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Abstract
Experimental studies of vehicular traffic provide data on quantities like density, flux, and

average speed of the vehicles. However, the diagrams that relate these variables can have
different interpretations. In this paper, resting on the kinetic theory for vehicular traffic
models, we introduce a new framework which takes into account the heterogeneous nature
of the flow of vehicles. In more detail, we extend the model presented in [8] to the case of two
populations of vehicles (such as e.g., cars and trucks), each with its own distribution function.
Thus we consider traffic as a mixture of vehicles with different features, in particular different
length and maximum speed. With this approach we can explain some interesting features
of experimental diagrams. In fact, mathematical models for vehicular traffic typically yield
fundamental diagrams that are single-valued functions of the density; in contrast, actual
measurements show scattered data in the phase of congested traffic, which are naturally
reproduced by our 2-population model as a result of the heterogeneous composition of the
mixture of vehicles.

Keywords
Traffic flow, kinetic models, multispecies kinetic equations, fundamental diagrams
AMS subject classification 76P05, 65Z05, 90B20

1 Introduction
Prediction and control of traffic have become an important aspect in the modern world. In

fact, the necessity to forecast the outflow time of a queue or to optimize traffic flows, thereby
reducing the number of accidents, has arisen following the increase of circulating vehicles.

In the current mathematical literature, three different approaches are mainly used to model
traffic flow phenomena. Microscopic models look at vehicles as single entities of traffic and they
predict, using a system of ordinary differential equations, the evolution of their position and
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speed (namely, the microscopic states characterizing their dynamics) regarded as time depen-
dent variables. In these models, the acceleration is prescribed for each vehicle as a function of
time, position, and speed of the various entities of the system, taking also into account mutual
interactions among vehicles. For example, in the well known follow-the-leader model [12] each
vehicle is assumed to adapt its speed to the one of the leading vehicle based on their instanta-
neous relative speed and mutual distance. On the opposite end, macroscopic models provide a
large-scale aggregate point of view in which the focus is not on each single particle of the system.
In this case, the motion of the vehicles along a road is described by means of partial differential
equations inspired by conservation and balance laws from fluid dynamics, following the seminal
works by Lighthill and Witham [22] and Richards [29]. Improvements and further evolutions of
such a basic macroscopic description of traffic have been proposed over the years by several au-
thors, from the classical mechanically consistent restatement of second order models by Aw and
Rascle [3] to applications to road networks thoroughly developed in the book by Garavello and
Piccoli [11]. In the middle, mesoscopic (or kinetic) models are based on a statistical mechanics
approach, which still provides an aggregate representation of the traffic flow while linking macro-
scopic dynamics to pairwise interactions among vehicles at a smaller microscopic scale. These
models will be the main reference background of the present paper. However, before entering
the details of their discussion, some remarks about the other two types of models are in order.

Microscopic models give rise to very large systems of ordinary differential equations, when the
number of vehicles is high, which makes the microscopic scale computationally not competitive.
Moreover, the description of the behavior of single vehicles requires a quite detailed knowledge
of several, mostly unknown or unaccessible, microscopic parameters while being often not really
needed, since one usually is more interested in average quantities such as the flow rate or the
mean speed. On the other hand, macroscopic models do not allow to account for interactions
among vehicles, which instead play a prominent role in triggering traffic phenomena. A further
drawback is that they typically require the prescription of closure laws linking the density and the
flow (or the mean speed) of vehicles in order to give rise to self-consistent solvable equations (but
see also [2]). This kind of information is usually recovered from interpolation or extrapolation
of experimental data, which are then plugged into the mathematical models. Nevertheless one
would like these data to be reproduced by models as a consequence of more fundamental modeling
procedures rather than being postulated externally.

Kinetic (mesoscopic) models, first used by Prigogine [26, 27] and Paveri-Fontana [24], are
based on the Boltzmann equation that describes the statistical behavior of a system of particles.
From the kinetic point of view, the system is again seen as the resultant of the evolution of micro-
scopic particles, with given microscopic position and speed, but its representation is provided in
aggregate terms by a probability distribution, whose evolution is described by integro-differential
equations. Compared to microscopic models, the kinetic approach requires a smaller number of
equations and parameters. On the other hand, unlike macroscopic models, at the mesoscopic
scale the evolution equations do not require an a priori closure law: the flow is provided by the
statistical moments of the kinetic distribution function over the microscopic states. Kinetic mod-
els have also been extended to include multilane traffic flow [18, 19] and control problems [16],
to name but just a few applications.

For an overview of vehicular traffic models at all scales, the interested reader is referred to
the review papers by Bellomo and Dogbé [4], Klar and Wegener [20], and Piccoli and Tosin [25]
and references therein.

In this paper we propose a multipopulation kinetic model for traffic flow, which draws inspi-
ration from the ideas presented by Benzoni-Gavage and Colombo [5] recast in the frame of the
discrete-velocity kinetic models by Delitala and Tosin [7] and Fermo and Tosin [8]. The main
goal is to study fundamental diagrams, computed from moments of equilibrium solutions of the
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kinetic equations, and in particular to show that taking into account the heterogeneous composi-
tion of the “mixture” of vehicles allows one to explain the experimentally observed scattering of
such diagrams in the phase of congested traffic without invoking further elements of microscopic
randomness of the system, cf. Fermo and Tosin [9]. In more detail, the structure of the paper
is as follows: in Section 2 we briefly review the role of fundamental diagrams in vehicular traffic
practice. Next, in Section 3 we describe the discrete-velocity kinetic model developed in [7, 8] by
focusing on its spatially homogeneous version, which represents the mathematical counterpart
of the experimental setting in which traffic equilibria and fundamental diagrams are measured.
In Section 4 we first review the multi-population macroscopic model by Benzoni-Gavage and
Colombo [5] and then introduce our new two-population kinetic model, proving in particular its
consistency with the original single-population model and describing how to compute equilibrium
solutions. Then in Section 5 we present and analyze the resulting fundamental diagrams, and
we end in Section 6 with comments and perspectives.

2 Fundamental diagrams
In this section we present a brief description of a basic tool in the analysis of traffic problems,

namely the diagrams which relate the macroscopic variables as density, flow and speed. The most
used one is the so-called fundamental diagram which gives the flow of traffic as a function of its
density. In traffic flow phenomena we can distinguish different regimes or phases of traffic, whose
properties define the structure of the experimental diagrams. Here we describe the physical
dynamics of traffic and the qualitative characteristics of the diagrams.

