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Abstract

A novel model and a new numerical method are presented for the
transport of solid particles in rarefied flows. The model is based on a
Vlasov type equation where the particles are represented by a distribution
function. The rarefied flow is described by a BGK or ES-BGK approach.
An accurate method is proposed to solve the particle transport equation
in a fully Eulerian framework. Validations in 2D with respect to analytical
solutions and a Lagrangian method are presented. The numerical model
is then used to explain a peculiar particle dynamics observed in satellite
thrusters.

1 Introduction

In many complex applications, fluid flows can contain solid particles, bubbles
or droplets. These applications go from combustion in engines [1] to transport
of particle pollutants in atmosphere or rivers. Numerical methods have been
developed in the 70s and 80s to deal with this problem by coupling a macroscopic
model for the fluid flow with a transport equation with possible source terms
for the second phase usually called spray [2], [3], [4]. The simulation of particle
transport in rarefied flows is also of interest but has been less addressed in
the literature. In [5] the author is interested in the transport of dust particles
during a loss-of-vacuum accident in ITER. Other models have been developed
in [6] for particle transport in rarefied flows. We can also cite the work of Ferrari
and Pareschi [7] where the authors deal with diffusion of impurities in granular
flows. Here, particle transport models are used in order to explain the peculiar
phenomenon of contamination of optical devices carried by satellites due to
incompletely burned particles coming from thrusters. As it has been noticed
by Dettleff et al. [21], the firing of satellite thrusters in rarefied environment
pollutes (or damages) a collar located in front of the nozzle (see figure 12 in
[21]). It means that incompletely burnt particles are ejected from the nozzle
and turn back towards the collar. On a real disposal, this collar represents
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fuelOptical devices

Backflow

Figure 1: Backflow phenomena and position of optical devices around the satel-
lite thruster.

mirrors, lenses or solar panel that becomes unusable. Thus, the comprehension
of this particular phenomenon is of interest for the aerospace industry to protect
optical devices from dust. Up to our knowledge, it has not yet been dealt within
the literature.

For flows outside the planetary atmosphere, the continuum model is no
longer valid. The molecular nature of the fluid becomes predominant.

In this case, the dynamics of each gas molecules has to be considered and a
statistical approach is more suitable. In this sense, the Boltzmann equation [8]
is used:

∂f

∂t
(x, ξ, t) + ξ · ∇xf(x, ξ, t) = Q(f, f) (1)

where f is the mass density distribution function of the gas depending on ve-
locity, space and time. x ∈ RD, x = (x, y, z) in 3D, D being the number of
space dimensions, ξ ∈ Rd is the microscopic velocity, ξ = (ξu, ξv, ξw) in 3D, d
being the number of energy degrees of freedom), t is the time and the initial
condition is f0 = f(x, ξ, t = 0). Q is a bilinear operator called collision term
that represents the interaction between the gas particles. The parameter that
dictates whether or not the flow is rarefied is the Knudsen number Kn. It is the
ratio of the mean free path between the particles λ and the characteristic length
of the problem L. Different methods exist to solve the Boltzmann equation such
as DSMC [9] or deterministic schemes. The BGK model [10] and the ES-BGK
model [11] are approximation of the Boltzmann equation viable for a large range
of Knudsen numbers (< 1).

In the following these two models are used for the simulation of the rarefied
flow. As they are costly to compute, a Cartesian grid is used to take advantage
of its adequacy for massive parallel computation. It is also very convenient for
the simulation of moving bodies since no remeshing step is required.

Now that the model for the gas flow is determined, a model for the particle
dynamic is added to the governing equations, to simulate the contamination
around satellite thrusters by incompletely burned particles, with an interaction
term between the gas flow and the particles.

Even if we consider that the solid particle flow (bubble, incompletely burned
particles,...) is diluted, computing the motion of each solid particles would
be computationally prohibitive. A statistical approach is then more suitable.
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Hence, the solid particle flow is described by a Vlasov type equation:

dfp
dt

+ ξ′ · ∇xfp +∇ξ′Ffp = 0 (2)

where fp is the mass density distribution function of the solid particles de-
pending on the space position x ∈ RD, the microscopic velocity ξ′ ∈ Rd
(ξ′ = (ξ′u, ξ

′
v, ξ
′
w) in 3D), the time t, with initial condition fp0 = fp(x, ξ

′, t = 0).
F is the total force acting on the solid particles. This equation is usually solved
with a particle method to avoid computations where there are no particles.
Hence, ideally, computations are performed only where it is needed. Particle
methods were initially introduced to simulate simple flows [12]. Recently, we
distinguish three main methods to solve particle motion all based on Lagrangian
or semi-Lagrangian schemes. Particle-In-Cell method [13] is the most popular
to solve the Vlasov equation. This method uses a grid and particles. The parti-
cles are moved according to the equation and the Eulerian field is recovered by
representing each particle with an interpolation kernel. However, although the
method is considered robust and a small number of particles yields satisfactory
results, it generates significant numerical noise that could pollute the solution.
Moreover, storing particles and a grid increases the memory requirement and
could be prohibitive with a kinetic model.

