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Abstract

This work is dedicated to the development and comparison of WENO-type re-

constructions for hyperbolic systems of balance laws. We are particularly in-

terested in high order shock capturing non-oscillatory schemes with uniform

accuracy within each cell and low spurious effects. As a tool to measure the

artifacts introduced by a numerical scheme, we study the deformation of a single

Fourier mode and introduce the notion of distorsive errors, which measure the

amplitude of the spurious modes created by a discrete derivative operator. Fur-

ther we refine this notion with the idea of temperature, in which the amplitude

of the spurious modes is weighted with its distance in frequency space from the

exact mode. In this analysis, linear schemes have zero temperature. Of course,

in order to prevent oscillations it is necessary to introduce nonlinearities in the

scheme, thus increasing their temperature. However it is important to warm

up the linear scheme just enough to prevent spurious oscillations. With sev-

eral tests we show that the newly introduced CWENOZ schemes are cooler than

other existing WENO-type operators, while maintaining good non-oscillatory

properties.

Keywords: essentially non-oscillatory schemes; finite volumes; artificial

diffusion and dispersion; distorsive effects.

∗Corresponding author
Email addresses: isabella.cravero@unito.it (I. Cravero),

gabriella.puppo@uninsubria.it (G. Puppo), matteo.semplice@unito.it (M. Semplice),
visconti@igpm.rwth-aachen.de (G. Visconti)

Preprint submitted to Computers & Fluids June 4, 2017



1. Introduction

We consider hyperbolic systems of balance laws of the form

∂tu+∇ · f(u) = S(u), (1)

where f is the flux function, and S(u) is the source term. A very popular

technique to integrate numerically systems of conservation and balance laws is

the finite volume method, whereby one splits the computational domain into

the union of finite cells Ωj and evolves the cell averages uj(t) of the solution.

In particular, projecting the equation on the grid and integrating by parts, one

has to integrate the system of ODEs

duj
dt

= − 1

|Ωj |

∫
∂Ωj

f(u(t, s)) · n(s)ds+
1

|Ωj |

∫
Ωj

S(u(x))dx (2) eq:TheSemidis

where ∂Ωj is the boundary of the cell Ωj , and n is the outward unit normal

to ∂Ωj . When a numerical scheme is introduced, the above equation must be

closed choosing a technique to compute the point values of the unknown function

u from the cell averages. More in detail, the point values of u are needed at

the nodes of a quadrature formula along ∂Ωj for evaluating the contour integral

of f , and at the nodes of a quadrature formula within Ωj , to approximate the

integral of the source S.

A class of high order numerical methods to reconstruct these point values is

WENO (Weighted Essentially Non Oscillatory), introduced as a general frame-

work in
JiangShu:96
[JS96], with the successive reviews

Shu97,Shu:2009:WENOreview
[Shu98, Shu09]. These schemes are

designed to optimize accuracy, when the solution is smooth, while decreasing it

in the presence of singularities in the data to avoid spurious oscillations. The

local computational grids of WENO schemes are composed of r overlapping

substencils of r cells, forming a larger stencil with 2r − 1 cells. The method

exploits the whole stencil with 2r − 1 cells, when the data are smooth, achiev-

ing its optimal accuracy p = 2r − 1. If a discontinuity occurs within the large

stencil, the scheme automatically avoids the discontinuity selecting one of the

r substencils, and as a consequence decreasing accuracy down to order r. The
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nonlinear coefficients of WENO’s convex combination are based on lower order

local smoothness indicators that are a scaled sum of the square L2 norms of

all derivatives of local interpolating polynomials,
JiangShu:96
[JS96]. At smooth parts of

the solution, all the smoothness indicators are roughly equal and the WENO

weighted combination reproduces the central scheme of the polynomial of max-

imum degree, i.e. 2r − 2. An essentially zero weight is assigned to those lower

degree polynomials whose substencils contain high gradients or shocks, aiming

at an essentially non-oscillatory solution close to discontinuities.

It was noticed that, close to critical points, the accuracy of WENO schemes

may be non-optimal since the algorithm produces in this case non linear weights

that are too far apart from the optimal values. In an attempt to alleviate this

problem, first a remapping technique called WENOM was introduced in
HAP:2005:mappedWENO
[HAP05]

and then a new algorithm for the computation of the nonlinear weights was pub-

lished in
BCCD:2008:wenoz5
[BCCD08] and later extended in

CCD:2011:wenoz,DB:2013
[CCD11, DB13]. This latter technique,

called WENOZ, relies on an extra global higher order smoothness indicator that

enters in the definition of the nonlinear weights in order to drive their values

closer to the optimal ones in the case of smooth data. Since this extra in-

dicator is simply defined as a linear combination of the Jiang-Shu indicators

already computed, the extra cost is negligible. A study of the performance of

the WENOZ reconstruction then revealed that this idea not only solves the issue

of the accuracy at critical points, but also yields a more accurate reconstruction

than its WENO counterpart,
CCD:2011:wenoz,DB:2013
[CCD11, DB13].

However, WENOZ shares with WENO the feature of replicating the optimal

polynomial only at one point at a time. If the reconstruction is needed at

several points, as in the quadratures required by the integration of (
eq:TheSemidis
2), then

several reconstruction steps must be computed, each time with different weights.

CWENO reconstructions were introduced in
LPR:99
[LPR99] in order to reconstruct the

point value at the center of the cell with third order accuracy in a staggered

central scheme. Later, this technique has been extended to non-staggered finite

volume schemes, to fifth
Capdeville:08
[Cap08] and to any order

CPSV:cweno
[CPSV17] and exploited

for general conservation and balance laws. See also
Balsara:AOWENO
[BGS16]. At a difference
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with WENO, CWENO constructs a polynomial Prec of degree 2r − 2, which is

defined globally in the reconstruction cell. Prec is computed as a convex linear

combination of the same r polynomials of degree r − 1 that are considered by

WENO and of an extra polynomial P0 of degree 2r − 2. The same mechanism

used by WENO for computing the nonlinear weights of the convex combination

is employed also by CWENO in order to guarantee that Prec has optimal accuracy

2r−1 on smooth flows and is essentially non-oscillatory close to discontinuities.

Due to its flexibility and uniform accuracy, this reconstruction technique has

found many applications. For example in balance laws it allows to compute point

value reconstructions at points in the interior of the cell (see
CPSV:cweno
[CPSV17]) without

incurring the problem of non-existence of the WENO optimal weights described

in
QiuShu:02
[QS02, p. 194], without resorting to the treatment of non-positive optimal

weights of
ShiHuShu:2002
[SHS02] and without the complication of having optimal weights that

depend of the local mesh geometry as in
WangFengSpiteri,PS:shentropy
[WFS08, PS16]. The freedom to choose

the values of the CWENO optimal weights has been appreciated for schemes

on locally refined cartesian grids (compare
CRS:16
[CRS16] with e.g.

HuShu:1999,DK:2007:linear
[HS99, DK07])

and for moving mesh schemes like the ALE-ADER schemes on triangular and

tetrahedral meshes
BSDR:adercweno
[BSDR16].

Given the increased resolution and accuracy of WENOZ schemes when com-

pared to their WENO counterparts (see
DB:2013
[DB13]), in this paper we introduce a

variant of the CWENO reconstruction, that we call CWENOZ and that makes

use of the definition of the non linear weights defined by
DB:2013
[DB13]. This is the

subject of Section
sec:cwenoz
2.

