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Abstract: Background: Experimental studies using qualitative or quantitative analysis have
demonstrated that the human voice progressively worsens with ageing. These studies, however,
have mostly focused on specific voice features without examining their dynamic interaction.
To examine the complexity of age-related changes in voice, more advanced techniques based
on machine learning have been recently applied to voice recordings but only in a laboratory setting.
We here recorded voice samples in a large sample of healthy subjects. To improve the ecological
value of our analysis, we collected voice samples directly at home using smartphones. Methods:
138 younger adults (65 males and 73 females, age range: 15–30) and 123 older adults (47 males and
76 females, age range: 40–85) produced a sustained emission of a vowel and a sentence. The recorded
voice samples underwent a machine learning analysis through a support vector machine algorithm.
Results: The machine learning analysis of voice samples from both speech tasks discriminated between
younger and older adults, and between males and females, with high statistical accuracy. Conclusions:
By recording voice samples through smartphones in an ecological setting, we demonstrated the
combined effect of age and gender on voice. Our machine learning analysis demonstrates the effect of
ageing on voice.

Keywords: ageing; gender; machine learning; support vector machine; voice analysis

1. Introduction

Human voice represents a complex biological signal resulting from the dynamic interaction of
vocal folds adduction/vibration with pulmonary air emission and flow through resonant structures [1].
Physiologic ageing leads to specific changes in the anatomy and physiology of all structures involved
in the production and modulation of the human voice [2–14]. Hence, a possible approach to evaluate
the effect of physiological ageing in humans would include the analysis of voice.

Early seminal studies aimed to characterize age-related changes in voice have used qualitative tools
consisting of a perceptual examination of voice recordings [3]. These studies have demonstrated that
physiologic ageing induces a variable combination of effects on voice including reduced intensity and
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phonation time, and a general worsening of voice quality due to hoarseness and vocal fatigue [1,15–17].
Some authors have also used more advanced quantitative tools for recording and analyzing voice
and thus for achieving an objective examination of age-related changes of voice [1]. Objective voice
analysis commonly includes several acoustic parameters calculated in the time-domain such as the
jitter, the shimmer, the signal to noise ratio (SNR) and the harmonic to noise ratio (HNR) [18] or spectral
analysis measures calculated in the frequency-domain such as the fundamental frequency (fo) [19,20].
More recently, cepstral analysis has been recognized as a methodologic evolution of the spectral
analysis resulting from a mathematical transformation from the domain of frequency to quefrency.
The cepstral analysis allows for calculating innovative variables such as the cepstral prominence peak
smoothed (CPPs) [21,22]. Spectral and cepstral analyses have demonstrated that physiological ageing
induces changes in several voice parameters including the fo, the SNR, the HNR, and finally the
CPPs [1,20,23]. However, although spectral/cepstral analysis allows measuring age-related changes
in specific voice features, it failed to provide a detailed examination of the complex and dynamic
interaction of voice features which characterize the physiologic ageing of voice [1,23].

The most recent approach used to assess physiologic ageing in healthy subjects consists of the
objective voice analysis based on machine learning algorithms [24–28]. Machine-learning is a novel and
robust method commonly applied to classify complex variables obtained from large datasets [29–31].
More in detail, machine learning can be applied to predict outcomes from recurring patterns of features
within various types of multidimensional data sets [32]. Several authors have applied automatic
classifiers based on machine learning analysis on voice recordings to classify healthy subjects according
to their age and gender [24–28,33–38]. More recently, to further improve the overall accuracy of the
machine learning analysis, several studies have included an increasing number of voice features in the
datasets [24–28] and compared the performance of different machine learning algorithms [37,38].

In this study, we examined the combined effect of the age- and gender-related factors on voice
features through machine learning. Also, previous studies have not compared the performances of
the machine learning analysis of voice samples obtained during the sustained emission of a vowel
or a sentence, by using the receiver operating characteristic (ROC) curve. So far voice samples have
been only collected in a laboratory setting by using dedicated technological instruments consisting of
hi-tech audio recorders which require expert supervision [1]. Currently available smartphones and
information technology (IT) services have allowed to record and analyze a large number of health
parameters in free-living scenarios [39]. The use of a smartphone to record high-quality voice samples
would simplify the procedures of recordings, allowing to acquire and analyze a large amount of data.
Further advantages of doing recordings using smartphone consist of the building up of a more ecologic
scenario compared to the laboratory setting, thus helping to overcome possible voice changes due to
supervised conditions.

In this cross-sectional study, we collected voice samples recorded through smartphones in two
independent groups of healthy participants with different ages. We used machine learning algorithms
to investigate the effect of physiologic ageing on voice. To evaluate the combined effect of age and
gender on voice, we also examined the voice samples recorded by females and males from different
ages, using machine learning. To verify whether age-related changes of the voice depends on specific
speech tasks, we examined and compared the voice recordings during the sustained emission of a
vowel and a sentence. All analyses included ROC curves and a detailed description of the statistical
output including accuracy, sensibility, specificity, and area under the curve (AUC).

