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Abstract. Given a minimal superalgebra A = Ass ⊕ J(A), any subse-

quence of the graded simple summands of Ass determines a homogeneous

subalgebra of A which is still a minimal superalgebra. In the present

paper we provide a sufficient condition so that the TZ2 -ideal of graded

polynomial identities satisfied by A factorizes as the product of the TZ2 -

ideals associated to its suitable homogeneous subalgebras of such a type.

We use this fact to show that in this event A generates a minimal su-

pervariety of fixed superexponent.
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1. Introduction

A topic of increasing interest in PI theory is the study of group graded
algebras. Apart from their own interesting features, they may provide sig-
nificative information on quite general questions. For instance, this is the
case for the solution of the Specht problem provided by Kemer (see [13])
in which Z2-gradings play a key role. Here we aim to explore the structure
and the ideal of graded polynomial identities of a special class of superal-
gebras, namely that of minimal superalgebras, in order to contribute to the
classification of minimal supervarieties of fixed graded exponent.

Let F be a field of characteristic zero. An associative F -algebra A is a
Z2-graded algebra or a superalgebra if it has a vector space decomposition
A = A(0)⊕A(1) such that A(i)A(j) ⊆ A(i+j) (where, obviously, the indices are

intendeed modulo 2). The elements of A(0) are called homogeneous of degree

0 and those of A(1) homogeneous of degree 1. Let F 〈Y ∪Z〉 be the free asso-
ciative F -algebra on the disjoint countable sets of variables Y := {y1, y2, . . .}
and Z := {z1, z2, . . .}. It has a natural superalgebra structure if we require
that the variables from Y have degree 0 and those from Z have degree 1.
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The superalgebra F 〈Y ∪ Z〉 is said to be the free superalgebra over F . An
element f(y1, . . . , ym, z1, . . . , zn) of F 〈Y ∪Z〉 is a Z2-graded polynomial iden-

tity for an F -superalgebra A = A(0) ⊕ A(1) if f(a1, . . . , am, b1, . . . , bn) = 0A
for every a1, . . . , am ∈ A(0) and b1, . . . , bn ∈ A(1). Let TZ2(A) be the set of
all the Z2-graded polynomial identities satisfied by A, which is easily seen
to be a TZ2-ideal of F 〈Y ∪ Z〉, namely a two-sided ideal of the free super-
algebra invariant under every endomorphism of F 〈Y ∪ Z〉 preserving the
grading. Given a TZ2-ideal I of F 〈Y ∪ Z〉, the variety of superalgebras or
supervariety Vsup associated to I is the class of all F -superalgebras whose
TZ2-ideals of graded polynomial identities contain I. The TZ2-ideal I is de-
noted by TZ2(Vsup). The supervariety Vsup is generated by the superalgebra
A if TZ2(Vsup) = TZ2(A), and in this case we write Vsup = supvar(A).

Extending into the setting of Z2-graded algebras the approach introduced
by Regev in [15], one considers a numerical sequence that can be attached to
the graded polynomial identities of a supervariety Vsup (or of a superalgebra
A), that of Z2-graded codimensions of Vsup. In details, for every n ≥ 1, let us
define the n-th Z2-graded codimension cZ2

n (Vsup) of Vsup as the dimension of

the vector space P sup
n

P sup
n ∩TZ2 (Vsup)

, where P supn is the space of multilinear poly-

nomials of degree n of F 〈Y ∪Z〉 in the variables y1, . . . , yn, z1, . . . , zn. Since
F has characteristic zero, TZ2(Vsup) is completely determined by multilinear
polynomials it contains and hence {cZ2

n (Vsup)}n≥1 in some sense measures
the rate of growth of the graded polynomial identities of the variety Vsup.
In [7] it was proved that this sequence is exponentially bounded if, and only
if, Vsup is generated by a superalgebra A satisfying an ordinary polynomial
identity. Under the extra assumption that A is also finitely generated, in [3]
the authors stated that

expZ2
(Vsup) := lim

m→+∞
m

√
cZ2
m (Vsup)

exists and is a non-negative integer, which is called the Z2-graded exponent
or superexponent of Vsup. In this case set expZ2

(A) := expZ2
(Vsup), the

superexponent of the superalgebra A. This result was already established
for varieties of PI algebras by Giambruno and Zaicev ([8] and [9]), whereas
more recently it has been extended by Aljadeff, Giambruno and La Mattina
to varieties of G-graded PI associative algebras. Namely, in a series of
papers ([2], [6] and [1]) they have captured the exponential growth of the
corresponding codimension sequence for varieties generated by a G-graded
algebra A when G is a finite group and A satisfies a polynomial identity.

The existence of the exponent provides an integral scale allowing to mea-
sure the growth of any variety of such a type and in a natural manner
addresses the research towards a classification of varieties according to the
asymptotic behaviour of their corresponding codimensions. In this frame-
work, among varieties of some fixed exponent a prominent role is played
by the minimal ones, namely those varieties of exponent d such that every
proper subvariety has exponent strictly less than d.

In [11] it has been proved that in the ungraded case a variety of expo-
nential growth is minimal if, and only if, it is generated by the Grassmann
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envelope, G(A), of a so-called minimal superalgebra A. More recently, mo-
tivated by the result of [3], in [5] varieties of PI associative superalgebras
of finite basic rank (that is, generated by a finitely generated superalge-
bra satisfying an ordinary polynomial identity) which are minimal of fixed
superexponent d ≥ 2 have been investigated. In particular, it has been
stated that any such a supervariety is generated by one of the above men-
tioned minimal superalgebras introduced by Giambruno and Zaicev in [11].
But the question of which minimal superalgebras generate a minimal super-
variety of fixed graded exponent is still open. Unfortunately, its possible
solution seems to be more involved than that of the ungraded case. In
fact, in [10] Giambruno and Zaicev proved that a variety V of PI algebras
of finite basic rank is minimal if, and only if, it is generated by an upper
block triangular matrix algebra UT (m1, . . . ,mn). Moreover, as an appli-
cation of Lewin’s Theorem [14], it was shown that its ideal of polynomial
identities, Id(V), has the nice property to be factored as the product of the
T -ideals of polynomial identities of the blocks along the main diagonal, that
is Id(Mm1(F )) · · · Id(Mmn(F )).