In order to compare different schemes, one may consider tables containing

data on convergence histories on some classical problems, but they often depend

heavily on the particular test problem chosen. Another standard criterium in-

volves the concepts of numerical diffusion and numerical dispersion. A linear

scheme applied to the linear advection equation propagates each single Fourier

mode, modifying only the amplitude of each wave number and its propagation

speed, but without generating spurious modes. This is measured with the con-

cepts of numerical diffusion and numerical dispersion, and it can be exactly
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computed with the classical von Neumann analysis.
Pirozzoli2006
[Pir06] proposed to extend

the concepts of diffusion and dispersion to nonlinear schemes, by studying the

real and imaginary part of the diagonal of the time-advancement operator in

frequency space. This idea of performing numerically the von Neumann analysis

has been exploited for example also in
TiTo:2007
[TT07] to study the stability of ADER

schemes. In Section
s:Spectral
3, we thus study the diffusion and dispersion of the WENO,

CWENO and CWENOZ reconstructions, following the ideas of
Pirozzoli2006
[Pir06], but ap-

plying them to the spatial operator only, in order to avoid the influence of the

time advancement scheme.

The above generalizes the classical von Neumann analysis to non linear

schemes, but it is still based on ideas which are derived from linear concepts,

while essentially non-oscillatory schemes are highly non linear. In fact, when the

discrete WENO, CWENO or CWENOZ derivative is applied to a single Fourier

mode, spurious wave numbers are created. These spurious modes are then prop-

agated during the time evolution, interacting in a highly non-trivial way. We

thus think that it is important to study the size of these spurious modes. In

order to evaluate this effect, in the second part of Section
s:Spectral
3, we develop the

idea of a distortion error that measures the size of the off-diagonal elements of

the discrete derivative in frequency space. Moreover, we also consider a new

concept, which we call temperature, that takes into account also the distance

of the spuriously created modes from the original one in Fourier space. Both

definitions incorporate a scaling factor, such that the computed quantities do

not depend on the number of Fourier modes used in the computation and thus

become a signature of the discrete derivative operator. As far as we know, this is

the first attempt to measure the non linear distortion introduced by high order

essentially non-oscillatory schemes.

We remark that a linear scheme is diagonal in frequency space and thus has

zero distorsion and zero temperature. However, it is known that linear high

order schemes are oscillatory close to singularities, which may arise in a finite

time in the evolution of conservation laws. Thus a non-oscillatory scheme must

have non zero temperature, i.e. it cannot be cold. On the other hand a scheme
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with high temperature is a scheme that may produce strong spurious signals

and consequently large errors. One thus aims at cool schemes, in the sense that

their temperature should be non-zero in order to be stable, but not too high in

order to prevent excessive distorsion. We end Section
s:Spectral
3 with a comparison of

the distorsion and temperature of WENO, CWENO and CWENOZ schemes.

The paper is complemented in Section
sec:numerica
4 by numerical experiments that

confirm the results of the previous section and some conclusions are drawn in

Section
sec:conclusioni
5.

2. WENO-like reconstructions and the new CWENOZ
sec:cwenoz

We start this section by reviewing essentially non-oscillatory reconstructions

of WENO type. We recall that the mission of a reconstruction algorithm is to

match the contrasting requirements of high accuracy one the one side and to

avoid spurious oscillations on the other one. The WENO schemes of
JiangShu:96
[JS96] have

been a particularly successfull answer to these needs and have prompted the

construction of variants designed to overcome some of their shortcomings. After

the definition of the WENO reconstruction, we recall the CWENO reconstruction

which ensures uniform accuracy within the cell and WENOZ which is devised to

optimize the choice of the nonlinear WENO weights. Finally we blend CWENO

and WENOZ, defining the new CWENOZ and conclude the section by proving

its accuracy properties.

For an integer r > 1, let us consider reconstructions with a stencil of 2r − 1

cells, centered on a cell Ω0, i.e. the cells with indices in S0 = {−r + 1, . . . , r − 1}.

Let Popt be the polynomial of degree 2r − 2 that interpolates exactly all the

cell averages in the stencil S0. This is clearly the most accurate reconstruc-

tion polynomial, if the data in S0 come from a smooth function. Typically

essentially non-oscillatory recontructions break S0 into r smaller stencils Sk =

{−r + k, . . . , k − 1} for k = 1, . . . , r and consider the interpolating polynomials

Pk ∈ Pr−1 s.t. ∀j ∈ Sk :

∫
Ωj

Pk(s)ds = huj .

6



The WENO reconstruction at a point x̂ ∈ Ω0 consists in finding an optimal

set of linear coefficients dk ∈ (0, 1) such that

Popt(x̂) =

r∑
k=1

dk(x̂)Pk(x̂)

and computing the reconstructed value

WENO(2r − 1; x̂) =

r∑
k=1

ωk(x̂)Pk(x̂),

where the ωk are the so-called nonlinear weights that are computed with the

help of oscillation indicators I[Pk] in such a way that ωk ' dk for smooth data,

but ωk ' 0 if a discontinuity is present in stencil Sk. See
JiangShu:96,Shu97,Shu:2009:WENOreview
[JS96, Shu98, Shu09].

One of the drawbacks of the WENO reconstruction is the difficulty of guar-

anteeing the existence and positivity of a set of linear weights for an arbitrary

point in the reconstruction cell. For example
QiuShu:02
[QS02, p. 194] shows that, on

uniform meshes, for even r, optimal weights for the cell center do not exist and,

for odd r, they exist but are not in (0, 1). There is a technique to treat negative

weights
ShiHuShu:2002
[SHS02], but it requires to compute two different reconstructions per

point.

In
LPR:99
[LPR99], a new third order reconstruction technique was introduced, so

that point values at cell centre could be computed. In fact, this technique, called

Central WENO (CWENO), yields reconstructed values that are uniformly accu-

rate in every point of the cell. It employs directly also an additional polynomial

P0 of degree 2r− 2 in the linear combination. The technique has been later ex-

tended to treat higher order cases
CPSV:cweno
[CPSV17], non-uniform meshes and two and

three-dimensional meshes of quads
SCR:16
[SCR16] and simplices

BSDR:adercweno
[BSDR16].

We recall here the Definition of the CWENO reconstruction, as given in
CPSV:cweno
[CPSV17], specialized to the present case.

def:CWENO Definition 1 (CWENO). For r > 1, consider the stencils S0 and the substencils

S1, · · · ,Sr defined above, the polynomial Popt interpolating all the data in S0 and

the polynomials Pk interpolating the data in Sk. Let also d0, d1, · · · , dr be a set
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of positive, real coefficients dk ∈ (0, 1), s.t.
∑r
k=0 dk = 1. The CWENO operator

computes a reconstruction polynomial

Prec = CWENO(Popt, P1, . . . , Pr) ∈ P2r−2

as follows:

1. first, introduce the polynomial P0 defined as

P0(x) =
1

d0

(
Popt(x)−

r∑
k=1

dkPk(x)

)
∈ P2r−2; (3)

2. then compute the nonlinear coefficients ωk from the linear coefficients dk

as

αk =
dk

(I[Pk] + ε)t
, ωk =

αk∑r
i=0 αi

, (4) eq:OmegaFromD

where I[Pk] denotes a suitable regularity indicator (e.g. the Jiang-Shu ones

of eq. (
eq:JiangShuInd
9)) evaluated on the polynomial Pk, ε is a small positive quantity

and t ≥ 2;

3. and finally define

Prec(x) =

r∑
k=0

ωkPk(x) ∈ P2r−2. (5)

rem:CWENO Remark 1. Note that the polynomial Prec computed by CWENO can then be

evaluated at reconstruction points and will have uniform accuracy for every

x̂ ∈ Ω0. In particular, it will be (2r−1)-th order accurate on smooth data. This

is particularly advantageous when source terms of balance laws are integrated.