2. Materials and Methods

2.1. Subjects

We recruited an overall group of 261 healthy subjects (HS) (112 males and 149 females; mean
age ± SD 41.0 ± 18.7 years, range 15–85). Subjects were then divided into two independent
sex-matched groups according to age: younger adults (YA) (number 138; 65 males and 73 females;
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mean age ± SD 25.1 ± 3.1 years, range 15–30), and older adults (OA) (number 123; 47 males and
76 females; mean age ± SD 58.9 ± 11.0 years, range 40–85). All the participants were recruited at
the Department of Human Neurosciences, Sapienza University of Rome, Italy. All subjects were
non-smokers, native Italian-speakers. Participants did not manifest cognitive or mood impairment nor
bilateral/unilateral hearing loss, respiratory disorders, and other disorders affecting the vocal cords.
Also, participants did not manifest gastro-esophageal reflux disease, acute or chronic gastritis, or other
gastrointestinal disorders possibly affecting the emission of the voice. At the time of the study, all the
YA completed the pubertal development. Participants took no drugs acting over the central nervous
system at the time of the study. Participant demographic features are summarized in Table 1 and
reported in detail in Supplementary Materials Tables S1 and S2. Participants gave consent to the study,
which was approved by the institutional review board following the Declaration of Helsinki.

Table 1. Demographic and clinical characteristics of the participants.

Group Age (years) Weight (Kg) Height (cm) BMI

YA 25.1 ± 3.1 64.5 ± 12.4 171.4 ± 8.5 21.8 ± 3.1
OA 58.9 ± 11.0 66.9 ± 11.9 166.5 ± 9.8 25.2 ± 4.1

YA25 22.9 ± 2.2 61.4 ± 10.3 171.0 ± 8.1 20.9 ± 2.5
OA55 66.4 ± 8.1 68.6 ± 11.9 163.0 ± 9.1 25.8 ± 4.3
YAf 24.7 ± 3.0 56.5 ± 7.6 166.2 ± 5.7 20.5 ± 2.7
YAm 25.5 ± 3.2 73.4 ± 10.7 177.2 ± 7.1 23.3 ± 2.8
OAf 59.8 ± 10.5 65.7 ± 11.3 161.2 ± 7.3 25.4 ± 4.7
OAm 58.1 ± 11.3 76.4 ± 9.6 175.0 ± 6.9 25.0 ± 3.1

OA: older adult; OAf: female OA; OAm: male OA; YAf: female YA; YAm: male YA; YO: younger adult;
YO25: younger adult ≤ 25 years; OA55: older adult ≥ 55 years. Values are expressed as average ± standard deviation.

2.2. Voice Recordings

The recording session started by asking participants to sit on a chair in the middle of a silent room.
Subjects were instructed to handle and face a smartphone at about 30 cm from the mouth and then
to speak with their usual voice intensity, pitch, and quality. Smartphones currently available in the
market (various brands including Apple®, Samsung®, Huawei®, Xiaomi® and Asus®) were used for
voice recordings. The recording session consisted of two separate speech-tasks, the former including
the sustained emission of a vowel and the latter consisting of a sample of connected-speech. More in
detail, patients were first asked to produce the sustained emission of the vowel/e/for 5 s and then to
read the following Italian phonetically balanced sentence: “Nella casa in riva al mare maria vide tre
cani bianchi e neri.” To simplify the procedures of home-made audio recording, all participants were
asked to save the audio tracks in mp4 format at the end of the recording session. Participants were
then asked to send voice samples by e-mail to our institutional mail server, which was protected and
accessible only by the authors. Lastly, voice recordings were separated in audio tracks containing
each of the two speech-tasks, through a segmentation procedure included in dedicated software for
audio-editing (Audacity®) [40].

2.3. Machine-Learning Analysis

The machine-learning analysis consisted of specific and standardized algorithms of artificial
intelligence [41–44]. We converted all the audio tracks from mp4 into Wav format (sampling frequency:
44.1 kHz; bit depth: 16 bit), before submitting data to OpenSMILE, a dedicated software for
the pre-process of feature extraction (OpenSMILE; audEERING GmbH, Munich, Germany) [45].
For each voice sample, 6139 voice features were extracted by using a modified INTERSPEECH2016
Computational Paralinguistics Challenge (IS ComParE 2016) feature dataset [44]. IS ComParE 2016
contains voice features calculated using computational functionals (e.g., mean, quartiles, percentiles,
position of max/min, linear regression) over acoustic low-level descriptors (LLDs), including those
related to the energy, spectrum, cepstrum of the signal [44,46], and also including the Mel-Frequency
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Cepstral Coefficients [47,48], RASTA-PLP Coefficients [49], jitter, shimmer, sound quality descriptors,
and prosodic features. Given that the IS ComParE 2016 features dataset does not contain the CPPs,
the HNR, and SNR, we additionally extracted these features through specific home-made algorithms
(MATLAB, The Math Works, Inc., Version R2020a, Natick, MA, USA, 2020) [21,50,51]. Then, the CPPs,
HNR, and SNR were added to the IS ComParE 2016 feature dataset using Wolfram Mathematica
(Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL, USA, 2020).

