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Abstract. We study properties of viscosity solutions in bounded domains of fully non-
linear uniformly elliptic equations of the form F (x,D2u)+f(x, u) = 0, where f is convex
in the second variable. The main results consist in showing connections between sym-
metry or other qualitative properties of the solutions and the sign of some principal
eigenvalue of the operator Lu = M+ + ∂f

∂u
(x, u), which plays the role of the linearized

operator at u, with M+ standing for the Pucci’s sup-operator. We apply our results
to obtain bounds on the eigenvalues of the uniformly elliptic operator F and to deduce
properties of its possible nodal eigenfunctions.

1. Introduction

This paper studies qualitative properties of solutions of fully nonlinear equations related to
spectral properties of what, improperly, will be called the linearized operator. A question
we would like to answer is which symmetry features of the domain and the operator are
inherited by the viscosity solutions of the homogeneous Dirichlet problem

(1.1)

{
−F (x,D2u) = f(x, u) in Ω ,

u = 0 on ∂Ω ,

where Ω ⊂ Rn, n ≥ 2, is a bounded domain and F is a fully nonlinear uniformly elliptic
operator.

Starting with Alexandrov [2] and after the fundamental works of Serrin [30] and Gidas, Ni,
Nirenberg [19] most results on symmetry of solutions rely on the moving plane method.
It is impossible to even start mentioning all the results obtained via that method, be they
for semilinear, quasilinear or fully nonlinear equations. Let us just quote here the results
obtained for positive solutions of fully nonlinear equations in [14], [8] and [31].

For the purpose of this introduction, let us emphasise its limit of application. Indeed, as
it is well known by the experts, the moving plane method cannot be applied if the domain
is not convex in the symmetry direction, say e.g. if Ω is an annulus, or if the nonlinear
term f(x, u) does not have the right monotonicity in the x–variable (see e.g. [25] for
several counterexamples). The moving plane method does not apply also to sign changing
solutions. Of course, even when Ω is a ball and F is the Laplacian, one cannot expect sign
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changing solutions to be radially symmetric, as it is clearly exhibited by the fact that there
are non radial eigenfunctions. In these cases, some other notion of symmetry is required.

In a more philosophical understanding, the moving plane method is the tool that allows
to extend the symmetry of the principal eigenfunctions, which are the only constant sign
eigenfunctions, to all positive solutions of nonlinear equations. It is quite natural to wonder
if this analogy can be continued, i.e. under which conditions can one expect solutions of
semilinear equations to share the same symmetry of other eigenfunctions, in particular of
the second eigenfunctions.

Indeed, in balls or annuli, linear operators of the type ∆ + c(x) do have nodal eigenfunc-
tions, in particular the second eigenfunctions, which are symmetric though they are not
radial. For problems in non convex domains, one can imagine, and sometimes observe
numerically, that even some positive solutions, like least-energy solutions, inherit only
part of the symmetry of the domain, for instance, axial symmetry. In all these cases,
if the domain is rotationally symmetric, the solutions are proved to be foliated Schwarz
symmetric, according to the following

Definition 1.1. Let B be a ball or an annulus in Rn, n ≥ 2. A function u : B → R
is foliated Schwarz symmetric if there exists a unit vector p ∈ Sn−1 such that u(x) only

depends on |x| and θ = arccos
(
x
|x| · p

)
, and u is non increasing with respect to θ ∈ (0, π) .

In other words, a foliated Schwarz symmetric function is axially symmetric with respect
to the axis Rp and non increasing with respect to the polar angle θ. Note that a radially
symmetric function is in particular foliated Schwarz symmetric with respect to any direc-
tion p, and for a not radial foliated Schwarz symmetric function the symmetry direction
p is unique.

In the last decades, some work has been devoted to understanding under which conditions
solutions of semilinear elliptic equations are foliated Schwarz symmetric. This line of
research, which strongly relies on the maximum principle, was started in the paper [24]
and then developed in [26], [20], [25] and [34]. In the semilinear elliptic case, by using
symmetrization techniques, some results about foliated Schwarz symmetry of minimizers
of associated functionals were obtained in [32], [4] and [10].

Let us recall some results occurring when the diffusion operator is the Laplacian, i.e. for
solutions of

(1.2)

{
∆u+ f(|x|, u) = 0 in B ,

u = 0 on ∂B .

Under some convexity hypotheses on f , it was proved in [24] and [26] that a sufficient
condition for the foliated Schwarz symmetry of a solution u of (1.2) is that the first

eigenvalue λ1(Lu, B(e)) of the linearized operator Lu = ∆ + ∂f
∂u(|x|, u) at the solution u,

in the half domain B(e) = {x ∈ B : x · e > 0} is nonnegative, for a direction e ∈ Sn−1.

In this line of thought, the first question is: what plays the role of the linearized operator
for the fully nonlinear problem (1.1)?
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In the whole paper we will suppose that F is uniformly elliptic (in the sense of condition
(2.1)) and Lipschitz continuous in x (see condition (2.2)). Let us recall that uniform
ellipticity is equivalent to

(1.3) M−α,β(M −N) ≤ F (x,M)− F (x,N) ≤M+
α,β(M −N) ∀x ∈ Ω , M,N ∈ Sn ,

where M−α,β and M+
α,β are the Pucci’s extremal operators with ellipticity constants 0 <

α ≤ β (for a precise definition, see Section 2) and Sn is the set of n×n symmetric matrices.

Let us emphasize that condition (1.3) implies Lipschitz continuity of the operator with
respect to the Hessian but in general it does not imply that the operator be differentiable.
In particular the Pucci’s operators are only Lipschitz continuous functions of the Hessian.
Hence we will use (1.3) to deduce (see Lemma 3.1) that any ”derivative” v of u will satisfy

−M+
α,β(D2v) ≤ ∂f

∂u
(x, u) v in Ω

but, in general, v is not a solution as in the semilinear case. This suggests to define as
”linearized” operator at the solution u the fully nonlinear operator

Lu(v) : =M+
α,β(D2v) +

∂f

∂u
(x, u) v .

and to use the properties of this operator to deduce qualitative properties for solutions
of (1.1). In analogy with the linear case, see [5, 6, 11, 21], in a domain D one may
define, through the maximum principle, the principal eigenvalues λ+

1 = λ+
1 (Lu, D) and

λ−1 = λ−1 (Lu, D). Associated with these values, there are principal eigenfunctions φ±1 ∈
C(D) ∩ C2(D), defined up to positive constant multiples, which satisfy respectively

(1.4)

{ −Lu[φ+
1 ] = λ+

1 φ
+
1 in D

φ+
1 > 0 in D , φ+

1 = 0 on ∂D
and

{ −Lu[φ−1 ] = λ−1 φ
−
1 in D

φ−1 < 0 in D , φ−1 = 0 on ∂D.

However, besides the principal eigenvalues and their corresponding eigenfunctions, almost
nothing is known about other eigenvalues, not even existence. A completeness result of a
spectral basis holds only for radial eigenfunctions, see [11, 16, 17, 21, 22]. Indeed one of
the main purpose of our paper is to derive information on nodal non radial eigenfunctions
in radially symmetric domains.

Nonetheless by analyzing the sign of the principal eigenvalue of Lu in half domains we
obtain some qualitative properties of solutions for any symmetric operator F satisfying
(1.3).