• Flow-density diagram: they report the flow rate of vehicles as a function of the number
of vehicles per unit length (density). At low traffic densities, the flow of vehicles grows
linearly with the density and this regime is called free phase flow, in which the interactions
between vehicles are rare. There is a value of the density, called critical density, at which
the flow reaches its maximum value. Beyond the critical density we have the congested
phase of traffic which is defined by Kerner in [17] as complementary to the phase of free
flow. In this regime the flow decreases as the density increases. In fact, faster vehicles are
impeded by slower ones and the formation of local slowdowns (phantom traffic jam) is first
observed. Additional increments of the density cause a steady reduction in the flow until
the so-called traffic jam is reached, in which the density reaches its maximum value, called
jam density, and the flow is zero.

• Speed-density diagram: they give the typical velocity of a vehicle as a function of the local
density of traffic. In free flow conditions, the vehicles travel at the maximum speed allowed,
that depends on the infrastructure, on the mechanical characteristics of the vehicle and on
speed limits. This speed can be reached when there is a large distance between vehicles
on the road and the maximum speed is called free flow speed. Instead, in congested flow
conditions the vehicles travel closer, at a reduced speed, until the density reaches the jam
density, at which vehicles stop and have zero speed.

The diagrams previously described play an important role in the prediction of the capacity
of a road and in the control of the flow of vehicles.

Examples of fundamental diagrams provided by experimental measurements are shown in
Figure 1. They clearly exhibit the phase transition between free and congested flow: below
the critical density the flow values can be approximately represented by a line with a positive
slope and thus the flow appears as a single-valued increasing function of the density, with a
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Figure 1: Fundamental diagrams obtained from experimental data. On the left, measurements
provided by the Minnesota Department of Transportation in 2003, reproduced by kind permission
from Seibold et al. in [30]; on the right, experimental data collected in one week in viale del Muro
Torto, Roma, Italy, and shown by Piccoli and Tosin in the review [25].

low, but non zero, dispersion; above the critical density, the flow decreases and exhibits a large
scattering of the data resembling a stochastic process. In this stage, therefore, the flow cannot
be represented as a single-valued function of the density.

We will consider kinetic models of traffic flow because they naturally provide a sharp transition
from the free to the congested phase of traffic. However, even standard kinetic models do not
account for the scattered data typical of the congested regime. Usually, this behavior of the flow
is explained considering the individuality of the drivers, who may decide to drive at a different
speed than the one resulting from the local density.

In this work, we introduce a kinetic model as a mixture of different populations of vehicles,
for instance cars and trucks, each described by its own distribution function. With this exten-
sion, we believe that the scattered data can be naturally accounted for using the heterogeneous
composition of the flow.

3 A discrete kinetic model
In this section we briefly revisit a kinetic traffic model recently introduced in [8]. In the

kinetic approach we focus on a statistical description of the microscopic states of the particles,
therefore the evolution of the position x and velocity v of the vehicles is described by means of
a distribution function f = f(t, x, v) such that f(t, x, v)dxdv is the number of vehicles between
x and x+ dx with velocity between v and v + dv.

The model proposed in [8] is a kinetic model which is discrete both in space and in velocity,
thus let Xi be the i-th space cell which identifies a portion of the road and vj the j-th velocity
class. The authors introduce f = fij(t), the distribution function of vehicles that are located,
at time t, in cell Xi with speed vj . Moreover, let X ⊆ R be the spatial domain and V ⊆ R+

the microscopic speed domain, we have X = ∪mi=1Xi and V = {vj}nj=1 with 0 ≤ vj < vj+1,∀j =
1, . . . , n and v1 = 0, vn = Vmax, where Vmax is the maximum speed of a vehicle. Thus Vmax
can be chosen as a speed limit imposed by safety regulations, or by the state of the road,
or by the mechanical characteristics of the vehicle. Therefore, each microscopic state (xi, vj)
belongs to the space of discrete states X × V . The kinetic distribution f can be recovered from
fij : [0, Tmax]→ R+, i = 1, . . . ,m, j = 1, . . . , n as:
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f(t, x, v) =
m∑
i=1

n∑
j=1

fij(t)χXi
(x)δvj

(v) (1)

thus f is an atomic distribution with respect to the variable v and it is piecewise constant with
respect to the variable x. The macroscopic variables, vehicle density ρ, flux q and average speed
u, useful in the study of traffic, are obtained from the kinetic model as distributional moments
of (1) with respect to v:

ρ(x, t) =
n∑
j=1

fij(t), q(x, t) =
n∑
j=1

vjfij(t), u(x, t) = q(x, t)
ρ(x, t) . (2)

The experimental diagrams are constructed assuming that traffic flow is stationary and ho-
mogeneous in space, thus density and flow are computed from the equilibrium distributions{
fej
}n
j=1. To this end, we investigate the evolution of the distribution functions, due only to

vehicle interactions, and then we look at the equilibria of the model. Thus, we can take into
account the spatially homogeneous case, in which the density and the flux are assumed to be
uniform in space, and we define analytically the fundamental and the speed diagrams with the
following maps:

ρ→ q(ρ) =
n∑
j=1

vjf
e
j , ρ→ u(ρ) = q(ρ)

ρ
. (3)

In particular, if for any given ρ the system (4) admits a unique stable equilibrium then these
maps are actual functions of ρ; otherwise, they define multivalued diagrams. We remark that
the map q(ρ) is not based on a priori closure relations, as opposed to macroscopic models, but
it is obtained by the large time evolution of the kinetic distribution function.

For the homogeneous case we can drop the dependence on i, writing fij ≡ fj , ∀i = 1, . . . ,m
and the model proposed in [8] reduces to

dfj
dt

= Jj(f, f), j = 1, . . . , n, (4)

where Jj(f, f) is called collisional operator and it simulates the microscopic interactions between
vehicles that determine the change of fj with respect to time. Conservation of mass requires
that:

n∑
j=1

Jj(f, f) = 0 (5)

in fact, we have:
n∑
j=1

dfj
dt

= d

dt

n∑
j=1

fj = dρ

dt
= 0.

