 

quinolone resistance can occur (fig 4.28). Mutations in position 

ParC 79 / Gyra 81 lead to a change from polar (serine or 

threonine) to non-polar, aromatic and positive charged residues 

(Figure 10A) This implies the replacement of the tiny hydrophilic 

side chain of Ser/Thr with bulky and hydrophobic side chains, as 

it can be observed in Figure 4.29 from the mean values of 
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hydrophilicity, hydrophobicity, bulkiness, residue and side chain 

volume, and polarity of the resistant variations as opposed to 

wild-type residues. 
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Fig 4.28. A) Percentage of wild type and resistant amino acids 

according to their chemical properties in cluster V; B) 

Frequency of different amino acid types in the mutated position 

ParC 79 / Gyra 81 in resistant organisms. 
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Fig 4.29. Box plot of the mean values representing the AA 

index features for the resistant residues vs the susceptible 

residues. 
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4.5.4.1. Characterization of the ParC 79/ GyrA 81 position 

 
Referring to Figure 1.7, the serine residue forms two hydrogen 

bonds with the carboxyl group of the fluoroquinolone. 

Structural analysis reveals that mutated residues introduce 

hydrophobic bulky chains resulting in steric hindrance and in the 

loss of the hydrogen bonds between the -OH group of the serine 

and the quinolone (see Figure 4.31). The proximity with the 

magnesium suggests also that mutations can perturb the 

magnesium - water bridge necessary for drug binding. 

Inspired by the work of Kyte and Doolittle96, we decided to 

compare the grand average of hydropathy (GRAVY)96 for both 

the susceptible and resistant sequences. We generate a short 

region of residues in a range of 5 Å from GyrA81/ParC79 

position and calculated the hydropath index of each residue 

divided by the length of the sequence. Results show an increase 

in hydrophobicity, with a shift of the mean value from 0.05 (𝛿𝑥 

0.01) for the 

susceptible wild type residues to 0.2 (𝛿𝑥 0.04) for the resistant ones 

(refer to 

Figure 4.30). 
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Figure 4.30. Box plot of the mean values of the average of 

hydropathy calculated in a range of 5 Å from the position. 

Since some fluoroquinolones are hydrophilic97 (like 

ciprofloxacin) we can suppose that the shift from a hydrophilic 

environment to a hydrophobic one can interfere with quinolone 

binding. Moreover, the bulkier hydrophobic groups result in a 

physical obstruction for quinolones to enter into 'the quinolone 

pocket' as proposed by Yoshida et al98. 
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Fig 4.31. Representation of wild type susceptible residue (S) and 

all possible mutations associated with drug resistance colored 

according to their 

hydrophobicity. Color range is from blue (high hydrophilicity) 

to red (high hydrophobicity). Magnesium is represented as a 

green sphere and the quinolone (Levofloxacin) as sticks. 
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4.6. Semi-automatized pipeline for the 

identification of point mutations in S. 

pneumoniae 

 

ParC_finder was the first method developed for the 

identification of point mutations associated with quinolone 

resistance. It is a semi-automatized pipeline which can be used to 

identify and map variations onto the ParC subunit of S. 

pneumoniae starting from an assembled bacterial genome. 

The pipeline has been developed in Python. 

Figure 4. describe how ParC_finder works. We applied this 

method on a set of 46 complete genomes downloaded from NCBI 

Microbial Genomes. The nucleotide sequence is extracted from 

the genome with Blastn and converted in amino acidic sequence 

with Blastp. All the protein sequences are collected and aligned 

with MUSCLE to generate a MSA that is parsed by a script 

written in Biopython. This script loops through the rows of the 

alignment and extracts all the mutations, comparing each protein 

sequence with the ParC R6 susceptible sequence. All the 

variations are annotated and compared with a list of mutations 

known to be associated with quinolone resistance in S. 

pneumoniae and mapped on the ParC model (See Result section 

4.1.1). The outputs are: a tabular file reporting all the variations, 

the position, if it is known or not as determinant of antibiotic 

resistance; Chimera sessions generated by the software, which 
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contains the model and the residues found mapped on the 

structure. 