In the superalgebras setting, one replaces upper block triangular ma-
trix algebras with minimal superalgebras but the factorability property
for their TZ2-ideals fails. In more details, if A is a minimal superalgebra
and A1, . . . , An are the graded simple algebras appearing in the semisimple
component of its Wedderburn-Malcev decomposition, in general it is un-
true that the TZ2-ideal of graded polynomial identities of A factorizes as
TZ2(A1) · · ·TZ2(An) (see Section 4 of [5]). But this naturally leads to in-
vestigate the question of when such a factorization holds. We provide here
a positive answer in the case in which all the algebras A1, . . . , An are non-
simple graded simple except for at most one between A1 and An. Further-
more we show that if there exists an integer h /∈ {1, n} such that A1, . . . , Ah
are non-simple graded simple and Ah+1, . . . , An are simple graded simple (or
conversely), then TZ2(A) factorizes in a weaker sense. We use these results
to prove that in any of these cases the minimal superalgebra A generates a
minimal supervariety of fixed superexponent.

2. Minimal Superalgebras with (weakly) factorable ideal of
graded polynomial identities and Z2-regular algebras

Throughout the rest of the paper, unless otherwise stated, F is a field of
characteristic zero and all the algebras are assumed to be associative and to
have the same ground field F . For any pair of positive integers s and t the
symbol Ms×t means the space of all rectangular matrices with s rows and t
columns over F and set Ms := Ms×s; whereas, if m1, . . . ,mn is a sequence of
integers, let UT (m1, . . . ,mn) be the upper block triangular matrix algebra
of size m1, . . . ,mn.

Let A = A(0)⊕A(1) be a superalgebra. An element w of A is homogeneous
if it is homogeneous of degree 0 or 1, whereas a subalgebra or an ideal V ⊆ A
is homogeneous if V = (V ∩A(0))⊕ (V ∩A(1)). The superalgebra A is called
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simple (or Z2-simple) if the multiplication is non-trivial and it has no non-
trivial homogeneous ideals. In this case, we shall also refer to A as a graded
simple algebra.

Assume that A is a finite-dimensional superalgebra and J = J(A) is its

Jacobson radical. Then J is homogeneous and set J (i) := J∩A(i) for i = 0, 1.
Moreover, by the generalization of the Wedderburn-Malcev Theorem we can
write A = Ass + J , where Ass is a maximal semisimple subalgebra of A
having an induced Z2-grading. Also Ass can be written as the direct sum
of graded simple algebras whose structure is well-known, at least when the
ground field is algebraically closed. In fact, they are one of the following
types:

(a) Mk,l :=

(
A B
C D

)
, where k ≥ l ≥ 0, k 6= 0, A ∈ Mk, D ∈ Ml, B ∈

Mk×l and C ∈Ml×k, endowed with the grading M
(0)
k,l :=

(
A 0
0 D

)
and M

(1)
k,l :=

(
0 B
C 0

)
;

(b) Mm(F ⊕ tF ), where t2 = 1, with grading (Mm, tMm).

Giambruno and Zaicev in [11] introduced the definition of minimal su-
peralgebra in the following manner.

Definition 2.1. Let F be an algebraically closed field. A superalgebra A is
called minimal if it is finite-dimensional and A = Ass + J where

(i) Ass = A1 ⊕ · · · ⊕An with A1, . . . , An graded simple algebras;

(ii) there exist homogeneous elements w12, . . . , wn−1,n ∈ J (0) ∪ J (1) and
minimal homogeneous idempotents e1 ∈ A1, . . . , en ∈ An such that

eiwi,i+1 = wi,i+1ei+1 = wi,i+1 1 ≤ i ≤ n− 1

and
w12w23 · · ·wn−1,n 6= 0A;

(iii) w12, . . . , wn−1,n generate J as a two-sided ideal of A.

We observe that, when n = 1, A is nothing but a graded simple algebra.
Since we are interested to the case in which the Jacobson radical of A is
non-zero we assume throughout (unless explicitly mentioned) that n > 1.

In Lemma 3.5 of [11] it was shown that the minimal superalgebra A has
the following vector space decomposition

(1) A =
⊕

1≤i≤j≤n
Aij ,

where A11 := A1, . . . , Ann := An and, for all i < j,

Aij := Aiwi,i+1Ai+1 · · ·Aj−1wj−1,jAj .

Moreover J = ⊕i<jAij and AijAkl = δjkAil, where δjk is the Kronecker
delta.

As stressed in Chapter 8 of [12], the order of the components A1, . . . , An
of the semisimple part Ass of a minimal superalgebra A is important. For
this reason in the sequel we shall tacitly agree that if A = Ass + J is a
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minimal superalgebra with semisimple part Ass = A1 ⊕ · · · ⊕ An, then
A1JA2J · · · JAn 6= 0A. According to the main result of [3], expZ2

(A) =
dimF (Ass). Furthermore, if (Ai1 , . . . , Ait) is a subsequence of (A1, . . . , An)
set, for every 1 ≤ j ≤ t − 1, uij ,ij+1 := wij ,ij+1 · · ·wij+1−1,ij+1 , the sub-
algebra of A generated by Ai1 , . . . , Ait and the homogeneous radical ele-
ments ui1,i2 , . . . , uit−1,it is a minimal superalgebra as well (of superexponent
dimF (Ai1 ⊕ . . .⊕Ait)). In particular, for every 1 ≤ k ≤ l ≤ n let us denote

by A(k,l) the homogeneous subalgebra of A corresponding to the sequence
(Ak, Ak+1, . . . , Al), namely

A(k,l) =
⊕

k≤i≤j≤l
Aij .

We premise now an easy (but crucial for our aims) result explaining the
relation among the TZ2-ideal of graded polynomial identities of A and that

of its subalgebras A(k,l). We recall that a finite subset I of N is said to be
an interval if there exist 1 ≤ i ≤ j such that I = {i, i+ 1, . . . , j}.