Another kind of particle method also considers regularization of the particles
with an interpolation kernel. The pioneering idea has been developed almost
simultaneously by Gingold and Monaghan in [14] and by Lucy in [15]. They are
called Smooth Particle Hydrodynamic (SPH) methods. A more recent review
is found in [16]. Instead of PIC method, no grids are considered and usually,
the interpolation kernels used are more accurate. They are very efficient for
front tracking and free surface motion [17]. However, recovering macroscopic
quantities induces errors due to interpolation kernels. In addition, the use of
high order interpolation kernels could lead to negative values of the distribution
function which are non physical.

Finally, we mention here a class of particle methods for Euler or Navier-
Stokes equations. These methods are based on a vorticity formulation of the
equation [18] and they are particularly effective for incompressible flows. The
drawback of these methods is that singularities in the flow can lead to non
accurate or non physical solutions [19],[18].

Remeshing techniques have been developed for vortex methods to avoid that
singular solutions occur when particles overlap or get too close [20] by redis-
tributing them on a grid. An additional constraint in our case, is the constraint
on the preservation of positivity of the distribution function (as in PIC meth-
ods). We also want the function to remain on a Cartesian mesh in phase space.
This allows also an easy integration of the distribution function to recover the
number and density of the particles.

In the following, after a brief presentation of the kinetic models used, the
particle dynamics model based on Vlasov equation is introduced. We then
present a classical approach based on a fully Lagrangian scheme and a new
method based on a remeshing step to solve this model. Two dimensional test
cases are presented to validate the method. We finally investigate a realistic test
case of a nozzle plume ejecting particles (presented previously) which represents
the main motivation of this work.
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2 Governing Equations

In this section the two kinetic models used to simulate rarefied flows are briefly
presented for mono-atomic and mono-species gases. Then, we detail the model
describing the particle transport on which we will focus later for nozzle plumes.

2.1 BGK and ES-BGK models

We consider two kinetic models to simulate rarefied gas flows. For moderate
Knudsen numbers (< 10−2), the BGK model [10] is a good compromise between
accuracy and computational cost. In dimensionless form, the BGK equation
reads as:

∂f

∂t
+ ξ · ∇xf =

1

τ

(
Mf − f

)
(3)

with M the equilibrium distribution function in dimensionless form computed
from macroscopic quantities. It is expressed as:

Mf (x, ξ, t) =
ρ(x, t)

(2πT (x, t))3/2
exp
(
− |ξ −U(x, t)|2

2T (x, t)

)
τ is the relaxation time that depends on the local variables, the reference

viscosity µ0 at the reference temperature T0, the reference density ρ0, the specific
gas constant R and the characteristic length of the problem L:

1

τ
=

√
RT0ρ0L

µ0
ρT 1−δ =

1

Kn∞
ρT 1−δ (4)

where δ is the exponent of the viscosity law of the gas. Kn∞ is the Knudsen
number in reference conditions.

The macroscopic quantities (ρ the density, U the velocity and E the total
energy) characterizing the flow can be recovered from the moments of f :

ρ =

∫
R3

fdξ

ρU =

∫
R3

ξfdξ

E =

∫
R3

|ξ|2

2
fdξ

(5)

One of the main drawbacks of this model is that the transport coefficients
are not correct. In particular, the Chapmann-Enskog expansion for the BGK
model gives a Prandtl number of 1 instead of 2/3 for a monoatomic gas. A
popular model that fixes this problem is the ES-BGK model [11] which corrects
the stress tensor to fix the Prandtl number [22]. It is quite similar to the BGK
model, only the equilibrium function differs:

∂f

∂t
+ ξ · ∇xf =

1

τ

(
Gf − f

)
(6)

The equilibrium distribution function is a Gaussian calculated as follows:

Gf (x, ξ, t) =
ρ(x, t)√

det(2πT (x, t)))
exp
(
− (ξ −U(x, t))T −1(ξ −U(x, t))T

2

)
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As for the BGK model, density, velocity and energy can be recovered from
eq.(5). In the case of the ES-BGK model, we also need to get the pressure
tensor Θ and heat flux q: 

ρΘ =

∫
R3

c⊗ cfdξ

q =

∫
R3

1

2
c|c|2fdξ

(7)

where c = ξ−U is the peculiar velocity. The symmetric tensor T can be defined
as:

T (x, t) =
1

Pr
T (x, t)I + (1− 1

Pr
)Θ(x, t)

where I is the identity matrix. Then we can prove that:

ρT (x, t) =

∫
R3

c⊗ cGdξ

The relaxation time for the ES-BGK model can be expressed similarly to
the one of the BGK model:

1

τ
=

√
RT0ρ0L

µ0
PrρT 1−δ =

Pr

Kn∞
ρT 1−δ (8)

with Pr =
µcp
κ the Prandtl number, µ the viscosity, cp the specific heat and κ

the thermal conductivity. In the following, we will always consider δ = 1 for
both models.