 
 
 

Fig 4.32 Steps of the semi-automatized procedure applied on 

the genomes from several S. pneumoniae strains. 

 
4.7. Quinores3D_pred: machine learning 

algorithms for the prediction of point 

mutations 

 

Several programs for the study of the antibiotic resistance 

phenomenon have been released in past years. Many of them are 

able to identify point mutations related to antibiotic resistance like 

RGI30, PointFinder26 or NCBI- AMRFinder35. All these programs 

use BLAST to compare the sequence of interest against a 

reference sequence in order to highlight variations. 

However, the identification of antimicrobial resistance-conferring 

chromosomal mutations often is available for only a limited set of 
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pathogenic microorganisms, and in case of identification of new 

variations not identified before, no inference about their role in 

drug resistance is given. As far as we know, machine learning has 

been used to detect AMR genes, but not applied on point 

mutations associated with antimicrobial resistance. Our aim was 

to 

develop a new algorithm for the identification of 

quinolone resistant variations occurring in the 

topoisomerases proteins. 

Our problem can be considered as a binary classification: given a 

point mutation (or better, given an amino acid in our protein) the 

algorithm must predict if it is associated with drug resistant 

(label ‘Resistant’ or 1) or not (label ‘Susceptible’ or 0). We 

developed two models, one based on Random Forest60 and one 

on Neural Network55. 

Here, we present preliminary results, which confirm that the approaches 

are promising and deserve further exploration and development. 

 
4.7.1. Training, test and validation set 

Data from clustering analysis (see Results, section 4.5) consists 

of a set of residues occurring in topoisomerase sequence positions 

associated with drug resistance and a set of residues present in the 

same positions in “reference” sequences, namely sequences 

belonging to bacterial strains that are susceptible to the drug. It is 

worth noticing that the proportion between the two classes is 

slightly unbalanced, with the resistant class representing 63% of 
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the observation. In order to avoid errors during the training phase, 

we oversampled the susceptible class, reaching a proportion of 

50% and 50% for the two categories. 

 

Fig 4.33. Proportion of the two classes before (left) and 

after (right) oversampling of the minor represented 

class. 

 
The dataset was normalized in order to have the input variables 

in the range of 0-1, then it was splitted in a training (70 %) and a 

validation (30 %) set . The test set was made up of 2123 unseen 

drug resistant variants and 592 susceptible (wild type) residues, 

selected from the CARD database and from UniprotKB/Swiss-

prot. See table 4.4 for an overview of the data used. 

 

 
 

Training set Validation set Test set 

 
wild-

type 

mutated wild-

type 

mutated wild-

type 

mutated 

CARD 0 56 0 9 0 2103 

Uniprot 85 111 30 25 592 20 
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Table 4.4. Overview of the data used for training, validation and test 

set according to their source (CARD or Uniprot). Wild-type represent 

the susceptible residues, while mutated the resistant ones.  

 
4.7.2. Feature extraction 

 
For the machine learning problem, both structural and sequence 

features were extracted. Structural features were: electrostatic 

interactions, relative ASA, and distance from drug and from 

magnesium. For the sequence features, we extracted from the 

AAindex90 information about the hydropathy index, the volume 

and size of side chain, stability, polarity and free solvation energy 

for each amino acid. 

In order to compute distances and charge values, for each 

observation a three- dimensional model was generated with 

homology modelling (see Results section 4.1 and Materials and 

Methods, section 3.3). 

 
4.7.3. Machine learning models 

 

Seven algorithms commonly employed in machine learning were 

compared using the accuracy on the training set as a method to 

choose the one that best fitted with our data. Each model was 

evaluated using a 5-fold cross validation, and the mean accuracy 

for each model was collected. Among the algorithms, Random 
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Forest (RF) reached the highest mean accuracy (94%) on training 

data (Table 4.5). 

