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Abstract. We describe some applications of group- and bundle-theoretic meth-
ods in solid state physics, showing how symmetries lead to a proof of the localiza-
tion of electrons in gapped crystalline solids, as e. g. insulators and semiconductors.
We shortly review the Bloch-Floquet decomposition of periodic operators, and
the related concepts of Bloch frames and composite Wannier functions. We show
that the latter are almost-exponentially localized if and only if there exists a
smooth periodic Bloch frame, and that the obstruction to the latter condition
is the triviality of a Hermitian vector bundle, called the Bloch bundle. The rôle
of additional Z2-symmetries, as time-reversal and space-reflection symmetry, is
discussed, showing how time-reversal symmetry implies the triviality of the Bloch
bundle, both in the bosonic and in the fermionic case. Moreover, the same Z2-
symmetry allows to define a finer notion of isomorphism and, consequently, to
define new topological invariants, which agree with the indices introduced by Fu,
Kane and Mele in the context of topological insulators.
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1. Symmetries in solid state physics

“Symmetry, as wide or narrow as you may define its meaning, is
one idea by which man through the ages has tried to comprehend and
create order, beauty, and perfection.”

(H. Weyl, Symmetry)

Symmetries play a crucial rôle in the understanding of physical systems. Quan-
tum systems are not exceptional, and since the dawn of Quantum Mechanics the
archetypical idea of symmetry leaded researches to the solution of a wide range of
problems, from atomic to high energy physics. The purpose of this contribution is to
emphasize some relevant application of symmetries to solid state physics, and to pro-
vide a link with some new results on the geometric invariants of recently discovered
crystalline solids, known as topological insulators [HK].

Most of the solids which appear to be homogeneous at the macroscopic scale are
modeled by a Hamiltonian operator which is invariant with respect to translations by
vectors in a Bravais lattice Γ ' Zd, the exceptions being confined to the pioneering
field of aperiodic solids [BHZ]. As early realized, this Zd-symmetry can be used
to decompose the problem via the so-called Bloch-Floquet transform (Section 1.1).
In gapped systems, two optional Z2-symmetries, namely the time-reversal (TR)
symmetry and the space-reflection (SR) symmetry, reflect in special properties of
the projector up to the gap, which are reviewed in Section 1.3.

A crucial problem in the theory of periodic solids is to investigate the localiza-
tion of the composite Wannier functions associated to a physically relevant family
of Bloch bands (Section 1.2). Indeed, the existence of exponentially-localized com-
posite Wannier functions is a fundamental theoretical tool to derive tight-binding
effective models, and to develop numerical algorithms whose computational cost
scales only linearly with the size of the confining box [BPCM]. Such existence prob-
lem can be shown to be equivalent to the triviality of a Hermitian vector bundle,
called the Bloch bundle. Time-reversal symmetry is crucial to prove the triviality
of the latter. Here we review the proof in [Pa] concerning systems with a bosonic
TR-symmetry, and we extend it to the case of a fermionic TR-symmetry.

In both cases the Bloch bundle is trivial, so there are no non-trivial topological
indices which are invariant with respect to all the continuous deformations of the
Hamiltonian which preserve both the gap and the Zd-symmetry. However, further
topological information appears if one focuses on those continuous deformations of
the Hamiltonian which respect also a fermionic TR-symmetry. In such case, new Z2

invariants appear [GP, FMP2], which can be proved to equal the indices introduced
by Fu, Kane and Mele [FK, FKM] in the context of TR-symmetric topological
insulators (Section 2.2).
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1.1. Bloch-Floquet transform. In solid state physics, one is interested in study-
ing systems which have a Zd-symmetry, given by the periodicity with respect to
translations by vectors in the Bravais lattice Γ = SpanZ {a1, . . . , ad} ' Zd ⊂ Rd of
the solid under consideration. The Hamiltonian HΓ of the system is thus required
to commute with these translation operators Tγ:

(1.1) [HΓ, Tγ] = 0 for all γ ∈ Γ.

For example, in continuous models the Hamiltonian and the translation operators
act on the Hilbert space H := L2(Rd) ⊗ C2s+1, corresponding to a single spin-s
particle in d-dimensions. The translations act according to the natural prescription

(1.2) (Tγψ)(x) := ψ(x− γ)

while the Hamiltonian operators, usually called magnetic Bloch Hamiltonian (s = 0)
and periodic Pauli Hamiltonian (s = 1

2), are

(1.3)
HMB = 1

2 (−i∇x + AΓ(x))2 + VΓ(x) for s = 0,

HPauli = 1
2 ((−i∇x + AΓ(x)) · σ)2 + VΓ(x) for s = 1

2 ,

where σ = (σ1, σ2, σ3) is the vector consisting of the three Pauli matrices. All over
the paper, we use Hartree atomic units, and moreover we reabsorb the reciprocal of
the speed of light 1/c in the definition of the function AΓ.

The commutation relation (1.1) implies that the (rescaled) magnetic vector poten-
tial AΓ : Rd → Rd and the scalar potential VΓ : Rd → C2s+1 are Γ-periodic functions,
which in particular implies that the magnetic flux per unit cell ΦB is zero. The case
of a non-zero magnetic flux per unit cell, which generically appears when e. g. a
uniform magnetic field is considered, can be recasted in this framework provided
that the natural translations (1.2) are replaced by the magnetic translations [Zak]
and that ΦB is a rational multiple of the fundamental flux unit Φ0 = hc/e. The case
ΦB/Φ0 /∈ 2πQ is instead radically different, and its mathematical analysis requires
novel ideas and methods from non-commutative geometry [BES].

While both the Hamiltonians (1.3) can be studied with the methods described in
this Section, for the sake of simplicity we will mainly refer to the paradigmatic case
of a periodic real Schrödinger operator, acting as

(1.4) (HΓψ)(x) := − 1
2∆ψ(x) + VΓ(x)ψ(x),

where VΓ is a real-valued Γ-periodic function. In view of the commutation relation
(1.1), one may look for simultaneous eigenfunctions of HΓ and the translations
{Tγ}γ∈Γ, i. e. for a solution to the problem

(1.5)

(Tγψ) (x) = ωγ ψ(x) ωγ ∈ U(1),

(− 1
2∆ + VΓ)ψ = E ψ E ∈ R.
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The eigenvalues of the unitary operators Tγ provide an irreducible representation
ω : Γ→ U(1), γ 7→ ωγ, of the abelian group Γ ' Zd: it follows that ωγ is a character,
i. e.