In order to describe our results, let us introduce a few notations that will always be valid
in the sequel. B will always denote a bounded radial domain, that is a ball or an annulus
centered at the origin. For any unit vector e ∈ Sn−1, we further denote by H(e) = {x ∈
Rn : x · e = 0} the hyperplane orthogonal to e and by B(e) = {x ∈ B : x · e > 0}
the open half domain on the side of H(e) which contains e. Moreover, we indicate with
σe : Rn → Rn the reflection with respect to H(e), that is the map σe(x) = x − 2(x · e)e.
Accordingly, for any domain Ω, we will set Ω(e) = {x ∈ Ω : x · e > 0}.
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A first simple, but useful, result that we get is a sufficient condition for the symmetry of a
viscosity solution u of (1.1) in a domain Ω symmetric with respect to a certain hyperplane
H(e). More precisely, we will show that if f(x, s) is convex in the s–variable, then the
positivity of the principal eigenvalues λ+

1 (Lu,Ω(±e)) in both domains Ω(±e) implies that
u(x) = u(σe(x)) for all x ∈ Ω, see Proposition 3.3.

Next, our main result, concerning the foliated Schwarz symmetry of viscosity solutions of
(1.1), is

Theorem 1.2. Suppose that F is invariant with respect to any reflection σe and by ro-
tations. Let u be a viscosity solution of problem (1.1), with Ω = B and f(x, ·) = f(|x|, ·)
convex in R. If there exists e ∈ Sn−1 such that

λ+
1 (Lu, B(e)) ≥ 0,

then u is foliated Schwarz symmetric.

So, under the convexity assumption on f , the knowledge of the sign of the principal eigen-
value λ+

1 (Lu, B(e)) in only one of the subdomains B(e) is sufficient for the foliated Schwarz
symmetry of a solution u of (1.1), for any fully nonlinear uniformly elliptic operator F
with ellipticity constants 0 < α ≤ β.

Next we prove an interesting connection between the sign of the principal eigenvalue of Lu
in half domains and the nodal set N (u), i.e. the closure of the zero set of u. Namely, we
prove that if u is a sign changing viscosity solution of (1.1) with f independent of x and
with u and F symmetric with respect to an hyperplane H(e), then the non negativity of
the eigenvalue λ+

1 (Lu,Ω(±e)) implies that the nodal set N (u) intersects the boundary of
Ω, see Proposition 3.5. As a consequence of the above result, we obtain that for any radial
sign changing solution u one has λ+

1 (Lu, B(e)) < 0 for any direction e, see Corollary 3.6.

In R2, the above result can be extended to a larger class of domains, i.e. domains which
are symmetric with respect to two orthogonal directions and convex in those directions.
Interestingly, besides the ball, the only two dimensional domains for which the eigenvalues
of M+

α,β are known explicitly have these symmetry, see [9].

The qualitative properties obtained allow to prove some results about nodal eigenvalues
(i.e. eigenvalues that are not the principal ones which are the only ones having eigen-
functions that do not change sign). Indeed, following [3], for any uniformly elliptic and
positively one homogeneous operator F one can define

(1.5) Λ2(F ) = inf{λ > max{λ−1 (F ), λ+
1 (F )} : λ is an eigenvalue of F }.

It was proved in [3] that Λ2(F ) > max{λ−1 (F ), λ+
1 (F )} and that for any

max{λ−1 (F ), λ+
1 (F )} < µ < Λ2(F ))

and for any continuous f , there exists a solution of the Dirichlet problem{
F (x,D2u) + µu = f(x) in B
u = 0 on ∂B.
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Hence the importance of any estimate on Λ2(F ) = Λ2(F,B). The next result relates the
principal eigenvalue of M+

α,β in any half domain B(e) i.e. λ+
1 (M+

α,β, B(e)) with Λ2(F,B)

and λr2(F,B), which denotes the smallest radial nodal eigenvalue of F in B.

Theorem 1.3. Let F be as in Theorem 1.2 and positively one homogeneous, then the
following inequalities hold

λr2(F,B) > λ+
1 (M+

α,β, B(e)) and Λ2(F,B) ≥ λ+
1 (M+

α,β, B(e)) .

In any bounded domain Ω, one can define

(1.6) µ+
2 (Lu,Ω) = inf

D⊂Ω
max

{
λ+

1 (Lu, D), λ+
1 (Lu,Ω \D)

}
where the infimum is taken on all open subsets D contained in Ω, such that both D and
Ω \ D are connected. When Lu = ∆ + f ′(|x|, u), µ+

2 = Λ2 i.e. it is just the second
eigenvalue of Lu. It turns out that, in the currently considered fully nonlinear case, µ+

2 is
not an eigenvalue for Lu in Ω, as shown in Proposition 5.1.

Nevertheless, for Ω = B, we immediately obtain

µ+
2 (Lu, B) ≥ 0⇒ ∀e ∈ Sn−1 either λ+

1 (Lu, B(e)) ≥ 0 or λ+
1 (Lu, B(−e)) ≥ 0

so that, by applying Theorem 1.2, the following corollary holds.

Corollary 1.4. Under the assumptions of Theorem 1.2, if u is a viscosity solution of (1.1)
and µ+

2 (Lu, B) ≥ 0, then u is foliated Schwarz symmetric.

Two final remarks are in order.

First, let us finally point out that our symmetry results apply to viscosity solutions, and
not only to classical solutions, of (1.1). This is essential in view of the fact that, in general,
axially symmetric viscosity solutions of fully nonlinear equations may not be of class C2,
as proved by Nadirashvili and Vlăduţ [23].

Second, let us emphasize that our results are in the spirit of elliptic regularity theory for
fully nonlinear equations (see e.g. [12]), where results for the extremal Pucci’s operators
are extended to all operators in the same ellipticity class.

The paper is organized in the following way. The hypotheses and some preliminaries are
recalled in the next section. In the third section we prove some symmetry results. Foliated
Schwarz symmetry is then studied in the fourth section. Finally, in the last section, we
give some applications, in particular to the study of spectral properties.

2. Preliminaries on fully nonlinear elliptic equations

We assume that F : Ω × Sn → R is a continuous function, with Sn denoting the set of
symmetric n× n matrices equipped with the usual partial ordering

M ≥ N ⇐⇒M −N ≥ 0⇐⇒ (M −N)ξ · ξ ≥ 0 ∀ ξ ∈ Rn .
We will always assume that F is uniformly elliptic, that is

(2.1) α tr(P ) ≤ F (x,M + P )− F (x,M) ≤ β tr(P ) , ∀x ∈ Ω , M, P ∈ Sn, P ≥ 0 ,
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for positive constants 0 < α ≤ β. Let us recall that condition (2.1) is equivalent to

M−α,β(M −N) ≤ F (x,M)− F (x,N) ≤M+
α,β(M −N) ∀x ∈ Ω , M,N ∈ Sn ,

where M−α,β and M+
α,β are the Pucci’s extremal operators defined respectively as

M−α,β(M) = inf
A∈Aα,β

tr(AM) = α
∑
µi>0

µi + β
∑
µi<0

µi

M+
α,β(M) = sup

A∈Aα,β
tr(AM) = β

∑
µi>0

µi + α
∑
µi<0

µi

where Aα,β = {A ∈ Sn : α In ≤ A ≤ β In}, In being the identity matrix in Sn, and
µ1, . . . , µn being the eigenvalues of the matrix M ∈ Sn. Thus, Pucci’s extremal operators
act as barriers for the whole class of uniformly elliptic operators, and for a detailed analysis
of the crucial role they play in the regularity theory for elliptic equations we refer to
[12]. Clearly, F (x,M) = M+

α,β(M) or F (x,M) = M−α,β(M) are special cases which can

be considered as our model cases; in particular since they are invariant with respect to
rotation and reflection. From now on, we intend the ellipticity constants β ≥ α fixed once
and for all, and we will write just M− and M+ for the Pucci’s operators with ellipticity
constants α and β.

As for the dependence on x of F , we assume Lipschitz continuity, i.e. the existence of
L > 0 such that, for all x, y ∈ Ω and M ∈ Sn,

(2.2) |F (x,M)− F (y,M)| ≤ L ‖M‖|x− y| .

