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Abstract. This work presents arbitrary high order well balanced finite volume schemes for the
Euler equations with a prescribed gravitational field. It is assumed that the desired equilibrium
solution is known, and we construct a scheme which is exactly well balanced for that particular
equilibrium. The scheme is based on high order reconstructions of the fluctuations from equilibrium
of density, velocity and pressure, and on a well balanced integration of the source terms, while no
assumptions are needed on the numerical flux, beside consistency. This technique allows to construct
well balanced methods also for a class of moving equilibria. Several numerical tests demonstrate the
performance of the scheme on different scenarios, from equilibrium solutions to non steady problems
involving shocks. The numerical tests are carried out with methods up to fifth order in one dimension,
and third order accuracy in 2D.
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1. Introduction. In this paper we are concerned with the numerical approxi-
mation of the flow of a gas in a gravitational field. The problem is modelled with
Euler gas dynamics equations with a source term, containing the gravitational force,
namely

(1.1)



∂ρ

∂t
+∇ · (ρv) = 0

∂(ρv)

∂t
+∇ · (ρv ⊗ v + pI) = −ρ∇Φ

∂E

∂t
+∇ · (v(E + p)) = −ρv∇Φ

for x ∈ Rd, with ρ ≥ 0 being the density, v ∈ Rd the velocity, m = ρv the momentum,
p ≥ 0 the pressure and E the total energy per unit volume. Further, the internal
energy per unit mass is e and it is given by ρe = E − 1

2ρv · v. Pressure is determined
from e and ρ through the equation of state (EOS). For an ideal gas, the internal
energy depends only on the temperature e = e(T ), but other cases are possible. The
state of a gas is determined by only two thermodynamic variables, as, for instance,
the pressure and the density. Thus, pressure, temperature and density are a triplet of
functions, such that each of them can be determined by the remaining two through
the equation of state. For example, for an ideal gas, p = ρRT , where R is the universal
constant for an ideal gas.

We will suppose that system (1.1) is completed with an initial condition

(1.2) ρ(x, t = 0) = ρ0(x), v(x, t = 0) = v0(x), p(x, t = 0) = p0(x).

The numerical integration of equations of the form (1.1) presents several chal-
lenges: singularities may form in a finite time, even from smooth initial data, making
the solution rich in structure. For this reason, high order accurate schemes, tailored
to deal with discontinuities, are particularly interesting. They permit to resolve fine
scales on the solution even using relatively coarse grids. For a classical review of the
issues relevant in the construction of high order non oscillatory schemes, see [28].
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The main focus of this paper is on a further challenge in the integration of balance
laws, which is due to the presence of the source term. System (1.1) can be endowed
with non trivial steady states, and often small perturbations of such equilibrium states
are of particular interest in applications. However, small perturbations of steady states
may go totally undetected, if they are of the same size of the local truncation error.
For this reason, much research has concentrated on the development of well balanced
schemes, which are able to preserve steady states exactly at the discrete level, thus
enabling also the detection of small perturbations of steady states.

The development of well balanced schemes started on the system of the shallow
water equations, with, initially, the goal to preserve the lake at rest solution. Pioneer-
ing works in this field are [2, 20, 4], but the literature on this topic is huge. Here we
mention only the high order well balanced schemes of [24, 26] and the technique of
well balancing thanks to a hydrostatic reconstruction of [1], which employ tools that
are at the basis of our approach to well balancing under a gravitational field. See
also the extension proposed in [32] for the high order preservation of moving water
equilibria.

More recently, new applications of well balanced schemes have been considered.
In particular, gas dynamics flows in a gravitational field are endowed with non triv-
ial equilibria which are of particular interest for astrophysical and metheorological
applications. In this work, we concentrate on the construction of high order numer-
ical methods which are well balanced for equilibrium solutions of Euler equations
with gravity. A pioneering work in this field is [6], which constructs a well-balanced
scheme transforming the source terms into numerical fluxes at equilibrium. Many re-
cent papers deal with this problem. Initially, well balanced schemes were written for
particular equilibria, as in [33], where high order finite difference methods for isother-
mal equilibrium are proposed, and [18], which concentrates on isentropic flows, for
general equations of state. The work [8] proposes a second order scheme which is well
balanced thanks to an auxiliary function, which determines an ad hoc reconstruction.
In [13, 30], well balancing is achieved with a relaxation scheme, which includes the
enforcement of a steady state within the numerical flux. We also mention [9, 23] which
are concerned with Discontinuos Galerkin methods. The work [3] concentrates on well
balancing on low Mach smooth steady states, and the very recent [14] on achieving
equilibrium on a moving mesh, using the path-conservative approach of [25].

A few very recent schemes, [19, 10, 31], are able to detect equilibrium states
automatically, and be well balanced only against such states. These schemes are only
second order accurate, and they are well balanced with respect to an approximation of
the exact unknown steady state. Another line of research concentrates on preserving
hydrostatic equilibria for quite general equations of state, as in the case of [15], where
a scheme preserving isentropic steady states with arbitrary order of accuracy and
multiphysics EOS is proposed.

The method we propose in this work assumes that a particular equilibrium is
given, around which the scheme is well balanced, as in [22]. Our method will preserve
this steady state exactly, and will be able to resolve accurately very small pertur-
bations around it. In many applications, it is reasonable to assume that one knows
the structure of the steady state of interest: for instance, one may expect that at
equilibrium the flow will be isentropic, or isothermal. Our method is built on the idea
that the hydrostatic equilibrium around which the scheme is well balanced is chosen
by the user. This allows us to construct a scheme which is well balanced also for a
type of moving equilibrium, which, as far as we know, has not been considered yet in
the literature on well balanced schemes for Euler with gravity. The moving equilibria
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considered here are 2D, or even 3D flows, characterized by a constant gas velocity
perpendicular to the gravity field, with a hydrostatic profile parallel to the gradient
of the potential. It is immediate to verify that such solutions are exact equilibria.
An application could be to metheorology, in which a steady, horizontal wind is su-
perposed to a hydrostatic pressure field. The standard still hydrostatic equilibria are
a particular case of these “windy” equilibria. We believe that this new equilibrium
can be of interest for applications, because it permits to compute accurately small
perturbations over a steady wind in a hydrostatic pressure field.

The scheme we propose is built on three main ideas: we propose to reconstruct
variables as fluctuations from the prescribed steady state, because any piecewise poly-
nomial reconstruction algorithm is able to reproduce constants exactly. This elimi-
nates artefacts due to the artificial diffusion inherent in the stabilization terms, see
also [1]. Secondly, the prescribed equilibrium is used to eliminate the gravitational
potential from the equations, which is used to construct a well balanced second order
accurate quadrature for the source. Finally, we use extrapolation, as in [24] to boost
the second order well balanced quadrature to any desired order.

The rest of the paper is organized as follows. We start with a discussion on the
numerical treatment of Euler with gravity steady state solutions in §2. The numerical
scheme and its properties are discussed in Sections 3 for the one dimensional case and
4 for higher space dimensions. The results of the numerical tests are then reported in
Section 5 and our conclusions are summarized in Section 6.

2. Steady state solutions and well balanced schemes. System (1.1) is a
balance law, and thus it is possible to have non trivial steady states, when the flux
terms balance exactly the source. In particular, Euler equations with gravity can have
hydrostatic equilibrium solutions, if the following conditions are satisfied

(2.1) v(x, t) ≡ 0 ∇p = −ρ∇Φ.

Since system (1.1) does not have dissipation terms, steady states can occur only
if they are present already at the level of the initial condition, and are consistent
with boundary conditions, if present. Not all initial conditions are consistent with a
possible steady state, since the existence of a hydrostatic steady state requires that

(2.2) ∇× (ρ∇Φ) = 0.

In this work we will suppose that, given the gravitational potential Φ, two scalar
functions α and β are known such that

(2.3) ∇β = −α∇Φ.

So, if at some time ρ(x, t) = α(x), the consistency condition (2.2) is satisfied and
a hydrostatic steady state becomes possible. In many cases, one is interested in
preserving a particular equilibrium state, from which the functions α and β can be
derived a-priori. Typical cases include, but are not limited to, the following ones.

If the temperature is constant, equilibrium for an ideal gas is described by

(2.4) αiso(x) =
e−Φ(x)/Teq

Teq
βiso(x) = e−Φ(x)/Teq .