ωγ = ωγ(k) = eik·γ, for some k ∈ Td∗ := Rd/Γ∗.

Here Γ∗ denotes the dual lattice of Γ, given by those λ ∈ Rd such that λ · γ ∈ 2πZ
for all γ ∈ Γ. The quantum number k ∈ Td∗ is called crystal (or Bloch) momentum,
and the quotient Td∗ = Rd/Γ∗ is often called Brillouin torus. Thus, the eigenvalue
problem (1.5) reads

(1.6)

ψ(k, x− γ) = eik·γ ψ(k, x) k ∈ Td∗
(− 1

2∆ + VΓ)ψ(k, x) = E ψ(k, x) E ∈ R.

In view of the first equation, a non-zero solution can not exist in L2(Rd), so one looks
for solutions in L2

loc(Rd). These solutions ψ(k, ·) are called generalized eigenfunctions
and normalized by imposing

∫
Y |ψ(k, x)|2dx = 1, where Y is a fundamental unit cell

for the lattice Γ.

We denote the eigenvalues and eigenvectors of HΓ at fixed Bloch momentum as
En(k) and ψn(k, ·), n ∈ N, respectively. The functions k 7→ En(k) are called Bloch
bands, and the functions k 7→ ψn(k, ·) are called Bloch functions in the physics
literature. According to the so-called Bloch theorem [Kit], one can write

(1.7) ψn(k, x) = eik·xun(k, x)

where un(k, ·) is, for any fixed k, a Γ-periodic function of x, thus living in the Hilbert
space Hf := L2(Td), with Td = Rd/Γ.

A more elegant and useful approach to obtain such Bloch functions (or rather their
Γ-periodic part), is provided by adapting ideas from harmonic analysis. Indeed, one
can proceed in analogy with the free particle case, where the Fourier representation
gives a way to diagonalize simultaneously both the Laplacian and the translations.
Formally, one introduces the so-called (modified) Bloch-Floquet transform, (1) acting
on functions w ∈ C0(Rd) ⊂ L2(Rd) by (2)

(1.8) (UBFw)(k, y) :=
1

|B|1/2
∑
γ∈Γ

e−ik·(y−γ) w(y − γ), y ∈ Rd, k ∈ Rd.

Here B denotes the fundamental unit cell for Γ∗, namely

B :=

k =
d∑
j=1

kjbj ∈ Rd : −1

2
≤ kj ≤

1

2


(1) A comparison with the classical Bloch-Floquet transform, appearing in physics textbooks,

is provided in Remark 1.
(2) We intentionally use the symbol k, already appearing in (1.6) and (1.7) with an a priori

different meaning, also in (1.8), since it will be clear in few lines that the k appearing in (1.8) can
be naturally identified with the Bloch momentum introduced above (compare (1.10)).
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where the dual basis {b1, . . . , bd} ⊂ Rd, spanning Γ∗, is defined by bi · aj = 2πδi,j.

Roughly speaking, the operator UBF separates the “slow” degrees of freedom,
corresponding to γ ∈ Γ, from the “fast” degrees of freedom (y in a unit cell for
Γ), and can be interpreted as a discrete Fourier transform in the “slow” degrees
of freedom alone. As such, one can expect UBF to be implemented unitarily on
L2(Rd). To determine the correct target Hilbert space, one first recognizes from
the definition (1.8) that the function ϕ(k, y) = (UBFw)(k, y) is Γ-periodic in y and
Γ∗-pseudoperiodic in k, i. e.

ϕ(k + λ, y) = (τ(λ)ϕ) (k, y) := e−iλ·yϕ(k, y), λ ∈ Γ∗.

The operators τ(λ) ∈ U(Hf) defined above provide a unitary representation of the
group of translations by vectors in the dual lattice Γ∗. Following [PST2], we define
the Hilbert space of τ -equivariant L2

loc-functions as

Hτ :=
ß
ϕ ∈ L2

loc(Rd;Hf) : ϕ(k + λ) = τ(λ)ϕ(k) ∀λ ∈ Γ∗, for a.e. k ∈ Rd
™
.

Such functions are uniquely specified by the values they attain on the unit cell B.
One can hence identify Hτ with the constant fibre direct integral [RS, Sec. XIII.16]

(1.9) Hτ ' L2(B;Hf) '
∫ ⊕
B

Hf dk.

Then the Bloch-Floquet transform UBF given in (1.8) can be extended to a unitary
operator

UBF : L2(Rd)→ Hτ .

With respect to the decomposition (1.9), one has indeed a simultaneous “diago-
nalization” of periodic differential operators and translation operators, in the sense
that

UBF Tγ U
−1
BF =

∫ ⊕
B

Ä
eik·γ1

ä
dk,

UBF

Ç
−i

∂

∂xj

å
U−1

BF =
∫ ⊕
B

Ç
−i

∂

∂yj
+ kj

å
dk, j ∈ {1, . . . , d} ,

UBFfΓ(x)U−1
BF =

∫ ⊕
B
fΓ(y) dk, if fΓ is Γ-periodic.

In particular, in the Bloch-Floquet representation the Hamiltonian HΓ = − 1
2∆ +VΓ

becomes the fibred operator

UBFHΓ U
−1
BF =

∫ ⊕
B
H(k) dk, where H(k) = 1

2

Ä
− i∇y + k

ä2
+ VΓ(y).

Whenever the operator VΓ is Kato-small with respect to the Laplacian (i. e. infinites-
imally ∆-bounded), the operator H(k) is self-adjoint on the k-independent domain
D = H2(Td) ⊂ Hf . The k-independence of the domain of self-adjointness, which
considerably simplifies the mathematical analysis, is the main motivation to use
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the modified Bloch-Floquet transform (1.8) instead of the classical one (compare
Remark 1).

The periodic part of the Bloch functions, appearing in (1.7), can be determined
as solutions to the eigenvalue problem

(1.10) H(k)un(k) = En(k)un(k), un(k) ∈ D ⊂ Hf , ‖un(k)‖Hf
= 1.

Even if the eigenvalue En(k) has multiplicity 1, the eigenfunction un(k) is not unique,
since another eigenfunction can be obtained by setting

ũn(k, y) = eiθ(k)un(k, y)

where θ : Td → R is any measurable function. We refer to this fact as the Bloch
gauge freedom.