Lemma 2.2. Let A = Ass + J be a minimal superalgebra with Ass = A1 ⊕
· · · ⊕ An, t ≥ 1 be an integer and, for every 1 ≤ i ≤ t, Si := {ki, . . . , li} be
(non-necessarily disjoint) intervals of N such that k1 ≤ k2 ≤ . . . ≤ kt and

{1, . . . , n} = ∪ti=1Si. Then TZ2(A(k1,l1)) · · ·TZ2(A(kt,lt)) ⊆ TZ2(A).

Proof. Assume that t > 1 (otherwise the statement is trivial) and take

f1 ∈ TZ2(A(k1,l1)), . . . , ft ∈ TZ2(A(kt,lt)). For any 1 ≤ i ≤ t and graded

evaluation σi of the polynomial fi in A one has that σi(fi) =
∑

1≤p≤q≤n b
(i)
pq ,

where b
(i)
pq are elements of Apq such that b

(i)
pq = 0A for every ki ≤ p ≤ q ≤ li.

By recalling the multiplication roles among the subspaces Apq of A, it follows
that any graded evaluation of the polynomial f1 · · · ft in A must be zero,
and this concludes the proof. �

By virtue of the above lemma, it has sense to introduce the following

Definition 2.3. The TZ2-ideal of graded polynomial identities of a minimal
superalgebra A = Ass + J with Ass = A1 ⊕ · · · ⊕ An is said to be weakly
factorable if there exist 1 ≤ l1 < l2 < . . . < lt < n such that

TZ2(A) = TZ2(A(1,l1)) · TZ2(A(l1+1,l2)) · · ·TZ2(A(lt+1,n)).

It is called factorable if

TZ2(A) = TZ2(A1) · · ·TZ2(An).

In the next section we shall provide sufficient conditions on the sequence
(A1, . . . , An) of the summands of Ass so that TZ2(A) is weakly factorable
in the product of the TZ2-ideals of graded polynomial identities of some
“nice” homogeneous subalgebras of A. At this aim, another important tool
we shall use is the concept of Z2-regular algebra introduced in [4]. Let us
consider the complete matrix algebra Mm. A Z2-grading on Mm is called
elementary if there exists an m-tuple (g1, . . . , gm) ∈ Zm2 such that the matrix

units Eij of Mm are homogeneous and Eij ∈ M
(k)
m if, and only if, k =
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gj − gi. In an equivalent manner, we can say that it is defined a map
| | : {1, . . . ,m} −→ Z2 inducing a grading on Mm by setting the degree
of Eij equal to |j| − |i|. Obviously the algebra of upper block triangular
matrices also admits an elementary grading. In fact, the embedding of such
an algebra into a full matrix algebra with an elementary grading makes it a
homogeneous subalgebra.

Let A be any homogeneous subalgebra of (Mm, | |). Denote by P (A)

the polynomial ring associated to A, namely P (A) := F [t
(h)
i | 1 ≤ i ≤

dimF A, h ≥ 1] is the polynomial ring in the countable set of commut-

ing variables t
(h)
i . It is well known that there exists a standard method to

realize the superalgebra F 〈Y ∪ Z〉/TZ2(A) as a subalgebra of Mm ⊗ P (A).
For every g ∈ Z2 we consider the F -linear map

πg : Mm ⊗ P (A) −→ Mm ⊗ P (A),
∑

1≤i,j≤m
aijEij 7−→

∑
1≤i,j≤m,
|i|=g

aijEij ,

and the restrictions π̂g of πg to F 〈Y ∪ Z〉/TZ2(A).

Definition 2.4 (4.3 of [4]). A homogeneous subalgebra A of (Mm, | |) is said
to be Z2-regular if, for every g ∈ Z2, the maps π̂g are injective.

As proved in [4], the simple superalgebra Mk,l is Z2-regular if, and only
if, k = l and, for any integer m, Mm(F ⊕ tF ) is a homogeneous Z2-regular
subalgebra of M2m.

A key result that we need to borrow from [4] is the following.

Lemma 2.5 (Theorem 4.5 of [4]). Let (Mm, | |m) and (Mn, | |n) be matrix
algebras endowed with an elementary Z2-grading, A ⊆ Mm and B ⊆ Mn

their homogeneous subalgebras, respectively, and U := Mm×n. Define the
map | | : {1, . . . ,m+ n} −→ Z2 setting |i| = |i|m if i ≤ m and |i| = |i−m|n
otherwise. If one of A and B is Z2-regular, then the TZ2-ideal of graded
polynomial identities of the homogeneous subalgebra of (Mm+n, | |)

R :=

(
A U
0 B

)
factorizes as TZ2(R) = TZ2(A) · TZ2(B).

3. Factorization of the TZ2-ideal of graded polynomial
identities of a minimal superalgebra and minimal

supervarieties

We aim to prove the results announced in the Introduction on the de-
composition of the TZ2-ideal of graded polynomial identities of a minimal
superalgebra upon certain constraints on the sequence of the graded simple
summands of its maximal semisimple homogeneous subalgebra. Namely, we
shall state the following

Theorem 3.1. Let A = Ass + J be a minimal superalgebra. If Ass =
A1 ⊕ · · · ⊕ An and there exists 1 ≤ h ≤ n such that A1, . . . , Ah are non-
simple graded simple and Ah+1, . . . , An are simple graded simple algebras,
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then

TZ2(A) = TZ2(A1) · · ·TZ2(Ah) · TZ2(A(h+1,n)) = TZ2(A(1,h)) · TZ2(A(h+1,n)).

On the other hand, if h < n and A1, . . . , Ah are simple graded simple and
Ah+1, . . . , An are non-simple graded simple algebras, then

TZ2(A) = TZ2(A(1,h)) · TZ2(Ah+1) · · ·TZ2(An) = TZ2(A(1,h)) · TZ2(A(h+1,n)).

An immediate consequence of the above theorem is the following

Corollary 3.2. Let A = Ass + J be a minimal superalgebra. If Ass =
A1⊕· · ·⊕An and at most one between A1 and An is a simple graded simple
algebra whereas Ai is a non-simple graded simple algebra for the remaining
indices i, then TZ2(A) is factorable.

As in the ordinary case, we shall see in the last part of the paper that the
factorization property has an important role in the classification of minimal
supervarieties of fixed superexponent.