This means that in the space homogeneous case ρ can be considered as a parameter of the
system (4), because it is fixed by the initial conditions and it remains constant during the
evolution of the distribution function fj , so:

ρ =
n∑
j=1

fj(0) =
n∑
j=1

fej
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where {fj(0)}nj=1 are the initial conditions of the system (4) and
{
fej
}n
j=1 is the equilibrium state

of the system such that Jj(fe, fe) = 0, ∀j = 1, . . . , n.
The collisional operator Jj(f, f) models the microscopic interactions between vehicles. As

in [8], the description of Jj(f, f) is based on stochastic game theory: vehicles are the players,
their velocities are the game strategies and the post-interaction velocities are the payoff of the
game. This technique allows us to assign a post-interaction velocity in a non-deterministic way.
We report here the construction of the collisional operator which will be extended later to the
2-population case. We consider only binary interactions, thus the collisional operator can be
written as:

Jj(f, f) = η

n∑
h,k=1

Ajh,kfhfk − ηfj
n∑
k=1

fk

where Gj = η
∑n
h,k=1 A

j
h,kfhfk and Lj = ηfj

∑n
k=1 fk are the gain and loss terms respectively.

In the gain term, we call candidate the vehicle which modifies its velocity vh in the test speed
vj after an interaction with the field vehicle that travels at the velocity vk. Instead, the term Lj
describes the loss of speed vj after an interaction with any field vehicle.

In this work, we will assume that η, the rate of interactions, is constant, but it could also
depend on the relative velocity of the interacting vehicles, so η = η(|vh − vk|). The matrix
Aj =

{
Ajh,k

}n
h,k=1

, j = 1, . . . , n is called table of games and it gives the discrete probabilities to
gain the test speed vj , thus:

Ajh,k = P(vh → vj |vk), ∀h, k, j = 1, . . . , n

and they fulfill the following conditions:

0 ≤ Ajh,k ≤ 1, ∀j and h, k = 1, . . . , n
n∑
j=1

Ajh,k = 1, h, k = 1, . . . , n,

which express the fact that, for each fixed h, k, Ajh,k, j = 1, . . . , n defines a discrete probability
distribution. This means that some velocity vj will result from the interaction between vh and
vk, and furthermore it ensures that (5) holds.

Let Vmax = vn be the maximum velocity, and ρmax be the road capacity, i.e. the number of
vehicles on the road in bumper-to-bumper condition. Since any speed variation depends on the
local road congestion and on the quality of the road, the table of games of the model (4) is built
using the following assumptions:

• a candidate vehicle with velocity vh can accelerate only to vh+1, but it can decelerate down
to vj = vk when it interacts with a field vehicle with lower velocity vk;

• let P be the probability that a vehicle obtains the maximum test velocity resulting from an
interaction, then P is proportional to the fraction of free road ahead through a coefficient
α ∈ [0, 1], thus P = α

(
1− ρ

ρmax

)
. We can think of α as a parameter describing the state

of the road, with α = 1 for optimal road conditions.

We distinguish three cases:
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1. interaction with a faster field vehicle: in this case we have h < k. Following the interaction
the candidate vehicle can maintain its velocity or it can accelerate. So the microscopic test
speed is vj = vh+1 with probability P , while vj = vh with probability 1 − P . In other
words,

Ajh,k =


1− P if j = h

P if j = h+ 1
0 else

k = 2, . . . , n, h < k (6)

2. interaction with a slower field vehicle: in this case we have h > k. Following the interaction
the candidate vehicle vh can maintain its velocity with probability P , thus overtaking the
leading field vehicle, or it decelerates to the velocity vk with probability 1 − P . So the
transition probability allows to assume the microscopic test speeds vj = vk or vj = vh,
thus

Ajh,k =


1− P if j = k

P if j = h

0 else
k = 1, . . . , n− 1, h > k (7)

3. interaction with a field vehicle which has the same velocity: vh = vk. The candidate
vehicle can assume the microscopic test speed vj = vh, thus maintaining the pre-interaction
velocity if it is not disturbed by the leading vehicle; it can accelerate to vj = vh+1 overtaking
the field vehicle with probability P or it can decelerate to vj = vh−1 with probability Q.
It is reasonable to assume that a vehicle interacting with another vehicle with the same
velocity will decrease its microscopic speed with probability proportional to the state of
the occupation of the road ρ

ρmax
, with a constant of proportionality depending on the bad

state of the road, i.e. 1 − α. So we take Q = (1 − α) ρ
ρmax

. We further distinguish three
cases, in fact if the vehicles have the velocity v1 = 0 or the maximum velocity vn then the
candidate vehicle cannot decelerate or accelerate, respectively. Thus:

Aj1,1 =


1− P if j = 1
P if j = 2
0 else

(8)

Ajh,h =


Q if j = h− 1
1− (P +Q) if j = h

P if j = h+ 1
0 else

h = 2, . . . , n− 1 (9)

Ajn,n =


Q if j = n− 1
1−Q if j = n

0 else
(10)

In this way the collision term is completely defined.
We study the evolution to equilibria of a given initial condition corresponding to a fixed value

of ρ until the equilibrium state is reached. In this fashion we obtain the fundamental and the
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Figure 2: Fundamental diagrams (top row) and speed diagrams (bottom row) obtained from the
model (4) with n = 2 (left), n = 3 (center) and n = 4 (right) velocity classes. We choose
ρmax = 200veh./km and the microscopic velocity are uniformly distributed

{
vj = j−1

n−1Vmax

}n
j=1

with
Vmax = 100km/h.

speed diagrams of Figure 2: if ρ < 1
2ρmax we have a free phase of traffic in which the flow,

defined as number of vehicles per time, is an increasing linear function of the density, in fact the
asymptotic distribution can be obtained analitically, and is given by ([9])

fij =
{

0 j < n

ρ j = n

i.e. all cars achieve the maximum velocity; instead, if ρ > 1
2ρmax we have a congested phase of

traffic which depends on the number n of velocity classes; for instance, if we consider n = 2,
the flow is a decreasing linear function but if we consider n ≥ 2, the flow decreases non-linearly.
Here ρc = 1

2ρmax is the critical density.
The model (4) confirms that the kinetic approach is able to catch successfully the phase

transition from free to congested traffic flow, when the critical density ρc is reached, without the
need of providing an heuristic closure to give the flux as a function of the density.

However, the model (4) provides again a single-valued density-flux relation. In fact, as shown
in [9], ∀ρ ∈ [0, ρmax] there exists a unique equilibrium point of the system (4) which is stable
and attractive: given the initial conditions {fj(0)}nj=1 such that

∑n
j=1 fj(0) = ρ, it is possible

to prove that the n equilibrium values
{
fej
}n
j=1 do not depend on the initial distribution and

consequently the flux q(ρ) is uniquely determined by the initial density ρ, which does not explain
the scattered data of experimental diagrams.