2.2 Particle transport

The idea is to introduce a model representing a spray of particles in the diluted
gas flow. Let’s consider a set of particles represented by the distribution function
fp with microscopic velocities ξ′ passively transported by the fluid. We assume
that the flow of these particles is so diluted that they do not collide between
each other. Each particle moves with its own velocity. This velocity is modified
by the drag force due to the gas flow. The particle flow can be then modelled
by the Vlasov type equation:

∂fp
∂t

+∇x · ξ′fp +∇ξ′ · afp = 0 (9)

The acceleration is due to the drag force [23]. Here we choose a = D(Uf (x)−
ξ′). In [24], an analogy to granular flows validated experimentally this approach.
We do not consider other forces acting on the particles, such as gravity for
example. Uf (x) is the velocity field given by the solution of the kinetic model
(BGK or ES-BGK model) for the gas:

Uf (x) =

∫
R3 ξfdξ∫
R3 fdξ

The number of particles Np in a domain Ω can be easily recovered:

Np =

∫
Ω

ρpdx =

∫
Ω

∫
R3

fpdξ
′dx (10)
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where ρp is the particle density.
Note that in this model we disregard particle collisions. We also suppose

that the particle flow is so diluted that it has negligible impact on the gas flow.
Thus, no feedback on the kinetic equation for the gas is present in this model.

3 Numerical schemes

3.1 Discretization of the kinetic models

This section is devoted to the numerical schemes used to solve both kinetic
models. The space discretization is first presented in the case of the BGK
model. Then, we will introduce the time discretization. More details can be
found in [25] since we are extending that scheme to the present case.

3.1.1 Space discretization

The space discretization is performed on a Cartesian grid. On this type of grid,
numerical schemes are simple and can be easily implemented, with massive
parallel computation which is convenient as kinetic models are computationally
heavy due to the large number of independent variables. The discretization is
the same for both kinetic models presented in section 2.1 and is presented in
the case of the BGK model in 2D. Let us consider a domain Ωx:

Ωx =
⋃

i=1..n
j=1..m

Ωi,jx

where Ωi,jx represents the cell (i, j) of the computational domain and such that
(xi, yj) are the coordinates of the center of the cell (i, j) and (xi+1/2, yj) are the
coordinates of the center of the interface between cells (i, j) and (i+ 1, j). We
have also that ∆x = xi+1/2,j − xi−1/2,j = ∆y = yi,j+1/2 − yi,j−1/2.

On a space cell Ωi,jx , eq.(3) is integrated with a finite volume method:

∂fi,j
∂t

+ ξ ·
∫
∂Ωi,j

x

fn∂Ωi,j
x
dσ =

1

τi,j
(Mfi,j − fi,j) (11)

where fi,j =
1

|Ωi,jx |
∫

Ωi,j
x
fdxdy and Mfi,j =

1

|Ωi,jx |
∫

Ωi,j
x
Mfdxdy.

The scheme can be simply written as:

∂fi,j
∂t

+
1

∆x
(Fi+ 1

2 ,j
−Fi− 1

2 ,j
+ Fi,j+ 1

2
−Fi,j− 1

2
) =

1

τi,j
(Mfi,j − fi,j) (12)

The flux Fi+ 1
2 ,j

is now expressed as (with a similar notation for the other fluxes):

Fi+ 1
2 ,j

= max(0, ξu)fi,j + min(0, ξu)fi+1,j (13)

where ξu is the first component of the microscopic velocity and has to be replaced
by ξv, the second component of the microscopic velocity, to compute the fluxes
along the second direction y. This is a first order scheme in space but can be
easily extended to second order with slope reconstruction and MinMod limiters
for example.
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3.1.2 Time discretization

The time discretization can be performed for all terms explicitly. But in this
case, the time step will be determined by the space discretization (∆x), the
maximum velocity of the velocity grid and the relaxation time τ . For small
Knudsen numbers, the relaxation part becomes very stiff (τ very small) and im-
poses a very strong restriction on the time step. Asher et al. [26] first presented
IMEX schemes to cure this issue. Here, the IMEX scheme [27], [28] is chosen.
The relaxation term is treated implicitly while the convective part is non stiff
but highly non linear which means that an explicit scheme is more efficient.

The time integration for a ν-stages IMEX Runge-Kutta scheme applied to
the BGK model reads as follows:

fn+1
i,j = fni,j −∆t

ν∑
k=1

ω̃kξ∇xf
(k)
i,j +

∆t

τi,j

ν∑
k=1

ωk(M
(k)
fi,j
− f (k)

i,j )

f
(k)
i,j = fni,j −∆t

k−1∑
l=1

Ãk,lξ∇xf
(l)
i,j +

∆t

τi,j

k∑
l=1

Ak,l(M
(l)
fi,j
− f (l)

i,j )

f
(1)
i,j = fni,j +

∆t

τi,j
A1,1(M

(1)
fi,j
− f (1)

i,j )

(14)

where A and Ã are ν × ν matrices, with Ãi,s = 0 if s ≥ i and Ai,s = 0 if s > i.
ω and ω̃ are vectors of size ν. These coefficients are derived from a double
Butcher’s tableaux (see [29] for the coefficient values):

Ã
ω̃T

A
ωT

All the quantities until stage k − 1 are known so the equation for stage k
becomes:

f
(k)
i,j =

τ

Ak,k∆t+ τ

(
fni,j −∆t

k−1∑
l=1

Ãk,lξ∇xf
(l)
i,j +

∆t

τ

k−1∑
l=1

Ak,l(M
(l)
fi,j
− f (l)

i,j )+

Ak,k∆t

τ
M

(k)
fi,j

)
(15)

We are interested in first and second order schemes.