To identify a small subset of relevant features for the objective analysis of voice ageing [52],
the extracted voice features underwent feature selection using the correlation features selection (CFS)
algorithm [53]. Through CFS, we selected voice features highly correlated with the class, thus removing
the irrelevant and redundant features from the original dataset. Selected features were ranked by using
the correlation attribute evaluation (CAE) algorithm, which evaluates and ranks all the attributes in
order of relevance, according to Pearson’s correlation method. To further increase the accuracy of results,
we applied the Fayyad & Irani’s discretization method to the features’ values [54]. Discretization is
an optimization procedure consisting in modifying the values and the distribution of the features,
by calculating the best splitting point from the two classes and assigning a binary value to the features,
in two groups.

After pre-processing procedures, we started the machine learning analysis by using the support
vector machine (SVM) classifier. To train the SVM, we considered only the first twenty most relevant
features ranked by the CAE. This approach was applied to reduce the number of selected features needed
to perform the machine learning analysis. Specifically, the SVM was trained using the sequential
minimal optimization (SMO) method, which is considered a fast and efficient machine learning
algorithm to implement an SVM classifier [55]. All the classifications were made using a 5-or 10-folds
cross-validation, depending on the number of the instances (voice samples) contained in the examined
dataset. Both the feature selection and the classification were performed by dedicated software
that contains a collection of algorithms for data analysis and predictive modelling (Weka, Waikato
Environment for Knowledge Analysis, University of Waikato, New Zealand) [53,56]. The experimental
procedures are summarized in Figure 1.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 19 

 

descriptors, and prosodic features. Given that the IS ComParE 2016 features dataset does not contain 
the CPPs, the HNR, and SNR, we additionally extracted these features through specific home-made 
algorithms (MATLAB, The Math Works, Inc., Version R2020a, Natick, MA, USA, 2020) [21,50,51]. 
Then, the CPPs, HNR, and SNR were added to the IS ComParE 2016 feature dataset using Wolfram 
Mathematica (Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL, USA, 2020). 

To identify a small subset of relevant features for the objective analysis of voice ageing [52], the 
extracted voice features underwent feature selection using the correlation features selection (CFS) 
algorithm [53]. Through CFS, we selected voice features highly correlated with the class, thus 
removing the irrelevant and redundant features from the original dataset. Selected features were 
ranked by using the correlation attribute evaluation (CAE) algorithm, which evaluates and ranks all 
the attributes in order of relevance, according to Pearson’s correlation method. To further increase 
the accuracy of results, we applied the Fayyad & Irani’s discretization method to the features’ values 
[54]. Discretization is an optimization procedure consisting in modifying the values and the 
distribution of the features, by calculating the best splitting point from the two classes and assigning 
a binary value to the features, in two groups. 

After pre-processing procedures, we started the machine learning analysis by using the support 
vector machine (SVM) classifier. To train the SVM, we considered only the first twenty most relevant 
features ranked by the CAE. This approach was applied to reduce the number of selected features 
needed to perform the machine learning analysis. Specifically, the SVM was trained using the 
sequential minimal optimization (SMO) method, which is considered a fast and efficient machine 
learning algorithm to implement an SVM classifier [55]. All the classifications were made using a 5-
or 10-folds cross-validation, depending on the number of the instances (voice samples) contained in 
the examined dataset. Both the feature selection and the classification were performed by dedicated 
software that contains a collection of algorithms for data analysis and predictive modelling (Weka, 
Waikato Environment for Knowledge Analysis, University of Waikato, New Zealand) [53,56]. The 
experimental procedures are summarized in Figure 1. 

 
Figure 1. Experimental procedures. (A) Smartphone recording of voice samples of sustained emission 
of vowel and a sentence. (B) Acoustic voice spectrogram. (C) Procedures of features extraction, (D) 
features selection, and (E) classification obtained through the SVM. (F) Receiver operating 
characteristic (ROC) analysis used to perform the statistics. 

2.4. Statistical Analysis 

The normality of the demographic and anthropometric variables in YA and OA was assessed 
using the Kolmogorov-Smirnov test. Mann-Whitney U test was used to compare demographic scores 
in YA and OA. ROC analyses were performed to identify the optimal diagnostic cut-off values of 
SMO (selected features), calculated during the sustained emission of the vowel as well as during the 
emission of the sentence, for discriminating between (1) YA and OA; (2) female YA and OA; (3) male 

Figure 1. Experimental procedures. (A) Smartphone recording of voice samples of sustained emission of
vowel and a sentence. (B) Acoustic voice spectrogram. (C) Procedures of features extraction, (D) features
selection, and (E) classification obtained through the SVM. (F) Receiver operating characteristic (ROC)
analysis used to perform the statistics.