On the zero order nonlinearity f we assume that it is of class C1 on Ω× R.

By a solution of the Dirichlet problem (1.1), we always mean a viscosity solution u ∈ C(B).
For the reader’s convenience, we recall that a solution in the viscosity sense is both a
viscosity subsolution and a viscosity supersolution, as defined below.

Definition 2.1. A viscosity subsolution (supersolution) of problem (1.1) is an upper
(lower) semicontinuous function in Ω such that u ≤ (≥)0 on ∂Ω and for any x0 ∈ Ω
and φ ∈ C2(Ω) such that u(x0) = φ(x0) and u(x) ≤ (≥)φ(x) for x ∈ Ω, one has

−F (x0, D
2φ(x0)) ≤ (≥)f(x0, u(x0)) .

We refer to [12, 13] the reader not familiar with the viscosity solutions theory for fully
nonlinear equations. In the following, all the differential inequalities we are going to
consider are always understood in the viscosity sense.

Let us further recall that in the current assumptions, by standard elliptic regularity theory
(see [12, 33]), any viscosity solution u of problem (1.1) is of class C1(Ω), provided that Ω
is of class C1. As far as existence of solutions is concerned, we refer to [18, 28].

In the subsequent symmetry results a crucial role will be played by the principal eigenvalues
of linear perturbations of Pucci’s operators. In particular, given a Lipschitz domain D ⊂
Rn and a function c ∈ C(D), let us consider the uniformly elliptic operator

L =M+ + c(x) .
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In analogy with the linear elliptic case, see [5], one may define

λ+
1 (L, D) := sup{λ ∈ R : ∃ϕ ∈ C(D) , ϕ > 0 in D , −L[ϕ] ≥ λϕ in D}

and

λ−1 (L, D) := sup{λ ∈ R : ∃ϕ ∈ C(D) , ϕ < 0 in D , −L[ϕ] ≤ λϕ in D} .

As it is well known, see [6, 11, 21], associated with these values, called principal eigenvalues,
there are principal eigenfunctions φ±1 ∈ C(D) ∩ C2(D), defined up to positive constant
multiples, which satisfy respectively

(2.3)

{ −L[φ+
1 ] = λ+

1 (L, D)φ+
1 in D

φ+
1 > 0 in D , φ+

1 = 0 on ∂D

(2.4)

{ −L[φ−1 ] = λ−1 (L, D)φ−1 in D

φ−1 < 0 in D , φ−1 = 0 on ∂D.

When no ambiguities arise, the eigenvalues will be denoted by λ+
1 or λ−1 , and in certain

cases we will only specify either the domain D or the choice of the operator.

A few known properties concerning these eigenvalues are used in the paper, we list them
here.

Proposition 2.2. With the above notations, the following properties hold:

(i) If D1 ⊂ D2 and D1 6= D2, then λ±1 (D1) > λ±1 (D2) .
(ii) For a sequence of domains {Dk} such that Dk ⊂ Dk+1, then

lim
k→+∞

λ±1 (Dk) = λ±1 (∪kDk) .

(iii) If α < β then λ+
1 < λ−1 .

(iv) If λ 6= λ±1 is an eigenvalue then every corresponding eigenfunction changes sign.
(v) λ+

1 (D) > 0 (λ−1 (D) > 0) if and only if the maximum (minimum) principle holds
for L in D .

(vi) λ±1 (D)→ +∞ as meas(D)→ 0 .

The proof of the different properties can be found e.g. in [5, 7, 11, 29].

Let us recall that the operator L satisfies the maximum (minimum) principle in Ω if for
every function u upper (lower) semicontinuous in Ω satisfying −L[u] ≤ 0 in Ω and u ≤ 0
on ∂Ω (resp. −L[u] ≥ 0 in Ω and u ≥ 0 on ∂Ω) one has u ≤ 0 in Ω (u ≥ 0 in Ω).

Finally we recall that the principal eigenfunctions are the only positive (negative) super-
solutions of (2.3) (subsolutions of (2.4)) and that the following proposition, which will be
used frequently in the sequel, holds true.

Proposition 2.3. Assume that there exists u lower semicontinuous and positive such that

−L[u] ≥ 0 in Ω .
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If there exists a function v upper semicontinuous in Ω satisfying −L[v] ≤ 0 in Ω, v ≤ 0
on ∂Ω, and such that v(x̂) > 0 for some x̂ ∈ Ω, then, for some t > 0,

v ≡ t u and − L[u] = 0.

For the proof see Theorem 3.3 in [3] inspired by the result in [5] in the linear case. See
also [29] and for a generalization to more general boundary condition see [5, 27].

3. First symmetry results

Here and in the sequel we set f ′(x, s) = ∂f
∂s (x, s) and we use the notations fixed in the

Introduction. Moreover, for any two linearly independent unit vectors e, e′ ∈ Sn−1, we
denote by Π(e, e′) the plane spanned by e and e′, and by θe,e′ any polar angle coordinate
in Π(e, e′). If u : B → R is a differentiable function, we set uθe,e′ to indicate the partial

derivative of u with respect to θe,e′ , defined as zero at the origin if B is a ball.

The following technical lemma is the starting point of all our symmetry results.

Lemma 3.1. Assume that F satisfies (2.1) and (2.2) and let u ∈ C(Ω) ∩ C1(Ω) be a
viscosity solution of (1.1)

(i) Assume that Ω is symmetric with respect to the hyperplane H(e), F is invariant
with respect to the reflection σe, i.e.

(3.1) F (σe(x), (In − 2e⊗ e)M(In − 2e⊗ e)) = F (x,M) ∀x ∈ Ω , M ∈ Sn ,

and that f satisfies

(3.2) f(σe(x), s) = f(x, s) , f(x, ·) is convex in R , ∀x ∈ Ω , s ∈ R .

Then, the function w = u− u ◦ σe satisfies

−M+(D2w) ≤ f ′(x, u)w in Ω

in the viscosity sense. Moreover, if f(x, ·) is strictly convex, then either w ≡ 0 or
w is a strict subsolution.

(ii) Assume that Ω = B is a bounded radial domain, F is invariant by rotations, i.e.
for every orthogonal matrix O one has

(3.3) F (Otx,OtMO) = F (x,M) ∀x ∈ B , M ∈ Sn ,

and that f is radially symmetric in x. Then, for any pair of linearly independent
unit vectors e, e′ ∈ Sn−1, the functions uθe,e′ and −uθe,e′ both satisfy

−M+(D2uθe,e′ ) ≤ f
′(|x|, u)uθe,e′ in B

−M+(D2(−uθe,e′ )) ≤ f
′(|x|, u) (−uθe,e′ ) in B

in the viscosity sense.
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(iii) Assume that f does not depend on x. Then, for every 1 ≤ i ≤ n both the partial
derivative ui = ∂u

∂xi
and −ui satisfy

−M+
(
D2ui

)
≤ f ′(u)ui in Ω

−M+
(
D2(−ui)

)
≤ f ′(u) (−ui) in Ω

in the viscosity sense.

Proof. (i) Let u ∈ C(Ω) be a viscosity solution of (1.1). By the invariance of the equation
with respect to the reflection σe, u ◦ σe is also a viscosity solution of (1.1). Then, the
difference w = u− u ◦ σe is a viscosity subsolution of

(3.4) −M+(D2w) ≤ f(x, u)− f(x, u ◦ σe) in Ω .

If u and u ◦ σe are classical solutions of (1.1), then (3.4) is an immediate consequence of
the uniform ellipticity of F . In the general case, this follows from assumptions (2.1) and
(2.2) by means of the standard regularization procedure by sup/inf–convolution, in the
spirit of Theorem 5.3 of [12]. For a detailed proof we refer to the proof of Proposition 2.1
in [14]. By (3.4) and the convexity of f(x, ·), we immediately get the conclusion.