4 Two-population models
Starting from the kinetic approach introduced in the previous section, here we introduce a

model which treats traffic as a mixture of two (or more) populations with different features. As
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far as we know, this is the first attempt to account for the heterogeneity of traffic in a kinetic
model. We will see that this structure allows to understand the nature of scattered data in
experimental diagrams. For the sake of simplicity we will consider a 2-population model, but the
model can be easily extended to more complex mixtures.

In recent literature, multi-population models of vehicular traffic have already been successfully
proposed. In [5] the authors proposed an n-population generalization of the Lighthill-Whitham
[22] and Richards [29] traffic models. Here, we illustrate the case for n = 2 species:{

∂tρ1 + ∂x (F1(ρ1, ρ2)) = 0
∂tρ2 + ∂x (F2(ρ1, ρ2)) = 0

(11)

where Fi(ρ1, ρ2) = ρivi(ρ1, ρ2) is the flux function of the i-th population, vi(ρ1, ρ2) is the speed-
density relation which describes the attitude of drivers to change their speed with respect to the
local values of ρ1 and ρ2. We note that this model can be written in terms of a parameter s,
which we call the fraction of road occupancy, defined as s = ρ1l1 +ρ2l2, where ρ1, ρ2 are the local
traffic densities, and l1, l2 are the characteristic lengths of the vehicles in the two populations.
In [5] vi is taken from the usual Greenshield’s law [10, 31], therefore:

vi(ρ1, ρ2) = (1− s)Vi, i = 1, 2

where Vi is the maximum speed of the i-th population. The system of conservation laws (11)
becames: {

∂tρ1 + ∂x ((1− s)V1ρ1) = 0
∂tρ2 + ∂x ((1− s)V2ρ2) = 0.

(12)

The flux is given by

F = [(1− s)V1ρ1, (1− s)V2ρ2]

and we notice that, given ρ, the total flux of vehicles is F1 +F2, and this expression takes different
values depending on the initial data ρ1, ρ2, such that ρ1l1 + ρ2l2 = s.

4.1 A two-population kinetic model
Now, we extend the construction of [8] introducing a model with two populations to take into

account the natural heterogeneous composition of traffic. For simplicity, we consider only two
populations, but the model can be easily extended to mixtures with more components. Again, we
limit the study to the spatially homogeneous case in order to construct fundamental diagrams.
To distinguish the two classes of vehicles, we will refer to them as cars and trucks.

The first difference that we introduce between vehicles is given by the different maximum
velocity; therefore if VC =

{
vj = j−1

n−1vn

}n
j=1

is the space of discrete microscopic speeds related
to cars, with v1 = 0, vi < vi+1, ∀ i (vn is the maximum speed), we suppose that the space of
discrete microscopic speeds related to trucks is such that VT ⊂ VC , so VT =

{
vj = j−1

n−1vn

}m
j=1

,
where m is an integer such that m ∈ {1, . . . , n}.

Let f = fj(t), g = gj(t) be the distribution functions of cars and trucks respectively with a
velocity in the j-th class, then

NC,j = Lfj , j = 1, . . . , n
NT,j = Lgj , j = 1, . . . ,m

(13)
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are the total number of cars and trucks (or particle number) with velocity vj , where L is the
length of the section of road we are considering. The total number of vehicles is given by

N = NC +NT = L

n∑
j=1

fj + L

m∑
j=1

gj .

The maximum number of cars and trucks which can be accomodeted in the road is

Nmax
C = L

lC
, Nmax

T = L

lT

where lC , lT are the average lengths of vehicles that are in the class of cars and in the class of
trucks respectively. This however corresponds to the case in which the road is occupied only
by one of the two classes of vehicles. Let NC lC and NT lT be the spaces occupied by cars and
trucks, while S = NC lC + NT lT is the total space occupied in the road section. If we rescale
with respect to L, we obtain the fraction of occupied space:

0 ≤ s = NC lC +NT lT
L

≤ 1. (14)

We define the kinetic distribution functions of the two populations as:

f(t, v) =
n∑
j=1

fj(t)δvj
(v), g(t, v) =

m∑
j=1

gj(t)δvj
(v).

where again we are considering an atomic distribution with respect to the discrete velocities. If
we consider their moments with respect to v, we obtain the macroscopic quantities:

• for the class of cars:

ρC(t) =
n∑
j=1

fj(t), qC(t) =
n∑
j=1

vjfj(t), uC(t) = qC(t)
ρC(t) (15)

• for the class of trucks:

ρT (t) =
m∑
j=1

gj(t), qT (t) =
m∑
j=1

vjgj(t), uT (t) = qT (t)
ρT (t) . (16)

where ρC , ρT are the number densities, qC , qT are the marcoscopic fluxes and uC , uT the average
speeds of the two species. Thus NC = LρC and NT = LρT .

We can rewrite (14), using the macroscopic variables, as:

0 ≤ s = ρC lC + ρT lT ≤ 1. (17)
In the single-population kinetic model (4), the probability transitions depend on the rate of the
local density ρ and on α, i.e. on the state of the road. In our 2-population model, instead, the
probability transitions will depend on the fraction of occupied space s, defined in (17), which is
the natural generalization of ρ

ρmax
, and on α.

The evolution of fj and gj in the space homogeneous case is given by:

dfj
dt

= JCj (f, g), j = 1, . . . , n

dgj
dt

= JTj (g, f), j = 1, . . . ,m

10



where JCj (f, g) and JTj (g, f) are the collisional operators that account for the interactions in
which cars respectively trucks are the candidate vehicles. Since we consider only binary interac-
tions, we can follow an approach frequently used to describe the mixture of two gases in kinetic
theory, see for instance [15, 6, 13], writing each collisional operator as the sum of two terms:

JCj (f, g) = JC,Cj (f, f) + JC,Tj (f, g), j = 1, . . . , n.

The two terms describe the binary interactions of a car as candidate vehicle with a field
vehicle which is either a car or a truck respectively. Each of the two single collisional operators
will be written with the same logic of the single population model, but keeping in mind that the
dimension of the matrices representing the tables of games will be different:

JC,Cj (f, f) = η

n∑
h,k=1

Ajh,kfhfk − ηfj
n∑
k=1

fk, j = 1, . . . , n

JC,Tj (f, g) = η

n∑
h=1

m∑
k=1

Bjh,kfhgk − ηfj
m∑
k=1

gk, j = 1, . . . , n.

Similarly:

JTj (g, f) = JT,Tj (g, g) + JT,Cj (g, f), j = 1, . . . ,m.