In fact, for an ideal gas, p = ρT (we are taking the gas constant R = 1 for simplicity).
Thus the equilibrium equation becomes ∇p = −p/T ∇Φ. Since the temperature is
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constant T ≡ Teq, the equation becomes ∇(ln p) = −∇(Φ/T ), and one can integrate
both sides, obtaining the same result irrespective of the path.

Similarly, if the desired equilibrium targets a polytropic gas, pρ−ν = C (constant),
the functions α and β are given by

(2.5) αpoly(x) =
(
1− ν−1

ν Φ(x)
) 1
ν−1 βpoly(x) = (ρ(x))

ν
.

Note that this in particular includes the isentropic equilibrium when ν = γ.
These are classical solutions of clear interest for physical applications. But this

does not by any means cover all possible cases. For instance, if the density is constant,
we would take β = −ρΦ. Further, in the numerical tests, we will also consider the
following equilibrium around a potential with radial symmetry,

(2.6) αgen(r, θ) = e−r βgen(r, θ) = (1 + r)e−r, Φ(r) = r2.

Once the functions α and β are known, if v0(x, y) = 0, p0 = Kβ and ρ0 = Kα,
for some constant K, then the solution will remain stationary for all time.

Another interesting equilibrium which so far, to the best of our knowledge, has
not been studied, concerns equilibrium solutions with non zero constant speed in multi
dimensions, as in the case of a steady breeze along an horizontal surface. We consider
a gravitational field with a constant direction, and we align the system of reference
with the y axis parallel to ∇Φ. Then a solution of the form

(2.7) ρ(x, y) = α(y), p(x, y) = β(y), v(x, y) = (U, 0),

with α and β satisfying (2.3) is a steady state solution, for any constant U . The well
balanced discretization of this equilibrium is introduced in §4.1.

A standard discretization of system (1.1) in general fails to preserve steady states
exactly. There are two main issues at stake. We illustrate the origin of the failure
to preserve steady states considering a simple first order finite volume scheme for
(1.1). For simplicity, we will consider a uniform grid in space. The computational
domain is covered with control volumes V nj = (xj − ∆x

2 , xj + ∆x
2 ) × (tn, tn + ∆t),

where ∆x and ∆t are the grid spacings in space and time respectively, λ = ∆t/∆x
and xj = j∆x, j ∈ Z, tn = n∆t, n ∈ N. A first order discretization of system (1.1)
will give

U
n+1

j = U
n

j − λ
[
F
(
U
n

j+1, U
n

j

)
−F

(
U
n

j , U
n

j−1

)]
+ λS(U

n

j ).

Here F(a, b) is a standard numerical flux, given by

F(a, b) = 1
2 (f(a) + f(b))− 1

2Q(a, b)(a− b),

where Q(a, b) is the viscosity matrix of the numerical method. For instance, Q(a, b) =
µI for the Lax Friedrichs numerical flux, where µ is the artificial diffusion coefficient, or
Q(a, b) is the Roe matrix for the Roe numerical flux. If we specialize this discretization
to a steady state solution of the form (2.1), for the Lax Friedrichs numerical flux, we
find

ρn+1
j = ρnj + 1

2µλ(ρnj+1 − 2ρnj + ρnj−1)

(ρv)n+1
j = − 1

2λ(pnj+1 − pnj−1)− ρnj
(
Φ(xj+1/2)− Φ(xj−1/2)

)
En+1
j = Enj + 1

2µλ(Enj+1 − 2Enj + Enj−1).
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The second equation generates momentum spuriously because the discretization of
the source does not match the differences in the pressure. The remaining equations
move the density and the energy away from the steady state, because of the artificial
diffusion term. Thus, to achieve well balancing, two aspects should be considered

• reconstruct along equilibrium variables, to ensure that at equilibrium the two
interface states on which the numerical flux is built coincide: then the con-
sistency of the numerical flux implies that F(U,U) = f(U), with no artificial
diffusion;

• write a well balanced quadrature of the source, to ensure that the numerical
flux and the cell average of the source balance exactly at the discrete level,
for equilibrium solutions.

Following this framework, it is possible to write well balanced numerical schemes for
any order of accuracy, and for any consistent numerical flux.

3. One-dimensional numerical scheme. Let us first describe the discretiza-
tion of system (1.1) in one space dimension. We suppose we are given two func-
tions α(x), β(x), as in (2.3), that is with ∇β = −α∇Φ. Then, whenever u = 0,
p(x, t) = β(x) and ρ(x, t) = α(x), the system is in hydrostatic equilibrium, and the
solution will remain constant.

The idea is to reconstruct the fluctuations of ρ(x, t) and p(x, t) from α and β, so
that at equilibrium the reconstruction is identically zero.

Since α and β are known functions, we can compute their cell averages, αj and
βj . For a fixed time t, introduce auxiliary variables

r(x, t) = ρ(x, t)− α(x) π(x, t) = p(x, t)− β(x).(3.1)

Since, during the reconstruction, the time is fixed, we temporarily drop the t depen-
dence. We start describing the first and second order schemes. Up to second order
we can take

(3.2) p = (γ − 1)(E − 1
2m

2/ρ).

Then, we can compute the cell averages of the auxiliary variables,

rj = ρj − αj πj = pj − βj .

We apply a non oscillatory reconstruction to r, π and m = ρv. Let r±j+1/2 and π±j+1/2 be

the left and right reconstructed values at the cell interface located in x = xj + 1/2h for
the density and pressure fluctuations. Then the reconstructed values for the density
and the pressure can be recovered as

(3.3a) ρ±j+1/2 = r±j+1/2 + α(xj+1/2)

and

(3.3b) p±j+1/2 = π±j+1/2 + β(xj+1/2).

Note that the accuracy of the reconstructed data ρ±j+1/2 and p±j+1/2 is of the same order

q one would achieve reconstructing the point values directly from ρ and p, with the
same reconstruction. This is due to the continuity of the functions α and β across the
interfaces. The reconstructed values for the momentum do not need to be modified,
because (ρv)±j+1/2 = 0 at equilibrium. Then we recover the energy as

(3.3c) E±j+1/2 = 1
2 (ρv)±j+1/2

2
/ρ±j+1/2 + p±j+1/2/(γ − 1)
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As we will see below, at equilibrium, the reconstructed data are continuous, i.e.
U+
j+1/2 = U−j+1/2 = Uj+1/2. Then the numerical flux is

F
(
U+
j+1/2, U

−
j+1/2

)
= F

(
Uj+1/2, Uj+1/2

)
= f(Uj+1/2),

and no artificial diffusion is introduced. The last task is to discretize the source. To
this end, note that the source can be written exactly as

(3.4) − ρ∇Φ = − ρ
α
α∇Φ =

ρ

α
∇β.

In our scheme, we use this formula to discretize the source term. In particular, the
quadrature Qρvj , giving the cell average of the source in the momentum equation, is
defined as

(3.5) Qρvj = 1
2

(
ρ+
j−1/2

α(xj−1/2)
+

ρ−j+1/2

α(xj+1/2)

)
β(xj+1/2)− β(xj−1/2)

∆x
.

Similarly, the quadrature rule for the source in the energy equation is

(3.6) QEj = 1
2

(
(ρv)+

j−1/2

α(xj−1/2)
+

(ρv)−j+1/2

α(xj+1/2)

)
β(xj+1/2)− β(xj−1/2)

∆x
.

These two formulas yield a second order accurate approximation of S(U)j .
In general, we will define the well balanced quadrature for a function y with the

expression

(3.7) Qyj = 1
2

(
y+
j−1/2

α(xj−1/2)
+

y−j+1/2

α(xj+1/2)

)
β(xj+1/2)− β(xj−1/2)

∆x
.

Theorem 3.1. The semidiscrete scheme

(3.8)
d

dt
U j(t) = − 1

∆x

[
F
(
U+
j+1/2(t), U

−
j+1/2(t)

)
−F

(
U+
j−1/2(t), U

−
j−1/2(t)

)]
+Qj(t),

where Qj = [0, Qρvj , Q
E
j ] is computed in (3.5) and (3.6), while the boundary extrap-

olated data are obtained with the well-balanced reconstructions (3.3), is exactly well
balanced on the hydrostatic equilibrium solution ρ(x, t) = α(x) and p(x, t) = β(x).