(ii) Let us fix e, e′, θe,e′ as in the statement. We aim at ”differentiating” with respect to
θe,e′ the equation satisfied by u. Let us fix θ0 ∈ R, and let us denote by R0 : Rn → Rn
the rotation that maps any point x having cylindrical coordinates (r, θ, η) with respect to
the plane Π(e, e′) into the point R0(x) with cylindrical coordinates (r, θ + θ0, η). Let us
further set u0(x) = u(R0(x)). Then, by the rotational invariance of F and f , we have
that both u and u0 satisfy

−F (x,D2u) = f(|x|, u) , −F (x,D2u0) = f(|x|, u0) in B .

By uniform ellipticity, arguing as in the proof of (i), we get that the difference u0 − u
satisfies, in the viscosity sense,

−M+(D2(u0 − u)) ≤ f(|x|, u0)− f(|x|, u) in B .

Next, by the homogeneity properties of M+, we also have that for all θ0 > 0

−M+

(
D2

(
u0 − u
θ0

))
≤ f(|x|, u0)− f(|x|, u)

θ0
in B ,

whereas, for all θ0 < 0,

M+

(
−D2

(
u0 − u
θ0

))
≥ f(|x|, u0)− f(|x|, u)

θ0
in B .

By letting θ0 → 0±, and using the stability properties of viscosity subsolutions and the
fact that u0−u

θ0
→ uθe,e′ locally uniformly in B, we finally obtain both

M+(D2uθe,e′ ) + f ′(|x|, u)uθe,e′ ≥ 0 in B ,

and

M+(D2(−uθe,e′ )) + f ′(|x|, u) (−uθe,e′ ) ≥ 0 in B ,

in the viscosity sense.
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(iii) The proof runs as for (ii).

�

Remark 3.2. In statement (i), if f(x, ·) is assumed to be concave, then one has

−M−(D2w) ≥ f ′(x, u)w in Ω .

We are now ready to prove our first symmetry result for viscosity solutions. If u is a
viscosity solution of (1.1), we denote by Lu the ”linearized” fully nonlinear operator

Lu : =M+ + f ′(x, u) ,

and by λ±1 (Lu,Ω(e)), λ±1 (Lu,Ω(−e)) the principal eigenvalues of Lu in the domains Ω(±e) =
Ω ∩ {x · (±e) > 0}.

Proposition 3.3. Assume that Ω is symmetric with respect to the hyperplane H(e), F
satisfies (2.1), (2.2) and (3.1) and that f satisfies (3.2). Let u be a viscosity solution of
(1.1) and assume further that either

(i) λ+
1 (Lu,Ω(±e)) > 0

or

(ii) λ+
1 (Lu,Ω(±e)) ≥ 0 and f is strictly convex.

Then, u is symmetric with respect to the hyperplane H(e).

Proof. Let us set w = u− u ◦ σe and observe that, by definition, w is antisymmetric with
respect to H(e) and satisfies w = 0 on ∂Ω(±e). By Lemma 3.1, w is a viscosity subsolution
of {

−M+(D2w) ≤ f ′(x, u)w in Ω(±e)
w = 0 on ∂Ω(±e)

If λ+
1 (Lu,Ω(±e)) > 0, then by the maximum principle both w ≤ 0 in Ω(e) and w ≤ 0

in Ω(−e), so that, by antisymmetry, w ≡ 0 in Ω. If one of the eigenvalues is zero, say
λ+

1 (Lu,Ω(e)) = 0 and λ+
1 (Lu,Ω(−e)) > 0 and, by contradiction, w 6≡ 0, then w < 0 in

Ω(−e) by the strong maximum principle. Therefore, w > 0 in Ω(e) and by Proposition
2.3 w satisfies

−M+(D2w) = f ′(x, u)w in Ω(e) ,

a contradiction to the strict convexity of f by Lemma 3.1 (i). Analogously, if both
λ+

1 (Lu,Ω(±e)) = 0, then, either w ≤ 0 in Ω(±e), and then again w ≡ 0 in Ω, or, otherwise,
w is a solution either in Ω(e) or in Ω(−e), in contrast with the strict convexity of f .

�

Remark 3.4. Since λ−(M−+f ′(x, u), D) = λ+(M+ +f ′(x, u), D) for any domain D, by
Remark 3.2 the same conclusion of Proposition 3.3 holds if f is concave.
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In the remaining part of this section we will exhibit a sufficient condition for the eigenvalue
λ+

1 (Lu,Ω(e)) to be negative when u is a sign changing viscosity solution symmetric with
respect to the hyperplane H(e).

Let us fix, for simplicity, e = e1 = (1, 0, . . . , 0) ∈ Sn−1 and let Ω be a smooth bounded
domain symmetric with respect to H(e1) and convex in the x1–direction, i.e. for any two
points in Ω having the same x1–coordinate, the segment joining them is also contained in
Ω. We are going to consider a viscosity solution u ∈ C1(Ω) of the problem

(3.5)

{
−F (x,D2u) = f(u) in Ω ,

u = 0 on ∂Ω

Note that in (3.5) f does not depend on x. We recall that the nodal set N (u) of a solution
u of (3.5) is defined as

N (u) := {x ∈ Ω : u(x) = 0} .

Proposition 3.5. Let u ∈ C1(Ω) be a sign changing viscosity solution of (3.5), with F
satisfying (2.1), (2.2) and (3.1) with e = e1 and assume that u is even with respect to x1.
Then

λ+
1 (Lu,Ω(±e1)) ≥ 0 =⇒ N (u) ∩ ∂Ω 6= ∅ .

Proof. We follow the argument used in [1] for semilinear equations, and we prove the
equivalent implication

N (u) ∩ ∂Ω = ∅ =⇒ λ+
1 (Lu,Ω(±e1)) < 0 .

Let us consider the continuous function u1 = ∂u
∂x1

in the subdomain Ω(e1). We notice that

u1 = 0 on H(e1)∩Ω and that u1 does not change sign on ∂Ω∩∂Ω(e1). Indeed, if there were
points Q1 , Q2 ∈ ∂Ω∩ ∂Ω(e1) such that u1(Q1) > 0 and u1(Q2) < 0, then, since u = 0 on
∂Ω, there would exist a sequence of points {xk} ⊂ Ω such that u(xk) = 0 for every k and
dist(xk, ∂Ω)→ 0. This would be a contradiction to the hypothesis N (u)∩∂Ω = ∅. Hence,
either u1 ≤ 0 or u1 ≥ 0 on ∂Ω ∩ ∂Ω(e1). We can assume without loss of generality to be
in the first case, since otherwise we can consider, by the symmetry of u, the opposite set
Ω(−e1). We further observe that, by Lemma 3.1 (iii), u1 satisfies in the viscosity sense

(3.6) −Lu[u1] ≤ 0 in Ω .

Furthermore, since u is zero on ∂Ω, changes sign in Ω and is symmetric in the x1–variable,
we deduce that u1 must change sign in Ω(e1). Then, by the previous consideration on the
sign of u1 on ∂Ω ∩ ∂Ω(e1), we conclude that there exists an open connected domain D ⊂
Ω(e1) such that u1 > 0 in D and u1 = 0 on ∂D. Thus, if by contradiction λ+

1 (Lu,Ω(e1)) ≥
0, then λ+

1 (Lu, D) > 0 and, by (3.6), the maximum principle would imply the contradiction
u1 ≤ 0 in D.