The strategy of the proof of Theorem 3.1 consists in constructing a ho-
mogeneous subalgebra A′ of A such that TZ2(A) = TZ2(A′) and proving that
it is isomorphic to a suitable homogeneous subalgebra C(A′) of an upper
block triangular matrix algebra with action of an automorphism of order
2. Finally we shall show that C(A′) is isomorphic to a homogeneous sub-
algebra R(A′) of the same upper block triangular matrix algebra endowed
with an elementary grading. Hence we shall study the graded identities
of R(A′) (and hence of A′) to get information on those of the original su-
peralgebra A. In order to do this, as mentioned above, we shall often use
the language of actions of automorphisms. In fact, it is well-known that
any superalgebra A can be viewed as an algebra with action of an auto-
morphism φ of A of order at most 2. Indeed, the homomorphism φ of
A = A(0) ⊕ A(1) defined by φ(a0) := a0 and φ(a1) := −a1 for any a0 ∈ A(0)

and a1 ∈ A(1) is an automorphism of A of order at most 2. Conversely, if
A is an algebra with an automorphism φ of order at most 2, then, setting
A(0) := {a| a ∈ A, φ(a) = a} and A(1) := {a| a ∈ A, φ(a) = −a}, A is a

superalgebra with grading (A(0), A(1)).

STEP I: Construction of A′. Let A = Ass + J be a minimal su-
peralgebra as in Theorem 3.1 and suppose that, for every 1 ≤ i ≤ h,
Ai = Mmi(F ⊕ tiF ) whereas Ai = Mki,li when h+ 1 ≤ i ≤ n. By regarding
A as a φ-algebra, we can write the non-simple graded simple algebras Ai
as Ai = Ii ⊕ φ(Ii), where Ii is a minimal two-sided ideal of Ai, and the
corresponding homogeneous idempotents (of degree zero) ei appearing in
the Definition 2.1 as ei = ρi + φ(ρi) with ρi a non-homogeneous minimal
idempotent of Ii. For simplicity, set ρ̄i := φ(ρi) and Īi := φ(Ii).

Let us consider the element w1n := w12 · · ·wn−1,n. As for the homoge-
neous radical elements wi,i+1 defining A the equality

eiwi,i+1ei+1 = eiwi,i+1 = wi,i+1ei+1 = wi,i+1
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is satisfied, one has that

w1n = (ρ1 + ρ̄1)w12(ρ2 + ρ̄2) · · · (ρh−1 + ρ̄h−1)wh−1,h(ρh + ρ̄h)·
· wh,h+1eh+1 · · · en−1wn−1,nen

=
∑

εi∈{ρi,ρ̄i}

ε1w12ε2 · · · εh−1wh−1,hεhwh,h+1eh+1 · · · en−1wn−1,nen.

According to the definition of minimal superalgebra, w1n 6= 0A. This im-
plies that at least one of the 2h−1 homogeneous elements appearing in the
above sum is non-zero. Let us pick a sequence (ε1, . . . , εh) such that the
corresponding term occurring in w1n is non-zero, i.e. we are assuming that

ε1w12ε2 · · · εh−1wh−1,hεhwh,h+1eh+1 · · · en−1wn−1,nen+

+ φ(ε1)w12φ(ε2) · · ·φ(εh−1)wh−1,hφ(εh)wh,h+1eh+1 · · · en−1wn−1,nen 6= 0A.

Call Ii the minimal two-sided ideal of Ai such that εi belongs to (namely,
Ii = Ii if εi ∈ Ii and Ii = Īi otherwise) and, as before, set ε̄i := φ(εi) and
Īi := φ(Ii).

For every 1 ≤ i ≤ n, let us define

vi,i+1 :=


εiwi,i+1εi+1 + ε̄iwi,i+1ε̄i+1 1 ≤ i ≤ h− 1 and deg(wi,i+1) = 0;
εiwi,i+1εi+1 − ε̄iwi,i+1ε̄i+1 1 ≤ i ≤ h− 1 and deg(wi,i+1) = 1;
εhwh,h+1 + ε̄hwh,h+1 i = h and deg(wh,h+1) = 0;
εhwh,h+1 − ε̄hwh,h+1 i = h and deg(wh,h+1) = 1;
wi,i+1 h+ 1 ≤ i ≤ n

and observe that vi,i+1 is a homogeneous element of J(A) (of degree zero if
1 ≤ i ≤ h) such that

eivi,i+1 = vi,i+1 = vi,i+1ei+1.

Moreover, using the fact that for any 1 ≤ i ≤ h− 1

εivi,i+1ε̄i+1 = 0A = ε̄ivi,i+1εi+1,

εivi,i+1εi+1 = εiwi,i+1εi+1, ε̄ivi,i+1ε̄i+1 = (−1)deg(wi,i+1)ε̄iwi,i+1ε̄i+1

and

εhvh,h+1 = εhwh,h+1, ε̄hvh,h+1 = (−1)deg(wh,h+1)ε̄hwh,h+1,

we get that

v1n := v12 · · · vn−1,n = e1v12e2 · · · en−1vn−1,nen

= (ε1 + ε̄1)v12(ε2 + ε̄2) · · · (εh + ε̄h)vh,h+1eh+1 · · · en−1vn−1,nen

= ε1v12ε2 · · · εhvh,h+1eh+1 · · · en−1vn−1,nen+

+ ε̄1v12ε̄2 · · · ε̄hvh,h+1eh+1 · · · en−1vn−1,nen

= ε1w12ε2 · · · εhwh,h+1eh+1 · · · en−1wn−1,nen+

+ (−1)mε̄1w12ε̄2 · · · ε̄hwh,h+1eh+1 · · · en−1wn−1,nen,

where m is the number of indices 1 ≤ i ≤ h so that deg(wi,i+1) = 1. If
v1n = 0A, also ε1v1n must be zero. This implies that the first summand in
the last term of the above equality is zero, which is in contradiction with
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the choice of the sequence (ε1, . . . , εh). Actually we notice that both the
summands appearing in v1n are non-zero.

Therefore the subalgebra A′ of A generated by A1, . . . , An and the ho-
mogeneous elements v12, . . . , vn−1,n is a minimal superalgebra as well.