In real solids, Bloch bands intersect each other. However, in insulators and semi-
conductors the Fermi energy lies in a spectral gap, separating the occupied Bloch
bands from the others. In this situation, it is convenient [Bl, Cl] to regard all the
bands below the gap as a whole, and to set up a multi-band theory. More generally,
we select a portion of the spectrum of H(k) consisting of a set of m ≥ 1 physically
relevant Bloch bands:

σ∗(k) := {En(k) : n ∈ I∗ = {n0, . . . , n0 +m− 1}} .

We assume that this set satisfies a gap condition, stating that it is separated from
the rest of the spectrum of H(k), namely

(1.11) inf
k∈B

dist
Ä
σ∗(k), σ(H(k)) \ σ∗(k)

ä
> 0.

Under this assumption, one can define the spectral eigenprojector on σ∗(k) as

P∗(k) := χσ∗(k)(H(k)) =
∑
n∈I∗
|un(k, ·)〉 〈un(k, ·)| .

The equivalent expression for P∗(k), given by the Riesz formula

(1.12) P∗(k) =
1

2πi

∮
C

(H(k)− z1)−1 dz,

where C is any contour in the complex plane winding once around the set σ∗(k)
and enclosing no other point in σ(H(k)), allows one to prove [PP, Prop. 2.1] the
following

Proposition 1. Let P∗(k) ∈ B(Hf) be the spectral projector of H(k) corresponding
to the set σ∗(k) ⊂ R. Assume that σ∗ satisfies the gap condition (1.11). Then the
family {P∗(k)}k∈Rd has the following properties:

(p1) the map k 7→ P∗(k) is smooth from Rd to B(Hf) (equipped with the operator
norm);
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(p2) the map k 7→ P∗(k) is τ -covariant, i. e.

P∗(k + λ) = τ(λ)−1 P∗(k) τ(λ) ∀k ∈ Rd, ∀λ ∈ Γ∗.

Remark 1 (Comparison with classical Bloch-Floquet theory). In most solid
state physics textbooks, the classical Bloch-Floquet transform is defined as

(1.13) (Ucl w)(k, y) :=
1

|B|1/2
∑
γ∈Γ

eik·γ w(y − γ), y ∈ Rd, k ∈ Rd

for w ∈ C0(Rd) ⊂ L2(Rd). The close relation with Fourier transform is thus more
explicit in this formulation, and indeed the function ϕcl(k, y) := (Ucl w)(k, y) will be
Γ∗-periodic in k and Γ-pseudoperiodic in y:

ϕcl(k + λ, y) = ϕcl(k, y), λ ∈ Γ∗,

ϕcl(k, y + γ) = eik·γϕcl(k, y), γ ∈ Γ.

As is the case for the modified Bloch-Floquet transform (1.8), the definition (1.13)
extends to a unitary operator

Ucl : L
2(Rd)→

∫ ⊕
B

Hk dk

where

Hk :=
¶
ϕ ∈ L2

loc(Rd) : ϕ(y + γ) = eik·γϕ(y) ∀ γ ∈ Γ, for a.e. y ∈ Rd
©
.

Moreover, a periodic Schrödinger operator of the form HΓ = − 1
2∆ + VΓ becomes, in

the classical Bloch-Floquet representation,

Ucl HΓ U
−1
cl =

∫ ⊕
B
Hcl(k) dk, where Hcl(k) = − 1

2∆y + VΓ(y).

Although the form of the operator Hcl(k), whose eigenfunctions ψn(k, ·) appear
in (1.7), looks simpler than the one of the fibre Hamiltonian H(k) appearing in
(1.10), one should observe that Hcl(k) acts on a k-dependent domain in the k-
dependent Hilbert space Hk. This constitutes the main disadvantage of working
with the classical Bloch-Floquet transform (1.13), thus explaining why the modified
definition (1.8) is preferred in the mathematical literature.

The two Bloch-Floquet representations (classical and modified) are nonetheless
equivalent, since they are unitarily related by the operator

J =
∫ ⊕
B

Jk dk, where Jk : Hf → Hk, (Jkϕ) (y) = eik·yϕ(y), k ∈ Rd,

see (1.7), so that in particular JkH(k)J−1
k = Hcl(k). As a consequence, the Bloch

bands En(k) are independent of the chosen definition. ♦
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1.2. Localization of electrons and Bloch frames. Bloch functions can be used
to study the properties of localization of electrons in the solid modeled by the Hamil-
tonian HΓ. Indeed, one defines the associated Wannier functions by going back to
the position-space representation. More precisely, assume that σ∗ consist of a single
isolated Bloch band En (i. e. m = 1); the Wannier function wn associated to a choice
of the Bloch function un(k, ·) for the band En, as in (1.10), is defined by setting

(1.14) wn(x) :=
Ä
U−1

BFun
ä

(x) =
1

|B|1/2
∫
B

eik·xun(k, x) dk.

In the multiband case (m > 1), one has to relax the notion of Bloch function to
that of quasi-Bloch function [Cl], defined as an element φ ∈ Hτ such that

P∗(k)φ(k) = φ(k), ‖φ(k)‖Hf
= 1, for a.e. k ∈ B.

A Bloch frame is, by definition, a family of quasi-Bloch functions {φa}a=1,...,m which

are orthonormal and span the vector space RanP∗(k) at a.e. k ∈ B. The com-
posite Wannier functions {w1, . . . , wm} ⊂ L2(Rd) associated to a Bloch frame
{φ1, . . . , φm} ⊂ Hτ are defined in analogy with (1.14) as

wa(x) :=
Ä
U−1

BFφa
ä

(x) =
1

|B|1/2
∫
B

eik·xφa(k, x) dk.

Composite Wannier functions have become a standard tool in the analysis of
localization properties of electrons in crystals [MV, MYSV], by looking at their
decay rate at infinity. One says that a set of composite Wannier functions is almost-
exponentially localized if∫

Rd

Ä
1 + |x|2

är |wa(x)|2 dx <∞ for all r ∈ N, a ∈ {1, . . . ,m} .

If we denote by X = (X1, . . . , Xd) the position operator in L2(Rd), defined by
(Xjw)(x) := xjw(x) on the maximal domain, then one has that in the Bloch-Floquet
representation

UBFX U−1
BF = i∇k.