�

When Ω = B is a ball, F satisfies (3.3) and u is a radial sign changing solution of (3.5)
with a finite number of nodal regions, then the assumption N (u) ∩ ∂B = ∅ is obviously
satisfied. Hence, we can apply Proposition 3.5 for any direction e ∈ Sn−1.
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Analogously, if Ω = B is an annulus, though it is a domain not convex with respect to
any direction, a proof similar to that of Proposition 3.5 can be applied (see [1] for more
details). Actually, we have the following result.

Corollary 3.6. If B is a bounded radial domain, F satisfies (2.1), (2.2) and (3.3) and u
is a radial sign changing viscosity solution of (3.5), then

λ+
1 (Lu, B(e)) < 0 ∀ e ∈ Sn−1 .

Proof. If u has a finite number of nodal regions, then the conclusion follows directly
from Proposition 3.5 and the above considerations. If not, there exists a radial subdomain
B ⊂ B in which u has exactly two nodal regions. Hence, λ+

1 (Lu, B(e)) < λ+
1 (Lu,B(e)) < 0.

�

Finally, some extra considerations can be done for the special case of planar domains
Ω ⊂ R2 which are symmetric and convex with respect to two orthogonal directions, say
e1 = (1, 0) and e2 = (0, 1). Note that this kind of domains need not to be convex, but
they can be easily proved to be star–shaped with respect to the origin.

Let us call doubly symmetric a continuous function u which is symmetric with respect to
both directions ei, i = 1, 2, i.e. a continuous function u which is even in the variables x1

and x2. For such functions we have the following result.

Lemma 3.7. Let Ω ⊂ R2 be a domain symmetric and convex with respect to ei, i = 1, 2,
and let u ∈ C(Ω) be a sign changing, doubly symmetric function with two nodal regions.
Then, N (u) ∩ ∂Ω = ∅ and 0 /∈ N (u), that is the nodal line of u neither touches ∂Ω nor
passes through the origin.

Proof. Let us define Ω+ = {x ∈ Ω : u(x) > 0} and Ω− = {x ∈ Ω : u(x) < 0}. By
assumption, both Ω± are connected open sets, hence connected by arcs, and symmetric
with respect to H(ei), i = 1, 2.

Let us consider a point P1 ∈ Ω+ \ (H(e1) ∪H(e2)) and let P2, P3, P4 ∈ Ω+ be the reflected
points of P1 with respect to H(e1), H(e2) and to the origin. Then, there exists a simple,
closed curve γ+ joining P1, P2, P3 and P4 and contained in Ω+, so that u > 0 on γ+.
Obviously we can choose γ+ not passing through the origin. By the Jordan curve theorem,
R2 \γ+ has two connected components, which we call D1 and D2, D1 being the connected
component containing the origin and D2 the one which contains ∂Ω. Since u has only two
nodal regions, it follows that either Ω− ⊂ D1 ∩ Ω or Ω− ⊂ D2 ∩ Ω. In the former case
we immediately deduce that N (u) ∩ ∂Ω = ∅. In the latter case, we can repeat the above
construction in Ω−, that is we take in Ω− four distinct symmetric points Qi, i = 1, 2, 3, 4
as before, and select a simple closed curve γ− ⊂ Ω− passing through them. Again the
Jordan curve theorem implies that R2 \ γ− has two connected components, say A1 which
contains ∂Ω, and A2 which contains both γ+ and the origin. Then, Ω+ must be contained
in A2, so that u is negative in a neighborhood of ∂Ω and, again, N (u)∩∂Ω = ∅. A similar
argument shows also that 0 /∈ N (u).

�
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Corollary 3.8. Assume that u ∈ C1(Ω) is a viscosity solution of (3.5), with u and Ω as
in Lemma 3.7 and F satisfying (2.1), (2.2) and (3.1) for e = ei, i = 1, 2. Then

λ+
1 (Lu,Ω(±ei)) < 0 for i = 1, 2 .

Proof. By Lemma 3.7, one has N (u) ∩ ∂Ω = ∅ and, by Proposition 3.5, this yields the
conclusion.

�

4. Foliated Schwarz symmetry for viscosity solutions

The aim of this section is to establish either full radial symmetry or partial symmetry
properties, such as foliated Schwarz symmetry, for viscosity solutions of fully nonlinear
elliptic equations in bounded radial domains. Thus, we focus on solutions of the problem

(4.1)

{
−F (x,D2u) = f(|x|, u) in B ,

u = 0 on ∂B ,

and the operator F will be always assumed to satisfy (2.1), (2.2) and (3.3).

As a first result, which easily follows from Lemma 3.1 (ii), let us prove the radial symmetry
of the usually called ”stable” solutions.

Theorem 4.1. Let u be a viscosity solution of problem (4.1) such that λ+
1 (Lu, B) ≥ 0.

Then, u is radially symmetric in B.

Proof. Let us fix any pair of linearly independent unit vectors e, e′ ∈ Sn−1, and let us set
θ = θe,e′ . Then, by Lemma 3.1 (ii) and the boundary condition in (4.1), the derivative uθ
satisfies, in the viscosity sense, {

−Lu[uθ] ≤ 0 in B

uθ = 0 on ∂B

The assumption λ+
1 (Lu, B) ≥ 0 implies that either uθ ≤ 0 in B, or, by Proposition (2.3),

uθ > 0 in B. Moreover, in the first case, by the strong maximum principle, either uθ < 0
in B or uθ ≡ 0 in B. Therefore, three are the possible cases: uθ < 0, uθ > 0 or uθ ≡ 0 in
B. But since u is 2π–periodic with respect to θ, its derivative uθ has to vanish somewhere
in B. Hence, uθ ≡ 0 in B, and the arbitrariness of e and e′ implies that u is radially
symmetric.

�

The definition of foliated Schwarz symmetric functions was recalled in the Introduction,
see Definition 1.1. Let us now give some characterizations.

Lemma 4.2. A function u ∈ C(B) is foliated Schwarz symmetric if and only if for every
e ∈ Sn−1 one has either u(x) ≥ u(σe(x)) in B(e) or u(x) ≤ u(σe(x)) in B(e). More
precisely, u is foliated Schwarz symmetric with respect to the direction p ∈ Sn−1 if and
only if u(x) ≥ u(σe(x)) for all x ∈ B(e) and for every e ∈ Sn−1 such that e · p ≥ 0.
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This property was first stated in [10] and for a detailed proof we refer to [34]. A different
proof for solutions of semilinear elliptic equations can be found in [20] (see also [25]).

On the other hand, for differentiable functions, the foliated Schwarz symmetry can be
characterized as a sign property of the derivative uθe,e′ , for linearly independent unit

vectors e, e′ ∈ Sn−1.

Proposition 4.3. A function u ∈ C1(B) ∩ C(B) is foliated Schwarz symmetric if and
only if there exists a direction e ∈ Sn−1 such that u is symmetric with respect to H(e) and
for any other direction e′ ∈ Sn−1 \ {±e} one has either uθe,e′ ≥ 0 in B(e) or uθe,e′ ≤ 0 in

B(e).

Let us recall that the sufficiency of this condition was already observed in [15] and [26],
but let us include the proof for the sake of completeness.

Proof. Let u ∈ C1(B) ∩ C(B) be foliated Schwarz symmetric with respect to a direction
p ∈ Sn−1, and let us fix e ∈ Sn−1 such that e · p = 0. Then, u is clearly symmetric with
respect to H(e). Moreover, let e′ ∈ Sn−1, with e′ 6= ±e. In order to show that either
uθe,e′ ≥ 0 or uθe,e′ ≤ 0 in B(e), we can assume that e′ · e = 0 and that θe,e′ ∈ [−π, π] is

the angle formed by e′ and the orthogonal projection of x on the plane Π(e, e′). We claim
that if e′ · p ≥ 0 then uθe,e′ ≤ 0 in B(e), whereas if e′ · p ≤ 0 then uθe,e′ ≥ 0 in B(e).