 

Algorithm Mean accuracy STD 

LR 0,90 0,02 

LDA 0,91 0,03 

KNN 0,92 0,02 

CART 0,95 0,03 

NB 0,87 0,03 

SVM 0,82 0,03 

RF 0,95 0,02 

 

Table 4.5 Algorithm comparison with mean accuracy and 

standard deviation(STD). LR: Logistic regression, LDA: Linear 

discriminant analysis, KNN: k-nearest neighbors algorithm, 

CART: Gaussian Naive Bayes, SVM: Support vector machine, 

RF: Random forest59 . 

 
We also explored the possibility to use deep learning for our 

classification, choosing a densely connected network as neural 

network model. Our Neural network (ANN) is composed of 2 

hidden dense layers with 16 and 8 units respectively, and an 

output layer composed of a single unit. A dropout layer was 

added to avoid overfitting. 

 
The performance for both the Random Forest and the neural 

network was evaluated with a 5-fold cross-validation. The 

models with the highest accuracy (one for RF and one for 

ANN) were chosen and tested against the validation set. To 
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quantify model performance metrics such as accuracy, 

confusion matrix, precision, recall, F1-score, and Area under 

ROC Curve were adopted. 

 

RF achieved an accuracy of 93 % on the validation set with an 

average accuracy of 94% on the 5 fold cross-validation. 
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Fig 4.34. ROC curve for the Random Forest models 

trained on the (A) training/validation set and (B-F) on the 

5 fold cross-validation sets. 

 
ANN performed with an accuracy of 89% on the validation set 

and on the cross validation the mean accuracy was 90%. 
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Fig 4.35. These plots represent the metrics for the ANN 

models trained on the training/validation set (A - B) and on 

the 5 fold cross-validation (C-N). 

Dots represent the accuracy on the training set while lines 

represent the accuracy on the validation set (A,C,E,G,I,M). 

Similar for the loss, dots indicate the loss on the training and 

lines on the validation. The model performs well, yet we can 
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observe a little overfitting (D and L) which had a negative 

impact on the accuracy of the classifier (C and M). 

 
 

Fig 4.36. ROC curve for the random forest models 

trained on the training/validation set (A) and on the (B-

F) 5 fold cross-validation. 

 
Comparing the two algorithms, the RF performed better than the 

neural network, with a mean of 94 % of accurate predictions 

against the 90% of the ANN with the training/validation set. 
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Then, the two models were evaluated with the test set. Since 

this set is unbalanced (2123 resistant point mutations 

associated with resistance and 

592 non-resistant), 500 amino acids for both the two classes were 

picked randomly, in order to generate a random balanced set of 

1000 amino acids. RF achieved an accuracy of 94 % on the test, 

with 49.9% labelled correctly as resistant (true positives), 44.9% 

as non -resistant (true negatives), 0.1% (1 residue) as false 

negative and 5.1 % as false positive. ANN performed worst, with 

an accuracy of 88% and a considerable number of residues 

predicted as false positive (11.4 %). Refer to the confusion 

matrices in Figure 4.37. 

 
 

 RF ANN 

Accuracy 0,95 0,88 

Precision 0,91 0,81 

Recall 1,00 1,00 

F1 score 0,95 0,90 
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Table 4.6 Classification metrics for test set, comparison 

between random forest model(RF) and neural network 

(ANN). 

 

 

 

Fig 4.37. ROC curve for the A) Random Forest, B) Neural 

Network models trained on the test set and confusion matrices for 

C) RF and D) ANN classifiers. 
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5. Conclusions 

 
With an estimated 300 million premature deaths and a loss of 

$100 trillion, antibiotic resistance will become the first cause of 

mortality in the world by 2050, surpassing diseases like cancer 

and diabetes99. 

Several strategies have been developed to deal with this 

challenge, including improving the prescription of good practices, 

optimizing therapeutic regimens, preventing transmission of 

bacterial infections and improving diagnosis and diagnostic 

tools100. But these actions must be taken as soon as possible, in 

order to avoid an “unthinkable scenario where antibiotics no 

longer work and we are cast back into the dark ages of 

medicine"99. 