In view of this, one can easily show [PP] that∫
Rd

Ä
1 + |x|2

är |wa(x)|2 dx <∞ ∀r ∈ N ⇐⇒ φa ∈ C∞(Rd;Hf) ∩Hτ .

Thus, the question of existence of almost-exponentially localized composite Wannier
functions is reduced to the following

Question (Q): does there exist a smooth Bloch frame {φa}a=1,...,m ⊂ Hτ?

As was noticed by several authors [Ko, Cl, Ne], there might be a competition
between regularity (a local issue) and periodicity (a global issue) for a Bloch frame.
Indeed, in general the above question might have a negative answer due to a topo-
logical obstruction, as we are going to illustrate in the next Section. In agreement
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with the vision of H. Weyl, symmetries play a fundamental rôle in the solution of
this problem. Indeed, we will show in Section 2.1 that Question (Q) has a positive
answer, provided d ≤ 3, whenever the system enjoys an additional Z2-symmetry,
namely time-reversal symmetry.

1.3. The rôle of additional symmetries. Time-reversal (TR) symmetry is a fur-
ther Z2-symmetry of some quantum systems, encoded in an antiunitary (3) operator
T acting on the Hilbert space H of the system. The time-reversal symmetry opera-
tor T is called bosonic or fermionic depending on whether T 2 = +1H or T 2 = −1H,
respectively (4). This terminology is motivated by the fact that there are “canonical”
time-reversal operators when H = L2(Rd) ⊗ C2s+1 with s = 0 and s = 1/2: in the
former case, T is just complex conjugation C on L2(Rd) (and hence squares to the
identity), while in the latter T is implemented as C ⊗ eiπSy on H = L2(Rd) ⊗ C2

(squaring to −1H), where Sy = 1
2σ2 and σ2 =

Ç
0 −i
i 0

å
is the second Pauli matrix.

The following Proposition is a straightforward generalization of a result in [PP,
Prop. 2.1], where the case s = 0 is proved.

Proposition 2 (Time-reversal symmetry). Under the hypotheses of Proposition
1, assume that the Hamiltonian is time-reversal symmetric, that is, the Hamiltonian
HΓ commutes with the canonical TR-operator T : H→ H defined above, T 2 = ±1H.
Then the family {P∗(k)}k∈Rd has the following property: (5)

(p3,±) there exists an antiunitary operator Θf acting on Hf such that

P∗(−k) = Θf P∗(k) Θ−1
f and Θ2

f = ±1.
Moreover, one has the following

(p4) compatibility property: Θf τλ = τ−λ Θf for all λ ∈ Λ.

A real Schrödinger operator, as in (1.4), obviously commutes with complex con-
jugation, and thus enjoys TR-symmetry, with Θf given by the complex conjugation
in Hf = L2(Td). For a spin- 12 particle, one gets instead Θf = C ⊗ eiπ

2
σ2 acting on

Hf = L2(Td)⊗C2. More general Hamiltonians might be considered, but we remark
that when dealing with the Hamiltonians (1.3), a non-zero magnetic potential AΓ,

(3) By antiunitary operator we mean a surjective antilinear operator C : H → H, such that
〈Cφ,Cψ〉H = 〈ψ, φ〉H for any φ, ψ ∈ H.

(4) Since time-reversal symmetry flips the arrow of time, it must not change the physical de-
scription of the system if it is applied twice. Hence T gives a projective unitary representation of
the group Z2 on the Hilbert space H, and as such T 2 = eiθ1H. By antiunitarity, it follows that

eiθT = T 2T = T 3 = TT 2 = T eiθ1H = e−iθT

and hence eiθ = ±1.
(5) The following properties are labeled as (p3,±) and (p4), since they are the natural comple-

ment of properties (p1) and (p2) appearing in Proposition 1.
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even if yielding zero magnetic flux per unit cell (i. e. no macroscopic magnetic field),
does generically break time-reversal symmetry.

Remark 2 (The rôle of k = 0). The reader might be surprised by the fact that in
property (p3,±) the point k = 0 has a distinguished rôle, thus breaking the translation
invariance of the momentum space. This fact may be easily explained by noticing
that a translation k 7→ k + α in momentum space corresponds, via Bloch-Floquet
transform, to a change of electromagnetic gauge in position space. More formally,
setting “Tαφ(k, y) := φ(k − α, y), for φ ∈ Hτ ,

one easily sees that

U−1
BF
“TαUBF = Wα where (Wαψ) (x) = eiα·xψ(x).

The unitary operator Wα implements in L2(Rd) a change of electromagnetic gauge,
so that the magnetic vector potential is changed from A(·) to A(·) + α, α ∈ Rd.
Thus, the orbit

¶
WαHW

−1
α : α ∈ Rd

©
of a given Hamiltonian under the action of

a subgroup of the group of electromagnetic gauge transformations corresponds, via
Bloch-Floquet transform, to the orbit of the transformed Hamiltonian under the
action of translations in momentum space, namely to the set¶“TαUBFH U−1

BF
“T−1
α : α ∈ Rd

©
.

Whenever a distinguished element in the former orbit is TR-symmetric, it selects
a distinguished point in the latter orbit (which is also TR-symmetric with respect
to the fibre time reversal operator Θf), and thus a point k0 ∈ Rd. As for the
Hamiltonian HΓ, as in (1.4), such distinguished point is k0 = 0, whose special rôle
is now clarified. ♦

It is worth to investigate how periodic quantum systems behave with respect to a
fundamental Z2-symmetry of space, namely space-reflection symmetry, represented
in H = L2(Rd)⊗ C2s+1 by the unitary operator R defined by

(Rψ) (x) = ψ(−x).

In general, this symmetry does not hold true in crystalline solids. However, some
solids enjoy the property of being centrosymmetric, in the sense that there exists
a distinguished point x0 ∈ Rd such that

(1.15) VΓ(ρx0(x)) = VΓ(x) ∀x ∈ Rd,

where ρx0 is the reflection with respect to the point x0. Notice that the latter
property involves both VΓ and Γ, not just the Bravais lattice Γ. Whenever (1.15)
holds true, the Hamiltonian HΓ commutes with Rx0 , where

(Rx0ψ) (x) = ψ(ρx0(x)).