Another advantage of CWENO over the classical WENO reconstruction is the

invariance of the optimal linear coefficients dk on the reconstruction point. This

feature, on top of ensuring the above-mentioned uniform accuracy, also allows

to compute the nonlinear weights with equation (
eq:OmegaFromD
4) only once per cell and not

once per reconstruction point.

Last but not least, the optimal linear coefficients dk of CWENO are not

bound by accuracy requirements as those of WENO. This means that they can

be chosen also independently of the local mesh geometry (relative position and

size) in non-uniform grids in one or more space dimension (contrast e.g. the

simplicity of
SCR:16,BSDR:adercweno
[SCR16, BSDR16] with respect to

PS:shentropy,DK:2007:linear
[PS16, DK07]).
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However CWENO, as well as WENO, requires one to choose ε � h2 or ε � h

in order to be convergent with optimal order also on local extrema. In the

WENO framework, Borges, Carmona, Costa and Don introduced the WENOZ

reconstruction technique at order 5 in
BCCD:2008:wenoz5
[BCCD08], which later was extended to

arbitrary order in
CCD:2011:wenoz
[CCD11]. This technique relies on the definition of an extra

smoothness indicator τ . The computation of τ is cheaper than the mapping

technique of
HAP:2005:mappedWENO
[HAP05], since it is simply a linear combination of the standard

polynomial smoothness indicators I[Pk], and it enters in the definition of the

αk’s in order to drive the nonlinear weights ωk closer to their optimal value dk

in case of smoothness. In order to achieve its goals, τ should be at most of size

O(hr+2). Explicit formulas for τ on uniform meshes are given in
CCD:2011:wenoz,DB:2013
[CCD11, DB13]

and are reported in Table
tab:globalindicator
1. In

DB:2013
[DB13] it was shown that WENOZ can employ

much smaller values for ε and numerical tests show that this is beneficial for

the error.

2.1. CWENOZ reconstruction procedure

Here we propose the introduction of the WENOZ weights in the CWENO

reconstruction procedure.

def:CWENOZ Definition 2 (CWENOZ). For r > 1, consider the stencils S0 and the substen-

cils S1, · · · ,Sr defined above, the polynomial Popt interpolating all the data in

S0 and the polynomials Pk interpolating the data in Sk. Let also d0, d1, · · · , dr
be a set of positive, real coefficients dk ∈ (0, 1), s.t.

∑
dk = 1. The CWENO

operator computes a reconstruction polynomial

Prec = CWENOZ(Popt, P1, . . . , Pr) ∈ P2r−2

as follows:

1. first, introduce the polynomial P0 defined as

P0(x) =
1

d0

(
Popt(x)−

r∑
k=1

dkPk(x)

)
∈ P2r−2; (6)
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r τ θ(τ) τopt θ(τopt)

2 |I1 − I2| 3

3 |I1 − I3| 5 |I1 − I3| 5

4 |I1 − I2 − I3 + I4| 6 |I1 + 3I2 − 3I3 − I4| 7

5 |I1 − I5| 7 |I1 + 2I2 − 6I3 + 2I4 + I5| 8

6 |I1 − I2 − I5 + I6| 8 |I1 + I2 − 8I3 + 8I4 − I5 − I6| 9

Table 1: The global smoothness indicator τ and the global optimal order smoothness indicator

τopt and their leading truncation order θ(τ), θ(τopt) of the (2r − 1) order CWENOZ scheme.

In the table we have used the notation Ik for I[Pk]. tab:globalindicator

2. then compute the nonlinear coefficients ωk from the linear ones dk as

αZk = dk

(
1 +

(
τ

(I[Pk] + ε)

)t)
, ωZk =

αZk∑r
i=0 α

Z
i

, (7) eq:OmegaZFromD

where I[Pk] denotes a regularity indicator (e.g. the Jiang-Shu ones of eq.

(
eq:JiangShuInd
9)) evaluated on the polynomial Pk, τ is a suitable linear combination of

I[P1], . . . , I[Pr], ε is a small positive quantity and t ≥ 1;

3. and finally define

Prec(x) =

r∑
k=0

ωZk Pk(x) ∈ P2r−2. (8)

Remark 2. This new reconstruction technique shares the same advantages of

CWENO listed in Remark
rem:CWENO
1. Additionally, the new definition of αZk replacing

the αk of CWENO ensures more favourable convergence properties, as we shall

prove below.

In this paper we consider as regularity indicators the classical ones proposed

by Jiang-Shu in
JiangShu:96
[JS96]:

I[P ] =
∑
l≥1

h2l−1

∫
Ω0

(
dl

dxlP (x)
)2

dx. (9) eq:JiangShuInd

In view of the next results, let us introduce the notation θ(g(h)) to indicate

the power of h in the leading term of the Taylor series expansion of a generic

function g(h).
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The authors of
DB:2013
[DB13] propose two different definitions for τ , that we adopt

also for CWENOZ. The first one depends only on the parity of r, while the

second one is taylored to each specific value of r and aims at obtaining a quantity

τopt which is smaller than the standard definition and yields advantages in the

choice for ε and in the global errors. τopt also allows to definition of CWENOZ3,

which is impossible since τ would identically vanish for r = 2, according to the

standard definition. In Table
tab:globalindicator
1 we summarize the formulas for τ and τopt with

the respective leading truncation order θ(τ).

The proof of the convergence of CWENOZ relies on the following result, that

is proved in
DB:2013
[DB13] for the finite differences setting. Let us focus on a reference

cell j = 0 and assume that its cell centre is at x0 = 0.

prop:bilinearform Proposition 1 (cf. Theorem 1 of
DB:2013
[DB13]). Let P be a polynomial of degree

q that interpolates the cell averages ui of a function u(x) in a stencil of q + 1

continguous cells that includes Ω0. The Jiang-Shu smoothness indicator (
eq:JiangShuInd
9) of

P , can be written in bilinear form as

I[P ] = 〈~w,C ~w〉

where C is a q × q positive semidefinite symmetric matrix and ~w is a vector

such that wi = u(i)(0)hi + O(hq+1), i = 1, 2, · · · , q, where u(i)(x) denotes the

derivative of order i.

Proof. The positive semi-definiteness is trivial from the definition of the Jiang-

Shu indicators.

The Jang-Shu indicator (
eq:JiangShuInd
9) of a generic polynomial of degree q, centered in

0, can be written in a bilinear form as

I

[
q∑
l=0

alx
l

]
= 〈~w,C ~w〉 =

q∑
i=1

q∑
j=1

Ci,jwiwj

where C is a q × q positive semidefinite symmetric matrix, ~w ∈ Rq is a vector

whose components are given by wi = i!aih
i, i = 1, · · · , q. The entries of the
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upper part of C = (C)i,j , i = 1, · · · , q, j = i, · · · , q take the following expression

Ci,j =


∑i
m=1

22m−i−j

(i−m)!(j−m)!(i+j−2m+1) if i+ j even

0 if i+ j odd.