Indeed, using cylindrical coordinates with respect to Π(e, e′), let x = (r, θ, η) and x′ =
(r, θ′, η) be in B(e), for some r > 0, η ∈ Rn−2 and 0 < θ ≤ θ′ < π. Then, there exists
ν ∈ Sn−1 ∩ Π(e, e′) such that x′ = σν(x) , ν · x > 0 and ν · p > 0 if p · e′ > 0, whereas
ν · p < 0 if p · e′ < 0. Hence, by Lemma 4.2, one has u(x) ≥ u(x′) and therefore uθe,e′ ≤ 0

in B(e) provided that p · e′ ≥ 0, as well as uθe,e′ ≥ 0 in B(e) if p · e′ ≤ 0.

Conversely, assume that there exists e ∈ Sn−1such that u is symmetric with respect to
H(e), and for every e′ ∈ Sn−1 \{±e} the derivative uθe,e′ does not change sign in B(e). Up

to a rotation, we can assume that e = e2 = (0, 1, . . . , 0). Again by Lemma 4.2, we have to
prove that for any e′ ∈ Sn−1 either u(x) ≥ u(σe′(x)) or u(x) ≤ u(σe′(x)) for all x ∈ B(e′).
By assumption if e′ = ±e2 then u(x) = u(σe′(x)) , so we can assume e′ 6= ±e2. Moreover,
again up to a rotation around the e2-axis, we can suppose that e′ lays on the x1x2-plane,
with e′ = (cos θ0, sin θ0, . . . , 0) for some θ0 ∈

(
−π

2 ,
π
2

)
. Thus, the plane Π(e, e′) coincides

with the x1x2-plane and let us denote just with θ ∈ [−π, π] the polar angle coordinate θe,e′
given by the angle formed by the projection on the x1x2-plane with e1. By assumption,
we have that either uθ(x) ≥ 0 or uθ(x) ≤ 0 for all x ∈ B with x2 > 0. Moreover, using
polar coordinates in the x1x2-plane, the reflection map σe′ may be written as

σe′(r cos θ, r sin θ, x̃) = (r cos(2θ0 − θ + π), r sin(2θ0 − θ + π), x̃) ,

with x̃ = (x3, . . . , xn) ∈ Rn−2.

Now, we claim that u(x) ≤ u(σe′(x)) in B(e′) if uθ ≥ 0 in B(e2), whereas u(x) ≥ u(σe′(x))
in B(e′) provided that uθ ≤ 0 in B(e2). Indeed, assume that uθ ≥ 0 in B(e2), and let us
take first x ∈ B(e′)∩B(e2). Thus, we have x = (r cos θ, r sin θ, x̃) for some θ ∈ (0, π) such
that |θ − θ0| < π

2 . This implies that the angle coordinate of the reflected point satisfies
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2θ0 − θ + π > θ > 0. Two cases are possible: either θ ≥ 2θ0 or θ < 2θ0. In the first case,
both x and σe′(x) belong to B(e2) and, by the non decreasing monotonicity with respect
to θ, it follows that u(x) ≤ u(σe′(x)). In the latter case, by periodicity, symmetry and
monotonicity, we again obtain

u(σe′(x)) = u(r cos(2θ0 − θ + π), r sin(2θ0 − θ + π), x̃)

= u(r cos(2θ0 − θ − π), r sin(2θ0 − θ − π), x̃)

= u(r cos(−2θ0 + θ + π), r sin(−2θ0 + θ + π), x̃) ≥ u(x) .

Assume now that x ∈ B(e′) \ B(e2), so that θ ∈ (−π, 0]. Observe that we also have
2θ0 − θ − π < θ ≤ 0. Again, we distinguish two cases: either θ ≤ 2θ0 or θ > 2θ0. In
the former case, since uθ ≤ 0 in B(−e2) by symmetry and both x and σe′(x) belong to

B(−e2), we immediately obtain

u(x) ≤ u(r cos(2θ0 − θ − π), r sin(2θ0 − θ − π), x̃) = u(σe′(x)) .

On the other hand, if θ > 2θ0, by symmetry and monotonicity as before, we have as well

u(σe′(x)) = u(r cos(2θ0 − θ + π), r sin(2θ0 − θ + π), x̃)

= u(r cos(−2θ0 + θ − π), r sin(−2θ0 + θ − π), x̃) ≥ u(x) .

Hence, the inequality u(x) ≤ u(σe′(x)) is proved in all cases. The same arguments can be
used to show that u(x) ≥ u(σe′(x)) if uθ ≤ 0 in B(e2) and this concludes the proof.

�

By Proposition 4.3 and Lemma 3.1 (ii) we can easily deduce a first symmetry result for
viscosity solutions of (4.1), which is the fully nonlinear extension of an analogous result
for semilinear elliptic equation, see Proposition 2.3 in [26].

Theorem 4.4. Let u be a viscosity solution of (4.1) and assume that there exists a direction
e ∈ Sn−1 such that u is symmetric with respect to H(e). If λ+

1 (Lu, B(e)) ≥ 0, then u is
foliated Schwarz symmetric and if λ+

1 (Lu, B(e)) > 0, then u is radially symmetric.

Proof. Let us show that, for any e′ ∈ Sn−1 \ {±e}, uθe,e′ does not change sign in B(e). By

Lemma 3.1 (ii), by the boundary condition in (4.1) and by the assumption of symmetry
of u with respect to H(e), the function uθe,e′ satisfies{

−Lu[uθe,e′ ] ≤ 0 in B(e)

uθe,e′ = 0 on ∂B(e)

Now, if λ+
1 (Lu, B(e)) > 0, then the maximum principle holds true for operator Lu and we

deduce uθe,e′ ≤ 0 in B(e). On the other hand, if λ+
1 (Lu, B(e)) = 0, then either uθe,e′ ≤ 0

in B(e) or, by Proposition 2.3, uθe,e′ > 0 in B(e). In any case, uθe,e′ does not change

sign in B(e). Then, by Proposition 4.3, u is foliated Schwarz symmetric. Moreover, if
λ+

1 (Lu, B(e)) > 0, again by Lemma 3.1 (ii) and the maximum principle, we obtain also
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−uθe,e′ ≤ 0 in B(e). Hence, uθe,e′ ≡ 0 in B(e), and by the arbitrariness of e′ it follows that

u is radially symmetric.

�

We are now ready to prove Theorem 1.2, which states that the a priori symmetry assump-
tion on u in Theorem 4.4 can be dropped, provided that f(|x|, ·) is convex in R.

Proof of Theorem 1.2. Let e be the direction for which λ+
1 (Lu, B(e)) ≥ 0 and let us set

we(x) = u(x) − u(σe(x)). If we ≡ 0, then u is symmetric with respect to H(e), and we
reach the conclusion by Theorem 4.4. Therefore, we assume in the following we 6≡ 0. By
Lemma 3.1 (i) we in particular satisfies, in the viscosity sense,{

−Lu[we] ≤ 0 in B(e)

we = 0 on ∂B(e)

Now, if λ+
1 (Lu, B(e)) > 0, by the maximum principle one has we ≤ 0 in B(e) and then, by

the strong maximum principle, we < 0 in B(e). If λ+
1 (Lu, B(e)) = 0, then, by Proposition

2.3, either we ≤ 0, and then again we < 0 in B(e), or we > 0 (and Lu[we] = 0 in B(e)).
Thus, in any case, we have two possibilities: either we < 0 or we > 0 in B(e).