SYMMETRY AND LOCALIZATION IN PERIODIC CRYSTALS 11

Without loss of generality, we may always choose the origin of coordinates so
that x0 = 0, obtaining the identification Rx0 ≡ R. The fact that the Hamiltonian
commutes with R yields a non-trivial unitary equivalence between H(k) and H(−k),
which is the key to prove the following result.

Proposition 3 (Space-reflection symmetry). Under the hypotheses of Proposi-
tion 1, assume that the Hamiltonian is centrosymmetric, that is, HΓ commutes with
the unitary operator R : H→ H defined above. Then the family {P∗(k)}k∈Rd has the
following property:

(p5) there exists a unitary operator Rf acting on Hf such that

P∗(−k) = Rf P∗(k)R−1
f and R2

f = 1.

In particular, one has explicitly (Rfψ) (y) = ψ(−y) for all ψ ∈ Hf .

Sketch of the proof. First, we compute the action of R in Bloch-Floquet representa-
tion. For any compactly supported ψ ∈ L2(Rd) one has

(UBFRψ) (k, y) =
1

|B|1/2
∑
γ∈Γ

e−ik·(y−γ) (Rψ) (y − γ) =

=
1

|B|1/2
∑
γ∈Γ

e−i(−k)·(−y+γ) ψ(−y + γ) =

= (UBF ψ) (−k,−y).

Then, a standard density argument yields thatÄ
UBFRU−1

BF φ
ä

(k, y) = φ(−k,−y) ∀φ ∈ Hτ .

Since [HΓ, R] = 0, one obtains that in the Bloch-Floquet representation

H(−k) = Rf H(k)R−1
f , k ∈ Rd,

which in particular implies the parity of the spectrum, i. e. σ (H(−k)) = σ (H(k)).
Since the spectrum of H(k) is pure point spectrum, the operator H(k) is bounded
from below and the eigenvalues are labeled in increasing order, one gets En(k) =
En(−k).

The projector P∗(k) is characterized by the Riesz formula (1.12), where the inte-
gration contour encloses the set σ∗(k) and no other point in the spectrum of H(k).
By the gap condition (1.11), the integration contour Ck0 chosen at k0 ∈ Rd can be
used to evaluate P∗(k) for k in a sufficiently small neighborhood Ok0of k0. More-
over, since En(k) = En(−k) for all k ∈ Rd, the same integration contour used
locally around the point k0 can be conveniently used around the point −k0. Thus,
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by making this convenient choice, one obtains that for every k ∈ Ok0

P∗(−k) =
1

2πi

∫
Ck0

(H(−k)− z1)−1 dz =

=
1

2πi

∫
Ck0

Ä
Rf H(k)R−1

f − z1
ä−1

dz = Rf P∗(k)R−1
f .

By the arbitrarity of k0, the claim is proved. �

The breaking of SR-symmetry, namely property (p5), is a necessary condition to
observe a non-zero piezoelectric current and macroscopic polarization in crystals,
see [PST1] and references therein.
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2. The Bloch bundle and its geometry

“In these days the angel of topology and the devil of abstract algebra
fight for the soul of every individual discipline of mathematics.”

(H. Weyl, Invariants)

In this Section, inspired again by the words of H. Weyl, we will argue that the
topological obstruction to the existence of a smooth Bloch frame is encoded in a
smooth Hermitian vector bundle, baptized Bloch bundle in [Pa]. We also show that
TR-symmetry, either of bosonic or fermionic type, implies the triviality of the Bloch
bundle, and thus an affirmative answer to Question (Q).

Abstracting from the specific case of periodic Schrödinger operators, we consider
a family of orthogonal projectors acting on a separable Hilbert space H, satisfying
the following

Assumption 1. The family of orthogonal projectors {P (k)}k∈Rd ⊂ B(H) enjoys
the following properties:

(P1) smoothness : the map Rd 3 k 7→ P (k) ∈ B(H) is C∞-smooth;
(P2) τ -covariance: the map k 7→ P (k) is covariant with respect to a unitary

representation τ : Λ → U(H) of a maximal lattice Λ ' Zd ⊂ Rd on the
Hilbert space H, i. e.

P (k + λ) = τ(λ)P (k)τ(λ)−1, for all k ∈ Rd, λ ∈ Λ;

(P3,±) time-reversal symmetry : the map k 7→ P (k) is time-reversal symmetric, i. e.
there exists an antiunitary operator Θ: H → H, called the time-reversal
operator, such that

Θ2 = ±1H and P (−k) = ΘP (k)Θ−1.

Moreover, the unitary representation τ : Λ→ U(H) and the time-reversal operator
Θ: H→ H satisfy the compatibility condition

(P4) Θ τ(λ) = τ(λ)−1 Θ for all λ ∈ Λ.

♦

The previous Assumptions retain only the fundamental Zd- and Z2-symmetries of
the family of eigenprojectors of a time-reversal symmetric periodic Hamiltonian, as
in Propositions 1 and 2. In this abstract framework, the analog of Question (Q) is
the existence of a smooth τ -equivariant Bloch frame, as in the following
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Definition 1 (Bloch frame). Let P = {P (k)}k∈Rd be a family of projectors satis-
fying Assumptions (P1) and (P2). A local Bloch frame for P on a region Ω ⊂ Rd

is a map

Φ : Ω −→ H ⊕ . . .⊕H = Hm

k 7−→ (φ1(k), . . . , φm(k))

such that for a.e. k ∈ Ω the set {φ1(k), . . . , φm(k)} is an orthonormal basis spanning
RanP (k). If Ω = Rd we say that Φ is a global Bloch frame. Moreover, we say
that a (global) Bloch frame is

(F1) smooth if the map φa : Rd → Hm is C∞-smooth for all a ∈ {1, . . . ,m};
(F2) τ -equivariant if

φa(k + λ) = τ(λ)φa(k) for all k ∈ Rd, λ ∈ Λ, a ∈ {1, . . . ,m} .
♦

Following [Pa], one can construct a Hermitian vector bundle EP =
Ä
EP

π−→ Td∗
ä
,

with Td∗ := Rd/Λ, called the Bloch bundle, starting from a family of projectors
P := {P (k)}k∈Rd satisfying properties (P1) and (P2). One proceeds as follows:
Introduce the following equivalence relation on the set Rd ×H:

(k, φ) ∼τ (k′, φ′) if and only if ∃λ ∈ Λ : k′ = k − λ and φ′ = τ(λ)φ.