0
1

1
1

Second-order scheme:

0 0 0
0 0 0
0 1 0
0 1

2
1
2

1
2

0 0
-1
2

1
2

0
0 1

2
1
2

0 1
2

1
2
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We need to distinguish the case of the BGK model and the case of ES-BGK

model. In the first case, f
(k)
i,j can be computed explicitly since all the right hand

side is known. Indeed, since the moments of the relaxation term are zero, the
macroscopic variables at stage k can be computed integrating in velocity space

the second equation of (14), see [29]. Hence, the Maxwellian M
(k)
fi,j

is known.
The case of the ES-BGK model is slightly more complicated. Computing

the distribution function at stage k requires the Gaussian distribution G(k)
fi,j

.

For the ES-BGK model, the moments of the Gaussian G(k)
fi,j

and the distribution
function are not strictly the same. In particular, the third moment does not
give the same tensor. The trick used for the BGK model cannot be applied for
the ES-BGK model. However, Filbet et al. [30], Alaia [31] showed that the
IMEX scheme can still be applied to the ES-BGK model. If we consider the

second equation of (14), the three first moments ρ
(k)
i,j , U

(k)
i,j , T

(k)
i,j can still be

obtained explicitly. But to define G(k)
fi,j

, one also needs Θ
(k)
i,j . Let us define the

tensor Σ
(k)
i,j :

Σ
(k)
i,j =

∫
Ωξ

ξ ⊗ ξf
(k)
i,j dξ = ρ

(k)
i,j (Θ

(k)
i,j + U

(k)
i,j ⊗U

(k)
i,j ) (16)

If (15) in the case of the ES-BGK model is multiplied by ξ⊗ξ and integrated
we get:

Σ
(k)
i,j =

τi,jPr

Ak,k∆t+ τi,jPr

(
Σni,j −∆t

k−1∑
l=1

∫
Ωξ

ξ ⊗ ξ
[
Ãk,lξ · ∇xf

(l)
i,j +

1

τi,j
Ak,l(G(l)

fi,j
− f (l)

i,j )
]
dξ

+
Ak,k∆t

τi,jPr +Ak,k∆t
ρ

(k)
i,j (T

(k)
i,j I + U

(k)
i,j ⊗U

(k)
i,j )
)

Σ
(k)
i,j can be then calculated explicitly and Θ

(k)
i,j is deduced. Finally, G(k)

fi,j
can

be computed and so f
(k)
i,j .

3.2 Resolution of the particle transport

In this section, two methods to solve the Vlasov equation for the particle trans-
port are presented. The first way to treat the transport of the particles is
fully Lagrangian. In a second part we present an other method consisting in
remapping the particles on a fixed mesh.

3.2.1 Lagrangian scheme

The first approach considers a Lagrangian scheme to solve (9). Each particle
has its own trajectory, depends on the other particles and is considered as a
dirac:

fp(x, ξ
′, t) =

∑
p

mpδx(x− xp(t))δξ′(ξ′ − ξ′p(t)) (17)

where mp is the mass of particle p and δx (respectively δξ′) is the dirac function
in the physical space (respectively the velocity space).
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This method is particularly efficient for passive transport and is easily par-
allelizable. A splitting is performed to solve first the transport in physical space
and then the transport in velocity space. Eq.(9) becomes:

∂fp
∂t

+∇x · ξ′fp = 0

∂fp
∂t

+∇ξ′ · afp = 0

(18)

These equations are solved by tracking the position of the set of particles
initially defined by the distribution function in phase space:

fp(x, ξ
′, t) = fp(x0, ξ

′
0, t = 0)

dx

dt
= ξ′

dξ′

dt
= D(Uf (x)− ξ′)

(19a)

(19b)

(19c)

If the velocity Uf (x) is not known analytically (which is usually the case if it
comes from the resolution of another equation), it has to be interpolated at the
particle position.

One drawback of this model is that no information is exchanged between
the particles. Then particles can overlap and lead to a degradation of accuracy
or non-physical phenomena [32]. Moreover, the structure of the grid is lost and
it is almost impossible to imagine a feedback from the particles to the kinetic
models. Indeed, this feedback would be imposed through the kinetic equation
in each cell. A grid structure (identical as in the kinetic equation if possible) is
then required for the particle transport to recover the Eulerian field.

In the following we propose another technique based on methods widely used
in fluid dynamics.

3.3 A particle method with remeshing

The underlying idea of the particle method using a remeshing step is to keep all
flows information on the initial mesh, in our case, the Cartesian grid on which the
kinetic model for the gas is solved. The scheme is the following. A Lagrangian
step is performed at each time step. Then the particles are redistributed in
phase space, in each Cartesian cell, according to an interpolation kernel. New
equivalent particles are created in the center of each cell while the old ones are
suppressed. Hence, at each time step, all data is known in the initial mesh, in
the Cartesian cells. In other word, at the beginning of each time step, xi = xp
and ξ′i = ξ′p where i is the cell index and p denotes the particle itself. To avoid
a remeshing step in 6D (3D+3D) a splitting is performed between physical space
and velocity space. Particles are first transported in physical space at velocity
ξ′ and remeshed in the same space. Then, the transport in velocity space is
realized according to the acceleration term. Finally, particles are redistributed
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in velocity space. At each time step, the equations to solve are:

dxp
dt

= ξ′i

f̃p(xi, ξ
′
i) = Rx(fnp (xp, ξ

′
i))

dξ′p
dt

= ap

fn+1
p (xi, ξ

′
i) = Rξ′(f̃p(xi, ξ

′
p))