Next, in order to prove that u is foliated Schwarz symmetric, we cannot apply directly
Proposition 4.3, since we are not able to find a fixed vector ẽ ∈ Sn−1 such that u is
symmetric with respect to H(ẽ) and for any other e′ ∈ Sn−1, the function uθẽ,e′ does

not change sign in B(ẽ). On the other hand, we can repeat the argument of the proof
of Proposition 4.3: for any ν ∈ Sn−1, in order to show that either u(x) ≥ u(σν(x)) or
u(x) ≤ u(σν(x)) in B(ν), it is enough to show that there exists e′ ∈ Sn−1 ∩ Π(e, ν) such
that u is symmetric with respect to H(e′) and the derivative uθe,e′ (or uθe′,ν ) does not

change sign in B(e′). Thus, the proof will be completed if we show that for any plane Π
through e, there exists e′ ∈ Sn−1 ∩Π such that u is symmetric with respect to H(e′) and
the derivative uθe,e′ does not change sign in B(e′).

We first consider the case we < 0 in B(e). Without loss of generality, we assume that
e = (0, 1, . . . , 0) and that Π is the plane spanned by (1, 0, . . . , 0) and e. For θ ≥ 0, let us
consider the direction e(θ) = (sin θ, cos θ, 0, . . . , 0) ∈ Π, so that e(0) = e. We apply the
rotating plane method in order to find θ′ ∈ (0, π) such that u is symmetric with respect
to H(e′) with e′ = e(θ′). We set

(4.2) θ′ := sup{θ̃ ∈ [0, π) : we(θ) < 0 in B(e(θ)) , ∀ θ ∈ [0, θ̃]} .

We notice that θ′ is well defined since we < 0 in B(e), and, by continuity, we(θ′) ≤ 0 in
B(e(θ′)). This implies θ′ < π, since we(π) = w−e = −we ◦ σe > 0 in B(−e). We claim
that we(θ′) ≡ 0, i.e. u is symmetric with respect to H(e(θ′)). For, assume by contradiction
that we(θ′) 6≡ 0, so that, by the strong maximum principle, we(θ′) < 0 in B(e(θ′)). In
this case, we can find ε > 0 small enough such that the inequality we(θ) < 0 in B(e(θ))
holds true for all θ ∈ [0, θ′ + ε), and this contradicts the definition of θ′. Indeed, for ε
sufficiently small, we can select a compact set K ⊂

⋂
θ′≤θ<θ′+εB(e(θ)) such that, for all

θ ∈ [θ′, θ′+ ε) the measure of the set B(e(θ)) \K is so small that the operator Lu satisfies
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the maximum principle in B(e(θ)) \K. Moreover, by assumption, there exists η > 0 such
that we(θ′) ≤ −η in K and then, for ε small enough, we have we(θ) ≤ −η/2 in K for all
θ ∈ [θ′, θ′ + ε). Thus, by the maximum principle and the strong maximum principle, we
have we(θ) < 0 in B(e(θ)) \ K, and then we(θ) < 0 in B(e(θ)) for all θ ∈ [0, θ′ + ε), in
contrast with the choice of θ′.

We further observe that, by Hopf’s lemma, for all θ ∈ [0, θ′), one has

∂

∂e(θ)
we(θ) = 2Du · e(θ) < 0 on H(e(θ)) ∩B ,

e(θ) being the inner unit normal vector to B(e(θ)) on ∂B(e(θ)) ∩ B. This implies that,
with respect to the cylindrical coordinates x = (r cos θ,−r sin θ, x3, . . . , xn), one has

uθ =


−r Du · e(θ) > 0 in B(e′) \B(e)

r Du · e(θ) < 0 in B(e) \B(e′)

±r Du · e(θ′) = 0 in H(e′) ∩B
By using also Lemma 3.1 (ii), it then follows that uθ in particular satisfies{

−Lu[−uθ] ≤ 0 in B(e) ∩B(e′)

−uθ ≤ 0 on ∂ (B(e) ∩B(e′))

Since λ+
1 (Lu, B(e) ∩B(e′)) > λ+

1 (Lu, B(e)) ≥ 0, we can apply the maximum principle,
and then the strong maximum principle, in order to deduce −uθ < 0 in B(e) ∩ B(e′).
Summing up, we have proved that uθ > 0 in B(e′), and this concludes the proof in the
case we < 0 in B(e).

On the other hand, if we > 0 in B(e), one has w−e < 0 in B(−e) and we can apply
again the rotating plane method starting with e(0) = −e and considering the directions
e(θ) = (sin θ,− cos θ, . . . , 0) for θ ≥ 0. By defining θ′ ∈ (0, π) as in (4.2), we find a unit
vector e′ = e(θ′) ∈ Sn−1 such that u is symmetric with respect to H(e′) and we(θ) < 0 in
B(e(θ)) for all θ ∈ [0, θ′). By means of Hopf’s lemma as above, we also deduce that, again
with respect to the cylindrical coordinates x = (r cos θ,−r sin θ, x3, . . . , xn), one has

uθ =


−r Du · e(θ) > 0 in B(e′) \B(−e)

r Du · e(θ) < 0 in B(−e) \B(e′)

±r Du · e(θ′) = 0 in H(e′) ∩B

Then, the maximum principle applied to uθ in B(e) \ B(e′) yields uθ < 0 in B(−e′), so
that, by symmetry, uθ > 0 in B(e′).

�

Remark 4.5. Let us observe that the only assumption that there exists a direction e ∈
Sn−1 such that λ+

1 (Lu, B(e)) > 0, i.e. the positivity of the principal eigenvalue in just one
subdomain B(e), does not imply the radial symmetry of u. This is somehow in contrast
with the assertion of Theorem 4.4 in the case when λ+

1 (Lu, B(e)) > 0; however one should
note that in Theorem 4.4 the symmetry of u with respect to H(e) was assumed. A
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counterexample in the case when the symmetry assumption is dropped can be obtained
by considering the least–energy (positive) solution of the semilinear problem{

−∆u = up in A

u = 0 on ∂A

where A is an annulus in Rn, n ≥ 3 and p < n+2
n−2 is close to the critical exponent n+2

n−2 . It
has been shown in several papers that u is foliated Schwarz but not radially symmetric.
On the other hand, it is easy to see that there are directions (indeed, infinitely many!)
e ∈ Sn−1 such that λ+

1 (∆ + p |u|p−1, B(e)) > 0 whereas λ+
1 (∆ + p |u|p−1, B(−e)) < 0 and,

obviously, H(e) is not a symmetry hyperplane for u (see [25] for more details).

By Theorem 1.2, at least for convex nonlinearities f , the condition λ+
1 (Lu, B(e)) ≥ 0 for

some e ∈ Sn−1 is sufficient for u to be foliated Schwarz symmetric. Concerning necessary
conditions, we have the following result.

Theorem 4.6. Assume that problem (4.1) has a solution u which is not radial but foliated
Schwarz symmetric with respect to p ∈ Sn−1. Then, for all e ∈ Sn−1 such that e · p = 0,
one has

λ−1 (Lu, B(e)) ≥ 0 .

Proof. For e ∈ Sn−1 orthogonal to p, let us denote by θ the polar angle coordinate θp,e
defined as the angle formed by p and the orthogonal projection of x in the plane Π(p, e).
By Proposition 4.3 and by Lemma 3.1 (ii), uθ satisfies{

−Lu[uθ] ≤ 0 , in B(e)

uθ ≤ 0 in B(e) , uθ = 0 on ∂B(e)

The strong maximum principle implies that either uθ < 0 or uθ ≡ 0 in B(e). Since u is
not radially symmetric, we deduce uθ < 0 in B(e) and therefore, by its very definition,
λ−1 (Lu, B(e)) ≥ 0.