Given the global reach of the phenomenon, this PhD project 

focused on the characterization of the molecular mechanisms of 

antibiotic resistance (AR) caused by the appearance of point 

mutations and the development of computational approaches 

for the study and inference of “resistant mutations”, i.e. 

sequence variations associated with AR to quinolones. 

 
1. Structural characterization of point mutations related 

to quinolone resistance in S. pneumoniae and other 

bacteria. 

Resistance can arise due to different mechanisms and several 

classes of antibiotics are affected. We concentrated our efforts 
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specifically on quinolones as resistance to this new class of 

compounds is emerging rapidly and the picture of the molecular 

mechanisms underlying resistance is not yet complete. 

Point mutations represent one of the major mechanisms of AR to 

quinolones. Although much information can be found in the 

literature, most scientific research deals with the identification of 

such mutations in bacteria rather than 

analyzing and describing in depth the effects on drug binding of 

amino acid substitutions. 

S. pneumoniae was chosen as a case study due to its importance 

in clinical practice: indeed, it is the fourth cause of pneumonia 

in the world, and its ability to raise meningitis and fatal sepsis is 

a threat especially for the elderly and immunosuppressed 

people. 

We presented an exhaustive structural analysis of these 

variations in the topoisomerase II enzymes using statistical 

approaches, machine learning techniques and a number of 

other methods used in bioinformatics for this type of 

analysis. The use of a statistical approach helped us focus 

on the most relevant characteristic, allowing us to provide a 

detailed picture of the molecular mechanisms of resistance. 

The results of the structural analysis show that mutations can be 

clustered according to their mechanism of resistance. For 

example, mutations causing the loss of negatively charged 

amino acids, will lead to a change of the charge distribution in 

the drug binding site which interferes with quinolone binding. 



 

 

 

  

134 

 
2. Development of Quinores3D web server. 

Although bioinformatics databases exist collecting AR genes, 

point mutations and associated phenotypes (e.g. CARD30), no 

resources for protein structural information related to AR were 

made so far available. 

The pipeline developed for the structural analysis was 

incorporated in a publicly available web server 

(http://bioinfoibpm.cloud.ba.infn.it/quinores3d/index.html). In 

particular Quinores3D Finder is able to perform a structural 

analysis given an input topoisomerase II protein or nucleotide 

sequence or even a complete bacterial genome, and identify point 

mutations associated with drug resistance. Results from the 

analysis are shown in tables and graphically displayed thanks to 

viewers embedded in the web server. 

We also developed Quinores3D db, a database collecting 

structural information and features about the mutations related to 

quinolone resistance. 

 
3. Development of new methods for the identification of 

point mutations associated with AR. 

Several tools for the identification of mutations associated with 

AR are available, such as RGI30, PointFinder26 or AMRfinder35. 

Although they are widely used, these tools present some issues: 

they are limited to a set of bacterial species26; they suffer from 

high false-susceptible (false-negative) and/or false-resistant 

http://bioinfoibpm.cloud.ba.infn.it/quinores3d/index.html
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(false-positive) rates101; they can detect known mutations in user 

sequences  but do not allow inference of new mutations 

potentially associated with antibiotic resistance. To overcome 

these limitations, we developed a machine learning classifier, 

which can be used to probably infer new point mutations related 

to quinolone resistance in different bacterial species. The 

classifier uses the Random Forest algorithm and achieved an 

accuracy of 94 % on the test set. At the moment this prediction 

tool is specific for quinolone antibiotics only. 
We are currently working on the application to other classes of 

antibiotics of the approaches developed in this work for the 

analysis and prediction of point mutations associated with AR to 

quinolones. 

Our aim is to extend Quinores3D db, Quinores3D Finder, as well 

as the classifier to the study, structural analysis, and inference of 

point mutations associated with resistance to antibiotics other than 

quinolones. This 

will be possible whenever the three-dimensional structure of a drug target 

exists or can be modelled, so that structural information can be extracted, 

annotated, made available through a database and used to train, test and 

validate a machine learning algorithm.  
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