Proof. If the data at time t are in hydrostatic equilibrium, ρv, rj and πj are zero
for all j. Then, the boundary extrapolated data for the pressure are p±j+1/2 = β(xj+1/2).

The momentum flux reduces to Fρvj+1/2 = β(xj+1/2), and the equation for momentum

becomes

d

dt
ρvj(t) =−

β(xj+1/2)− β(xj−1/2)

∆x

+ 1
2

(
ρ+
j−1/2

α(xj−1/2)
+

ρ−j+1/2

α(xj+1/2)

)
β(xj+1/2)− β(xj−1/2)

∆x
.

Since ρ±j+1/2 = α(xj+1/2), the time derivative of momentum is exactly zero. Moreover,

the source term and the momentum flux in the energy equation are identically zero
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at the hydrostatic equilibrium, thus the flux and the source are automatically well
balanced, even without the well balanced quadrature of the source (3.6).

Further, the well balanced reconstruction (3.3) ensures that U+
j+1/2 = U−j+1/2 =

Uj+1/2 at equilibrium. Thus, for any consistent numerical flux, F(U+
j+1/2, U

−
j+1/2) =

f(Uj+1/2), which ensures that there is no artificial viscosity. Finally at equilibrium
f(Uj+1/2) = [0, pj+1/2, 0] = [0, βj+1/2, 0].

Remark 1. The semidiscrete scheme (3.8) is well balanced for any consistent
numerical flux. We point out that in particular we do not need to assume that the
numerical flux is able to preserve contact discontinuities exactly. This allows the
application of this framework also to numerical fluxes, such as Lax Friedrichs and the
Central Upwind or Rusanov numerical fluxes.

First order scheme. Reconstruct the boundary extrapolated data from the cell
averages of the auxiliary quantities r, π, ρv with the conservative piecewise constant
polynomial. Integrating in time with forward Euler, we obtain a first order accurate
well balanced scheme.

Second order scheme. Reconstruct the boundary extrapolated data from the cell
averages of the auxiliary quantities r, π, ρv with a conservative piecewise linear non
oscillatory polynomial. Integrating in time with a second order SSP Runge Kutta
scheme, we obtain a second order accurate well balanced scheme. For instance, one
could use the Minmod limiter to obtain the non oscillatory reconstruction, and Heun’s
scheme as a Runge Kutta integrator.

Remark 2. Once the semidiscrete scheme is well balanced, thanks to Theorem
3.1, a Runge-Kutta time integration yields naturally a well balanced fully discrete
numerical scheme, because all Runge-Kutta stages will be zero at equilibrium.

3.1. High order accurate well balanced method. High order accuracy can
be achieved improving the accuracy of the reconstruction, of the time integration,
and of the order of the well balanced quadrature (3.5). Let q be the desired order of
accuracy.

If the reconstruction is computed on the fluctuations from equilibrium, since
any high order polynomial reconstruction preserves zero exactly, then at equilibrium,
the reconstructed data of the fluctuations will remain zero. Thus, at equilibrium
p±j+1/2 = β(xj+1/2) and ρ±j+1/2 = α(xj+1/2). So, any high order reconstruction remains

well balanced, provided it is applied to the fluctuations (3.1). To ensure the desired
accuracy we will consider a piecewise polynomial reconstruction of order q.

Next, one needs to increase the order of accuracy of the time integrator. This,
thanks to Theorem 3.1, does not modify the well balanced property of the scheme.
Thus any order q Runge Kutta or multistep scheme can be used to boost the final
accuracy of the scheme.

However, the scheme just described is limited to second order accuracy in two
key aspects. First of all the cell averages of the pressure, obtained as in (3.2) are only
second order accurate approximations. Secondly, the well balanced quadrature Qj in
(3.5) is also only second order accurate.

Accurate estimates of the cell averages of the pressure can be obtained in the
following fashion. First, choose a q order accurate quadrature rule to reconstruct the
cell averages of a smooth function g(x):

(3.9) gj =
∑
k

wkg(xj,k) =
1

∆x

∫ xj+1/2

xj−1/2

g(x) dx+O(∆x)q,
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where xj,k are the quadrature nodes contained in the j-th cell (xj − 1/2h, xj + 1/2h).
Next, compute the cell averages of the density fluctuations r, and reconstruct the

point values of the density through (3.3a) at each quadrature node xj,k. Obtain also
the point values of momentum m(xj,k). Then use the quadrature (3.9) to compute
the cell averages of the kinetic energy

(3.10) EKj =
1

2

∑
k

wk
m2(xj,k)

ρ(xj,k)
.

Note that, since the reconstructions of ρ and m are well balanced, EKj = 0 at equi-

librium. Now, compute the cell averages of the pressure, as pj = (γ − 1)(Ej − EKj).
From these, compute the cell averages of the pressure fluctuations πj = p − β and
reconstruct the point values of the pressure at the cell edges as in (3.3b). Finally, we
obtain the well balanced reconstruction of the energy at the cell edges as

(3.11) E(xj+1/2)
± =

1

γ − 1
p(xj+1/2)

± + 1
2

(m(xj+1/2)
±)2

ρ(xj,k)
.

To increase the order of the quadrature rule (3.7), without loosing the well bal-
anced property, we use the same approach of [24]. The idea is to increase accuracy
applying the Richardson extrapolation to the well balanced, second order quadrature
rule (3.5) for momentum, and (3.6) for the energy equation. This can be done using

Romberg’s method, see [29, §3.4]. Dropping the index j, let Q
(0)
m be the well balanced

reconstruction Q of (3.7) applied as a composite rule to the interval (xj−1/2, xj+1/2),

subdivided into m = 2` equal subintervals of amplitude ∆x/m. Define the recursion

Q(k)
m =

22kQ
(k−1)
m −Q(k−1)

m/2

22k − 1
, k > 0, k ∈ N

Then the quadrature defined by

(3.12) Qq = Q
(`)

2`

has accuracy q = 2 + 2`. For example, the formulas

Q4 = 1
3 (4Q

(0)
2 −Q

(0)
1 ) q = 4(3.13)

Q6 = 1
45 (64Q

(0)
4 − 20Q

(0)
2 +Q

(0)
1 ) q = 6(3.14)

are q = 4 and q = 6 order accurate, respectively.

Theorem 3.2. The semidiscrete scheme
(3.15)

d

dt
U j(t) = − 1

∆x

[
F
(
U+
j+1/2(t), U

−
j+1/2(t)

)
−F

(
U+
j−1/2(t), U

−
j−1/2(t)

)]
+Qqj(t),

where Qqj is computed in (3.12), and the boundary extrapolated data are obtained
with the well-balanced reconstructions (3.3) is exactly well balanced on the hydrostatic
equilibrium solution ρ(x, t) = α(x) and p(x, t) = β(x).

Proof. If the data at time t are in hydrostatic equilibrium, then ρv, rj are zero
for all j, and as a consequence m(xj,k) = 0 at each quadrature point, because any
piecewise polynomial reconstruction is able to reproduce the zero function exactly.
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Thus EKj = 0 in each cell, and the cell averages of the pressure coincide, up to the
factor γ − 1, with the equilibrium values of the cell averages of the energy. Thus,
pj = βj and πj = 0. Then, the boundary extrapolated data for the pressure are again

p±j+1/2 = β(xj+1/2).

The momentum flux reduces to Fρvj+1/2 = β(xj+1/2), and the equation for momen-

tum becomes
d

dt
ρvj(t) = −

β(xj+1/2)− β(xj−1/2)

∆x
+Qqj .

Since at equilibrium ρ(x) = α(x), for any reconstructed point x, the source Qqj of
(3.12), becomes a telescopic sum, and reduces to Qqj = −(β(xj+1/2)− β(xj−1/2)), thus
balancing momentum exactly.

The remaining part of the proof is identical to the closing argument of the proof
of Theorem 3.1.

Remark 3. The computation of the cell averages of the kinetic energy and the
application of Romberg’s algorithm to the estimate of the source requires the evaluation
of the reconstruction at several points within each interval. For this reason, it is crucial
to adopt a reconstruction algorithm providing uniform accuracy within the cell. This
can be achieved using the CWENO reconstructions of [12] or the improved CWENOZ
of [11].