If the polynomial
∑q
i=0 aix

i is interpolating the cell averages of a smooth enough

function u(x), see
CPSV:cweno
[CPSV17], its coefficients satisfy

ai =
1

i!
u(i)(0) +O(hq−i+1) i = 0, 1, · · · , q.

Then, in particular, we have the following expression for the components of the

vector ~w

wi = u(i)(0)hi +O(hq+1) i = 1, 2, · · · , q.

prop:CWENOZ Proposition 2 (cf. Theorem 7 of
DB:2013
[DB13]). If θ(ε) ≤ θ(τ)− (r− 1)/t, then

the CWENOZ scheme achieves the optimal order 2r− 1, as h→ 0, regardless of

the presence of critical points.

Proof. The proof of Theorem 7 of
DB:2013
[DB13], relies only on Theorem 1 of

DB:2013
[DB13].

Since Proposition
prop:bilinearform
1 ensures that the conclusions of Theorem 1 of

DB:2013
[DB13] hold

true also in the present finite volume setting, the proof of Proposition
prop:CWENOZ
2 can be

easily obtained along the same lines as the proof of Theorem 7 of
DB:2013
[DB13].

3. Spectral properties
s:Spectral

The study of the performance of a numerical method starts from the behavior

of the scheme on simple equations for which the exact solution is known. Since

we are concentrating on the behavior of reconstruction algorithms, we consider

only the effects of the reconstruction on the space approximation of differential

operators.

As usual, we start from the simple linear advection equation ut + aux = 0,

with periodic boundary conditions on [0, 2π]. The solution is found through

Fourier series, as

u(x, t) =

∞∑
k=−∞

ûk(t)eikx =

∞∑
k=−∞

ûk(0)eik(x−at).
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The solution is obtained considering separately each Fourier mode, say vk(x, t) =

ûk(t)eikx, substituting it into the linear advection equation,

dûk
dt

eikx + a ik ûke
ikx = 0,

and computing the evolution of the amplitude:

ûk(t) = ûk(0)e−ikat. (10) evol_amplitude

If we consider instead a numerical scheme, based on a reconstruction in space,

and an approximate derivative, the evolution of the amplitude will be given by

dûk
dt

eikx + a ûkDx

(
eikx

)
= 0,

where Dx is the discrete space derivative. If the scheme is based on a formula

with constant coefficients, on the stencil [x−mh, x− (m− 1)h, . . . , x+mh], we

obtain
dûk
dt

eikx + a ûk

(
m∑

`=−m

c`e
ikh`

)
eikx = 0.

In other words, the function eikx is an eigenfunction also for the discrete oper-

ator. Let ω̃k be defined by the equation

ω̃k =

(
m∑

`=−m

c`e
ikh`

)
− ik. (11) omegaK

Thus the amplitude of the Fourier mode, processed by the linear advection

equation with the discrete derivative, is

ûk(t) = ûk(0)e−ikate−aω̃kt. (12)

By comparison with (
evol_amplitude
10), the effect of the numerical scheme is to modify the

exact propagation of the Fourier mode with the complex factor e−aω̃kt. More

in detail, the exact propagation of the modified mode will be

vk(x, t) = ûk(0)eik(x−ãt)e−aRe(ω̃k)t, ã = a+
a

k
Im(ω̃k). (13) omegaK_effect

Thus, the real part of ω̃k controls the damping of the amplitude of the Fourier

mode (provided that the scheme is stable). This is connected with the artificial
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diffusion of the scheme. The imaginary part of ω̃k instead affects the propagation

speed, as specified in (
omegaK_effect
13), and this spurious behaviour determines the dispersive

effects at the basis of the growth of spurious oscillations in non smooth solutions.

For example, for the first order upwind method, in the case of positive a,

one gets

ω̃k = 1
h

(
1− e−ikh

)
− ik

= − 1
2k

2h− i 1
6k

3h2 +O(h3),

which shows that, as is well known, the main effect of this scheme is the damping

of high frequency modes. On the other hand, for the second order central

derivative, one finds

ω̃k = 1
h

(
eikh − e−ikh

2

)
− ik

= −i 1
6k

3h2 +O(h4).

Here, the spurious effect is an error in the propagation speed, given in (
omegaK_effect
13).

This of course is also well known, and can be found in several textbooks, such

as
LeVeque:book
[LV04] or

Toro:book
[Tor09].

3.1. Diffusion and dispersion
s:Diff

Non linear schemes are more difficult to study, because naturally one cannot

use the superposition principle. However, numerical diffusion and dispersion

can be studied a posteriori, looking at how a given numerical scheme modifies

single Fourier modes. This approach has been extensively considered in
Pirozzoli2006
[Pir06],

with the notion of ADR (Approximate Dispersion Relation). Here, we extend

this study to include several variants of WENO schemes. Moreover, we develop

a notion of distortion, to measure the non linear distorsive effects produced by

high order non linear schemes.

Suppose we divide the interval [−1, 1] in 2N + 1 equal cells. We consider a

semidiscrete scheme, in which the approximate derivative Dx is computed with

a non linear scheme. The single Fourier mode ûk(t)eikx, k = −N, · · · , N, is no
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longer an eigenfunction of Dx. We can however compute the Discrete Fourier

Transform (DFT) of the output of the scheme, to see which Fourier modes

have developed from the application of the non linear differentiation. Since the

scheme works on real functions, compute, for k = 1, . . . , N ,

Dx

 sin(2πkx)

cos(2πkx)

 =

N∑
`=1

 ω2`,2k ω2`,2k+1

ω2`+1,2k ω2`+1,2k+1

 sin(2πlx)

cos(2πlx)

 . (14)

Let Ω be the matrix with elements ωij . The first column and the first row of Ω

correspond to the constant mode, and thus they will be ignored in what follows.

For a linear scheme only the 2 by 2 blocks along the diagonal of Ω would be non

zero. Moreover, the exact derivative is the 2N by 2N block diagonal matrix

D = diag (Ek) = diag

2πk

 0 1

−1 0

 , k = 1, . . . , N.

It follows that all terms in Ω off the two main diagonals are spurious distortive

effects. The error is given by the matrix Ω−D. We define the relative error due

the non linear derivative as

E = |Ω− D|diag

 1
2πk

 1 0

0 1

 . (15) matrice_errore

Note that in the error matrix E, the error on each mode is normalized with its

frequency, so that the elements of E represent the relative errors on each mode.

Figure 1: Error matrices E for CWZ3 (left) and CWZ5 (right). f:BluLowOrder
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Figure 2: Error matrices E for CWZ7 (left) and CWZ9 (right). f:BluHighOrder

The two figures Fig.
f:BluLowOrder
1 and

f:BluHighOrder
2 show the size of the entries of the error matrices

E for low order and high order schemes, respectively, for N = 128, so that the

total number of modes is 257. In particular, we exhibit the results obtained

with the CWENOZ schemes of order 3 and 5 in Fig.
f:BluLowOrder
1, and the results yielded

by CWENOZ 7 and 9 in Fig.
f:BluHighOrder
2. The errors on the low frequency modes appear

in the left columns: as the order increases, more and more low frequency modes

are well resolved. Note that in all cases the very high frequency modes are lost,

and in fact the columns to the right of the matrix are filled with numerical

artifacts. As a rule of thumb, you need at least 5 points per mode to resolve

each wave, but the figures show that this rule can be relaxed for very high order

schemes.