2.4. Statistical Analysis

The normality of the demographic and anthropometric variables in YA and OA was assessed
using the Kolmogorov-Smirnov test. Mann-Whitney U test was used to compare demographic scores
in YA and OA. ROC analyses were performed to identify the optimal diagnostic cut-off values of SMO
(selected features), calculated during the sustained emission of the vowel as well as during the emission
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of the sentence, for discriminating between (1) YA and OA; (2) female YA and OA; (3) male YA and
OA; (4) male and female YA and finally; (5) male and female OA. Cut-off values were calculated as
the point of the curves with the highest Youden index (sensitivity + specificity − 1) to maximize the
sensitivity and specificity of the diagnostic tests. The positive and negative predictive values were also
calculated. According to standardized procedures [57], we compared the area under the curves (AUCs)
in the ROC curves calculated from SMO (selected features) to verify the optimal test for discriminating
within the subgroups. All ROC analyses were performed using WEKA and Wolfram Mathematica.
p < 0.05 was considered statistically significant. Unless otherwise stated, all values are presented
as mean ± standard deviation (SD). Statistical analyses were performed using Statistica version 10
(StatSoft, Inc) and Wolfram Mathematica.

2.5. Data Availability

The anonymized database used in the current study is available from the corresponding author
on reasonable request for a limited time-window of 3 months after publication.

3. Results

The Kolmogorov-Smirnov test showed that demographic and anthropometric parameters were
normally distributed in the YA and OA as well as in female and male YA and OA subjects (p > 0.05 for
all analyses). Mann-Whitney U test showed increased weight and BMI and decreased height values
in OA subjects compared with YA (p < 0.05 for all comparisons)(Table 1, Supplementary Materials
Tables S1 and S2).

3.1. YA and OA

When discriminating YA and OA, the artificial classifier based on SMO using selected features
allowed us to achieve a significant diagnostic performance of our test. When comparing the 20
most relevant selected features extracted from the sustained emission of the vowel, ROC curve
analyses identified an optimal diagnostic threshold value of 0.50 (associated criterion), when applying
discretization and 10-folds cross-validation (Y.I = 0.72). Using this cut-off value, the performance
of our diagnostic test was: sensitivity = 86.9%, specificity = 85.2%, PPV = 86.9%, NPV = 85.2%,
accuracy = 86.1%, and AUC = 0.931 (Figure 2A, Table 2). Furthermore, when comparing 20 selected
features extracted from the sustained emission of the sentence, ROC curve analyses identified an
optimal diagnostic threshold value of 0.50, when applying discretization and 10-folds cross-validation
(Y.I = 0.77). Using this cut-off value, the performance of our diagnostic test was: sensitivity = 89.1%,
specificity = 87.7%, PPV = 89.1%, NPV = 87.7%, accuracy = 88.5%, and AUC = 0.938 (Figure 2B, Table 2).
The two ROC curves obtained during the emission of the vowel and the sentence were comparable
(the difference between AUCs = −0.007, z = −0.314, SE = 0.022, p = 0.75) (Figure 2C).

To reduce excessive age dispersion, and thus perform a more consistent analysis of voice ageing,
in a further analysis we compared the voice recordings collected from two subgroups of YA and
OA. Moreover, in detail, among YA, we considered a subgroup of 79 YA with age ≤ 25 years (YA25)
(31 males and 41 females; mean age ± SD 22.9 ± 2.2 years, range 15–25), whereas, among OA,
we selected a subgroup of 71 OA with age ≥ 55 years (OA55) (21 males and 50 females; mean age
± SD 66.4 ± 8.1 years, range 55–85). When comparing the sustained emission of the vowel and the
sentence in YA25 and OA55 we achieved further improvement in the results as shown by the ROC curve
analysis. More in detail, when comparing 20 selected features extracted from the sustained emission of
the vowel, ROC curve analyses identified optimal diagnostic threshold value of 0.59, when applying
discretization and five-folds cross-validation (Y.I = 0.86). Using this cut-off value, the performance of our
diagnostic was: sensitivity = 93.6%, specificity = 92.9%, PPV = 93.6%, NPV = 92.9%, accuracy = 93.2%,
and AUC = 0.966 (Figure 2D, Table 2). Also, when comparing 20 selected features extracted from the
sustained emission of the sentence, ROC curve analyses identified an optimal diagnostic threshold
value of 0.52, when applying discretization and five-folds cross-validation (Y.I = 0.91). Using this cut-off
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value, the performance of our diagnostic test was: sensitivity = 92.8%, specificity = 98.5%, PPV = 98.7%,
NPV = 91.4%, accuracy = 95.3%, and AUC = 0.984 (Figure 2E, Table 2). Again, the two ROC curves
obtained during the emission of the vowel and the sentence were comparable (the difference between
AUCs = 0.018, z = 0.753, SE = 0.024, p = 0.45) (Figure 2F).
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(panels (A,D)), the sentence (black line) (panels (B,E)) and the comparison between the vowel and the
sentence (panels (C,F)).