Here the first term describes the binary interactions of a truck with a truck, while the second
one describes the interaction in which trucks react with cars. Then the single collisional operator
can be written as:

JT,Tj (g, g) = η

m∑
h,k=1

Cjh,kghgk − ηgj
m∑
k=1

gk, j = 1, . . . ,m

JT,Cj (g, f) = η

m∑
h=1

n∑
k=1

Dj
h,kghfk − ηgj

n∑
k=1

fk, j = 1, . . . ,m.

Finally, our 2-populations kinetic model will be defined by the equations:

dfj
dt

= η

 n∑
h,k=1

Ajh,kfhfk +
n∑
h=1

m∑
k=1

Bjh,kfhgk − fj

(
n∑
k=1

fk +
m∑
k=1

gk

) , j = 1, . . . , n

dgj
dt

= η

 m∑
h,k=1

Cjh,kghgk +
m∑
h=1

n∑
k=1

Dj
h,kghfk − gj

(
n∑
k=1

fk +
m∑
k=1

gk

) , j = 1, . . . ,m

(18)

where Aj , Bj , Cj , Dj are the tables of games that give the probabilities of the transitions be-
tween different states of system (18), i.e. the probabilities that candidate vehicles get the micro-
scopic test speeds vj after interacting with field vehicles. They fulfill the following assumptions:

0 ≤ Ajh,k, B
j
h,k, C

j
h,k, D

j
h,k ≤ 1, ∀h, k, j

n∑
j=1

Ajh,k =
n∑
j=1

Bjh,k =
m∑
j=1

Cjh,k =
m∑
j=1

Dj
h,k = 1, ∀h, k,
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and the two sets of equations describe the fact that the interaction of a vehicle with velocity vh
with a vehicle of velocity vk results in one of the possible velocities vj with probability 1. As
a consequence of these assumptions, summing over j each of the two equations (18) results in
mass conservation for each of the species, namely

d

dt

n∑
j=1

fj = 0, d

dt

m∑
j=1

gj = 0

which is equivalent to

dρC
dt

= dρT
dt

= 0.

The tables of games are constructed with the same ansatz of the original model, but now the
probabilities P and Q that an interaction occurs will depend on the fraction of space s in the
road which is occupied by the mixture, i.e. P = α(1 − s) and Q = (1 − α)s. It is through the
parameter s that the two populations exchange information. The tables Aj , Cj have the same
construction as in (6), (7), (8), (9), (10), because they are the discrete probability distributions
in which the two involved players belong to the same class of vehicles except that Aj is an n×n
matrix ∀ j = 1, . . . , n and Cj is an m×m matrix ∀ j = 1, . . . ,m.

The tables Bj and Dj represent the interactions between the two populations. In particular,
the table Bj is the discrete probability distribution in which the candidate cars change their
velocity vh in the microscopic test speed vj after an interaction with the field trucks with velocity
vk. If h < k, h > k and h = k = 1 we get the same rules introduced in (6), (7) and (8); while we
rewrite the other cases in order to obtain a consistent 2-population model if lC = lT and n = m,
i.e. the two classes of vehicles have the same maximum speed:

Bjh,h =


Q if j = h− 1
1− (P +Q) if j = h

P if j = h+ 1
0 else

h = 2, . . . ,m < n

and we remark that if h = k = m < n cars can accelerate to a test velocity higher than vm. On
the other hand, if m = n, we have the following probabilities

Bjn,n =


Q if j = n− 1
1−Q if j = n

0 else
h = n = m.

Note that Bj , ∀ j = 1, . . . , n is an n×m matrix.
The table Dj , instead, is the discrete probability distribution in which the candidate truck

changes its velocity vh in the microscopic test speed vj after an interaction with a field car with
velocity vk. If h > k and h = k we have the same rules introduced in (7), (8), (9), (10), while if
m = h < k trucks can’t accelerate because they already have the maximum speed vm, therefore:

Dj
h,k =

{
1 if j = h

0 else
h = m < k ∈ {m+ 1, . . . , n}

Dj
h,k =


1− P if j = h

P if j = h+ 1
0 else

h < k < m

12



then Dj , ∀ j = 1, . . . ,m are m× n matrices.
Finally, we prove that the 2-population kinetic model (18) satisfies a fundamental property

which has already been studied in kinetic models for mixture of gases. In [1] a consistent BGK-
type model for gas mixtures is proposed, which fulfills an indifferentiability principle: when all
the species of gas are identical one can recover the equation for a single component gas. In traffic
flow models the indifferentiability principle can be stated in the following Theorem which ensures
that the 2-population model (18) and the 1-population model (4) are consistent.

Theorem 4.1 (Indifferentiability principle). Suppose the vehicles in the two populations have
the same length and the same space of discrete velocities, then the total distribution function
Fj = fj + gj, ∀j = 1, . . . , n, obeys the evolution equations of the single-population model (4).

Proof. Since the discrete velocity spaces are identical, in particular m = n. Let l = lC = lT and
ρmax = 1

l . Then, s = (ρC + ρT ) l = (ρC+ρT )
ρmax

. Therefore, the matrices are all equal, Aj ≡ Bj ≡
Cj ≡ Dj , ∀j. Let fj and gj be the distribution functions of the two classes of vehicles with speed
in the j-th velocity class. Summing their evolution equations, we easily get:

d(fj + gj)
dt

=
n∑

h,k=1
Ajhk (fh + gh) (fk + gk)− (fj + gj)

n∑
k=1

(fk + gk) , j = 1, . . . , n

which is the evolution equation of the 1-population kinetic model (4), with distribution function
given by Fj = fj + gj .

Remark 4.2. In [1] the indifferentiability principle is proven for a model constructed with a
single collision operator, which hinders the description of the separate interactions with particles
of different species in the mixture. In more standard models for gas mixtures, the collision terms
are separate, as in our case, but the indifferentiability principle holds only at equilibrium. Here,
instead, Theorem 4.1 holds for all time, without the need of merging the two collision terms into
one.

4.2 A well-balanced formulation for computing equilibria
Our numerical evidence suggests that, for any couple of initial densities ρC and ρT , any initial

distribution fj(0), gj(0), such that
∑
fj(0) = ρC and

∑
gj(0) = ρT , converges to the same couple

of equilibrium distributions fej , gej , which is therefore uniquely determined by ρC and ρT . To get
the correct equilibrium, however, it is important to devise a well balanced scheme. As we will
see, round off error can drive the solution to equilibrium states which are obviously spurious, if
the model is not integrated properly.

In some simplified cases, it is possible to write analytic expressions for the equilibrium dis-
tributions, shedding light on the structure of fundamental diagrams. In [8] the well-posedness
of the system (4) and the existence of equilibria was established. There, equilibrium states are
computed analytically, in some simplified cases. Here, we will integrate numerically the system
of ODE’s.