Along the two by two diagonal blocks, we find the errors on the k-th mode,

which are the ones used to evaluate diffusion and dispersion errors, see for

instance
Pirozzoli2006
[Pir06]. However, the plots show clearly that we have not only diffusion

and dispersion, but also the growth of spurious modes, which are a purely non

linear effect. For low order modes, the error matrices E are almost diagonal:

this means that for low frequency modes distortion effects are minimal. As the

order is increased, the number of modes which are distortion free increases. This

is a further beneficial effect of high order schemes.

To recover diffusion and dispersion, we need to compute the derivative in
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complex form. Let T be the matrix mapping the Fourier basis in complex form

to the Fourier basis in real form. Then the matrix containing the coefficients of

the approximate derivative Dx on the basis eikx can be written as ΩC = TH ΩT ,

where TH denotes the conjugate transpose matrix. Let ω̃kj = (ΩC)kj . Then,

Re(ω̃kk) =⇒ diffusion error

Im(ω̃kk)− k =⇒ dispersion error.

We compare diffusion and dispersion for the CWENOZ schemes with stan-

dard WENO schemes, and with the compact WENO scheme (CWENO) of
CPSV:cweno
[CPSV17] (see the previous section). To minimize the number of possible de-

grees of freedom, given by the possibility of choosing different parameters for

different schemes, we always choose ε = h2. In all cases, the abscissa carries the

normalized Fourier mode, i.e. πk/N , where N is the number of Fourier modes

considered. The data on diffusion appear in Fig.
f:LowOrderDiff
3 for third and fifth order

schemes and in Fig.
f:HighOrderDiff
4, for the schemes of order seven and nine. Diffusion is a

purely numerical artifact. In all cases, the CWENOZ schemes have a slightly

smaller amount of artificial diffusion than the other schemes, except on the very

high frequency modes which in any case cannot be resolved on the chosen grid.
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Figure 3: Diffusion error for schemes of order 3 (left) and 5 (right). f:LowOrderDiff

Fig.
f:LowOrderDisp
5 shows the dispersive effects for the 3rd and 5th order schemes, while

Fig.
f:HighOrderDisp
6 refers to the 7th and 9th methods. In this case, the curves should be as
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Figure 4: Diffusion error for schemes of order 7 (left) and 9 (right). f:HighOrderDiff

close as possible to the dashed line, which contains the correct speed. It is clear

that as the order increases, the numerical curves detach from the exact line at

higher values of k. Here, both CWENO and CWENOZ seem to have an edge

over standard WENO, especially in the high order case.
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Figure 5: Dispersion for schemes of order 3 (left) and 5 (right). f:LowOrderDisp

3.2. Distortion and temperature
s:Dist

Diffusion and dispersion of numerical schemes have been studied by several

authors, see for instance
Trefethen
[Tre82], and are by now classical concepts, see

LeVeque:book
[LV04]

and references therein. They were derived for linear schemes, with the aid of

the modified equation, and only later they were extended to non linear schemes,
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Figure 6: Dispersion for schemes of order 7 (left) and 9 (right). f:HighOrderDisp

see
Pirozzoli2006
[Pir06], or more recently

JiaGaoDon:2015
[JGD15] or

Balsara:AOWENO
[BGS16]. To the best of our knowledge

however, the non linear effects peculiar to non linear schemes such as WENO

have not yet received the same consideration. However the error matrices E of

(
matrice_errore
15) and their plots in Fig.

f:BluLowOrder
1 and

f:BluHighOrder
2 clearly show that a large component of the

error introduced by a scheme on a given mode consists in the development of

spurious modes, which are not accounted for by the classical theory of diffusion

and dispersion.

To account for this fact, we introduce two concepts which measure the dis-

tortion error on each mode and a global measure of distortion, which defines a

parameter characterizing each scheme.
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Figure 7: Distorsion for schemes of order 3 (left) and 5 (right). f:LowOrderDist
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Figure 8: Distorsion for schemes of order 7 (left) and 9 (right). f:HighOrderDist

Definition 3 (Distortion error). The distortion error of a numerical scheme

on the k-th mode of the Fourier basis is defined as

δk = 1
N

∑
` 6=k

|(ΩC)`k| , (16)

where ΩC is the matrix containing the numerical derivative in the Fourier basis,

defined in the previous subsection.

The scaling introduced in the definition ensures that the plots of the distor-

tion error do not depend on the number of nodes of the grid. Thus these figures

are characteristic of each scheme: they do not depend on the grid spacing, but

only on the degree of the interpolating polynomial, or the choice of parameters

in the non linear weights. They are a sort of signature of the scheme. The

distortion errors of WENO type schemes of a given order are compared in Fig.
f:LowOrderDist
7 for low order and

f:HighOrderDist
8 for high order. We see that we start with very small

distortion errors on low frequency modes, which increase with a power law as

the wave number is increased. Note that the distortion error again is smaller for

high order schemes, on low frequency modes. More in detail: if we fix a certain

threshold, say for instance Tol, the frequency K for which the distortion error

is δk < Tol is an increasing function of the accuracy p of the scheme.

We also stress that the CWENOZ schemes are by far less distorsive than

CWENO and WENO schemes, except at third order, where they almost coin-
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cide.

The distorsion error suggests the introduction of a single parameter, mea-

suring the non linear distorsive effects of a numerical scheme.

Definition 4 (Temperature). The temperature of a numerical scheme on the

k−th mode is

Tk =
1

N3

N∑
`=1

ω̃k`((k − `)/π)2.

The j-th temperature of the scheme is

Tj =
1

j

j∑
`=1

T`,

i.e. it is the average temperature of the first j modes. Finally the temperature

T of a scheme is defined as

T = TN/2 (17) eq:Temperature

Note that the temperature T is defined using only the modes that can be re-

solved on a given grid. Moreover, with these scalings, the temperatures Tk and

T depend only on the particular scheme chosen, and not on the number of grid

points. The definition of T yields a single parameter which characterizes the

distortion errors of a scheme. For a linear scheme or for the exact derivative,

Tj = 0,∀j and in particular T = 0.

Fig.
f:AllOrderTemp
9 contains the temperatures Tk for each mode of all schemes studied

here. The notion of temperature weighs more the spurious modes which are far

away in frequency space from the exact mode. More precisely, it measures the

variance of the numerical derivative around the exact mode, and in this sense

it reminds of the classical notion of temperature.

Linear schemes, which present no distortion error, have zero temperature,

but are oscillatory. Thus a good scheme is “cool”, in the sense that its tem-

perature must be as low as possible, without developing spurious oscillations.

From the plots, we see that CWENOZ has the smallest temperature among the

essentially non-oscillatory schemes considered in this work. This is due to the

fact that the weights in CWENOZ tend to privilege the choice of the high order
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Figure 9: Temperature Tk for several schemes: order 3 (left) and 5 (right) in the top row,

order 7 (left) and 9 (right) in the bottom row. f:AllOrderTemp
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3 5 7 9

WENO 4.60e-5 1.14e-6 9.31e-8 7.17e-9

CWENO 5.06e-5 7.56e-7 3.52e-8 5.61e-9

CWENOZ 5.37e-5 7.30e-8 4.13e-9 4.11e-10

Table 2: Temperature T of WENO schemes, for orders 3 to 9. t:TemperatureN4

polynomial entering in the reconstruction, thus approaching a linear scheme.

Note that the temperature decreases, as the order is increased.