The total space of the Bloch bundle is then

EP :=
¶
[k, φ]τ ∈ (Rd ×H)/ ∼τ : φ ∈ RanP (k)

©
with projection π([k, φ]τ ) = k (mod Λ) ∈ Td∗. By using the Kato-Nagy formula [Ka,
Sec. I.4.6], one shows that the previous definition yields a smooth vector bundle,
which moreover inherits from H a natural Hermitian structure. Question (Q) in the
previous Section can be shown [Pa, Prop. 2] to be equivalent to

Question (Q′): is the Bloch bundle EP =
Ä
EP

π−→ Td∗
ä

trivial in the category of

smooth Hermitian vector bundles over the torus Td∗?

We recall that a smooth vector bundle E =
Ä
E

π−→M
ä

of rank m is called trivial if

there is a smooth isomorphism to the product bundle T =
(
M × Cm pr1−−→M

)
, where

pr1 is the projection on the first factor.

If the Bloch bundle EP is trivial, then a smooth Bloch frame {φa}a=1,...,m can be

constructed by means of a smooth isomorphism F : Td∗ × Cm ∼−→ EP by setting
φa(k) := F (k, ea), where {ea}a=1,...,m is any orthonormal basis in Cm. Viceversa, a

global smooth Bloch frame {φa}a=1,...,m provides a smooth isomorphism G : Td∗ ×
Cm ∼−→ EP by setting

G (k, (v1, . . . , vm)) = [k, v1φ1(k) + · · ·+ vmφm(k)]τ .
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In general, the triviality of vector bundles on a low-dimensional torus Td∗ with
d ≤ 3 is measured by the vanishing of its first Chern class [Pa, Prop. 4], defined in
terms of the family of projectors {P (k)}k∈Rd by the formula
(2.1)

c1(EP) =
1

2πi

∑
1≤µ<ν≤d

Ωµν(k)dkµ ∧ dkν , with Ωµν(k) = trH (P (k) [∂µP (k), ∂νP (k)]) .

Under the hypothesis (P3,±), the Bloch bundle is equipped with a further struc-
ture, namely a fibre-wise antilinear morphism ΘP : EP → EP such that the following
diagram commutes:

EP

ΘP //

��

EP

��
Td∗

c // Td∗

where c : Td∗ → Td∗ denotes the involution c(k) = −k. This means that a vector in
the fibre RanP (k) is mapped via ΘP into a vector in the fibre RanP (−k). The
morphism ΘP : EP → EP still satisfies Θ2

P = ±1, i. e. it squares to the vertical
automorphism of P acting fibre-wise by multiplication by ±1. Following [GP], we
call the previous structure a TR-symmetric Bloch bundle.

The presence of this further Z2-symmetry is the key tool to provide a positive
answer to Question (Q′), as we are now going to show.

2.1. Triviality of TR-symmetric Bloch bundles: bosonic and fermionic
cases. The main result of [Pa] is the following.

Theorem 1 ([Pa, Thm. 1]). Let d ≤ 3, and let P = {P (k)}k∈Rd be a family
of projectors satisfying properties (P1), (P2) and (P3,+). Then the Bloch bundle

EP =
Ä
EP

π−→ Td∗
ä

is trivial in the category of smooth Hermitian vector bundles.

The above Theorem answers positively to Question (Q′), and hence to Ques-
tion (Q), in the presence of bosonic time-reversal symmetry: if the system enjoys
time-reversal symmetry of bosonic type, then there exists a set of composite Wan-
nier functions which are almost-exponentially localized. A natural question arises,
namely whether the same kind of result holds also in presence of fermionic time-
reversal symmetry. This is proved in the following

Theorem 2. Let d ≤ 3, and let P = {P (k)}k∈Rd be a family of projectors satisfying

properties (P1), (P2) and (P3,−). Then the Bloch bundle EP =
Ä
EP

π−→ Td∗
ä

is trivial
in the category of smooth Hermitian vector bundles.
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Proof. Arguing as in the proof of [Pa, Thm. 1], the crucial point is to show that,
under hypothesis (P3,−), the function

Ωµν(k) = trH (P (k) [∂µP (k), ∂νP (k)]) , µ, ν ∈ {1, . . . , d} ,
which appears in the definition (2.1) of the first Chern class, is odd with respect to
k, that is, Ωµν(−k) = −Ωµν(k).

To prove this, we first observe that

Ωµν(−k) = trH (P (−k) [∂µP (−k), ∂νP (−k)]) .

Differentiating both sides of the equality P (−k) = ΘP (k)Θ−1 (compare (P3,−)) with
respect to kµ, we obtain

∂µP (−k) = −Θ∂µP (k)Θ−1

and hence

Ωµν(−k) = trH
Ä
ΘP (k)Θ−1

î
−Θ∂µP (k)Θ−1,−Θ∂νP (k)Θ−1

óä
.

The above expression simplifies to

Ωµν(−k) = trH
Ä
ΘP (k) [∂µP (k), ∂νP (k)] Θ−1

ä
.

Since Θ is an antiunitary operator, we have that trH(ΘAΘ−1) = trH(A∗) for any
trace-class operator on H. Indeed, by definition the trace of an operator A is given
by

trH(A) =
∑
n∈N
〈ψn, Aψn〉

where {ψn}n∈N is any orthonormal basis of the Hilbert space H. Noting now that
Θ−1 = −Θ (since Θ2 = −1), we can compute

trH(ΘAΘ−1) = − trH(ΘAΘ) = −
∑
n∈N
〈ψn,ΘAΘψn〉 =

= −
∑
n∈N

¨
Θ2AΘψn,Θψn

∂
=
∑
n∈N
〈AΘψn,Θψn〉 =

=
∑
n∈N
〈Θψn, A∗Θψn〉 =

∑
n∈N

〈‹ψn, A∗‹ψn〉 =

= trH(A∗),

where in the last equality we used the fact that ‹ψn := Θψn is just another orthonor-
mal basis of H, and the definition of the trace does not depend on the choice of the
basis.

Hence

Ωµν(−k) = trH {(P (k) [∂µP (k), ∂νP (k)])∗} =

= trH (P (k)∗ [∂µP (k), ∂νP (k)]∗) .
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Observe now that [A,B]∗ = −[A∗, B∗] for A,B ∈ B(H), and that P (k) and its
derivatives are self-adjoint operators. This allows us to conclude finally that

(2.2) Ωµν(−k) = − trH (P (k) [∂µP (k), ∂νP (k)]) = −Ωµν(k)

as claimed.