Sensors 2020, 20, 5022 7 of 17

Table 2. Performance of the machine-learning algorithm in all the comparisons.

Comparisons Speech-Task Number of
Instances Cross-Validation Assoc. Criterion Youden Index Se (%) Sp (%) PPV (%) NPV (%) Acc (%) AUC

YA vs. OA
Vowel 259 10 folds 0.50 0.72 86.9 85.2 86.9 85.2 86.1 0.961

Sentence 260 10 folds 0.50 0.77 89.1 87.7 89.1 87.7 88.5 0.938

YA25 vs. OA55
Vowel 148 5 folds 0.59 0.86 93.6 92.9 93.6 92.9 93.2 0.966

Sentence 148 5 folds 0.52 0.91 92.8 98.5 98.7 91.4 95.3 0.984

YAf vs. OAf
Vowel 147 5 folds 0.57 0.81 90.3 90.7 90.3 90.7 90.5 0.958

Sentence 148 5 folds 0.66 0.85 91.9 93.2 93.2 92.0 92.6 0.962

YAm vs. OAm
Vowel 111 5 folds 0.53 0.82 91.0 90.9 93.8 87.0 91.0 0.962

Sentence 111 5 folds 0.52 0.87 91.3 95.2 96.9 87.0 92.8 0.958

YAm vs. YAf
Vowel 134 5 folds 0.69 0.91 95.4 95.7 95.4 95.7 95.5 0.965

Sentence 135 5 folds 0.61 0.89 90.3 98.4 98.5 89.9 94.1 0.966

OAm vs. OAf
Vowel 120 5 folds 0.74 0.87 89.4 97.1 95.5 93.2 94.2 0.969

Sentence 120 5 folds 0.63 0.86 89.8 95.8 93.6 93.2 93.3 0.975

Acc: accuracy; AUC: area under the curve; NPV: negative predictive value; OA: older adult; OA55: older adult ≥ 55 years; OAf: female OA; OAm: male OA; PPV: positive predictive value;
Se: sensitivity; Sp: specificity; YAf: female YA; YAm: male YA; YO: younger adult; YO25: younger adult ≤ 25 years. Instances refer to the number of subjects considered in each comparison.
Cross-validation refers to standardized procedures of a machine learning algorithm (see the text for details).
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3.2. Female YA and Female OA

In the comparison of female YA and OA, the artificial classifier based on SMO achieved a significant
diagnostic performance. More in detail, when comparing 20 selected features extracted from the
sustained emission of the vowel, ROC curve analyses identified an optimal diagnostic threshold value
of 0.57, when applying discretization and five-folds cross-validation (Y.I = 0.81). Using this cut-off value,
the performance of our diagnostic test was: sensitivity = 90.3%, specificity = 90.7%, PPV = 90.3%,
NPV = 90.7%, accuracy = 90.5% and AUC = 0.958 (Figure 3A, Table 2). Also, when examining the
sustained emission of the sentence, ROC curve analyses identified optimal diagnostic threshold value
of 0.66, when applying discretization and five-folds cross-validation (Y.I = 0.85). Using this cut-off

value, the performance of our diagnostic test was: sensitivity = 91.9%, specificity = 93.2%, PPV = 93.2%,
NPV = 92.0%, accuracy = 92.6%, and AUC = 0.962 (Figure 3B, Table 2). The two ROC curves obtained
during the emission of the vowel and the sentence were similar (the difference between AUCs = −0.004,
z = −0.164, SE = 0.024, p = 0.87) (Figure 3C).
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3.3. Male YA and Male OA

In the comparison of male YA and OA, the artificial classifier based on SMO using 20 selected
features achieved a significant diagnostic performance. When comparing selected features extracted
from the sustained emission of the vowel, ROC curve analyses identified optimal diagnostic threshold
value of 0.53, when applying discretization and five-folds cross-validation (Y.I = 0.82). Using this cut-off

value, the performance of our diagnostic test was: sensitivity = 91.0%, specificity = 90.9%, PPV = 93.8%,
NPV = 87.0%, accuracy = 91.0% and AUC = 0.962 (Figure 3D, Table 2). Also, when examining the
sustained emission of the sentence, ROC curve analyses identified an optimal diagnostic threshold
value of 0.52, when applying discretization and five-folds cross-validation (Y.I = 0.87). Using this
cut-off value, the performance of our diagnostic test was: sensitivity = 91.3%, specificity = 95.2%,
PPV = 96.9%, NPV = 87.0%, accuracy = 92.8%, and AUC = 0.958 (Figure 3E, Table 2). The difference
between the two ROC curves obtained during the emission of the vowel and the sentence was not
significant (the difference between AUCs = 0.004, z = 0.156, SE = 0.026, p = 0.88) (Figure 3F).