Table
t:TemperatureN4
2 contains the temperature T of (

eq:Temperature
17). The normalization appearing

in the definition of temperature ensures that these numbers characterize a nu-

merical scheme, because T does not depend on the number of grid nodes on

which the method is tested. The temperature of the various schemes tested

decreases with the order of the scheme. In particular, except for the order 3

case, CWENOZ is the coolest among all schemes tested.

All plots shown are obtained with N = 128 real modes (plus the zero mode),

that is the number of grid nodes is 2N + 1 = 257, but the plots obtained

with different values of N can be superposed almost exactly, thanks to the

normalization chosen.

In all tests, we used the same choice of the parameter ε in all schemes.

Modifying the choice of ε does not produce significant differences.

4. Numerical tests
sec:numerica

In this section we perform a number of tests on scalar and systems of conser-

vation and balance laws, in order to compare schemes based on the reconstruc-

tions studied in this paper, corroborating the findings of the previous sections.

Computational grids are set up subdividing the domain in M uniform cells

and considering, when appropriate, ghost cells outside the physical domain,

whose cell averages are extrapolated from the cell averages of the inner cells,

taking into account the boundary conditions. Since the purpose of the tests is

to compare the reconstructions, all other ingredients of the numerical scheme
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were chosen as simple as possible and the same for all reconstructions. In

particular the numerical flux is the Local Lax Friedrichs, the CFL number was

always set to 0.45 and the ODE system obtained by semidiscretization was

solved numerically with a Runge-Kutta scheme of order matching the order of

accuracy of the spatial reconstruction. More precisely, the third order scheme

employs the classical third order (strong stability preserving) SSP Runge-Kutta

with three stages
JiangShu:96
[JS96], the fifth order scheme the fifth order Runge-Kutta

with six stages of
Butcher:2008
[But08, §3.2.5], the scheme of order seven relies on the nine-

stages Runge-Kutta of
Butcher:2008
[But08, pag 196] and the scheme of order nine employs

the Runge-Kutta with eighteen stages of order ten of
Curtis:1975
[Cur75]. Clearly, other

Runge-Kutta or multistep schemes and different Riemann solvers could be used

instead.

4.1. Linear transport

We start with a set of tests on the linear transport equation ut + ux = 0 on

the domain [−1, 1] with periodic boundary conditions.

We first consider the initial data

u(x) = sin(πx)− sin(15πx)e−20x2

(18) eq:lintra2:u0

already introduced in
SCR:16
[SCR16], that is a signal that mixes low and high frequency

components and contains all Fourier modes. Fig.
fig:lintra2
10 shows the convergence of

the errors for the schemes of order 3 to 9. In all tests, one obviously observes that

the error does not decrease until the grid is fine enough to resolve details in the

middle of the initial data. Thus the convergence with the expected rate starts

approximately for M > 320 for the third order schemes, for M > 160 for fifth

order ones and for M > 80 at seventh and ninth order. The graphs clearly show

that the CWENOZ schemes outperform the other reconstructions because they

provide the smallest errors and the best convergence rates, since the optimal

rates appear already for relatively small M . CWENO3 and CWENO5 perform

better that the WENO schemes of corresponding order, while CWENO7 and

CWENO9 are on par with the corresponding WENO schemes. Note finally that
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Figure 10: Convergence test for the linear transport of the smooth data (
eq:lintra2:u0
18) for schemes of

order 3, 5, 7 and 9. The initial data is shown in the inset of the top-left panel. fig:lintra2
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Figure 11: Linear advection of a smooth bump, square wave, triangular wave and a semi-

ellipse. Left: schemes of order 3, with 400 points. Right: schemes of order 5, with 200

points. fig:linearJS

the choice of τopt in CWENOZ7 and CWENOZ9 gives an advantage for small

M and this is important since in practice one would like to employ high order

schemes especially on coarse grids. For CWENOZ9 the test stops at M = 2560

instead of 5120 because at this resolution the error is already close to the machine

precision.

Non-smooth initial data. Next, we consider the initial data proposed in
JiangShu:96
[JS96],

which contain a smooth part, a square wave, a triangular wave and a semi-ellipse

in the periodic domain [−1, 1]. The solutions obtained at time t = 8 with the

order 3 and order 5 schemes are plotted in Fig.
fig:linearJS
11. 400 points have been used

in the first case and 200 in the second one, in order to be able to distinguish

the curves. One can see that the CWENOZ schemes resolve much better the

smooth part of the data (Gaussian bump on the left) and the amplitude of the

triangular wave (third bump), without oscillating on the jumps of the square

wave and close to the steep gradient of the semi-ellipse.

In Fig.
fig:weightsJiangShu
12 we plot the nonlinear weights employed by the reconstructions

on the initial data. In particular we consider the relative error (ω∗ − d∗)/d∗ for

the central P0 for CWENO and CWENOZ schemes and for the left-most poly-

nomial for WENO schemes, which do not have necessarily a central polynomial.

The vertical scale is logarithmic and its minimum is set to the machine pre-

cision; missing symbols are exact zero values. One can note that, especially
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Figure 12: Top panel: initial data. Lower panels: relative errors on the nonlinear weights for

schemes of order 3 to 9, from top to bottom. We plot (ω1 − d1)/d1 for WENO schemes and

(ω0 − d0)/d0 for CWENO and CWENOZ schemes. (Missing symbols correspond to exact zero

values.) fig:weightsJiangShu
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Figure 13: Real (left) and imaginary (right) part of the DFT of the exact and of the numerical

solution of linear advection with data (
eq:semiellipse
19). fig:FTfinaldataEllipse
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Figure 14: Comparison of schemes of order 7 and 9 on the solution of linear advection with

initial data (
eq:lintra2:u0
18). Left and middle: real and imaginary part of Fourier transform of final data.

Right: profile (bottom) and relative error on nonlinear coefficients (top). fig:FTandOmega

in the middle of the Gaussian bump and of the semi-ellipse, CWENOZ is much

more effective than CWENO in using the optimal weights for the reconstruction.

These results corroborate the findings of the study of the distorsion (Fig.
f:LowOrderDist
7,

f:HighOrderDist
8)

and of the temperature (Fig.
f:AllOrderTemp
9) of the reconstruction procedures. The lower

errors of the weights employed by the CWENOZ scheme clearly correspond to

their lower distorsion and smaller temperature.

The effects of the discrepancies between the nonlinear weights and the opti-

mal ones is further studied in Fig.
fig:FTfinaldataEllipse
13, which shows the DFT of the exact and of

the computed solutions on the semi-ellipse Jiang-Shu data of Fig.
fig:weightsJiangShu
12. Namely,

we run the code with initial data

u0(x) = 1/6(F (x, 10, 0.5− δ) + F (x, 10, 0.5 + δ) + 4F (x, 10, 0.5)) (19) eq:semiellipse

with F (x, α, a) =
√

max(1− α2(x− a)2, 0) and δ = 0.005. For symmetry we

show only half of the spectrum in Fig.
fig:FTfinaldataEllipse
13 for schemes of order 5 and 7. Note

that the data from CWENOZ schemes are the closest to the exact DFT even for

high frequencies.