The property of Ωµν(k) of being odd implies that the first Chern class c1(EP)
must vanish. Indeed, by de Rham duality it suffices to check that, when c1(EP) is
integrated on any 2-cycle

Bµν := {k ∈ B : kα = 0 if α 6= µ, ν} , 1 ≤ µ < ν ≤ d,

then the integral vanishes: this is because the 2-cycles {Bµν}1≤µ<ν≤d generate the

homology group H2(Td∗;Z) of the d-torus. Divide Bµν = B+
µν ∪ B−µν , where B+

µν (re-
spectively B−µν) contains only the points of Bµν with positive (respectively negative)
kµ-coordinate. We have now∫

Bµν
c1(EP) =

1

2πi

∫
Bµν

Ωµν(k)dkµ ∧ dkν =

=
1

2πi

Ç∫
B+
µν

Ωµν(k)dkµ ∧ dkν +
∫
B−
µν

Ωµν(k)dkµ ∧ dkν

å
=

=
1

2πi

Ç∫
B+
µν

Ωµν(k)dkµ ∧ dkν +
∫
B+
µν

Ωµν(−k)dkµ ∧ dkν

å
=

=
1

2πi

Ç∫
B+
µν

Ωµν(k)dkµ ∧ dkν −
∫
B+
µν

Ωµν(k)dkµ ∧ dkν

å
= 0,

and this concludes the proof that c1(EP) = 0.

By the technical lemma in [Pa, Section 2.3], when d ≤ 3 the vanishing of the first
Chern class is a necessary and sufficient condition for the Bloch bundle EP to be
trivial as a smooth Hermitian vector bundle. This is equivalent to the existence of a
global smooth τ -equivariant Bloch frame for the family of projectors {P (k)}k∈Rd . �

Remark 3 (Exponentially localized Wannier functions). The result of [Pa]
actually holds in the analytic category, if Assumption 1 is changed suitably to accom-
modate for the function k 7→ P (k) to be analytic in a strip Oα of width 2α around
the “real axis” Rd ⊂ Cd. Under this modified assumption, one can indeed prove
that if (P3,+) holds then the corresponding Bloch bundle is trivial in the category of
holomorphic Hermitian vector bundles over the region Oα ⊃ Td∗, by a general argu-
ment that goes under the name of Oka’s principle [FG, Chap. V]. This is equivalent
to the existence of composite Wannier functions which are exponentially localized,
namely ∫

Rd
e2β|x| |wa(x)|2 dx <∞ for all a ∈ {1, . . . ,m} , 0 ≤ β < α.
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The same principle allows to extend our result (Theorem 2) to the analytic cat-
egory also under hypothesis (P3,−), and provides the existence of exponentially lo-
calized composite Wannier functions also in systems which have a time-reversal
symmetry of fermionic type. ♦

Remark 4 (Consequences of SR-symmetry). Consider a gapped periodic sys-
tem which enjoys both TR-symmetry, either of bosonic or fermionic type, and SR-
symmetry. As a consequence of (P3,±), the Berry curvature of the Bloch bundle
is odd, as showed by equation (2.2). On the other hand, arguing as in the proof
of Theorem 2, one shows that (the abstract analog of) property (p5) implies that
the Berry curvature is even, namely Ωµν(−k) = Ωµν(k), in view of the fact that Rf

is a unitary operator. Thus, in systems which enjoy both TR- and SR-symmetry,
the Berry curvature is identically zero. This fact has some interesting consequences,
since it implies that the parallel transport induced by the Berry connection is lo-
cally well-defined, i. e. independent of the path chosen to connect the initial and the
final point on the Brillouin torus Td∗. Notice, however, that the holonomy induced
by parallel transport might still be non-trivial, but only on paths which are not
homotopic to the trivial path. ♦

2.2. Z2 invariants of fermionic TR-symmetric Bloch bundles. We have seen
in the last Section that, with the help of the extra Z2-symmetry given by time-
reversal (be it either bosonic or fermionic), we were able to ensure that the Bloch
bundle is trivial. As was already observed before, this is equivalent to the existence
of a Bloch frame which is both smooth and periodic, or rather τ -equivariant, i. e.
satisfying (F1) and (F2). The property of τ -equivariance for a Bloch frame is clearly
a compatibility of the frame itself with the corresponding Zd-simmetry of the family
of projectors P, namely (P2). Once we have a family of projectors P which satisfies
also (P3,±), is it possible to make the Bloch frame to be also compatible with the
Z2-symmetry Θ?

This issue is extremely relevant in the context of TR-symmetric topological in-
sulators [HK]. Indeed, as conjectured in [FK, FKM], a positive or negative answer
to the previous question distinguishes between ordinary insulators and topological
insulators, respectively. While a rigorous mathematical approach to this issue has
been first discussed in [GP] for 2-dimensional systems, we focus here on a different
method [FMP1, FMP2] which has a natural generalization to 3-dimensional systems.

A first remark is now in order, namely how one should formulate the above-
mentioned compatibility condition. Looking at (P3,±), the most natural choice would
be to require that Φ(−k) = ΘΦ(k). However, if k = 0 and the time-reversal operator
Θ is of fermionic type, the bilinear form

(φ, ψ) := 〈Θφ, ψ〉 , φ, ψ ∈ RanP (0)
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is well-posed (notice that RanP (0) is an invariant subspace for the action of Θ by
(P3,±)) and defines a symplectic form on RanP (0). In particular, this implies that
RanP (0), and by continuity also RanP (k) for all k ∈ Rd, must be even-dimensional.
If Φ(0) = ΘΦ(0) is a Bloch frame, each of its components φ satisfies 〈φ, φ〉 = 1 by
the normalization condition, and

〈φ, φ〉 = 〈Θφ, φ〉 = (φ, φ) = 0

by the skew-symmetry of the symplectic form (·, ·). Hence we are forced to require
a more refined compatibility condition for a Bloch frame with time-reversal symme-
try. Following the previous literature [FK, FKM, GP], we introduce a “reshuffling
matrix” ε that exchanges the order of the entries of a Bloch frame Φ when going
from k to −k. This leads us to set the following

Definition 2 (TR-symmetric Bloch frame). Let P = {P (k)}k∈Rd be a family of
projectors satisfying (P1), (P2) and (P3,±). A global Bloch frame Φ = {φ1, . . . , φm}
for P is said to be

(F3) time-reversal symmetric if

φb(−k) =
m∑
a=1

Θφa(k)εab,

where

ε =



Im if P satisfies (P3,+),Ñ
0 Im/2

−Im/2 0

é
if P satisfies (P3,−).