The CWENO algorithm in fact provides the whole reconstruction polynomial on
each cell, and not just the value of the reconstructed polynomial at one single point, as
in WENO. Thus, it is enough to compute the polynomial and then evaluate the result
at each point needed. In WENO instead, the non linear weights must be recomputed at
each reconstruction point, and the weights for points in the interior of the cell may not
be positive, or may exist only at the price of reducing accuracy. ENO reconstructions
[16] would also determine a polynomial with uniform accuracy within a cell, but the
stencil required is much larger than in CWENO, [12].

We end this section specifying the time integration algorithms used to match the
high order space discretization proposed. For third order, we use the standard TVD
Runge Kutta scheme of [17]. For fifth order, several Runge-Kutta schemes with at
least 6 stages can be used. The scheme used in this work can be found in [5, §3.2.5].
Its tableau is given in Table 3.1

Table 3.1
Coefficients for the fifth order Runge Kutta scheme.

0 0

1
2

1
2 0

1
4

3
16

1
16 0

1
2 0 0 1

2 0

3
4 0 − 3

16
6
16

9
16 0

1 1
7

4
7

6
7 - 12

7
8
7 0

7
90 0 16

45
2
15

16
45

7
90

4. Extension to higher dimensions. In this section we describe the exten-
sion of the proposed numerical method to higher space dimensions. As in the one-
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Fig. 4.1. Illustration of the well-balanced quadrature rule for the source term in two space
dimensions. Numerical fluxes are represented by the arrows, red dots represent the quadrature
nodes for the source terms.

dimensional case, we assume that a gravity field φ(x) is known (x ∈ Rd) and that a
steady-state to be preserved is described by means of a pair of functions α(x) and
β(x), defined in the entire computational domain, such that ∇β(x) = α(x)∇Φ(x).

We consider a cartesian mesh and compute the cell averages of α and β in the
preprocessing phase. For simplicity, we describe the algorithm in the case of cells with
equal sides, the generalization to rectangular cells being straightforward.

Denoting with U j the cell averages in the j-th cell Ωj , the finite volume form of
(1.1) can be written as

(4.1)
d

dt
U j = − 1

|Ωj |

∫
∂Ωj

f(U(x, t))dx︸ ︷︷ ︸
Kj

+
1

|Ωj |

∫
Ωj

s(U(x, t))dx︸ ︷︷ ︸
Sj

.

To compute Kj a quadrature rule on each face of the cell Ωj is needed, while to
compute Sj one needs a quadrature rule for the volume integral on the cell Ωj .

In order to minimize the number of numerical flux evaluations, we compute the
total flux across each face with a gaussian quadrature rule with weights ωp and nodes
ξkp belonging to the element Sk = [−1/2, 1/2]d−1 orthogonal to the unit vector ek that

represents the k-th coordinate direction of Rd. With this notation, in the semidiscrete
scheme we have

(4.2) K∆
j =

d∑
k=1

∑
p

ωp
F(xj + ∆x(1/2ek + ξkp ))−F(xj −∆x(1/2ek + ξkp ))

∆x
.

The next task is to generalize to the d-dimensional case the well-balanced quadra-
ture rule (3.12). To this end we consider different quadrature rules in each coordinate
direction. Consider the pair of opposite faces xj±∆x/2 ekSk. The quadrature nodes of
(4.2) on these faces are xj + ∆x(±1/2ek + ξp). Let us denote by Qqj,k,p the quadrature
obtained by applying to the segment with the endpoints xj + ∆x(±1/2ek + ξp) the
one-dimensional formula of order q given by Romberg’s rule (3.12). Then the volume
average source term in the k-th momentum equation is discretized using the cartesian
product of the gaussian rule for the face Sk and the one-dimensional well-balanced
rule applied in the direction ek, as follows

(4.3) Q̃qj,k =
∑
p

ωpQ
q
j,k,p.

10



For example, for a scheme of order 3 or 4, one employs two gaussian nodes per
direction on Sk and the level-2 Romberg formula Q4 of (3.13). For the case of two

space dimensions, the quadrature nodes of Q̃4
j,1 and, respectively Q̃4

j,2, are depicted in
the left (respectively right) part of Figure 4.1. The dashed lines in the figure highlight

that Q̃4
j,k’s are cartesian products of the high-order well-balanced quadratures (3.12)

with the gaussian rules on the faces and that each term in the sum (4.3) is designed
to autonomously balance the fluxes at each pair of gaussian quadrature nodes located
on opposite faces. The accuracy of Q̃j is the smallest between the accuracies of
the well balanced quadrature Qqj,k,p, and of the gaussian formula used along the cell
boundaries: in the example in the figure, the final accuracy of the complete quadrature
is 3.

Finally, the source in the energy equation is the sum of d terms of the form
ρuk∂xk

Φ and each of them is computed with the rule Q̃qj,k applied to (3.7) with
y = ρuk.

The complete algorithm that computes the right-hand-side of the semi-discrete
scheme using the well-balanced reconstructions can be summarized as follows.

1. Compute the cell averages of the variable r(x) as rj = ρj − αj .
2. Compute a reconstruction procedure to obtain point values rj(x), (ρvk)j(x)

for k = 1, . . . , d from their respective cell averages.
3. Obtain the recontruction of the density as ρj(x) = rj(x)+α(x). Note that this

reconstruction coincides with α(x) if the cell averages of the density represent
the steady state.

4. Inside each cell, choose a quadrature rule of sufficient order. Compute at the
quadrature nodes the point values of density and momentum. From these,
compute the cell averages of the kinetic energy EKj . Use these to find the well

balanced cell averages of the pressure fluctuations πj = (γ−1)(Ej−EKj)−βj .
5. Reconstruct the pressure fluctuations πj(x) from the cell averages πj and

define the reconstruction of the pressure inside each cell to be pj(x) = πj(x)+
β(x). Note that pj(x) = β(x) at equilibrium.

6. Compute the numerical fluxes using the reconstructed values of density, mo-
mentum and pressure to find the reconstructed data at the cell boundaries
for the conserved quantities.

7. Compute the cell average of the source in the momentum and energy equa-
tions using the rules (4.3).

We point out that the scheme requires the reconstruction of point values at many
different locations on the cell boundary and inside the cell and thus it is very efficient
to employ a procedure that defines first a reconstruction polynomial everywhere in
the cell, that can be later evaluated where needed. For the same reason it is advisable
to avoid dimensionally-split reconstructions. In the numerical tests of this work we
employ the third order accurate truly two dimensional CWENO reconstruction of
[27]. Order four can be reached with the reconstructions described in [7].

Theorem 4.1. The semidiscrete scheme

(4.4)
d

dt
U j(t) = −K∆

j (t) + S
∆

j (t),

where K∆
j (t) is defined by (4.2), S

∆

j (t) is computed with the quadrature Q̃j,k(t) de-
fined by (4.3) along each component and the boundary extrapolated data are computed
with the well-balanced reconstructions described in the algorihtm above, is exactly well
balanced on the hydrostatic equilibrium solution ρ(x) = α(x) and p(x) = β(x).
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Proof. The proof descends from the fact that the Rd scheme is the cartesian
product of d one-dimensional well-balanced schemes (see Theorem 3.2).

Since the reconstruction is well-balanced, the momentum fluxes, at equilibrium,
reduce to

K∆,ρvk
j =

1

∆x

∑
p

ωp
(
β(xj + ∆x(1/2ek + ξkp ))− β(xj + ∆x(−1/2ek + ξkp ))

)
.

Using again the well-balanced property of the density reconstruction, at each quadra-

ture point ρ/α = 1 and thus S
∆,ρvk
j is a telescopic sum and reduces to K∆,ρvk

j .

4.1. Well balancing around a moving equilibrium. In this section we de-
scribe the variations that must be introduced in the well balanced scheme described
above to include also the case in which the equilibrium velocity has a constant non
zero component, perpendicular to the gravity field. In particular, we consider the
steady solution (2.7). Since the gravity field has a constant direction, we choose the
y axis to be aligned with the gravity field.

The main difficulty here is to obtain well balanced reconstructions of all vari-
ables, to ensure that at equilibrium the reconstructed data are continuous across cell
interfaces, thus zeroing the artificial diffusion terms in the numerical fluxes, see also
§2.