In the remaining part of this paper, we will always assume that the parameter α which
represents the state of the road is always set to one. From a modelling point of view, we will
assume that the quality of the road does not interfere with the flow of traffic. In this case
P = 1− s and Q = 0. This simplifies the structure of the interaction matrices, but nonetheless
the wealth of information which can be derived from this model is quite surprising.

The evolution equations for the two distribution functions are integrated in time with an
ODE solver, until steady state is reached. The system can be written out explicitly in matrix
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form. For the sake of completeness, we write the interaction matrices in the case α = 1. Further,
let t = 1− s. We write only the non zero elements of the matrices, drawing a circle around the
elements on the j-th column and on the j-th row of each matrix. The first two matrices for the
interaction between cars are

A1 =


s© s© s© . . . s©
s©
s©
...
s©

 A2 =


t t© t . . . t
t© s© s© . . . s©

s©
...
s©

 (19)

We also write the generic matrix Aj and the last matrix An

Aj =


t t© . . . t

t© . . . t© s© . . . s©
s©
...
s©


An =

 t t
t© . . . t© t© 1©


(20)

The matrices Aj are all n × n. The matrices Cj have exactly the same structure, except that
they are m ×m. The interaction matrices Bj are n ×m. They have the same structure of the
Aj ’s, except when j = m,m+ 1, or in general j > m:

Bm =


t t©

t© . . . t© s©
s©
...
s©


Bm+1 =


t

t© . . . . . . t©


Bj =

 t© . . . . . . t©


.

(21)
Finally, the Dj are m× n. Again, they can be easily derived from the Aj . The only case which
is different is Dm,

Dm =

 t t© . . . t
t© . . . t© 1© 1© 1©

 (22)

Note the sparsity pattern of these matrices, which easily allows for a fast evaluation of he collision
term.

In [9], the analytic equilibrium solutions are computed by substituting the sum of the dis-
tribution functions with the corresponding density in the loss term. In fact, in the spatially
homogeneous case, the density is steady in time, thus it can be considered as a parameter of the
ODE’s system.

This simplification cannot be carried out when the system is integrated numerically, because of
instabilities triggered by round-off. This phenomenon is indeed quite surprising, but interesting.
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Figure 3: Solution obtained with (dashed line) and without (continuous line) the well balanced
formulation to solve the space homogeneous case. Left s = 0.3, center s = 0.5, right s = 0.7

For the sake of simplicity, we illustrate this problem for the 1-population model (4), but our
considerations apply also to the 2-population framework. We can write the 1 population model
in the two equivalent formulations:

dfj
dt

=
n∑

h,k=1
Ajhkfhfk − fj

n∑
k=1

fk, j = 1, . . . , n (23)

dfj
dt

=
n∑

h,k=1
Ajhkfhfk − ρfj , j = 1, . . . , n. (24)

However, integrating the equations numerically the two formulations are not equivalent. It is
easy to verify that (23) leads to the correct steady state solutions (we will call this formulation
"well balanced"), while (24) does not preserve stationary solutions and eventually it even leads
to a violation of mass conservation. This situation is similar to the construction of well-balanced
schemes for balance laws, where particular care is needed to preserve stationary solutions at the
discrete level, e.g. see the article of Leveque [21] and the more recent work of Noelle-Xing-Shu
[23], and references therein, where the huge literature on this issue is accounted for.

Here we illustrate the case with n = 2 velocity classes, but the same behavior can be observed
for n > 2. Let P and Q be the probability transitions introduced in the previous section, then
the formulation (23) becomes:

df1

dt
= f1 [−Pf1 + (1− 2P )f2] +Qf2

2

df2

dt
= f2 [(2P − 1)f1 −Qf2] + Pf2

1

and summing the two equations it is easy to see that d(f1 +f2)/dt ≡ 0, so that f1 +f2 is constant
in time, therefore for any given initial density ρ0 and ∀t we have that ρ(t) = f1(t) + f2(t) =
f1(0) + f2(0) = ρ0.

Conversely, the formulation (24) of the single population model can be written for the case
n = 2 as: 

df1

dt
= f1 [(1− P )f1 + 2(1− P )f2 − ρ0] +Qf2

2

df2

dt
= f2 [2Pf1 + (1−Q)f2 − ρ0] + Pf2

1

from which we obtain the evolution equation for the sum of the two distribution functions:
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Figure 4: Phase plane for the evolution of the moment of f without well balancing, s = 0.5. It is
apparent that the solution eventually will either converge to zero or become unbounded.

d

dt
(f1 + f2) = (f1 + f2)2 − ρ0 (f1 + f2) .

Here the sum f1 + f2 is not constant in time, in fact we get two equilibrium solutions which
are f1 + f2 = 0 and f1 + f2 = ρ0. Moreover, the equilibrium f1 + f2 = 0 is always stable and
attractive, while f1 + f2 = ρ0 is unconditionally unstable. This means that mass conservation
f1(t)+f2(t) = ρ0 holds ∀t if and only if there are no perturbations of the sum of the distribution
functions, i.e. if f1(t) + f2(t) is computed without roundoff. Therefore, in contrast with the
first formulation (23) which gives a well-balanced scheme, in the second formulation (24) small
perturbations of the sum f1 + f2 at the time t could affect mass conservation.

The situation is illustrated in Fig. 3, where the two equations (23) and (24) are integrated
in time, starting with initial conditions giving ρ = 0.3, ρ = 0.5 and ρ = 0.7 respectively, for a 2
velocity classes problem. In the figure, the green curve corresponds to f2 = f(v2), while the blue
curve denotes f1 = f(v1)). Recall that v1 = 0. It is easy to see that the equilibrium distribution
should be f = (0, ρ) in the two cases on the left, which have s ≤ 1

2 , while it should settle on two
constant states in the third case. It is apparent that the dashed line, which corresponds to the
solution of (23) converges to the correct solution, while the functions obtained with (24) (solid
line) are eventually driven by round off to the spurious equilibrium (0, 0).

The phase plane for the two components of the solution (f1, f2) appearing in Fig. 4 show
that any initial condition can be drawn to either (0, 0) or become unbounded, for any slight
perturbation.

5 Fundamental diagrams of 2-population models
In this section we will show the numerical results provided by the fundamental diagrams

obtained with the 2-populations kinetic model (18). As we will see, these results not only account
for the main qualitative features of the experimental data of Fig. 1, but they also provide tools
to understand the behavior of traffic at a macroscopic scale.