Our goal now is to describe the subspaces A′ij appearing in the decomposi-

tion (1) of the superalgebra A′. To this end, assume first that 1 ≤ i < j ≤ h.
Since for every 1 ≤ k ≤ j − 1

vk,k+1Ak+1vk+1,k+2 = vk,k+1(Ik+1 ⊕ Īk+1)vk+1,k+2

= vk,k+1(εk+1 + ε̄k+1)(Ik+1 ⊕ Īk+1)(εk+1 + ε̄k+1)vk+1,k+2

= spanF 〈vk,k+1εk,k+1vk+1,k+2, vk,k+1ε̄k,k+1vk+1,k+2〉,

we obtain

A′ij = Aivi,i+1Ai+1vi+1,i+2 · · · vj−1,jAj

= Aiεivi,i+1εi+1vi+1,i+2εi+2 · · · εj−1vj−1,jεjAj⊕
⊕Aiε̄ivi,i+1ε̄i+1vi+1,i+2ε̄i+2 · · · ε̄j−1uj−1,j ε̄jAj

= Iiεivi,i+1εi+1 · · · εj−1vj−1,jεjIj ⊕ Īiε̄ivi,i+1ε̄i+1 · · · ε̄j−1vj−1,j ε̄j Īj .

In particular, Iiεivi,i+1εi+1 · · · εj−1vj−1,jεjIj is a non-zero irreducible (Ii, Ij)-
bimodule isomorphic to Iiεi ⊗ εjIj , whereas the other subspace appearing
as a direct summand of A′ij is a non-zero irreducible (Īi, Īj)-bimodule iso-

morphic to Īiε̄i ⊗ ε̄j Īj .
When h+ 1 ≤ i < j ≤ n,

A′ij = Aij = Aieivi,i+1ei+1Ai+1ei+1vi+1,i+2ei+2 · · · ej−1Aj−1ej−1vj−1,jejAj

= Aieivi,i+1 · · · vj−1,jejAj ,

which is a non-zero irreducible (Ai, Aj)-bimodule isomorphic to Aiei⊗ejAj .
Finally, if i ≤ h < j proceeding in the same way we conclude that

A′ij = Iiεivi,i+1εi+1 · · · εh−1vh−1,hεhvh,h+1eh+1 · · · ej−1vj−1,jejAj⊕
⊕ Īiε̄ivi,i+1ε̄i+1 · · · ε̄h−1vh−1,hε̄hvh,h+1eh+1 · · · ej−1vj−1,jejAj .

In this case the first summand of the above equality is a non-zero irreducible
(Ii, Aj)-bimodule isomorphic to Iiεi⊗ejAj and the second one is a non-zero
irreducible (Īi, Aj)-bimodule isomorphic to Īiε̄i ⊗ ejAj .

STEP II: Construction of C(A′). Set mi := ki+ li when h+1 ≤ i ≤ n
and d0 := 0, for every 1 ≤ i ≤ n let us define

di :=

{ ∑i
j=1 2mj 1 ≤ i ≤ h;∑h
j=1 2mj +

∑i
j=h+1mj h+ 1 ≤ i ≤ n,

Bli := {di−1 + 1, . . . , di} if i ≥ h + 1 and Bli := Bl
(1)
i ∪Bl

(2)
i with Bl

(1)
i :=

{di−1 + 1, . . . , di−1 +mi} and Bl
(2)
i := {di−1 +mi + 1, . . . , di} in the case in

which i ≤ h. Furthermore let Γ := ∪ni=1 Bli and, when h+ 1 ≤ i ≤ n,

α(i)
s : Bli −→ Z2, x 7−→

{
0 x ∈ {di−1 + 1, . . . , di−1 + ki};
1 x ∈ {di−1 + ki + 1, . . . , di}
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and

α(i)
c : Bli −→ Z2, x 7−→

{
1 x ∈ {di−1 + 1, . . . , di−1 + ki};
0 x ∈ {di−1 + ki + 1, . . . , di}.

We claim that the minimal superalgebra A′ is isomorphic (as a superalgebra)
to a homogeneous subalgebra of R := UT (2m1, . . . , 2mh,mh+1, . . . ,mn) en-
dowed with the grading induced by the automorphism ϑ of order 2 defined
on the matrix units Eij of R by

ϑ(Eij) := (−1)α(i)+α(j)Eσ(i),σ(j),

where

σ : Γ −→ Γ, x 7−→


x+mi 1 ≤ i ≤ h and x ∈ Bl

(1)
i ;

x−mi 1 ≤ i ≤ h and x ∈ Bl
(2)
i ;

x h+ 1 ≤ i ≤ n and x ∈ Bli

is a bijection so that σ2 = idΓ and α : Γ −→ Z2 is the map such that

α(x) := 0 x ∈ ∪hi=1 Bli,

α|Blh+1
:= α(h+1)

s

and, inductively, for every h+ 2 ≤ i ≤ n

α|Bli :=

{
α

(i)
s α|Bli−1

= α
(i−1)
s and deg(vi−1,i) = 0 or α|Bli−1

= α
(i−1)
c and deg(vi−1,i) = 1;

α
(i)
c otherwise.

In order to prove the claim, for convenience put

E(p,q)
rs := Ers

if r ∈ Blp and s ∈ Blq and consider the subspace C(A′) generated by the

matrix units E
(p,q)
rs of R such that, when 1 ≤ p ≤ q ≤ h, r ∈ Bl

(1)
p and

s ∈ Bl
(1)
q or r ∈ Bl

(2)
p and s ∈ Bl

(2)
q . By taking in account that, for any

1 ≤ i ≤ n, σ(Bli) = Bli and in particular, when 1 ≤ i ≤ h, σ(Bl
(j)
i ) = Bl

(j+1)
i

(where obviously the indices j and j + 1 are intendeed modulo 2), it is
straightforward to check that this is actually a homogeneous subalgebra of
R. A homogeneous basis for C(A′) is given by the elements

E(p,q)
rs ± E(p,q)

σ(r),σ(s) 1 ≤ p ≤ q ≤ h and r ∈ Bl(1)
p , s ∈ Bl(1)

q ,

E(p,q)
rs h+ 1 ≤ p ≤ q ≤ n and r ∈ Blp, s ∈ Blq

and

E(p,q)
rs ± E(p,q)

σ(r),s 1 ≤ p ≤ h < q ≤ n and r ∈ Bl(1)
p , s ∈ Blq.