�

Remark 4.7. We notice that, if u is not radial but foliated Schwarz symmetric with
respect to p, then, for any e ∈ Sn−1 such that e · p = 0, we have λ+

1 (Lu, B(e)) ≤ 0
by Theorem 4.4. Thus, in the semilinear case for which α = β and λ+

1 (Lu, B(e)) =
λ−1 (Lu, B(e)), Theorem 4.6 yields that if u is a not radial foliated Schwarz symmetric
solution, then necessarily

λ1(∆ + f ′(|x|, u), B(e)) = 0

for all e ∈ Sn−1 orthogonal to the symmetry axes of u.

5. Applications and spectral properties.

The main symmetry result of Theorem 1.2 was based on the assumption that there exists
some direction e ∈ Sn−1 such that λ+

1 (Lu, B(e)) ≥ 0. We wish to comment on this
eigenvalue and its role in providing bounds for the eigenvalues of fully nonlinear operators.
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Let us start by recalling that in the introduction, for any bounded domain, we defined
in (1.6) the value µ+

2 = µ+
2 (Lu,Ω), and we showed that its non negativity, when Ω = B

is a radial domain, easily implies, by Theorem 1.2, that u is foliated Schwarz symmetric.
It would be very interesting to study the sign of µ+

2 for positive solutions of (4.1), in
particular for those found in [28].

Let us observe that when α = β, i.e. when F is the Laplace operator, µ+
2 is the second

eigenvalue of Lu, hence the inequality µ+
2 ≥ 0 just means that u has Morse index less than

or equal to one. On the contrary, in the fully nonlinear case, the following proposition
holds.

Proposition 5.1. If α < β, then µ+
2 (Lu,Ω) is not an eigenvalue for Lu in Ω with corre-

sponding sign changing eigenfunctions having exactly two nodal regions.

Proof. Suppose by contradiction that µ+
2 = µ+

2 (Lu,Ω) is such an eigenvalue. Hence, there
exists a sign changing function ψ solution of{

M+(D2ψ) + (f ′(|x|, u) + µ+
2 )ψ = 0 in Ω

ψ = 0 on ∂Ω ,

such that Ω− = {x ∈ Ω : ψ(x) < 0} and Ω+ = {x ∈ Ω : ψ(x) > 0} = Ω \ Ω− are
subdomains of Ω. Since α < β, Proposition 2.2 yields

λ+
1 (Lu,Ω−) < λ−1 (Lu,Ω−) = µ+

2 = λ+
1 (Lu,Ω+).

By these inequalities and using again Proposition 2.2, one can choose D containing Ω+

but sufficiently close to it so that

λ+
1 (Lu,Ω−) < λ+

1 (Lu,Ω \D) ≤ λ+
1 (Lu, D) < λ+

1 (Lu,Ω+) = µ+
2 ,

and this contradicts the fact that, by the definition (1.6), we have µ+
2 ≤ λ

+
1 (Lu, D). �

Remark 5.2. The proof of Proposition 5.1 leads to believe that a natural candidate for
being the second eigenvalue of Lu could be

γ+
2 (Lu, B) = inf

D⊂B
max

{
λ+

1 (Lu, D), λ−1 (Lu, B \D)
}
≥ µ+

2 (Lu, B) .

It would be also interesting to know whether the non negativity of γ+
2 (Lu, B) would imply

that u is foliated Schwarz symmetric.

We now prove Theorem 1.3 which concerns the estimates on Λ2(F ) defined in (1.5).

Proof of Theorem 1.3. Remark first that Corollary 3.6 implies that if λ is any nodal radial
eigenvalue of F in B , then, for any e ∈ Sn−1,

(5.1) λ+
1 (M+ + λ,B(e)) < 0 .

But

λ+
1 (M+ + λ,B(e)) = λ+

1 (M+, B(e))− λ ,
so that the first inequality of the statement follows.
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Next, in order to prove the second inequality, suppose by contradiction that for some
λ < λ+

1 (M+, B(e)) there exists ψ 6= 0 sign changing solution of{
F (x,D2ψ) + λψ = 0 in B
ψ = 0 on ∂B.

Then
λ+

1 (Lψ, B(e)) = λ+
1 (M+ + λ,B(e))) = λ+

1 (M+, B(e))− λ > 0 .

By Proposition 3.3 it follows that ψ is radially symmetric and then (5.1) holds true, a
contradiction.

�

Let us observe that if it happens that max{λ−1 (F ), λ+
1 (F )} is larger than λ+

1 (M+, B(e)),
then the estimate Λ2(F ) ≥ λ+

1 (M+, B(e)) provided by Theorem 1.3 is not relevant.
However, when the ellipticity constants α and β are sufficiently close to each other,
this is not the case. It would be interesting to investigate the relationship between
max{λ−1 (F ), λ+

1 (F )} and λ+
1 (M+, B(e)).

In the two dimensional case, Theorem 1.3 can be extended to a larger class of domains,
precisely to domains Ω which are symmetric and convex with respect to two orthogonal
directions, say e1 = (1, 0) and e2 = (0, 1), i.e. the same kind of domains considered in
Section 2. Following the same notation, we consider the eigenvalues λ+

1 (M+,Ω(e1)) and
λ+

1 (M+,Ω(e2)).

By using Proposition 3.3 and Corollary 3.8, the analogous result to Theorem 1.3 is

Theorem 5.3. Let Ω be as in Lemma 3.7 and let λ be a nodal eigenvalue of F in Ω
associated with an eigenfunction ψ having two nodal regions, with F as in Corollary 3.8.
Then:

(i) λ ≥ min
{
λ+

1 (M+,Ω(e1)), λ+
1 (M+,Ω(e2))

}
;

(ii) if ψ is doubly symmetric, then

λ > max
{
λ+

1 (M+,Ω(e1)), λ+
1 (M+,Ω(e2))

}
.

The proof proceeds as the one of Theorem 1.3.

To conclude, we observe that an important question which remains open is whether
λ+

1 (M+, B(e)) is a nodal eigenvalue for M+ in B, as for the laplacian, or not. Note
that if this was the case, then, by Theorem (1.3), λ+

1 (M+, B(e)) would be the small-
est nodal eigenvalue of M+ in B. Next we describe some qualitative properties that a
corresponding eigenfunction should have.

Proposition 5.4. Assume that λ+
1 (M+, B(e)) is a nodal eigenvalue for M+ in B and

that ψ2 is a corresponding eigenfunction, i.e.{
M+(D2ψ2) + λ+

1 (M+, B(e))ψ2 = 0 in B

ψ2 = 0 on ∂B

Then
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(i) ψ2 is not radial;
(ii) ψ2 is foliated Schwarz symmetric;
(iii) the nodal set of N (ψ2) does intersect the boundary;
(iv) if α < β, then, for any e ∈ Sn−1, B+ := {x ∈ B : ψ2 > 0} 6= B(e).

Proof. (i) is just the first inequality in Theorem 1.3, and (ii) follows directly from Theorem
1.2. Then, (ii) and Proposition 3.5 yield (iii).

Finally, in order to prove (iv), suppose by contradiction that, for some e, B(e) = B+. This
implies that B− = B(−e). Hence, λ−1 (M+, B(−e)) = λ+

1 (M+, B(e)). On the other hand,
the symmetry of the domain implies λ−1 (M+, B(−e)) = λ−1 (M+, B(e)) > λ+

1 (M+, B(e)),
if α < β. The contradiction proves the claim.

�

Let us denote by ψ+
1 a positive eigenfunction in B(e) corresponding to λ+

1 (M+, B(e)).
Then, statement (iv) of Proposition 5.4 implies that ψ1, the sign changing function con-
structed by odd reflection of ψ+

1 , is not an eigenfunction for M+ provided that α < β,
contrarily to the case when α = β. The same argument shows that, if α < β, then M+

cannot have a nodal eigenfunction in B antisymmetric with respect to H(e) for some
e ∈ Sn−1 and such that B+ = B(e).
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