(20)

where Rx and Rξ′ are respectively the remeshing operator in space and in
velocity.

xi−1 xi xi+1

xpαp βp

(a) Case ξ′u > 0

xi−1 xi xi+1

xpαp βp

(b) Case ξ′u < 0

Figure 2: 1D configuration after a transport step in physical space (same be-
haviour in velocity space with ξ′u = au)

Figure 2 shows the two different cases for a 1D configuration of the transport
of a particle p initially in x = xi. The particle moves to the position x = xp
and is remeshed on the two closest grid points (in the case of a two point
interpolation kernel). αp and βp are the weights associated to these two grid
points for the remeshing of the particle p.

For the remeshing step, different kernels are present in the literature pre-
serving the moments of the distribution function up to a certain order (see for
example [33]). However, in our case positivity and diffusivity properties of the
kernel are a real issue. In particular, we need the distribution function of the
particles to stay positive after the remeshing step. Moreover, the remeshing
stencil has to be as compact as possible to avoid the spreading of the particles
due to a wide stencil. Finally, if the position of the particle does not change,
the weight associated to the collocated grid point has to be one such that it
does not induce numerical diffusion. The best compromise is found with the Λ1

kernel:

Λ1 =

{
α = 1− y
β = y

(21)

where y is defined from figure 2 as:
y =

xp − xi
∆x

if ξ′u > 0

y =
xp − xi−1

∆x
if ξ′u ≤ 0

Then, the distribution function after remeshing (still in a general 1D case)
is:

fpi =
∑
n

ωnifpn (22)

where fpi is the particle distribution function after the remeshing step in x = xi,
fpn is the particle distribution function after the transport in x = xn and ωni
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are the remeshing weights in x = xi for the particle n. They are defined as:

ωni =

{
α if xp > xi
β if xp < xi

One can note that the remeshing preserves the positivity since the weights
ωn, defined from α and β, are always positives.

In 2D, the weights are computed with a tensor product. If α1 and α2 (re-
spectively β1 and β2) are the 1D weights (as in (21)) in the first direction
(respectively in the second direction), the weights associated to the 2×2 stencil
(see Figure 3) are computed as:

ωn
i,j = αiβj (23)

xi,j

ωn
i,j

xi,j+1

ωn
i,j+1

xi+1,j

ωn
i+1,j

xi+1,j+1

ωn
i+1,j+1

xp

Figure 3: Stencil with interpolation weights associated to the cells for the
remeshing of a particle in xp.

The particle distribution function in cell (i, j) is then computed similarly to
the 1D case as:

fpi,j =
∑
n

ωn
i,jfpn (24)

3.4 Time integration

In both methods, two Lagrangian steps are performed. The first one is a trans-
port in physical space:

dxp
dt

= ξ′ (25)

The integration is done with a first order Euler scheme.
The second equation is:

dξ′

dt
= a = D(Uf (x)− ξ′) (26)

Here the acceleration depends on the particle velocity. The solution would ben-
efit from a high order integration scheme. But since the splitting is of first order
and the first equation is solved with a first order Euler scheme, we use, here
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also, a first order Euler scheme.

One can note that in equation (25) ξ′ depends on the position of the particle
through (26) and on the velocity field Uf (x). In this case, a higher order
splitting method (for example a Strang splitting, [34]) can be used for eq.(25).
In the case of the remeshing method, a higher order splitting would imply several
remeshing steps and a dramatic increase of the computational time required.

4 Numerical results

In the first three test cases, the particle methods are tested with a given velocity
field, where the analytical solution can be computed. The domain is [-5,5]×[-
5,5] in space and velocity. These test cases are used to validate the numerical
methods (Lagrangian scheme and remeshing).

The last example is the passive transport of particles in a nozzle plume. The
velocity field is given from the resolution of a kinetic model. In all test cases,
the mass of the particles is constant.

4.1 Test 1: Zero velocity field

The domain is [-5,5]×[-5,5] in space and velocity. We consider a zero velocity
field, constant in time. All the particles are initially concentrated in (0,0) and
have a gaussian distribution in velocity space. The analytical solution can be
easily computed in this case for a given mesh in space and velocity:

x =
ξ′u(t = 0)

D
(1− exp(−Dt))

y =
ξ′v(t = 0)

D
(1− exp(−Dt))

(27)

The larger is the drag coefficientD, the closer to the initial condition the solution
is.

The steady state solution for different drag coefficients is shown in Figure 4
and 5.

The solution is first computed with the Lagrangian method. At steady
state, in each cell, the density of particles at the cell center is interpolated.
The error with respect to the analytical solution does not depend on the space
discretization. For the numerical test, the space grid is kept constant (51×51)
and the velocity grid is refined from 11×11 to 401×401.