Finally, we study the distorsion of linear advection with initial data (
eq:lintra2:u0
18)

already used in the convergence plots. Fig.
fig:FTandOmega
14 contains the DFT of the exact
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Figure 15: Lax shock tube with 200 grid points. Left: comparison of third and fifth order

CWENOZ schemes. Middle and right: comparison of CWENO and CWENOZ schemes of order

3 and 5 on the detail highlighted by the dashed rectangle in the left panel. fig:Lax

and of the numerical solutions of schemes of order 7 and 9, as well as the relative

error between the nonlinear weights and the optimal weights. Again, we see that

a bias towards the optimal weights obtained with CWENOZ results in a lower

distortion of the signal.

4.2. Euler gas dynamics

Next we consider the Euler system of one-dimensional gas-dynamics, in order

to study the non-oscillatory properties of the schemes on nonlinear problems.

The systems of conservation laws is

∂t


ρ

ρu

E

+ ∂x


ρu

ρu2 + p

u(E + p)

 = 0,

where ρ is the gas density, u the velocity, p the pressure, and E the energy per

unit volume. The pressure is linked to the other variables through the equation

of state of an ideal gas, namely p = (E − 1
2ρu

2)(γ − 1), and we take γ = 1.4.

As usual with very high order schemes we apply the reconstructions to the local

characteristic variables.

Lax’s shock tube. In order to demonstrate the essentially non-oscillatory prop-

erties of the proposed schemes, we consider the Riemann problem by Lax, which

has the following left and right states: ρL = 0.445, uL = 0.6989, pL = 3.5277 and

ρR = 0.5, uR = 0, pR = 0.571. The solution develops a left-moving rarefaction
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Figure 16: Density for the shock-acoustic interaction problem by CWENO and CWENOZ

schemes of order 3 (top-left), 5 (top-right), 7 (bottom-left) and 9 (bottom-right). The top left

panel shows the solution in the whole domain for the third order schemes. The other panels

show only an enlargement of the turbulence area. The solution with the schemes of order 3

and 5 employed 400 cells, the solutions with the schemes of order 7 and 9 employed 300 cells. fig:shockAcoustic

and two right-moving waves: a contact discontinuity and a shock, separated

by a constant state. Capturing correctly and without spurious oscillations the

plateaux between the contact and the shock wave is a hard test for the essentially

non-oscillatory properties of a scheme. In Fig.
fig:Lax
15 we compare the CWENOZ3

and the CWENOZ5 scheme, showing the increased resolution of the higher order

scheme and the absence of spurious oscillations. The middle and right panels

present details of the area in the dashed rectangle of the whole solution shown

in the left panel.
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Interaction of a shock with a standing acoustic wave. This test was proposed in
SO88
[SO88] and consists in the following initial data

(ρ, v, p) =

(3.857143, 2.629369, 10.333333), x ∈ [−5,−4)

(1.0 + 0.2 sin(5x), 0.0, 1.0), x ∈ [−4, 5]

in the domain [−5, 5], computing the evolution until t = 1.8. The solution is

plotted in the top-left panel of Fig.
fig:shockAcoustic
16, with a reference solution in light green

and the solutions obtained with the CWENO3 and CWENOZ3 schemes in black

and red respectively. The difficulty in this test is to avoid both spurious oscil-

lations and excessive numerical diffusion at the shock, which allows to capture

correctly the high frequency waves that form behind the strong shock, as a re-

sult of its interaction with the acoustic wave. In the remaining panels of Fig.
fig:shockAcoustic
16

we thus show only a zoom of the solution in this problematic area. In order to

highlight the differences among the schemes, the number of cells is considerably

lower than the typical values used in this test. In particular, note the very tiny

peak immediately behind the shock cannot be captured by any of the schemes

due to the lack of grid resolution.

The top-left panel of Fig.
fig:shockAcoustic
16 shows the solution obtained with the third order

scheme. Here we see that CWENOZ3 approximates slightly better the amplitude

of the small waves in the region with x ∈ [0.7, 2.3]. Of course using more than

400 cells quickly allows the scheme to capture these waves correctly. The top-

right panel shows the results for the order 5 schemes, again with 400 cells. It

is apparent that the fifth order schemes can capture much more accurately the

amplitude of the high frequency waves. Here again, CWENOZ5 is more accurate

than CWENO5. The bottom panels are about the computations with the order

7 and 9 schemes. In order to distinguish the computational results from the

reference solution, the grid resolution was lowered to a mere 300 cells. Despite

this, the little waves are captured better than by the fifth order schemes and

here again CWENOZ is slightly better than CWENO (note in particular the first

wave on the left, at about x = 0.75).
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4.3. Shallow water equations

Finally, since both CWENO and CWENOZ reconstructions are able to provide

uniform accuracy also within the computational cells, we compare the recon-

structions on a well-balanced scheme for the shallow water system, which makes

use of quadrature points in the interior of the computational cells to integrate

the source term. We thus consider the system

∂t

 h

q

+ ∂x

 q

q2/h+ 1
2gh

2

 =

 0

−ghzx

 ,

where h denotes the water height, q is the discharge, z(x) the known bottom

topography and g is the gravitational constant.

The well balanced quadrature is computed using Richardson’s extrapolation,

based on the trapezoidal rule
NatvigEtAl
[NPPN06]. This means that the source term aver-

age is computed using the two boundary value reconstructions and additionally

3, 7 and 15 internal nodes to achieve 5th, 7th and 9th order accuracy respec-

tively. We emphasise that all these reconstructed data are computed from a

single CWENO or CWENOZ reconstruction polynomial, using the same weights

for all reconstruction points. On the other hand with WENO each node would

require a separate reconstruction step.

In order to compare the accuracy of the schemes, we compute the flow pro-

posed in
XingShu:2005:WBSWEfd
[XS05], i.e. with initial data given by

z(x) = sin2(πx) h(0, x) = 5 + ecos(2πx) q(0, x) = sin(cos(2πx)), (20) eq:test:Shu

with periodic boundary conditions on the domain [0, 1]. At time t = 0.1 the

solution is still smooth and we compare the numerical results with a reference

solution computed with a fourth order scheme on 32768 cells. The 1-norm of

the errors appears in Table
tab:SWE:Shu
3.

The upper part of Table
tab:SWE:Shu
3 concerns the schemes of order 3 and 5. In both

cases the CWENOZ errors are lower than the corresponding CWENO data. In

the bottom part of the table, we see that the schemes of order 7 and 9 have

the expected accuracy, but now the errors are very close. Clearly, as the error
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CW3 CWZ3 CW5 CWZ5

N error rate error rate error rate error rate

32 9.37e-03 6.65e-03 4.01e-04 2.58e-04

64 1.44e-03 2.70 7.48e-04 3.15 1.73e-05 4.54 9.72e-06 4.73

128 1.56e-04 3.21 6.40e-05 3.55 5.74e-07 4.91 3.15e-07 4.95

256 1.57e-05 3.31 7.17e-06 3.16 1.81e-08 4.98 9.99e-09 4.98

512 1.83e-06 3.10 8.80e-07 3.03 5.70e-10 4.99 3.13e-10 5.00

1024 2.29e-07 3.00 1.10e-07 3.00 1.79e-11 5.00 9.80e-12 5.00

CW7 CWZ7 CW9 CWZ9

N error rate error rate error rate error rate

16 1.30e-03 1.63e-03 7.02e-04 6.88e-04

32 7.25e-05 4.17 6.22e-05 4.71 2.82e-05 4.64 2.38e-05 4.85

64 6.70e-07 6.76 7.44e-07 6.39 1.22e-07 7.85 1.17e-07 7.67

128 5.02e-09 7.06 6.68e-09 6.80 3.44e-10 8.47 3.15e-10 8.54

256 3.91e-11 7.00 5.37e-11 6.96 7.43e-13 8.86 6.65e-13 8.89

512 3.07e-13 6.99 4.25e-13 6.98 7.11e-15 6.71 6.91e-15 6.59

Table 3: Errors in the SWE smooth test. Data in italic are most likely affected by machine

precision. tab:SWE:Shu
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approaches machine precision, the convergence rate deteriorates. Note that for

the high order schemes, the number of computational cells was lowered by a

factor of 2, because the optimal order of accuracy is achieved faster.