Thus, we start with the well balanced reconstruction of the density, as in (3.3a).
Next, we consider the fluctuations with respect to equilibrium of momentum

µj = mj − (Uαj , 0).

Let µj(x, y) be the reconstruction of the momentum fluctuation at the point (x, y) in
the cell Ωj , with the correct order. We reconstruct the point values of momentum as

mj(x, y) = µj(x, y) + (Uα(x, y), 0).

As before, note that the order of the reconstruction is preserved while subtracting
(Uαj , 0) and adding (Uα(x, y), 0).

The new well balanced reconstruction of momentum is now used to compute
the cell average of the kinetic energy, which is needed to obtain the well balanced
reconstruction of the pressure. In other words, we find the cell average of the kinetic
equation, using the well balanced reconstruction of momentum and density, then we
obtain the cell averages of the pressure fluctuations πj = (γ − 1)(Ej − EKj) − βj ,
from which we compute the well balanced point values of the pressure with (3.3b).

At equilibrium, µ ≡ 0, and thus mj(x, y) = (Uα(x, y), 0), so that the reconstruc-
tion is continuous across cell interfaces, guaranteeing a zero artificial diffusion, in all
components of the momentum equation. Further, at equilibrium, the direction of
v(x, y) is still perpendicular to ∇Φ, ensuring that the source in the energy equation
vanishes. For this reason, it is not necessary to include a correction to the well bal-
anced treatment of the source. Finally, at equilibrium the energy flux ∇ · (v(E + p))
becomes [U, 0] · ∇T (E + p) which is zero, because the pressure and the total energy
are constant in the x direction.

Note that the algorithm described earlier is a special case of the well balanced
algorithm presented in this subsection. In fact, if the steady state is at rest, namely
U = 0, momentum is already an equilibrium variable, or in other terms µ = m.

12
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Fig. 5.1. Convergence test for the exact smooth solution of (5.1) for schemes of order 1 (top),
and 2 (bottom curve) of the left figure, and 3 (top), 5 (bottom curve) of the right figure. The errors
shown are for density (◦), momentum (+) and energy (�).

5. Numerical tests. In all the numerical tests shown in this section, we em-
ployed the Local Lax-Friedrichs numerical flux.

We start with convergence tests against an exact solution. We choose a variation
of the solution proposed in [33], namely

ρ(x, t) = 1 + 1
5 sin(kπ(x− u0t))(5.1)

p(x, t) = 9
2 − (x− u0t) + 1

kπ cos(kπ(x− u0t)),(5.2)

where u0 is a constant. Here we take u0 = 1, Φ(x) = gx = x and k = 5, to have a
highly oscillatory solution. The Courant number is c = 0.45, and the integration is
carried out on [0, 2] up to tf = 0.1.

Fig. 5.1 contains the log-log plots of the error versus the number of grid points
N . The left panel contains the low order schemes (order 1 in red at the top, and
order 2 in blue at the bottom of the figure). The right panel contains the history of
convergence for the schemes of order 3 and 5. Note the different vertical scale in the
two plots. The different markers represent the errors obtained on density, momentum
and energy. Table 5.1 contains the actual data obtained on the density equation.

The functions α and β are chosen as in the isothermal problem of (2.4), for the
constant gravity field Φ(x) = x, with Teq = 3.506757, which is below the minimum
value of the temperature actually appearing in the exact solution. We obtain very
similar results with the scheme well-balanced aorund a polytropic equlibrium, i.e.
using αpoly and βpoly of equation (2.5). These are not included for brevity.

The fact that these schemes remain accurate, even if the reconstruction is well
balanced with respect to an equilibrium solution far away from the actual solution, is
important. It allows to use the schemes even in regions where the flow is not at steady
state. Naturally, α and β can be chosen also equal to zero, yielding a traditional finite
volume scheme, but this is not necessary to achieve the expected accuracy of the
scheme.

5.1. Well balanced tests. As in [18], we consider the time needed by sound
waves to cross the computational domain

(5.3) τs = 2

∫ b

a

1

c(x)
dx,

as a measure to estimate how “large” is the computational time.
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Table 5.1
Errors on the density and convergence rates against the exact solution (5.1), for schemes of

order 1, 2, 3 and 5 respectively.

1 2 3 5

N error rate error rate error rate error rate

40 2.12e-01 5.99e-02 1.22e-01 1.23e-02
80 1.52e-01 0.48 1.02e-02 2.55 3.54e-02 1.78 5.66e-04 4.44

160 9.33e-02 0.70 1.76e-03 2.54 1.46e-02 1.27 1.88e-05 4.91
320 5.23e-02 0.84 3.63e-04 2.28 2.53e-03 2.52 5.97e-07 4.98
640 2.78e-02 0.91 8.49e-05 2.10 1.91e-04 3.73 1.86e-08 5.00

1280 1.43e-02 0.95 2.08e-05 2.03 1.04e-05 4.20 5.69e-10 5.03
2560 7.29e-03 0.98 5.16e-06 2.01 5.61e-07 4.21
5120 3.67e-03 0.99 1.29e-06 2.00 3.22e-08 4.12

10240 1.84e-03 0.99 3.22e-07 2.00 3.01e-09 3.42

Table 5.2
Distance from the equilibrium solution, for schemes of order 1, 2, 3 and 5 respectively, for

isothermal equilibrium.

Φ(x) = x Φ(x) = x2 Φ(x) = sin(2πx)

order ρ ρu E ρ ρu E ρ ρu E

1 6.71e-17 1.51e-16 3.60e-16 8.71e-17 1.00e-16 3.69e-16 3.63e-17 1.88e-16 3.98e-16
2 1.80e-16 1.10e-16 3.04e-16 3.00e-16 1.44e-16 3.78e-16 1.16e-16 1.82e-16 3.71e-16
3 3.06e-16 1.69e-16 5.04e-16 3.06e-16 1.69e-16 5.04e-16 5.37e-16 3.01e-16 7.31e-16
5 4.35e-16 2.05e-16 6.38e-16 5.33e-16 2.25e-16 7.34e-16 1.01e-15 3.49e-16 1.11e-15

We start from isothermal equilibrium. The scheme employs αiso and βiso of (2.4)
and the initial data is set to ρ0(x) = αiso(x), v0(x) = 0 and p0(x) = βiso(x). The
temperature is chosen as Teq = 1. The computational domain is [0, 1]. With these
choices, τs ' 1.69. We take tf = 2, so that a typical wave has the time to cross the
whole domain. We study the well balancing property for several potentials, Φ(x) = x,
Φ(x) = x2 and Φ(x) = sin(2πx) on [0, 1]. The deviations from equilibrium in the L1

norm appear in Table 5.2. For the polytropic equilibrium the scheme employs αpoly,
βpoly of (2.5) and the initial data is set accordingly. The results are shown only for
the potential Φ(x) = x2, on the left column of Table 5.3. For all schemes studied in
this work, the equilibrium is maintained within machine precision.

We consider now a well balanced test around an equilibrium solution which is
neither isothermal nor polytropic from [8]:

(5.4) α(x) = e−x, β(x) = (1 + x) e−x.

In this case, the temperature is T (x) = 1 + x. The system is in equilibrium for
the potential Φ(x) = − 1

2x
2, and for u = 0. So this test is neither polytropic nor

isothermal. But since we have an explicit and analytic expression for the density and
pressure at equilibrium, it is possible to apply the technique described in this paper,
and balance the scheme around the equilibrium (5.4). We start the computation with
initial data coinciding with the equilibrium states given in (5.4), and integrate as
before up to tf = 2, with Dirichlet boundary conditions.

The results for all schemes presented in this work appear in Table 5.3. Note that
all variables are in equilibrium, while the scheme analyzed in [8] is able to guarantee
that the velocity remains zero, while in the other variables the error is of the same
size of the truncation error, and not machine precision as here.
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Table 5.3
Distance from the equilibrium solution, for schemes of order 1, 2, 3 and 5 respectively, for

polytropic equilibrium, and for the equilibrium solution of eq. (5.4).