In all cases, the space homogeneous time evolution of the distribution functions for the two
populations are integrated numerically up to equilibrium, using the well balanced formulation
(23). Once the equilibrium distributions have been obtained, the flow and the density are found
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Figure 5: Flux-space diagram. At the top we have the flow versus the occupied space for each class
of vehicles (cars on the left, trucks on the right). At the bottom we have the relation between the
flux of each class of vehicles (cars on the left, trucks on the right) and the total occupied space s.

from the moments of the two distributions. Clearly, in the space homogeneous case, the density
is constant, and therefore it is already known from the initial conditions.

We notice that there are two quantities which can be related to the flow in the fundamental
diagram. It is possible to compute the flux as a function of s, defined in (17), to show the relation
between the flux and the fraction of occupied space. However, it is also interesting to study the
relation between the flow and the total density, defined as ρC + ρT , i.e. the flow as a function of
the total number of vehicles at a given section of the road. In fact, we expect that experimental
diagrams represent the flow-density relation.

More precisely,

• flux-space diagrams. These are diagrams of the total flux F =
∑n
j=1 vjf

e
j +

∑m
j=1 vjg

e
j ,

versus s, defined in (17).

• flux-density diagrams. These are obtained considering F as a function of the total
density ρ = ρT + ρC , that is the total number of vehicles, per unit length, irrespective or
the size of the different vehicles.

We start from flux-space diagrams. Except when explicitly indicated, all figures are obtained
setting α = η = 1 and lT = 3lC , where lC , lT are the lengths of vehicles of cars and trucks,
respectively. Initially, we assume that cars have n = 3 speed classes, with maximum speed
v3 = 100km/h, and the corresponding velocity space is VC =

{
vj = j−1

2 100
}3
j=1; while trucks

have m = 2 speed classes, with maximum speed v2 = 50km/h, thus VT = {vj = (j − 1)50}2
j=1.

Thus in the first examples VC = {0, 50, 100}, while VT = {0, 50}.
In Figure 5 we show the flux-space diagrams obtained using deterministic initial conditions:

for any given s ∈ [0, 1], we give three values of (ρC lC , ρT lT ) such that ρC lC+ρT lT = s, represent-
ing typical cases. More precisely, in the set

{
(ρC lC , ρT lT ) ∈ [0, 1]2 : ρC lC + ρT lT ≤ 1

}
we choose

the combinations in Table 1. We notice that the fundamental diagram of each class reproduces a
diagram similar to the one provided by the 1-population model (4), with two and three velocity
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Identifier Combination type Marker Expression
1) space is occupied mostly by cars Crosses ρT lT = 1

2ρC lC
2) space is occupied evenly by cars and trucks Circles ρT lT = ρC lC
3) space is occupied mostly by trucks Dots ρT lT = 2ρC lC

Table 1: Deterministic combinations used in the figures, with the corresponding markers appearing
in the plots

Figure 6: Flux-space diagrams for the total flow of vehicles. Left: for each fixed value of s ∈ [0, 1],
three deterministic initial conditions, corresponding to the combinations of Table 1. Right: three
random initial conditions, for each fixed s.

classes; for instance, the diagram of trucks is a triangle, as we showed in Figure 2 for two classes
of speed.

All plots in Fig. 5 show clearly that there is a critical fraction of occupied space, beyond
which the flow starts to decrease. On the top section of the figure, the two subplots show that the
critical space for each species changes depending on the mixture we consider. In fact, the space
occupied by a class of vehicles is only one contribution to the fraction of occupied space which
determines the transition matrices. In other words, even the dynamics of a single species depends
on the dynamics of the complete mixture. Consequently, the flow depends on the composition
of traffic.

In the bottom section of the figure, the flow of cars and trucks is shown as a function of the
total fraction of occupied space s. One can immediately note that there is a single value for
the critical space which corresponds to s = 1

2 for all three combinations. This result seems to
suggest that the transition from the free to the congested phase does not depend on how the
road is occupied but on how much of it is occupied.

The left of Fig. 6 shows the total flow as a function of s, again, for the three combinations of
Table 1, and for three random combinations, for each fixed s. Here the role of the critical value
s = 1

2 is even more apparent. This diagram does not reproduce the experimental data, because
s does not provide information on the heterogeneity of traffic.

Now we will consider flux-density diagrams, which give the flux as a function of the number
of vehicles per kilometer. In this case, the composition of traffic is taken into account, because
the same fraction of occupied space s ∈ [0, 1] can be obtained by different initial densities ρC , ρT .

For any given s ∈ [0, 1], the plots in Figure 7 are obtained by taking initial conditions ρC , ρT
such that ρC lC + ρT lT = s, where ρC and ρT are chosen according to the combinations of Table
1. The plot on the right gives the total flux as a function of the total number of vehicles. This
deterministic choice allows us to look at the transition from free to congested phase. Here, each
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Figure 7: Left, flux-density diagrams for each class of vehicles versus vehicle class density (top
row) or total density (bottom row), for the 3 deterministic combinations of Table 1. On the right,
flux-density-diagram with total density on the x-axis and total flow of vehicles on the y-axis.

Figure 8: Flux-density diagram for the complete mixture, obtained with three random initial condi-
tions ρC and ρT , for each value of s. On the left, n = 3 speed classes for cars andm = 2 speed classes
for trucks; on the right, n = 4 and m = 3. We marked with blue *-symbols the flow values obtained
with a fraction of occupied space less than 0.8, with cyan circles those provided by s ∈ [0.8, 1].

combination has a different critical value of the density for the phase transition, which depends
on the ratio of the different species within the mixture. But we know from Fig. 6 that each of
these critical values of the density will correspond to the single value s = 1

2 . Note that the plot
on the right begins to resemble the experimental fundamental diagrams of Fig. 1.

If we sample three random values of ρC , ρT for any given s ∈ [0, 1], we obtain the flux-density
diagram in Figure 8, and we note that now the main features of the phenomena discussed in
Section 2 are captured: in particular, at low densities we have a linear increase of the flow with
small dispersion; in contrast, in the congested phase, we have a large scattering of the flow
values following the frequent interactions between fast and slow vehicles. In this figure, and in
the following two, we indicated with cyan circles the values obtained for s ∈ [0.8, 1], with blue
crosses the data corresponding to s ∈ [0, 0.8], which are the most likely to occur in practice, since
even in traffic jams, traffic arrives seldom at a state of maximum density and complete stop, as
shown also in Fig. 1, where a residual movement always appears.