For the remeshing method, the comparison is also done on the number of
particles in each cell. The initial distribution function is given by:

fp(0, ξ
′, t = 0) =

100

2π|Ωx0 |
exp(−|ξ

′|2

2
)

where Ωx0 is the cell where all the particles are initially situated. In this case,
the center of this cell is (x0, y0) = (0, 0). The total number of particles initially
in this cell (and therefore in the field) is Np0 =

∫
Ωx0

∫
R2 fp(0, ξ

′, 0)dξ′dx =

100. The analytical solution can be easily computed in this case with the error

12



(a) D=0.5 (b) D=1

Figure 4: Density distribution at steady state for D=0.5,1

(a) D=5 (b) D=10

Figure 5: Density distribution at steady state for D=5,10

function. In a cell Ωi,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]:

Ni,j =

∫
Ωi,j

∫
R2

fp(x, ξ
′, t)dξ′dx (28)

The analytical solution of the problem gives the number of particles in a position
x and it is determined by the initial microscopic velocity corresponding to that
position. In other words, for a set of particles to be in x = (x, y) at steady state
with U = 0, one needs (see (27)):{

ξ′u(t = 0) = Dx
ξ′v(t = 0) = Dy

Then,

Ni,j = D2|Ωx0
|
∫ Dxi+1/2

Dxi−1/2

∫ Dyj+1/2

Dyj−1/2

fp(0, ξ
′, 0)dξ′ (29)

By introducing the error function erf in the previous equation:

Ni,j = 25D2
(

erf(Dxi+1/2)−erf(Dxi−1/2)
)(

erf(Dyj+1/2)−erf(Dyj−1/2)
)

(30)
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Figure 6: Test 1: Errors for the Lagrangian scheme and the remeshing method
with respect to the analytical solution (D = 1).

24.6

10

20

0

(a) Grid 51×51 in space, 41×41 in velocity.
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15.9

(b) Grid 51×51 in space, 51×51 in velocity.

Figure 7: Test 1: Steady state solution by the Lagrangian method with two
different velocity grids (D = 1).

The simulations are run on different grids going from 11×11 to 151×151 in space
and velocity.

The error with respect to the number of velocity grid points in each direction
is shown in figure 6a in L1 and L∞ norm for the Lagrangian method while the
error of the remeshing method is shown on figure 6b.

This first test shows that both methods converge towards the analytical
solution but with different behaviour. The Lagrangian method convergence is
noisier (see figure 7a). This is due to the way in which the local number of
particles is calculated. In each cell the number of particles is interpolated to
find the value at the cell center. Then, the results closely depends on how much
information is present in the cell. However, the problem tends to disappear as
the number of velocity grid points increases, in particular, when ∆x ' ∆ξ (see
figure 7b). It explains why the error decreases suddenly around 51 points in each
direction in velocity space. This is a very well known problem of Lagrangian
method when one wants to recover an Eulerian field and can be prohibitive in
our case if a fine grid is used in space.
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Figure 8: Test 2: L1, L2 and L∞ norm of the error.

For the remeshing method, the convergence results are more stable. This
method gives a second order smooth convergence. At steady state, only the
phase space error is observed. The transport in physical space and velocity
space is done exactly so the error of the numerical solution is only due to the
remeshing process. A second order interpolation kernel is used to redistribute
the particles. As expected, the convergence rates observed on figure 6b show a
second order convergence. In contrast with the Lagrangian method, the solution
is not noisy even for large ∆ξ since the particles are redistributed at each time
step. However, the stencil being compact (2 points in each directions), for large
∆ξ the particles are remeshed in priority along the grid axis and a bias along
the coordinate axis may appear.

4.2 Test 2: Translational velocity field

The same test as Test 1 is performed with a constant velocity field that is not
zero. In particular, we consider Uf (x) = (1, 1). The solutions are compared at
t = 2 for D = 1.

As expected, the same conclusions hold for this velocity field (see figure 8).
The remeshing method gives a second order convergence. Even if the splitting
is first order, it does not impact the accuracy of the solution since the equation
for the acceleration is at steady state and the velocity field is constant. Then,
the integration in time is exact and only the error in space is observed.

4.3 Test 3: Rotating velocity field

The data are the same as in test 1 except that a non zero velocity field is
imposed: Uf (x) = (−y, x) with D = 5. The trajectory of a single particle is
computed with the Lagrangian scheme. The analytical solution is computed
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(b) Particle trajectory.

Figure 9: Test 3: Particle position and velocity over time solved with the La-
grangian scheme. Analytical solution in solid line. Particle initially in (0,0)
with (u,v)=(0.2,0.2).

solving the system of four first order differential equations:

dx

dt
= ξ′u

dy

dt
= ξ′v

dξ′u
dt

= −D(y + ξ′u)

dξ′v
dt

= D(x− ξ′v)

(31)

This velocity field is not constant in space any more. The solution computed
with the Lagrangian method follows correctly the analytical trajectory for a
particle initially in (0,0) with initial velocity (0.2,0.2) (see figure 9) and also for
a particle initially in (1,0) with initial velocity (0,0) (see figure 10).

We also consider a cluster of particles that are initially in the cell contain-
ing the point (1,0). For these particles, the problem is solved with both the
Lagrangian method and the remeshing method, and compared to the analytical
solution at t = 5. Figures 11 shows the particle density computed with the
remeshing method for a grid 121×121 in space and velocity. At t = 5, one can
observe that the position of non zero particle density is not clearly concentrated
in a point. This is due to the initial particle distribution that allows a diffusion
of the particles in the neighbouring cell before their velocities converge towards
the velocity field. This diffusion is also biased by the interpolation kernel used
during the remeshing step and tends to spread the particles even when their
microscopic velocities have converged to the velocity field.