3.4. Male and Female YA

In the analysis of male vs. female YA, the artificial classifier based on SMO achieved a significant
diagnostic performance. More in detail, when comparing 20 selected features extracted from the
sustained emission of the vowel, ROC curve analyses identified an optimal diagnostic threshold value
of 0.69, when applying discretization and 5-folds cross-validation (Y.I = 0.91). Using this cut-off value,
the performance of our diagnostic test was: Sensitivity = 95.4%, Specificity = 95.7%, PPV = 95.4%,
NPV = 95.7%, Accuracy = 95.5% and AUC = 0.965 (Figure 4A, Table 2). Also, when analyzing the
sustained emission of the sentence, ROC curve analyses identified an optimal diagnostic threshold
value of 0.61, when applying discretization and 5-folds cross-validation (Y.I = 0.89). Using this
cut-off value, the performance of our diagnostic test was: sensitivity = 90.3%, specificity = 98.4%,
PPV = 98.5%, NPV = 89.9%, accuracy = 94.1%, and AUC = 0.966 (Figure 4B, Table 2). The two ROC
curves obtained during the emission of the vowel and the sentence were comparable (the difference
between AUCs = −0.001, z = −0.043, SE = 0.023, p = 0.97) (Figure 4C).

3.5. Male and Female OA

When differentiating male and female OA, the artificial classifier based on SMO achieved a
significant diagnostic performance. More in detail, when comparing 20 selected features extracted from
the sustained emission of the vowel, ROC curve analyses identified an optimal diagnostic threshold
value of 0.74, when applying discretization and five-folds cross-validation (Y.I = 0.87). Using this cut-off

value, the performance of our diagnostic test was: sensitivity = 89.4%, specificity = 97.1%, PPV = 95.5%,
NPV = 93.2%, accuracy = 94.2%, and AUC = 0.969 (Figure 4D, Table 2). Also, when examining the
sustained emission of the sentence, ROC curve analyses identified an optimal diagnostic threshold
value of 0.63, when applying discretization and five-folds cross-validation (Y.I = 0.86). Using this
cut-off value, the performance of our diagnostic test was: sensitivity = 89.8%, specificity = 95.8%,
PPV = 93.6%, NPV = 93.2%, accuracy = 93.3%, and AUC = 0.975 (Figure 4E, Table 2). The two ROC
curves obtained during the emission of the vowel and the sentence were comparable (the difference
between AUCs = −0.006, z = −0.245, SE = 0.025, p = 0.81) (Figure 4F).
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4. Discussion

In this study, we found that machine learning analysis of voice samples recorded through
smartphones correctly discriminates between YA and OA. We have also demonstrated that our voice
analysis accurately discriminates females and males in both groups. By comparing male and female
YA, as well as male and female OA, we have also examined in detail the combined effect of age and
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gender on voice. Accordingly, by using machine learning analysis, in this study we have demonstrated
the effect of ageing and gender on voice.

To collect homogeneous and high-quality recordings, we have carefully controlled for several
methodological factors. All participants were native Italian speakers. To exclude confounding related
to the acute and chronic effects of smoking on the physiology of the vocal folds, lungs, and resonant
structures, we have included in the study only non-smokers. By contrast, we excluded subjects with
cognitive or mood impairment or those taking drugs acting on the central nervous system at the time
of the study. We also excluded from the study cohort subjects with bilateral/unilateral hearing loss,
respiratory disorders, and other pathological conditions directly or indirectly affecting the vocal cords.
The age range considered for the YA group was based on the definition of young subjects provided
by the World Health Organization [58]. Accordingly, all the YA participants completed the pubertal
development. By contrast, the age range considered for the OA group was set to include subjects in the
middle and late adulthood [59]. In this study, we excluded voice recordings from subjects in the early
adulthood (30–40 years) in order to better separate the study cohort into two independent subgroups
of different ages. Lastly, all voice samples were collected through smartphones able to save audio
tracks in mp4 format.

The main novelty of the study consists of the acquisition and analysis of voice samples collected
through smartphones. Indeed, although a few studies have previously used smartphones to collect
voice samples in patients with voice disorders [60–62], so far no authors have used this methodological
approach to examine age-related changes of voice. The use of smartphones allows a simplified
procedure of voice recordings and open to the acquisition of a large amount of data collected in an
ecologic scenario.