5. Conclusions
sec:conclusioni

In this paper we considered several high order essentially non-oscillatory

reconstructions of WENO type for finite volume schemes applied to balance laws.

In order to compare high order schemes, the concepts of numerical diffusion and

numerical dispersion have been extended to the nonlinear case, to account for

the high nonlinearity of such schemes. Unlike
Pirozzoli2006
[Pir06], however, we compute

the Approximate Dispersion Relations on the discrete derivative itself, to avoid

polluting contributions from the time integrators.

The notions of numerical diffusion and dispersion generalize the idea of the

von Neumann analysis. In the linear setting a Fourier mode is an eigenfunc-

tion both for the exact and the discrete derivative and only the eigenvalue is

different. However, in the nonlinear case, there are distorsive effects: the dis-

crete operator applied to a single Fourier mode creates new modes which are

spurious effects. These obviously cannot be measured with tools derived from

linear analysis. As far as we know, there is no study of such distorsive effects

in the literature. For this reason, in this paper, we have introduced the notion

of distorsion error, which is a measure of the amplitude of the spurious modes

generated by the reconstruction, and a notion of temperature, which measures

the distance in frequency space of the spurious modes from the exact signal.

Both these quantities are scaled in such a way that they do not depend on the

grid spacing and thus they provide measures of the distorsive effects which are

characteristic of each scheme.

A linear scheme has zero temperature and zero distorsive errors, but it may

be oscillatory. Nonlinear techniques designed to prevent spurious oscillations in

high order schemes, increase their distorsive effects, which are measured by the

temperature. Thus, we seek for a scheme which is cold, but distorsive enough
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to prevent oscillations. For this reason we considered the WENOZ choice of

weights, which is designed to reduce the nonlinearity of the original WENO

schemes. We exported this idea to the new CWENO schemes introduced in
CPSV:cweno
[CPSV17], defining the CWENOZ reconstructions. In this fashion we enjoy the

low temperature of the WENOZ weights and the possibility of creating uniformly

accurate reconstructions of the CWENO approach.

Several tests illustrate the performance of the CWENOZ and the ability of the

ideas of distorsion error and temperature to predict the behavior of the schemes.

Finally, we would like to remark that the distortion and the temperature can be

computed for any semi-discrete scheme using the formulas of the present paper

and also for fully-discrete schemes, provided that the matrix Ω is computed as

in
Pirozzoli2006
[Pir06]. We thus plan to analyze systematically with this technique other

kind of schemes, like slope limited reconstruction, hierarchical reconstruction

techniques, schemes based on the MOOD approach, on the ADER predictors,

etc.
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DK:2007:linear [DK07] M. Dumbser and M. Käser. Arbitrary high order non-oscillatory

finite volume schemes on unstructured meshes for linear hyperbolic

systems. J. Comput. Phys., 221(2):693–723, 2007.

HAP:2005:mappedWENO [HAP05] A. K. Henrick, T. D. Aslam, and J. M. Powers. Mapped weighted

essentially non-oscillatory schemes: Achieving optimal order near

critical points. J. Comput. Phys., 207:542–567, 2005.

HuShu:1999 [HS99] C. Hu and C.-W. Shu. Weighted essentially non-oscillatory schemes

on triangular meshes. J. Comput. Phys., 150(1):97–127, 1999.

JiaGaoDon:2015 [JGD15] F. Jia, Z. Gao, and W. S. Don. A spectral study on the dissipation

and dispersion of the WENO schemes. J. Sci. Comput., 63:49–77,

2015.

37



JiangShu:96 [JS96] G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted

ENO schemes. J. Comput. Phys., 126:202–228, 1996.

LPR:99 [LPR99] D. Levy, G. Puppo, and G. Russo. Central WENO schemes for hy-

perbolic systems of conservation laws. M2AN Math. Model. Numer.

Anal., 33(3):547–571, 1999.

LeVeque:book [LV04] R. Le Veque. Finite Volume Methods for Hyperbolic Problems. Cam-

bridge Texts in Applied Mathematics. Cambridge University Press,

2004.

NatvigEtAl [NPPN06] S. Noelle, N. Pankratz, G. Puppo, and J. R. Natvig. Well-balanced

finite volume schemes of arbitrary order of accuracy for shallow water

flows. J. Comput. Phys., 213(2):474–499, 2006.

Pirozzoli2006 [Pir06] S. Pirozzoli. On the spectral properties of shock capturing schemes.

J. Comput. Phys., 219:489–497, 2006.

PS:shentropy [PS16] G. Puppo and M. Semplice. Well-balanced high order 1D schemes

on non-uniform grids and entropy residuals. J. Sci. Comput., 2016.

QiuShu:02 [QS02] J. Qiu and C.W. Shu. On the construction, comparison, and local

characteristic decomposition for high-order central WENO schemes.

J. Comput. Phys., 183:187–209, 2002.

SCR:16 [SCR16] M. Semplice, A. Coco, and G. Russo. Adaptive mesh refinement

for hyperbolic systems based on third-order compact WENO recon-

struction. J. Sci. Comput., 66(2):692–724, 2016.

ShiHuShu:2002 [SHS02] J. Shi, C. Hu, and C.-W. Shu. A technique of treating negative

weights in WENO schemes. J. Comput. Phys., 175(1):108–127, 2002.

Shu97 [Shu98] C. W. Shu. Essentially non-oscillatory and weighted essentially

non-oscillatory schemes for hyperbolic conservation laws. In Ad-

vanced numerical approximation of nonlinear hyperbolic equations

38



(Cetraro, 1997), volume 1697 of Lecture Notes in Math., pages 325–

432. Springer, Berlin, 1998.

Shu:2009:WENOreview [Shu09] C.-W. Shu. High order weighted essentially nonoscillatory schemes

for convection dominated problems. SIAM REVIEW, 51(1):82–126,

2009.

SO88 [SO88] C.-W. Shu and S. Osher. Efficient implementation of essen-

tially nonoscillatory shock-capturing schemes. J. Comput. Phys.,

77(2):439–471, 1988.

Toro:book [Tor09] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dy-

namics. Springer, third edition, 2009.

Trefethen [Tre82] L. N. Trefethen. Group velocity in finite difference schemes. SIAM

Review, 24:113–137, 1982.

TiTo:2007 [TT07] V. A. Titarev and E. F. Toro. Analysis of ADER and ADER-WAF

schemes. IMA J. Numer. Anal., 27:616–630, 2007.

WangFengSpiteri [WFS08] R. Wang, H. Feng, and R. J. Spiteri. Observations on the fifth-order

WENO method with non-uniform meshes. Appl. Math. Comput.,

196(1):433–447, 2008.

XingShu:2005:WBSWEfd [XS05] Y. Xing and C. W. Shu. High order finite difference WENO schemes

with the exact conservation property for the shallow water equations.

J. Comput. Phys., 208:206–227, 2005.

39