Since the flow values depend on how the mixture is composed, we can state that the bulk
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Figure 9: Flux-density diagram (top row) and average speed of the whole flow versus total density
(bottom row) : on the left, the two classes of vehicles have the same lengths l = 4mt. and they
differ in maximum velocity, in fact VC = [0, 50, 80, 100] and VT = [0, 50, 80]; on the right, the two
classes of vehicles differ in length, i.e. lC = 4mt. lT = 12mt., but VC = VT . Blue *: values with
s ∈ [0.8, 1], cyan circles s ∈ [0.8, 1].

characteristics of traffic can be predicted deterministically, when the composition of traffic is
known. In fact, if we give one pair (ρC , ρT ) of initial values, we can compute exactly what the
resulting flux will be. In this interpretation, the scattering of data in the congested phase is not
due to the impredictability of the drivers’ behavior, but it might be due to a lack of knowledge
on the composition of traffic.

This affirmation can be articulated more precisely, by considering the 2-populations model
(18) in which vehicles differ by only one characteristic. The plot on the left of Figure 9 shows
the flux-density diagram when the two classes of vehicles have the same length, but they differ
in their maximum speed: VC = [0, 50, 80, 100] and VT = [0, 50, 80]. We can interpret this case as
thinking that the vehicles are now identical, but we are considering two different types of driver,
according to the maximum speed they are willing to settle on when the road is free. The plot on
the right of Figure 9 is obtained by considering vehicle classes which have different lengths but
the same microscopic speeds.

These results seem to suggest that, in order to describe the scattering of the data, the presence
in the flow of a mixture of vehicles with different lengths accounts for the scattering of the data in
the congested phase, while the presence of drivers with different driving habits accounts for the
(small) scattering of data in the free flow phase. Note that this conclusion is indeed consistent
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Figure 10: Average speed versus space occupied for the two populations: cars (blue) and trucks
(red): on the left, the two classes of vehicles have the same lengths l = 4mt, with different velocity
spaces VC = [0, 50, 80, 100] and VT = [0, 50, 80]; on the right, the two classes of vehicles differ in
length, i.e. lC = 4mt. lT = 12mt., but VC = VT . Blue *: values with s ∈ [0.8, 1], cyan circles
s ∈ [0.8, 1].

with every day driving experiences: in the free flow phase, people drive at different speeds, while
in the congested phase, everybody travels with the same speed, which decreases steadily as the
congestion of the road increases.

The plots in Fig. 10 show the behavior of the average speed of each of the two populations,
as a function of the occupied space. On the left, the vehicles have the same length, but VC =
[0, 50, 80, 100] (blue data) and VT = [0, 50, 80] (red markers). The slow population is not affected
by the presence of the fast cars, but the fast cars do interact with the slow population, until the
road becomes congested, and both types of drivers slow down, keeping the same average speed.
Again, this represents a familiar phenomenon. On the right, we find the average speed of each
population, in the case in which the velocity spaces are the same, but the lengths of the vehicles
are different. In this case, the average speed is the same for both types of drivers, and depends
only on the fraction of occupied space.

Finally, we emphasize that the kinetic approach seems to be essential in order to describe the
sharp transition phase we observe. We draw flux-density diagrams for the complete mixture in
the 2-population macroscopic model of [5], summarized by eq. (11), obtaining the plot in Fig.
11. Here, we can easily note that there is no trace of the sharp phase transition which appeared
in the kinetic model, and the scattering of the data is very high also at low denisties.

6 Conclusions and perspectives
We have introduced a kinetic model for vehicular traffic flow with a new and more detailed

structure which accounts for the heterogeneous composition of the flow of vehicles. Our approach
differs from standard kinetic models in that we consider two distribution functions describing
two classes of objects with different physical features, e.g. the vehicle typical length and its
maximum possible speed.

As in [8], the model is built by assuming a discrete velocity space and the possible interactions
between vehicles are weighted by suitable transition probabilities. We show that our model
satisfies an indifferentiability principle, which makes the 2-population case consistent with the
original single population model, when the particles composing the mixture share the same
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Figure 11: Flux-density diagram for the macroscopic model (11) for the complete mixture, obtained
giving three random initial conditions ρ1 and ρ2, for each given value of s. Blue *: values with
s ∈ [0.8, 1], cyan circles s ∈ [0.8, 1].

physical properties. This property, enforced in [1], is not trivial, and several kinetic models for
gas mixtures possess it only at equilibrium, [13, 15].

We compute the equilibria of the system, and we use the equilibrium distribution to derive the
fundamental diagrams of the proposed model. Even with a small number of microscopic speeds,
the resulting fundamental diagrams are endowed with a structure resembling experimental data.
These are characterised by a marked phase transition, as described also in Section 2 when
discussing experimental data: at low densities (free flow) the flow can be linearly approximated
with a small standard deviation, while beyond a critical state, the flow decreases, and the data
become widely scattered (congested phase).

Several authors have dealt with this problem, see [9] or [14] accounting for this phenomenon
for instance with the uncertainty in the driver’s behavior modeled with the standard deviation
of the distribution function. However, in this case the single population model provides a zero
standard deviation in the free phase of traffic. In our case, we recover a sharp phase transition,
which seems to come naturally from a kinetic modelling, but we also obtained the scattered
behavior as a consequence of the fact that a given road occupancy can be obtained with different
compositions of the mixture. In other words, if the flux is given as a function of the number of
vehicles crossing a section in a unit of time, the scattering may be due to the presence of different
type of vehicles. On the other hand, in the congested phase, the average speed of the drivers
seem to depend only on the degree of congestion of the road.

From the point of view of applications, our results can be used to direct the strategies of data
collection in experimental research on traffic flow. In fact, other types of fundamental diagrams
can be studied, relating the number of vehicles not only to the flow, as is currently done. For
example, with a multi-population model, it is possible to study the volume of goods transported
by trucks in a current of cars, or the number of passengers carried by a flow composed of cars
and buses.

Finally, we also wish to note that the model is very simple: the complexity of the real flow
is clustered in the characteristics of only two distinct populations, with a very small number
of microscopic velocities. Thus, from a computational point of view, this construction is not
significantly more demanding than a macroscopic model.

We can prove that the model introduced in this work is well posed, in the sense that the dis-
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tribution functions remain positive and bounded by their initial mass. Further, it is also possible
to prove that the equilibria are uniquely defined by the initial mass of the two distributions, and,
in some simplified cases, they can be explicitly computed. These results will be gathered in a
forthcoming paper [28]. Further study will be dedicated to the extension of these models to road
networks and multilane highways.
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