4.1. The Effect of Ageing on Voice

The first finding of our study is that the objective voice analysis based on machine learning can
distinguish YA and OA subjects, with a high level of accuracy as demonstrated by our ROC curve
analyses. The accuracy of the algorithm tended to improve further when comparing the YA and OA
subjects with a narrower age-band (YA25 and OA55). Furthermore, to investigate age-related changes in
the human voice in more detail, we have also compared gender-matched groups of YA and OA subjects.
Indeed, by comparing females included in the YA and OA groups as well as males included in the YA
and OA groups, in separate analyses, we have examined the pure effect of ageing on voice. Our findings
fully agree with previous reports demonstrating the effect of ageing on the human voice [24–28,33–38].
Early studies based on the qualitative/perceptual evaluation of voice recordings have demonstrated that
physiologic ageing leads to several changes in specific characteristics of the human voice [1]. Indeed,
as a result of physiologic ageing, voices progressively manifest increased breathiness and hoarseness,
reduced speech intensity as well as maximum phonation time [2–4,15]. Experimental studies using
spectral analysis have confirmed age-related changes in voice by providing new objective measures in
the time-domain as well as in the frequency-domain. For instance, both the jitter and the shimmer were
higher in OA than in YA subjects [1], the former reflecting the degree of voice hoarseness [63], whereas
the latter relates to the degree of the breathiness of the voice [1]. Also, the N/H ratio, which reflects the
level of noise of an acoustic signal, also increases in the elderly [18]. Finally, concerning measures in
the frequency domain, previous studies using spectral analysis have also shown age-related changes
in voice even though with some inconsistency. For instance, in the elderly, the fundamental frequency
(f0) decreased [64–67], increased [68–70], or even remain unchanged [71–73].

In our study, by applying the ROC curve analysis, we demonstrated in detail the high
accuracy of our machine learning analysis in demonstrating age-related changes in the human voice.
Our results fit in well with previous studies applying automatic classifiers based on machine learning
analysis [24–28,33–38]. More in detail, our machine learning algorithm has achieved higher results
than those obtained on the INTERSPEECH 2010 age and gender sub-challenge feature set [33,34].
Among machine learning algorithms, the standard and hybrid versions of the SVM (e.g., SVM-GMM)
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are thought to be both consistent and accurate [33–35,38,73]. In our study, SVM achieved relatively
high performance with an accuracy of 95.3% in age recognition and of 95.5% in gender recognition,
showing comparable or even better results than those obtained in previous reports [33–35,38,73].
When comparing our methodological approach to those previously used, it is important to consider
that we started with a large dataset of features (more than 6000), adopting dedicated ranking and feature
selection algorithms [33–38,73]. The advantages of applying those algorithms consist of obtaining
smaller dataset of features (only 20 features in our study), easier math handled and with shorter
computation time. Moreover, all the previous studies considered only MFCC-, f0-, pitch-, energy-, jitter-,
and shimmer-related features [24–28,33–37], with only a study considering non-traditional features
including RASTA-PLP coefficients [38]. In addition to the traditional frequency-, jitter-, shimmer-,
energy-, spectral, and cepstral-related features, we have also included MFCC and RASTA-PLP
coefficients and three additional representative features (HNR, SNR, and CPPs). The inclusion of
HNR, SNR, CPPs, and RASTA-PLP coefficients to the general dataset of LLDs allowed us to achieve a
more robust analysis. Indeed, these features were frequently included in the 20 most relevant selected
features in all the comparisons made by our machine learning algorithm. Also, SNR, CPPs, MFCC-,
RASTA coefficients-, fo-, spectral-, and energy-related features specifically changed in the human voice
according to physiologic ageing (see Table S3 in supplementary material for a detailed list of the first
20 selected features during the comparison between YA and OA). In our case, particularly the RASTA
filtering technique has allowed reducing the irrelevant information introduced into the signal by the
microphones or by the background noise [49]. Since in our study each vocal sample was recorded with
a different smartphone the use of RASTA filtering made possible to eliminate the effect due to the use
of different microphones.

Several age-related changes in physiological functions may explain our findings. The physiological
basis underlying our results and those previously obtained with the perceptual and standard objective
analysis are prominently related to age-related changes of the phonatory apparatus. These changes are
secondary to: Loss of elasticity and tone of the vocal folds and the pharyngeal walls; increase of fat
distribution in the neck and the parapharyngeal space; progressive reduction of the secretion of the
salivary and mucous glands; thinning of the tongue and loss of teeth with relevant changes in shape
and diameter of the oral cavity [5]. Moreover, at a cellular and molecular level, physiological ageing
leads to thinning of the laryngeal epithelium, loss of the elastic chord component, and increase in
the collagen fibers/elastic fibers ratio which in turn decrease vocal folds viscoelasticity [6–14]. Also,
the myelin fiber density of the superior and recurrent laryngeal nerve progressively reduces with age
leading to an alteration of the intrinsic reflex tone and muscle flaccidity [74,75]. Besides age-related
changes in specific components of the phonatory apparatus, voice can be influenced also by additional
anthropometric factors including weight and height of the subjects. In this study, we found that OA
subjects had increased weight and BMI and decreased height values compared with YA. Although
our methodological approach does not allow to clarify the link between any of the voice features
selected by the SMO and age-related changes in specific components of the phonatory apparatus or
anthropometric factors, we believe that our machine learning analysis of the human voice provides
objective evaluation of the human ageing.