We want to construct now an isomorphism Ψ : C(A′) −→ A′ of algebras
with actions (of automorphisms of order 2). At this regard, we observe that
for every h+ 1 ≤ p < q ≤ n and r ∈ Blp and s ∈ Blq

(2) E(p,q)
rs = E

(p,p)
r,dp−1+1E

(p,q)
dp−1+1,dq−1+1E

(q,q)
dq−1+1,s,
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whereas, in the case in which 1 ≤ p < q ≤ h, E
(p,q)
rs is exactly as in (2) if

r ∈ Bl
(1)
p and s ∈ Bl

(1)
q and

E(p,q)
rs = E

(p,p)
r,dp−1+mp+1E

(p,q)
dp−1+mp+1,dq−1+mq+1E

(q,q)
dq−1+mq+1,s

if r ∈ Bl
(2)
p and s ∈ Bl

(2)
q and finally, when 1 ≤ p ≤ h < q ≤ n, it is again as

in (2) if r ∈ Bl
(1)
p and s ∈ Blq and

E(p,q)
rs = E

(p,p)
r,dp−1+mp+1E

(p,q)
dp−1+mp+1,dq−1+1E

(q,q)
dq−1+1,s

if r ∈ Bl
(2)
p and s ∈ Blq. Hence in order to define Ψ it is sufficient to define

the images of the elements of the diagonal blocks ∆1, . . . ,∆n of C(A′) with

the induced grading and those of the form E
(p,q)
dp−1+1,dq−1+1 and (when they

exist) E
(p,q)
dp−1+mp+1,dq−1+1 and E

(p,q)
dp−1+mp+1,dq−1+mq+1 for p < q. But, by the

definition of C(A′) ⊆ R, for every 1 ≤ i ≤ n there exists an isomorphism of
algebras with action

ηi : ∆i −→ Ai.

Furthermore we can assume that these isomorphisms are such that

ηi(E
(i,i)
di−1+1,di−1+1) = εi, ηi(E

(i,i)
di−1+mi+1,di−1+mi+1) = ε̄i 1 ≤ i ≤ h

and

ηi(E
(i,i)
di−1+1,di−1+1) = ei h+ 1 ≤ i ≤ n.

At this stage, standard computations show that if we set

Ψ(E(i,i)
rs ) := ηi(E

(i,i)
rs ) 1 ≤ i ≤ n,

Ψ(E
(p,q)
dp−1+1,dq−1+1) :=

 εpvp,p+1εp+1 · · · εq−1vq−1,qεq 1 ≤ p < q ≤ h;
epvp,p+1ep+1 · · · eq−1vq−1,qeq h+ 1 ≤ p < q ≤ n;
εpvp,p+1εp+1 · · · εhvh,h+1eh+1 · · · eq−1vq−1,qeq 1 ≤ p ≤ h < q,

Ψ(E
(p,q)
dp−1+mp+1,dq−1+mq+1) := ε̄pvp,p+1ε̄p+1 · · · ε̄q−1vq−1,q ε̄q 1 ≤ p < q ≤ h

and

Ψ(E
(p,q)
dp−1+mp+1,dq−1+1) := ε̄pvp,p+1ε̄p+1 · · · ε̄hvh,h+1eh+1 · · · eq−1vq−1,qeq

for all 1 ≤ p ≤ h < q, then Ψ is actually an isomorphism of algebras with
action.

STEP III: Construction of R(A′). The last step which completes
our preliminary work consists into proving that C(A′) is isomorphic (as a
superalgebra) to a homogeneous subalgebra R(A′) of R endowed with the
elementary grading induced by the map β : Γ −→ Z2 such that

β(x) := α(x) x ∈ ∪ni=h+1 Bli

and

β(x) :=

{
0 x ∈ Bl

(1)
i ;

1 x ∈ Bl
(2)
i

11



for every 1 ≤ i ≤ h. To this end, take the linear map η : C(A′) −→ R which
is defined on the homogeneous basis of C(A′) presented at Step II in the
following manner:

η(E(p,q)
rs + E

(p,q)
σ(r),σ(s)) := E(p,q)

rs + E
(p,q)
σ(r),σ(s),

η(E(p,q)
rs − E(p,q)

σ(r),σ(s)) := E
(p,q)
r,σ(s) + E

(p,q)
σ(r),s

when 1 ≤ p ≤ q ≤ h and r ∈ Bl
(1)
p and s ∈ Bl

(1)
q ,

η(E(p,q)
rs ) := E(p,q)

rs h+ 1 ≤ p ≤ q ≤ n and r ∈ Blp, s ∈ Blq

and

η(E(p,q)
rs + E

(p,q)
σ(r),s) := E(p,q)

rs , η(E(p,q)
rs − E(p,q)

σ(r),s) := E
(p,q)
σ(r),s

if 1 ≤ p ≤ h < q ≤ n and r ∈ Bl
(1)
p and s ∈ Blq. It is straightforward to

verify that η actually defines an embedding of C(A′) into (R, β).

Before attacking the proof of Theorem 3.1, we need to explore in more
details the properties of the superalgebra R(A′). To this end, let us de-

note by R(A′)(1,h) the homogeneous subalgebra of R(A′) consisting of the

elements of R(A′) which are linear combination of the matrices E
(p,q)
rs with

1 ≤ p ≤ q ≤ h endowed with the grading induced by the restriction of
the map β to the set Bl1 ∪ . . . ∪ Blh. Obviously R(A′)(1,h) is isomorphic

as a superalgebra to A′(1,h). In analogous manner let us define the homo-
geneous subalgebras R(A′)(h+1,n) of R(A′) (which is clearly isomorphic to

A′(h+1,n) = A(h+1,n)) and C(A′)(1,h) of C(A′).

Lemma 3.3. The superalgebra R(A′)(1,h) is a Z2-regular subalgebra of Mdh.