Polytropic, Φ(x) = x2 Non Isothermal

order ρ ρu E ρ ρu E

1 1.63e-16 2.29e-16 4.43e-16 1.17e-17 2.75e-16 1.94e-16
2 2.38e-16 1.61e-16 4.66e-16 1.95e-16 1.93e-16 6.57e-16
3 3.80e-16 2.20e-16 6.78e-16 2.30e-16 1.68e-16 4.76e-16
5 6.06e-16 2.39e-16 8.78e-16 5.22e-16 2.41e-16 8.70e-16

5.2. Perturbations of equilibrium states. The main application of well bal-
anced schemes is in the integration of problems which are small perturbations of
equilibrium states. In this case, the failure of a scheme to reproduce steady solutions
generates errors large enough to prevent the resolution of the small perturbations.
We will show that well-balanced schemes can correctly resolve perturbations as small
as the typical size of the local truncation error.

As an example, we consider a test proposed in [8]. In this test, one starts from
an equilibrium isothermal solution of the form (2.4), with Teq = 1, and potential
Φ(x) = x2, on the interval [0, 1]. The data in Table 5.2 show that all the schemes
studied here are exactly well balanced on this solution. As non well balanced schemes,
we consider methods in which the reconstruction is carried out on the cell averages of
conservative variables ρ and E, instead of on fluctuations r and π from equilibrium
variables.

We run a third order N3 and a fifth order N5 scheme on the isothermal equilib-
rium solution (2.4). These schemes are built with a standard CWENO reconstruction
of order 3 and 5 respectively, applied on cell averages of density, momentum and total
energy. The source is integrated with the well balanced quadrature. These schemes
then are not well balanced, and therefore they give an error with respect to the equi-
librium solution, which is of the same size of the local truncation error. For a grid
with 40 points on [0, 1], we find a residual with respect to the exact steady state
solution which is of order 10−4 on the velocity and 10−4 for the pressure in the case
of the third order N3 scheme, and are 10−8 on both velocity and pressure for the fifth
order scheme N5 scheme.

Next, we add a perturbation in the pressure in the initial data. More precisely,

ρ0(x) = αiso(x) v0(x) = 0 p0(x) = βiso(x) +Ae−100(x−1/2)2 ,

where we can modify the amplitude of the perturbation A with respect to the equilib-
rium solution. For A = 10−3, the perturbation has a size close to the truncation error
we noticed above for the third order scheme. Running all schemes on this problem,
with N = 120 and tf = 0.25, we find the pressure and velocity fluctuations of Fig.
5.2. The figure shows that all schemes resolve the perturbations, albeit the third or-
der, not well-balanced scheme N3 is losing accuracy with respect to the well balanced
schemes. On this scale, the truncation error of the N5 scheme is so small that it is
able to resolve the perturbation even though it is not well balanced.

Decreasing the amplitude of the perturbation to A = 10−5, the third order N3
scheme is no longer able to resolve the perturbation, which is too small with respect
to its residual on the equilibrium solution, red curve in Fig 5.3. Both well balanced
schemes, of order 3 and 5, instead resolve the small perturbation, as does the fifth
order N5.
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Fig. 5.2. Perturbation of an equilibrium solution of amplitude A = 10−3 for well balanced
schemes of order 3 and 5 (green and blue curves), and non well balanced schemes of order 3 and 5
(red and black curves). N = 40 points per unit length.
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Fig. 5.3. Perturbation of an equilibrium solution of amplitude A = 10−5 for well balanced
schemes of order 3 and 5 (green and blue curves), and non well balanced schemes of order 3 and 5
(red and black curves). N = 40 points per unit length.

Finally, decreasing further the amplitude of the perturbation to A = 10−7, we
obtain the results of Fig. 5.4. The third order N3 misses the solution completely,
and it is not shown. In this case, the fifth order N5 scheme is also starting to lose
resolution, because now the magnitude of the perturbation is reaching the magnitude
of its error on the equilibrium solution. For this test, we also show a reference solution
(dashed line) obtained with the fifth order well balanced scheme. It is noteworthy
that the other schemes obtain a comparable precision with only 40 points. The results
on the perturbation of an equilibrium solution are shown on the interval [0, 1], but
they were computed on the larger interval [−1, 2], to avoid perturbations coming from
inexact boundary conditions, which do not have the time to reach the region shown.

5.3. Flows far from equilibrium. So far we have seen that the schemes pro-
posed in this work are able to represent steady states and to detect small perturbations
around them. We next show that the technique used to balance the source and the
reconstruction does not deteriorate the standard shock-capturing capabilities of finite
volume schemes. For this reason we ran two Riemann problems based on the classical
Lax data with and without a gravity field. In particular the left and right initial states
are

(5.5) (ρ, v, p)L = (0.445, 0.6989, 3.5277) (ρ, v, p)R = (0.5, 0., 0.5710),
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Fig. 5.4. Perturbation of an equilibrium solution of amplitude A = 10−7 for well balanced
schemes of order 3 and 5 (green and blue curves), and non well balanced scheme of order 5 (black
curve). N = 40 points per unit length. The black, dashed curve is obtained with the well balanced
scheme of order 5 and 270 points.

Fig. 5.5. Solutions at tmax = 0.15 for initial data (5.5), using the third order well-balanced
schemes for g = 1.

and they are evolved until tf = 0.15. The Riemann initial data produce a non
stationary solution, with a shock, a rarefaction and a constant discontinuity. The test
was run with and without the gravity field, i.e. with Φ(x) = x and with Φ(x) = 0,
as a control problem. In both cases we have used the well-balanced scheme with the
isothermal αiso(x) and βiso(x) from (2.4) for Teq = 1

2 (TL + TR), and the polytropic
αpoly(x) and βpoly(x) of (2.5) for ν = 1.2. In both cases the flow is neither isothermal
nor polytropic and Figures 5.5, 5.6 and 5.7 show that the computed solutions are
unaffected by the choice of α(x) and β(x).

The figures show the density and velocity profiles obtained with the polytropic
well-balanced scheme (thick dark blue curve) and the one obtained with the isother-
mal scheme (thin light green curve). It is apparent that the isothermal green curve
coincides with the underlying polytropic curve: the blue margins encompassing the
green profile are in fact nicely symmetric. The tests were run with the third (Fig. 5.5)
and fifth order schemes (Fig. 5.6) with 200 grid points. The zero gravity test (included
only for the fifth order scheme, Fig. 5.7) is a sort of control: both the schemes are
able to reproduce the classical Lax’ solution. It is clear that the initial choice of α
and β does not influence the solution, when the problem does not have a steady state.
Indeed, the well-balanced reconstruction using α and β does not modify the accuracy
of the scheme nor its shock-capturing capabilities: it just permit to recover exactly
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Fig. 5.6. Solutions at tmax = 0.15 for initial data (5.5), using the fifth order well-balanced
schemes for g = 1.

Fig. 5.7. Solutions at tmax = 0.15 for initial data (5.5), using the fifth well-balanced schemes
for g = 0.

one particular steady state. We point out that the spurious oscillations present in the
plateau between the contact and the shock wave in the density profile for the fifth
order scheme are a well known effect due to the essentially non oscillatory nature of
the WENO and CWENO reconstructions. Note that they are identical in both the
runs with the well-balanced (Fig. 5.6) and the standard scheme (Fig. 5.7). There are
several techniques to dampen them, but their description goes beyond the scope of
the present paper.

5.4. Accuracy of the 2D scheme. All results shown in this section were ob-
tained with the third order well balanced scheme.

To test the accuracy of the third order scheme, we consider the two-dimensional
generalization of (5.1), namely the exact solution defined by

(5.6)
ρ(x, y, t) = 1 + 1

5 sin(kπ((x+ y)− (u0 + v0)t))

p(x, y, t) = 9
2 − (x+ y − (u0 + v0)t) + 1

5kπ cos(kπ(x+ y − (u0 + v0)t)),

with gravity potential Φ(x, y) = x + y and parameter k = 1. The computational
domain is [0, 2]2 and the final time is t = 0.1.