Figure 12 shows the error with respect to the analytical solution for the
remeshing method. Also in this case, a second order convergence is observed.

Now that the two methods have been validated on several test cases where
the analytical solution was known, we focus on a test case where the velocity
field is computed from the kinetic model.
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Figure 10: Test 3: Particle position and velocity over time solved with the
Lagrangian scheme. Analytical solution in solid line. Particle in (1,0) with
(u,v)=(0,0) at t = 0.

4.4 A nozzle plume

The coupling between the kinetic model and the particle method is investigated
through the ejection of particles in a nozzle plume. This phenomenon has been
observed experimentally in [21]. Although no quantitative data are available
for this kind of problem, it is worth studying it in a first step qualitatively. It
is then important to quantify how many particles come and stick on the collar
(represented by Γ in figure 13) and to evaluate the resulting opacity after the
firing of the thruster. This evaluation requires the ability of simulating a nozzle
plume in highly rarefied environment (space) and the transport of particles in
this flow.

This simulation is done in 2D with the geometry and initial conditions pre-
sented in figure 13. The geometry is represented by the zero-isoline of the
so-called level set function defined as the signed distance between a grid point
and the nozzle. It is prolonged from the nozzle outlet to the right part of the
domain. As the jet expands, the moving part of the level set (see figure 13)
represents the contact discontinuity between the gas coming from the nozzle
and the surrounding gas initially at rest. The velocity of the moving part of the
level set is the one imposed as a boundary condition for the gas. It is calculated
solving a Riemann problem between the fluid state and the surrounding pres-
sure Patm. When a cell initially in the surrounding domain is reached by the jet,
it is initialized with the corresponding boundary condition. Full details on the
method used to describe the level set function and its transport can be found
in [25]. As initial condition, we take Ttot = 1, Ptot = 1. The pressure at the
outlet can be approximated with quasi-1D relationship supposing an isentropic
flow. If we consider that M = 1 is reached at the throat of the nozzle (which is
true for Patm low enough), the outlet pressure only depends on the areas of the
throat and the outlet. Hence, it is a constant for a fixed geometry. Such pres-
sure is called adaptation pressure Pc. In the following, the surrounding pressure
Patm is imposed through the pressure ratio r = Pc/Patm. The Knudsen number
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Figure 11: Test 3: Particle density with the remeshing method.

Kn∞ is set to 10−5 corresponding to the conditions in the nozzle where the
hydrodynamic regime is expected.

When a particle hits the nozzle, we assume that it sticks to the solid bound-
ary (its microscopic velocity is set to 0). Outside the nozzle, if a particle reaches
the jet boundary its velocity is set to the minimum between its own velocity and
the jet boundary velocity. Thus, it cannot cross the zero-isoline of the levelset
and go in the surrounding domain. On the boundary of the domain, free flow
boundary conditions are imposed for both the particles and the gas except at
the bottom of the domain where symmetry condition is enforced.

The particle flux is calculated through the surface Γ (see figure 13). It has
been observed that even for large pressure ratios (until 10−6), the steady state
does not allow particles to go through Γ. Indeed the dynamics of the gas flow
has already been studied in [25] and in [35] and is shown, as an example, in
figure 14 for Pc/Patm = 200000.
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Figure 12: Test 3: L1, L2 and L∞ norm of the error with the remeshing method
(t = 5, D = 5).

Patm

Nozzle zero isoline

Nozzle outlet

Moving zero isolineΓ

Figure 13: Initial configuration of the computational domain for the simulation
of the particle flow in a nozzle plume.

19



(a) t = 0.64 (b) t = 3.22

(c) t = 6.44 (d) t = 9.8

(e) t = 14.09 (f) Steady state

Figure 14: Mach number and velocity vectors for Pc/Patm = 200000 with BGK
model.
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Figure 15: Comparison of the two methods for D = 1.

4.4.1 Constant velocity field

In this first step, both particle methods are compared. The gas flow is taken
at steady state for a pressure ratio Pc/Patm = 200000 (it corresponds to the
velocity field in the last picture of figure 14). Particles of mass m = 2.56× 10−6

are injected at the inlet of the nozzle at t = 0 through the same distribution
function as in test case 1.

Figure 15 shows the particles trajectory computed with the Lagrangian
method (grey dot) and the associated density field computed with the remesh-
ing method (in color). We mention that the lower value of the density field is
0 but for convenience, we set it to 0.0001 to see the field in logarithmic scale.
We can observe from the figure a good accordance between the two methods.
Also, the remeshing method gives a higher density near the symmetric axe of
the nozzle. This is due to the remeshing process that remeshes the particles
that went out of the domain partly inside of it. Conversely, the Lagrangian
method lets the particle where it left the domain. No particles are turning back
at the outlet of the nozzle even if the angle of the jet does. This is mostly
due to the inertia of the particles when they arrive at the outlet but also to
the numerical discontinuity of the velocity at the outlet boundary of the nozzle
(in the first cell outside the nozzle, the horizontal velocity is positive while in
the jet immediately above the nozzle, it is negative). A very fine grid in space
and velocity is required to observe the particle turning back, something that we
cannot afford. However, using a larger stencil for the remeshing step could be a
solution to make the particles go through this discontinuity. But such stencils
introduce too much numerical diffusion for our needs. Another solution is to
add a diffusion term in the velocity divergence that physically corresponds to
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the Brownian motion of the particles due to the temperature for example [36],
[24], [37]. Here, we choose to add a perturbation in the velocity space. After
the transport in velocity, a white noise is added to each microscopic velocity
such that:

ξ′
n+1

= ξ′
n

+D(Uf (x)− ξ′
n
) + rand(−1, 1)∆ξ′

with rand(−1, 1) a random number between -1 and 1.