Proof. Using the notations introduced before of Definition 2.4, it is clear
that F 〈Y ∪ Z〉/TZ2(R(A′)(1,h)) is the subalgebra of Mdh ⊗ P (R(A′)(1,h))
generated by the matrices

uk :=
∑

i∈Bl
(1)
p j∈Bl

(1)
q

(E
(p,q)
ij + E

(p,q)
σ(i),σ(j))u

(k)
ij

and
vk :=

∑
i∈Bl

(1)
p j∈Bl

(1)
q

(E
(p,q)
i,σ(j) + E

(p,q)
σ(i),j)v

(k)
ij ,

where u
(k)
ij and v

(k)
ij are variables of P (R(A′)(1,h)) and k ∈ N.

At this stage, it is immediate to see that

π̂0(uk) =
∑

i∈Bl
(1)
p j∈Bl

(1)
q

E
(p,q)
ij u

(k)
ij and π̂0(vk) =

∑
i∈Bl

(1)
p j∈Bl

(1)
q

E
(p,q)
i,σ(j)v

(k)
ij ,

whereas

π̂1(uk) =
∑

i∈Bl
(1)
p j∈Bl

(1)
q

E
(p,q)
σ(i),σ(j)u

(k)
ij and π̂1(vk) =

∑
i∈Bl

(1)
p j∈Bl

(1)
q

E
(p,q)
σ(i),jv

(k)
ij

and, consequently, that π̂0 and π̂1 are injective. �
12



Lemma 3.4. TZ2(R(A′)(1,h)) = TZ2(A1) · · ·TZ2(Ah).

Proof. It is easily seen that C(A′)(1,h) (and hence R(A′)(1,h)) is isomor-
phich as an algebra with action (of an automorphism of order 2) to

S := UT (m1, . . . ,mh)⊕ UT (m1, . . . ,mh)

with action given by
φ(a, b) = (b, a).

For this graded algebra one clearly has that

S(0) = {(a, a) | a ∈ UT (m1, . . . ,mh)}
and

S(1) = {(a,−a) | a ∈ UT (m1, . . . ,mh)}.
Now, consider a polynomial f(y1, . . . , yr, z1, . . . , zs) ∈ TZ2(C(A′)(1,h)) =

TZ2(S) and the element f(x1, . . . , xr, xr+1, . . . , xr+s) of the free associative
F -algebra F 〈X〉 freely generated by the countable set X := {x1, x2, . . .}
(roughly speaking, we are replacing graded variables with ungraded ones).
Let σ : F 〈X〉 −→ UT (m1, . . . ,mh) be an evaluation of the polynomial
f(x1, . . . , xr+s). In particular, say σ(xi) := ti for every integer i. Then the
graded evaluation σ̄ : F 〈Y ∪ Z〉 −→ S defined by

σ̄(yi) := (ti, ti), σ̄(zj) := (tr+j ,−tr+j)
for every 1 ≤ i ≤ r and 1 ≤ j ≤ s is such that

σ̄(f) = (f(t1, . . . , tr, tr+1, . . . , tr+s), f(t1, . . . , tr,−tr+1, . . . ,−tr+s)).
But σ̄(f(y1, . . . , yr, z1, . . . , zs)) = 0S since f(y1, . . . , yr, z1, . . . , zs) ∈ TZ2(S).
This implies that f(t1, . . . , tr, tr+1, . . . , tr+s) is zero. Hence f(x1, . . . , xr+s)
is a polynomial identity for UT (m1, . . . ,mh). According to Theorem 2 of
[10], f(x1, . . . , xr+s) ∈ Id(Mm1) · · · Id(Mmh

) and, by invoking Remark 5.2 of
[5], we get

f(y1, . . . , yr, z1, . . . , zs) ∈ TZ2(∆1) · · ·TZ2(∆h) = TZ2(A1) · · ·TZ2(Ah).

Hence TZ2(R(A′)(1,h)) = TZ2(C(A′)(1,h)) ⊆ TZ2(A1) · · ·TZ2(Ah). But by
Lemma 2.2 one has that

TZ2(A1) · · ·TZ2(Ah) ⊆ TZ2(A′
(1,h)

) = TZ2(R(A′)(1,h)),

and, consequently, that TZ2(R(A′)(1,h)) = TZ2(A1) · · ·TZ2(Ah). �

We are now in a position to prove the first of our main results.

Proof of Theorem 3.1. Suppose that A1, . . . , Ah are non-simple graded
simple. From the above discussion (and using exactly the same notations)
it follows that there exists a homogeneous subalgebra A′ of A isomorphic
to a homogeneous subalgebra R(A′) of (R, β). In particular, R(A′) can be
written as (

V U
0 W

)
where V = R(A′)(1,h), W = R(A′)(h+1,n) and U = Mdh×(dn−dh). According
to Lemma 3.3, V is Z2-regular. Hence we can apply Lemma 2.5 and conclude
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that TZ2(R(A′)) is factored as TZ2(V ) ·TZ2(W ). As A′ ⊆ A, the combination

of Lemmas 3.4 and 2.2 with the fact that A′(h+1,n) = A(h+1,n) yields

TZ2(A) ⊆ TZ2(A′) = TZ2(R(A′)) = TZ2(R(A′)(1,h)) · TZ2(R(A′)(h+1,n))

= TZ2(A1) · · ·TZ2(Ah) · TZ2(A′
(h+1,n)

)

= TZ2(A1) · · ·TZ2(Ah) · TZ2(A(h+1,n))

⊆ TZ2(A(1,h)) · TZ2(A(h+1,n)).

The reverse containment is a direct consequence of Lemma 2.2. In particular,
TZ2(A) = TZ2(A′).

The case in which A1, . . . , Ah are simple graded simple uses the same
above arguments and its discussion is left to the reader. �

We want to apply Theorem 3.1 to the classification of minimal superva-
rieties of fixed superexponent. We recall the definition.

Definition 3.5. A variety Vsup of PI associative superalgebras is said to
be minimal of superexponent d if expZ2

(Vsup) = d and expZ2
(Usup) < d for

every proper subvariety Usup of Vsup.