This is not an equilibrium solution, and we use it to test the accuracy of the well-
balanced scheme; in particular we choose α and β corresponding to an isothermal
problem (2.4), with temperature Teq obtained from the average of the temperature of
the initial condition.
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Table 5.4
1-norm of error on N ×N grid and convergence rates for test (5.6)

density energy

N error rate error rate

20 6.83e-03 8.91e-03
40 8.61e-04 2.99 1.16e-03 2.94
80 1.08e-04 3.00 1.46e-04 2.99

160 1.35e-05 3.00 1.82e-05 3.00
320 1.68e-06 3.00 2.27e-06 3.00
640 2.10e-07 3.00 2.84e-07 3.00

1280 2.63e-08 3.00 3.55e-08 3.00

Table 5.5
Errors in 1-Norm on equilibrium solutions: isothermal (2.4) on the top left, polytropic (2.5)

on the top right and the equilibrium (2.6) on the bottom.

Isothermal
N density momX momY energy
20 2.80e-17 3.51e-17 3.70e-17 1.60e-16
40 3.14e-17 7.63e-17 6.98e-17 2.16e-16
80 2.78e-17 8.36e-17 8.62e-17 2.10e-16

160 3.90e-17 2.16e-16 2.12e-16 3.38e-16
320 4.65e-17 3.36e-16 3.20e-16 3.93e-16
640 8.76e-17 8.70e-16 8.57e-16 1.20e-15

1280 9.30e-17 1.13e-15 1.14e-15 1.21e-15

Polytropic
N density momX momY energy
20 5.50e-17 6.77e-17 6.62e-17 1.92e-16
40 8.35e-17 1.05e-16 1.03e-16 2.78e-16
80 1.07e-16 1.13e-16 1.10e-16 3.33e-16

160 9.97e-17 2.90e-16 2.91e-16 3.31e-16
320 6.62e-17 4.99e-16 4.99e-16 3.06e-16
640 9.88e-17 1.17e-15 1.16e-15 6.25e-16

1280 8.54e-17 1.72e-15 1.72e-15 7.91e-16

Neither isothermal nor polytropic
N density momX momY energy
20 0.00e+00 1.70e-16 1.74e-16 5.66e-16
40 1.11e-18 2.08e-16 2.05e-16 6.77e-16
80 4.15e-18 3.50e-16 3.41e-16 8.42e-16

160 7.49e-18 4.10e-16 3.67e-16 8.97e-16
320 1.88e-17 1.03e-15 9.97e-16 1.14e-15
640 2.06e-17 1.29e-15 1.16e-15 1.12e-15

1280 5.19e-17 3.63e-15 3.48e-15 2.48e-15

In Table 5.4 we report the 1-norm of the errors obtained for this test on severalN×
N grids and the experimental convergence rates. The scheme matches the expected
third order accuracy for all components. The table shows results only for density and
energy.

5.5. Well-balancing of the 2D scheme. We now present a series of tests
demonstrating the well-balancing properties of the two-dimensional numerical scheme.

In the first test we consider the gravity field Φ(x, y) = x + y and an initial data
which is an isothermal steady-state with Teq = 1/1.21 as in [33]: ρ0(x, y) = αiso(x, y),
u0(x, y) = v0(x, y) = 0 and p0(x, y) = βiso(x, y).Further, α and β in the numerical
scheme are chosen to enforce the isothermal equilibrium as in (2.4).

Next, we consider an hydrostatic polytropic steady state defined by ρ0(x, y) =
αpoly(x, y), u0(x, y) = v0(x, y) = 0 and p0(x, y) = βpoly(x, y)and in particular the
case with ν = 1.2. Here, we choose α and β corresponding to polytropic equilibrium,
from equation (2.5).
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Fig. 5.8. Top: density (left) and pressure (right). The contours represent the perturbations
(20 isolines between -0.001 and 0.0002) for ρ and 20 isolines between -0.00027 and 0.00027 for
p). Bottom left: extrusion of the density perturbation. Bottom right: comparison of the density for
different grids and schemes (black lines for ∆x = 1/100 and ∆x = 1/200 balanced, ∆x = 1/100 WB;
red for ∆x = 1/50 WB; blue for ∆x = 1/50 UNB)

Finally, we show results obtained on an equilibrium which is neither isothermal
nor polytropic. In particular we consider the gravity potential Φ(x, y) = r2, where
r =

√
(x2 + y2) and the initial data ρ0(x, y) = αgen(x, y), u0(x, y) = v0(x, y) and

p0(x, y) = βgen(x, y).This is a steady-state with equilibrium temperature T (x, y) = 1+
r. It is a radial version of a test presented in one space dimension in [8]. Accordingly,
the functions α and β are chosen as in (2.6).

Therefore in all cases, α(x, y) = ρ0(x, y) and β(x, y) = p0(x, y). The initial data
are evolved up to tf = 0.1. We report the deviations from the equilibrium solution
in Table 5.5. We see that in all three tests the data are of the order of the machine
precision. Thus the scheme is exactly well-balanced.

5.6. Perturbation of an isothermal steady state. In this test we consider
the gravity field Φ(x, y) = x + y and an initial data which is a perturbation of the
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isothermal steady-state (2.4):

ρ0 = αiso(x, y) u0 = v0 = 0 p0 = βiso(x, y) +Ae−100((x−0.3)2+(y−0.3)2)/Teq .

In particular, we discuss the results for A = 10−5. From Fig. 5.3 we have seen
that for a perturbation of a steady state solution with amplitude 10−5 the unbalanced
1D scheme of order 3 was unable to detect the behaviour of the solution, while the
well balanced version is able to compute an accurate solution.

The numerical simulations with the well-balanced (WB) scheme are performed in
the domain [0, 1]×[0, 1]. They are compared with computations by a not well-balanced
(UNB) scheme in which the reconstructions are applied directly to the conservative
variables. In the scheme UNB, disturbances due to the boundary conditions are clearly
visible, but in order to make a fairer comparison of the schemes, we have employed
the larger domain [−1, 2]× [−1, 2] for the unbalanced simulations.

The density and pressure fields at final time t = 0.15 obtained with well-balanced
schemes are presented in the top row of Figure 5.8. In the same plots, the contours
of the density and pressure perturbations are shown. The density perturbation is
also depicted as an extruded surface in the bottom-left panel of the same figure. The
solutions with different schemes are compared in the bottom-right panel of the figure.

We use the solution obtained by the WB scheme with ∆x = 1/200 as reference
solution. The solution on the ∆x = 1/100 grid with WB is almost coincident with
the reference solution, showing convergence. At this resolution also the unbalanced
UNB scheme captures the correct behaviour. The solutions computed on ∆x = 1/50

grids are different from each other. The one computed with the WB scheme is very
close to the reference, even on such a coarse grid. On the other hand, the solution
computed with the UNB scheme is quite far away from the others. The unbalanced
scheme, in fact, is not able to preserve the isothermal background (see the differences
at the extreme left and right of the section) and as a consequence also computes a
less accurate solution inside the perturbation.

5.7. Radial Rayleigh-Taylor instability. Let (r, θ) denote the polar coordi-
nates and consider the radial gravity potential Φ(r, θ) = r. In this case, the solution
ρ = p = e−r is an isothermal equilibrium. We consider the following perturbed initial
data:

ρ(r, θ) =

e
−r r < r0

1
ae
−r+r0(1−a)

a r > r0

p(r, θ) =

e
−r r < rI(θ)

e
−r+r0(1−a)

a r > rI(θ).

Choosing a = e−r0

e−r0+∆ρ
, the pressure is continuous, but a jump discontinuity of size

∆ρ is present on the interface defined by r = rI(θ) = r0(1.0+η cos(kθ)). These initial
data give rise to a Rayleigh-Taylor instability, whose onset is favoured by the wiggles
in the discontinuity line rI(θ).

In Figure 5.9 we show the time evolution computed with our third order well-
balanced scheme for r0 = 0.5, k = 20, η = 0.02 and ∆ρ = 0.1, following [21]. The
perturbation of the steady state is localized around the initial position of the interface.
Plume like structures form from the initial wiggles in rI(θ). This level of accuracy is
only possible with a scheme that is well-balanced and thus can preserve exactly the
equilibrium solution away from the interface, up to the boundary of the computational
domain. Note also the lack of grid orientation artifacts: such spurious effects do not
occur in our scheme, thanks to the high order accuracy of the scheme and to the truly

21



Table 5.6
Accuracy on moving equilibrium.

density energy
N error rate error rate
20 6.83e-03 - 8.93e-03 -
40 8.62e-04 2.98 1.16e-03 2.94
80 1.08e-04 2.99 1.46e-04 3.00

160 1.35e-05 3.01 1.82e-05 3.00
320 1.69e-06 2.99 2.27e-06 3.00

Table 5.7
Well balancing errors for moving equilibrium. Left: well-balanced scheme with respect to the

moving isothermal equilibrium (FWB). Right: well-balanced scheme with respect to the stationary
isothermal equilibrium (SemiWB).