4.2. The Effect of Gender on Voice

Our machine learning analysis allowed us also to examine in detail the effect of gender on voice.
Our machine learning analysis differentiated female and male YA as well as female and male OA
with high accuracy. It is known that gender leads to additional sources of variability in voice features.
Previous perceptual and objective studies of the human voice have shown that before the pubertal age,
males and females have a rather similar vocal pitch. During puberty, the male voice typically deepens
an octave, while the female voice usually deepens only by a few tones. Thus, before puberty, the voice
examination does not show any difference between males and females, whereas, in the adulthood,
the examiner can usually recognize the gender of the speaker [18,63–65,67,68,71–73]. The physiologic
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basis of differences in voice parameters between males and females relies on several physiologic and
anatomic issues. The hormones grow the larynx and the vocal folds in both males and females, but in
males, the growth is rather prominent. Then, in women during the menopausal phase, the level of
estrogen hormone decreases along with an increase in androgens. As a result, the thickness of the
vocal cords increases and leads to a deeper tone of voice. A complementary phenomenon occurs in
males during andropause, characterized by a drop in the level of androgens and a relative increase of
the estrogen/androgen ratio [5,76]. Our findings agree with previous findings from perceptive and
quantitative voice studies further demonstrating that voice objectively differs in females and males [1].
However, our machine learning analysis does not provide evidence for a strict relation between any of
the voice features here considered and specific gender-related changes in the phonatory apparatus.

Another important finding of our study concerns the comparable results achieved when examining
voice samples collected during the emission of the vowel and the sentence [24,77]. This finding suggests
the comparable ability of machine learning to recognize voice changes due to the combined effect
of ageing and gender, during the sustained emission of a vowel as well as a sentence. We suggest,
however, that compared to the recording of a sentence, voice samples including the sustained emission
of a vowel would be more practical and more reliable thus improving voice analyses among the
different languages.

A final comment concerns how relevant is the objective evaluation of ageing processes in
humans [78]. Age can be classified into “chronological” and “biological” components [79], the former
referring to the actual amount of years of a subject, whereas the latter reflects the amount of age-related
changes in various physiological functions in the same subject. The physiologic ageing represents
a gradual and continuous process reflecting the interaction between genetic and environmental
factors, and leading to the progressive decline of physical, psychological, and social functions [80].
To date, no standardized biomarkers of physiologic ageing are currently available. We, therefore,
believe that our voice analysis with machine learning would provide a novel and advanced tool
possibly helpful for quantifying the individual “biological” age of a single subject [81,82]. The objective
voice analysis would also allow to better discriminate and monitor processes of physiological as well
as pathological ageing.

A possible limitation of this study is the reduced sample of voice recordings undergoing machine
learning analysis. However, the level of significance of our results in all the comparison is relatively
high. We did not record voices in young females under different phases of the menstrual cycle thus not
excluding the possible effect of hormones on voices. The intrinsic variability in the brand and model of
the smartphones used to record voice samples (e.g., variability related to microphones and recording
algorithms) would have affected our results. For instance, depending on the specific smartphone used,
mp4 audio files can be compressed through different audio coding standards for lossy or lossless
digital audio compression (e.g., AAC—advanced audio coding; Apple Lossless Audio Codec—ALEC,
or Free Lossless Audio Codec—FLAC). Hence, we cannot exclude that the heterogeneity in the brand
and model of the smartphones also increased the variability of our data. Also, since in the present
study we did not record voice samples serially, we cannot exclude variability in voice recordings due
to daily fluctuations in voice parameters. Furthermore, our study did not include the longitudinal
evaluation of voice recordings in the same subjects. This study design although theoretically feasible is
technically difficult. Hence, in the present study, the lack of a follow-up evaluation of voice recordings
did not allow us to clarify intra-subject age-related changes in the human voice. Lastly, we cannot fully
exclude that the increased weight and BMI, and the decreased height observed in OA subjects would
have contributed at least in part to our findings [83].

5. Conclusions

Advanced voice analysis based on machine-learning performed on voice samples collected using
smartphones can distinguish between younger and older healthy subjects, thus objectively evaluating
the effect of physiologic ageing on the voice in humans. Our voice analysis is also able to discriminate
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between females and males from YA and OA groups, thus demonstrating the interaction between
ageing- and gender-related factors in determining the human voice. Future cohort studies comparing
voice recordings in a larger number of samples of different ages (e.g., large samples of subjects in
early, middle and late adulthood) will better examine whether age-related changes in voice can be
considered biomarkers of human ageing. Furthermore, we believe that our study would provide new
helpful information to clinicians to better distinguish physiologic ageing from pathological changes of
the human voice in subjects affected by various speech disorders [77,84].
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Table S1: Demographic and anthropometric characteristics of younger adults. Table S2: Demographic and
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low-level descriptors) extracted using OpenSMILE and selected using CAE for the comparison between YA and
OA, during the emission of the vowel and the sentence. Each feature is identified by four items: (1) family of
low-level descriptor (LLD), (2) LLD, (3) functional used to calculate that specific feature and, (4) the value of
relevance calculated through CAE algorithm.
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