In the case in which Vsup is a minimal supervariety of finite basic rank
(that is, generated by a finitely generated PI superalgebra), it has been
proved in Proposition 3.2 of [5] that Vsup = supvar(A) for a suitable min-
imal superalgebra A. The question which remains still open is to decide
which minimal superalgebras generate minimal supervarieties of fixed su-
perexponent. In this direction it has been proved that supvar(A) is minimal
when either all the summands of the maximal semisimple homogeneous sub-
algebra Ass of A are simple graded simple (Theorem 4.7 of [5]) or Ass has
exactly two graded simple components (Theorem 5.4 of [5]). Here we show
that the same occurs when A satisfies the conditions of Theorem 3.1.

Theorem 3.6. Let A = Ass + J be a minimal superalgebra. If Ass =
A1 ⊕ · · · ⊕ An and there exists 1 ≤ h ≤ n such that A1, . . . , Ah are non-
simple graded simple and Ah+1, . . . , An are simple graded simple algebras
(or conversely), then the supervariety generated by A is minimal of super-
exponent dimF (A1 ⊕ · · · ⊕An).

Proof. Set Vsup := supvar(A) and let us consider a subvariety Usup ⊆ Vsup
such that expZ2

(Vsup) = expZ2
(Usup). Since Vsup satisfies some Capelli

identities, Usup has finite basic rank (see Theorem 11.4.3 of [12]). Hence, by

a result of Kemer, Usup is generated by a finite-dimensional superalgebra B̂.
According to Lemma 8.1.4 of [12], there exists a minimal superalgebra B

such that TZ2(B̂) ⊆ TZ2(B) and expZ2
(B̂) = expZ2

(B). Therefore TZ2(A) ⊆
TZ2(B) and expZ2

(A) = expZ2
(B) as well. Furthermore from Lemma 3.3 of

[5] we know that Bss = A1 ⊕ · · · ⊕An.
Assume that A1, . . . , Ah are non-simple graded simple and take the ho-

mogeneous subalgebra B′ of B constructed in the same way we did in order
to prove Theorem 3.1. Using the same notations adopted there, B′ is the
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subalgebra generated by A1, . . . , An and the homogeneous radical elements
v12, . . . , vn−1,n. For this minimal superalgebra one has that

TZ2(B) = TZ2(B′) and Ass = B′ss.

Therefore TZ2(A) ⊆ TZ2(B′) and expZ2
(A) = expZ2

(B′).

We claim that TZ2(A(h+1,n)) ⊆ TZ2(B′(h+1,n)). Assume, if possible, that

the inclusion does not hold and take a graded polynomial f ∈ TZ2(A(h+1,n))\
TZ2(B′(h+1,n)). Hence, for every h+1 ≤ i ≤ j ≤ n, there exist elements bij ∈
B′ij and a graded evaluation σ of f in B′(h+1,n) such that σ(f) =

∑
i,j bij 6=

0B′(h+1,n) . Let us pick a pair of indices i ≤ j such that bij 6= 0B′ij . Then

1Ai ·σ(f) ·1Aj = bij and bij ∈ Aieivi,i+1 · · · vj−1,jejAj . By multiplying bij for

suitable homogeneous elements c
(ij)
l and d

(ij)
l (with (c

(ij)
l , d

(ij)
l ) ∈ (Ai, Aj)),

we get

(3)
∑
l

c
(ij)
l bijd

(ij)
l = eivi,i+1 · · · vj−1,jej .

Let us consider the graded polynomial

g :=
∑
l

v
(ij)
l x′fx′′t

(ij)
l ,

where x′ := y′ + z′ and x′′ = y′′ + z′′ are sum of a homogeneous variable of

degree 0 and one of degree 1 not appearing in f and v
(ij)
l and t

(ij)
l are distinct

graded variables pairwise different from those appearing in f, x′ and x′′ and

of the same degree of c
(ij)
l and d

(ij)
l , respectively. Then g is an element of

TZ2(A(h+1,n)) (because f ∈ TZ2(A(h+1,n))) which has a graded evaluation in

B′(h+1,n) coinciding with (3).

Now, the set TZ2(A(1,h))\TZ2(B′(1,h+1)) is non-empty (otherwise dimF (A1⊕
· · · ⊕ Ah) = expZ2

(A(1,h)) ≥ expZ2
(B′(1,h+1)) = dimF (A1 ⊕ · · · ⊕ Ah ⊕

Ah+1), which is clearly false). Hence there exists a graded polynomial

p ∈ TZ2(A(1,h)) which has a non-zero graded evaluation in B′(1,h+1) (and
whose variables are pairwise different from those involved in g). By us-
ing similar arguments to the above, we can assume that such a non-zero
graded evaluation coincides with εrvr,r+1 · · · vs−1,sεs or ε̄rvr,r+1 · · · vs−1,sε̄s or
εrvr,r+1 · · · vh,h+1eh+1 or ε̄rvr,r+1 · · · vh,h+1eh+1 or with eh+1 (1 ≤ r ≤ s ≤ h).

At this stage, let us consider the graded polynomial q := pxg where
x := y + z is sum of a variable of degree 0 and one of degree 1 appearing
neither in g nor in p. According to Lemma 2.2,

q ∈ TZ2(A(1,h)) · TZ2(A(h+1,n)) ⊆ TZ2(A),

but it is not a graded polynomial identity for B′, which contradicts the

original assumption. Therefore TZ2(A(h+1,n)) ⊆ TZ2(B′(h+1,n)).

On the other hand, the minimal superalgebras A(h+1,n) and B′(h+1,n) have
the same superexponent, namely dimF (Ah+1⊕· · ·⊕An). Since Ah+1, . . . , An
are simple graded simple, we can directly apply Theorem 4.7 of [5] to con-

clude that TZ2(A(h+1,n)) = TZ2(B′(h+1,n)) (actually A(h+1,n) and B′(h+1,n)
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are isomorphic). Therefore it follows from Theorem 3.1 that

TZ2(A) = TZ2(A1) · · ·TZ2(Ah) · TZ2(A(h+1,n)) = TZ2(B′) = TZ2(B).

The case in which A1, . . . , Ah are simple graded simple can be proved
using the same arguments. �
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