♦

The natural issue that arises is now

Question (Qd). Let P = {P (k)}k∈Rd be a family of projectors satisfying (P1), (P2)
and (P3,±). Does there exist a global smooth Bloch frame which is both τ -equivariant
and time-reversal symmetric, i. e. satisfying (F1), (F2) and (F3)?

This Question is answered in [FMP1] for a bosonic TR-symmetry. As for a
fermionic one, it is answered in [GP] for d = 2, and in [FMP2] for d ≤ 3. In
both approaches to the fermionic case, an obstruction appears, which for d = 2
is encoded by a Z2-valued index, denoted by δ(P) in [FMP2]. Although the latter
index is defined differently in [GP] and [FMP2], a posteriori one proves that they
agree, under suitable hypotheses. For 3-dimensional systems, instead, the obstruc-
tion is measured by four Z2-valued indices, denoted by {δ1,0(P), δj,+(P)}j∈{1,2,3} in

[FMP2]. While we refer to [GP] for an overview of the method by Graf and Porta,
we summarize our results in the following
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Theorem 3 ([FMP1], [FMP2]). Let P = {P (k)}k∈Rd be a family of projectors as in
Question (Qd). Assume that 1 ≤ d ≤ 3. Then a global Bloch frame for P satisfying
(F1), (F2) and (F3) exists:

If P satisfies (P3,+): always;

If P satisfies (P3,−): according to the dimension:
If d = 1: always;
If d = 2: if and only if

δ(P) = 0 ∈ Z2.

If d = 3: if and only if

δ1,0(P) = δ1,+(P) = δ2,+(P) = δ3,+(P) = 0 ∈ Z2.

From the above table of results, we see that a positive answer to Question (Qd)
is in general topologically obstructed : in particular, new interesting topological ob-
structions appear in the case of fermionic time-reversal symmetries for d = 2, 3.
Moreover, the peculiarity of these obstruction is that they are Z2-valued, in contrast
with the case of non-TR-symmetric Bloch bundles, where the obstruction to the
existence of a smooth τ -equivariant Bloch frame is encoded in the Z-valued Chern
indices.

We briefly recall, for the reader’s convenience, our definition of the Z2 invariant
δ(P) for a 2-dimensional family of projectors P = {P (k)}k∈R2 satisfying (P1), (P2)
and (P3,−). The alternative definitions, appearing in [FK, GP], can be shown to be
equivalent.

Since time-reversal symmetry relates the point k and −k in R2, a τ -equivariant
and time-reversal symmetric Bloch frame is completely determined by the values it
attains on the effective unit cell

Beff :=

k =
2∑
j=1

kjbj ∈ B : k1 ≥ 0

 .
The general strategy is to pick any smooth Bloch frame Ψ on Beff (whose existence
is guaranteed by the fact that Beff is contractible) and try to symmetrize it in
order to impose τ -equivariance and time-reversal symmetry, thus obtaining a smooth
symmetric frame Φ on Beff . The extension of Φ to the whole Rd is then obtained by
imposing the relevant symmetries.

Inside the effective unit cell, a special rôle is played by points which are fixed by
the composition of a lattice translation tλ(k) = k + λ, λ ∈ Λ, and the inversion
c(k) = −k: such points kλ are then given by kλ = λ/2. The symmetries that we
want to impose on Φ influence the possible values that it can attain at these points
kλ, as well as at the edges that connect them and constitute the boundary ∂Beff .
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In [FMP2], it is shown that, starting from Ψ(k), it is always possible to construct a

unitary-matrix-valued map “U : ∂Beff → U(Cm) which is smooth and such that

φ̂b(k) :=
m∑
a=1

ψa(k) “Uab(k), k ∈ ∂Beff ,

defines, on the boundary ∂Beff , a smooth Bloch frame “Φ(k) for P, which indeed

satisfies all the relevant symmetries on ∂Beff . Moreover, the definition of the frame “Φ
can be smoothly extended to the interior of Beff if and only if the map det “U : ∂Beff ≈
S1 → U(1) ≈ S1 has even winding number, i. e.

deg([det “U ]) :=
1

2πi

∮
∂Beff

dz ∂z log det “U(z) ≡ 0 mod 2

(see [FMP2, Thm. 4]). The topological obstruction to the existence of a smooth
Bloch frame for P which is both τ -equivariant and time-reversal symmetric is thus
encoded in the invariant

δ(P) := deg([det “U ]) mod 2.

Finally, one shows that the value of the index δ(P) does not depend on the choice of
the input frame Ψ, nor on the intermediate choices which are needed to construct“U . Moreover, δ(P) defines a topological invariant of the family of projectors P.

The general paradigm that one can extrapolate from this result is that the ad-
dition of symmetries (in this case, a fermionic time-reversal symmetry) refines the
geometric structure, and leads to the emergence of new interesting topological in-
variants which label the phases of quantum matter (compare [Ki, RSFL]). A point
that should be emphasized is that the presence of symmetries cannot be always
implemented by taking suitable quotients. Indeed, in the case of the Zd-symmetry,
one can proceed by taking the quotient of the crystal momentum space Rd by the
group of lattice translation Γ∗, thus obtaining the (Brillouin) torus Td∗, because the
corresponding action of Γ∗ has no fixed points. The same quotient procedure can
be also performed in the fibre Hilbert space Hf , leading to the Bloch bundle, as
was detailed above. However, one cannot take the subsequent quotient of the torus
Td∗ by the inversion symmetry c(k) = −k, because the corresponding Z2-action this
time has fixed points, namely the points kλ = λ/2. This would lead to a singular
quotient Td∗/Z2, which could be described in terms of the C∗-algebraic methods of
non-commutative geometry. In our approach, we prefer instead to impose the sym-
metries at the level of (global) Bloch frames, and study the existence of symmetric
frames from the point of view of obstruction theory and differential geometry. In
this way, putting on the special glasses of symmetries, we become able to detect
finer details of the system under scrutiny. Granting us this power, Weyl’s angel of
topology has won its fight.
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