4.4.2 Time dependant particles flow

We are now interested in a realistic test case of the ejection of particles during
the firing of the thrusters. The firing of thrusters in rarefied conditions induces a
pollution of optical devices (mirror, lenses) that are usually present on satellites
especially during the transitional state. We want to quantify how many particles
go towards the optical devices placed on a satellite. These devices are usually
located above the inlet of the nozzle perpendicularly to its symmetric axis.

In initial conditions, the nozzle is filled with gas and particles. At the inlet,
particles are injected continuously. This boundary condition is imposed through
a constant distribution function in the ghost cell equal to the initial state. We
recall the initial conditions on figure 13. We specified here a surface Γ that
goes from above the inlet of the nozzle and until the upper boundary of the
domain. It represents the position of optical devices placed on the satellites. In
the following, we compute the particle flux through Γ, to understand whether
the particle flow can contaminate (or damage) the devices. The gas flow field
is solved with the kinetic models while the particles are injected as the gas
flow evolves. In particular, for a pressure ratio of 200000, the velocity fields at
different times is shown in figure 14 for the BGK model.

Figure 16 shows that the particles go out of the domain (through the surface
Γ on figure 13) sooner for higher pressure ratios. The jet reaches faster the
inlet of the nozzle because the velocity of the jet boundary increases with the
pressure ratio. On the same figure, one can note that even for large pressure
ratios, the particles flux through Γ goes to zero at steady state. Indeed, at
steady state, the expanded jet turns back but not until the left boundary of the
domain. Thus, no particles are ejected in this direction at steady state.

On figure 16 one can remark that there is a peak in the flux when the particles
start to go out of the domain. This bump is actually higher for Pc/Patm = 10000
than for Pc/Patm = 106. It is due to the particles that have initially a higher
microscopic velocity than the boundary of the jet. Since the particles are not
allowed to cross the boundary (due to the boundary condition we chose) they
artificially stick to the jet contour. As the pressure ratio increases, the jet
boundary velocity increases and less particles have a microscopic velocity higher
than the jet boundary velocity. Thus, less particles stick to the jet boundary
making the peak lower.

Comparing figures 16a and 16b one can deduce that the difference between
the BGK model and the ES-BGK model increases with the pressure ratio
r = Pc/Patm. A more precise comparison is shown on figure 17a for two other
pressure ratios (r = 104, r = 4.105). The general behaviour is the same, the par-
ticles start to go out of the domain at the same time and a peak is observed.Also,
we can see that the fluxes for the ES-BGK are lower. As the pressure ratio in-
creases, the local Knudsen number in the jet increases too (order Kn∞r) and
explains the differences between the two models.
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Figure 16: Particles flux for three pressure ratios (1200, 10000, 106).
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From these data, we can recover the number of particles that left the domain
through Γ. Figure 17b shows this number for different pressure ratios normalized
with the number of particles initially in the nozzle.

For pressure ratios lower than 103, the expanded jet does not go back until
the inlet of the nozzle so no particles are ejected in front of it.For very high pres-
sure ratios, the number of particles going through Γ tends to stabilize because
no particles are going through Γ during steady state. The ejection of particles
on optical devices is a purely transitional phenomenon.

Comparing the results given by the two models, we can note that the BGK
model seems to overestimate the number of ejected particles with respect to the
ES-BGK model. For very high pressure ratios, the Knudsen number becomes of
order 1. In this regime we can expect that the ES-BGK model is more reliable
since it simulates the correct Prandtl number.

5 Conclusion

In this work, we proposed a numerical method to solve applied problems dealing
with particle dynamics in rarefied flows. A Vlasov equation with a drag force
has been used to simulate the particle flow while the gas flow has been modelled
with a kinetic equation. We successfully applied a Lagrangian scheme with a
remeshing technique to the Vlasov equation. The advantage of this method
with respect to finite volume or finite difference schemes is that the equation
is solved only where there are particles. It is also easy to recover an Eulerian
field with this method. The method has been validated on different 2D test
cases with respect to analytical solutions. We also added a Brownian motion
in the particle transport model through a perturbation in the velocity space. A
nozzle flow has been presented where the two kinetic models have been solved to
compute the particle dynamics interacting with the gas velocity field. On this
test case, we successfully reproduced the contamination phenomenon observed
experimentally [21]. Moreover, based on the results, it was possible to show that
the pollution is due to the transitional regime. At steady state, no particles are
ejected in front of the nozzle. However, the lack of data on such phenomenon
in the literature does not allow a quantitative validation. In future work, the
diffusive term including the Brownian motion could be expressed as in [4] as a
divergence in velocity space and then directly integrated in the model. Moreover,
as in the case of thick sprays, a feedback from the particle motion to the gas
dynamic could be included in the model as a source term in the kinetic equation.
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