FWB scheme

N density momX momY energy

20 0.00 1.39e-19 7.20e-19 1.11e-18
40 1.39e-18 4.16e-18 1.16e-16 1.22e-16
80 6.25e-18 1.18e-17 2.00e-16 1.80e-16

160 5.20e-18 1.21e-17 3.20e-16 2.33e-16

SWB scheme

N density momX momY energy

20 9.12e-10 1.06e-05 3.90e-09 1.55e-05
40 3.10e-10 2.02e-06 7.11e-10 2.02e-06
80 5.17e-11 3.64e-07 9.87e-11 3.63e-07

160 6.79e-12 6.27e-08 1.20e-11 6.25e-08

2D reconstruction of [27]. We further point out that unbalanced schemes are not only
less accurate (see the previous test), but also typically generate spurious signals at the
boundary of the computational domain that would overwhelm the weak perturbation
of the isothermal background equilibrium.

5.8. Numerical tests on moving equilibrium. In this section we consider the
numerical scheme described in §4.1, designed to preserve equilibria of a gas moving
with a constant speed perpendicular to ∇Φ, in an otherwise hydrostatic pressure field.
This scheme will be called FWB (Fully Well Balanced) in what follows, while a scheme
which is well balanced only with respect to a standard hydrostatic equilibrium at rest
will be labelled SemiWB (Semi-well balanced).

First we verify that the new reconstruction does not pollute the order of accuracy.
We consider the data leading to the exact solution (5.6). The discretization parameters
are the same as in §5.4, while the constant horizontal velocity is U = 1. We exhibit the
results in Table 5.6 for density and energy, where third order accuracy is apparent.
Note that in this test the gravity field is skew with respect to the grid and to the
imposed constant velocity field.

Next, we test the well balancing property of the scheme around the moving
isothermal equilibrium with density and pressure prescribed in (2.4), gravity field
Φ(x, y) = y, constant velocity field (u0, v0) = (1, 0), while Teq = 2. The errors found
in this case are reported in the left part of Table 5.7, from which it is clear that
the novel FWB scheme is indeed well balanced. The right part of the table reports
the errors obtained with the SWB scheme, that is well-balanced with respect to the
stationary isothermal equilibrium. It is clear that for SWB the errors on the horizon-
tal momentum decrease with the third power of the grid size, but the scheme is not
well-balanced in this case.

Finally, we present a test in which the moving equilibrium described above is
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perturbed by the following pressure fluctuation

p0 = βiso(x, y) + η e
− 100g
Teq

((x−0.3)2+(y−0.5)2)
,

with η = 10−5. The final time is tf = 0.4 and the centre of the perturbation is
pushed by the horizontal wind from 0.3 at t = 0 to 0.7 at tf . The α and β profiles
are isothermal. We compare the density perturbations obtained with the third order
schemes in Figg. 5.10 and 5.11. In both figures, the contours of the density fluctuation
with N = 50 are plotted against the reference solution (yellow curves) obtained with
the fully well balanced scheme with N = 100. Each figure is based on 30 isolines
from −4.5 · 10−6 to 9 · 10−6, at two different times, t1 = 0.2 and t2 = tf . Fig. 5.10
contains the results obtained with the fully well balanced scheme (FWB), i.e. the
scheme which is able to preserve the underlying windy steady state (green curves).
Fig. 5.11 contains the results computed by a scheme (SemiWB) which is well balanced
only with respect to the equilibrium solution with u0 = 0 (red curves). In the figures,
it is apparent that the fully well balanced solution is able to reproduce the correct
behaviour even on a coarse grid, while the SemiWB profiles are not able to maintain
the shape of the perturbation as it drifts in time. The grey shading in the background
of the figures reflects the pressure perturbation.

Finally, Fig. 5.12 shows a 1D section of the numerical solution, allowing for a
better comparison. The profiles are obtained with a vertical section of the solution at
the final time, in x = 0.7, coinciding with the centre of the perturbation at tf . The
continuous lines are the fluctuations from the steady state in the reference solution.
The different colours identify the different fields (density, pressure, horizontal and
vertical velocities). In the left panel, the circles correspond to the numerical results
given by the FWB scheme on the coarse grid: as it is apparent, the correspondence
with the reference is very good. The middle and right panels contain the same results
for the SemiWB scheme. Here the numerical solution on the coarse mesh is far from
the reference solution, especially for the horizontal speed, which is shown, with a
different scale, in the right panel.

6. Conclusions. In this paper, we have presented high order numerical schemes,
which are exactly well balanced around a prescribed equilibrium solution, known
through two functions α and β such that ∇β = α∇Φ. The well balanced property
has been proven for schemes of arbitrary order of accuracy and space dimensions. The
results have been tested for schemes up to fifth order in 1D, and for third order in
2D, but the method is clearly explained for any order and for any number of space
dimensions.

Further, for the particular case in which the gravity field has a constant direction,
the scheme can also balance exactly equilibrium flows with a non zero constant com-
ponent of the velocity perpendicular to the direction of the gravitational field. We
believe that this is the first high order, i.e. higher than 2, well balanced scheme for
this kind of multidimensional equilibrium solution.

The scheme is based on two simple ingredients. First, the reconstruction of point
values for the evaluation of the numerical fluxes is performed on fluctuations from
the equilibrium solution for the density and the pressure, plus the velocity, in the
case of moving equilibria. Next, the reconstruction of conservative variables is carried
out, respecting the equilibrium information contained in the well balanced pressure
and density. Secondly, as in [24], we observe that a well balanced cell average of the
source can be easily obtained at second order, and then accuracy can be boosted with
extrapolation techniques as Romberg’s.
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The computation of the quadrature of the numerical fluxes and of the source
requires to estimate the numerical solution at several quadrature points within each
cell, as is always the case for high order finite volume schemes for balance laws, even
without the complications due to the well balanced quadrature for the source. The
computational complexity for a very high order scheme can be controlled using recon-
structions that provide a single polynomial which is uniformly accurate throughout
the cell, as in the case of the CWENO reconstructions of [12], which have been used
for the one-dimensional scheme, while the 2D tests were performed with the truly
multidimensional third order accurate CWENO reconstruction of [27].

At present, there are very few well balanced schemes for Euler equations with
gravity that are not restricted to a particular order of accuracy, and none for moving
equilibria. The class of schemes proposed here is characterized by enforcing equilib-
rium, without any restriction on the numerical flux function, which needs only to
be consistent. This enables to use also very popular numerical fluxes, such as Lax
Friedrichs’ and its variants, or numerical fluxes which are tailored to particular needs.

We also observe that the schemes proposed here are based on the knowledge of
the analytic expression of the equilibrium functions α and β, but these are not really
necessary. As the scheme is presently built, it has a fixed point which coincides exactly
with the cell averages of α and β. However, it is also possible to initialize the scheme
without the analytical expression of the equilibrium functions, but with a sufficiently
accurate knowledge of their cell averages. We are currently exploring automatic well
balancing along these lines.
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Fig. 5.9. Third order well balanced scheme on 400 × 400 grid: times 0 to 4.0 equispaced
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Fig. 5.10. Perturbation of a windy equilibrium: t = 0.2 on the left, and t = 0.4 on the right.
Contours of the density fluctuations: reference solution (yellow), and Fully WB (green).

Fig. 5.11. Perturbation of a windy equilibrium: t = 0.2 on the left, and t = 0.4 on the right.
Contours of the density fluctuations: reference solution (yellow), and Semi WB (red).

Fig. 5.12. Perturbation of a windy equilibrium at t = 0.4. Vertical cut of the solution. Solid
lines: reference solution (following the legend, perturbations in density, pressure, horizontal and
vertical velocities, respectively). Left: Fully WB (circles) on a coarse grid; middle: Semi WB
(crosses) for density, pressure and vertical velocity; right: Semi WB (crosses) for the horizontal
velocity.
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