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Abstract6

This paper presents three beam Finite Element (FE) formulations developed for the analysis of thin-walled structures.7

These account for out-of-plane cross-section warping by removing the classical rigid body cross-section hypothesis8

and capture the interaction of axial/bending stress components with shear and torsion.9

The beam FE models rely on different kinematic assumptions to describe out-of-plane cross-section deformations.10

Indeed, warping displacement field is interpolated in the element volume according to different approaches, with11

increasing level of accuracy and detail. First two models adopt a coarse warping description, where warping displace-12

ment field is defined as the linear combination of assumed warping profiles and unknown kinematic parameters. In13

the first model, these are considered as equal to the generalized cross-section torsional curvature and shear strains14

and a classical displacement-based formulation is adopted to derive the element governing equations. In the second15

model, warping parameters are assumed as independent kinematic quantities and a mixed approach is considered to16

derive the FE formulation. Third model, also relying on a mixed formulation, independently interpolates warping17

introducing additional degrees of freedom on the cross-section plane, thus, resulting in a richer description of the out-18

of-plane deformations. This latter is also adopted to propose a numerical procedure for the warping profile evaluation19

of thin-walled beams subjected to torsional and shear forces, for general cross-section geometry.20

The efficiency and accuracy of the proposed FE formulations are validated by simulating the response of thin-21

walled structures under torsion and coupled torsion/shear actions and the influence of the kinematic assumptions22

characterizing each formulation is discussed.23

Keywords: Thin-walled beam, Warping, Finite Element, Displacement-based formulation, Mixed formulation24

1. Introduction25

Thin-walled beams are largely used in civil and mechanical engineering applications, because of their high strength26

against shear/bending actions compared to significant slenderness and low weight. Indeed, thin-walled elements are27

often adopted in construction of tall buildings, large structures and bridges, as these permit more flexibility for the28
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definition of the structure geometry and guaranty higher strength and safety levels. However, in spite of the constant29

improvement in analysis software technology, simulation of the mechanical response of thin-walled beams is still a30

challenging task, as complex deformation phenomena are usually involved, even under simple static loadings.31

A standard approach to analyze these structures is the adoption of beam models, which are often preferred to more32

demanding two-dimensional (2D) plate/shell or three-dimensional (3D) approaches, because of their efficiency and33

low computational cost. However, classical assumption of rigid plane cross-sections is often not suitable for thin-34

walled elements, as cross-sections warp in and out of their plane, when subjected to shear and torsional forces. Thus,35

complex stress/strain distributions arise in the structure, which are not accounted for by classical Euler-Bernoulli36

and Timoshenko beam theories. Moreover, coupling between axial/bending and shear/torsional stress components37

strongly affects the structural behavior [1, 2, 3].38

Over past years, many works focused on the analysis of thin-walled beams and studied the influence of cross-39

section warping effects on structural response [4, 5, 6, 7, 8]. Starting from the first proposals by Vlasov [9] and40

Benscoter [10], several enhanced beam theories and numerical models were presented, often relying on Finite Element41

(FE) procedures [11, 12, 13, 14]. Vlasov’s theory includes cross-section warping due to torsion and is based on the42

assumption that in-plane cross-section distorsions are negligible. Due to the small thickness of the membratures, this43

considers out-of-plane warping as uniform across web and flanges of the element and, thus, assumes out-of-plane44

axial displacements as proportional to the element torsional curvature. These conditions usually hold true for doubly-45

symmetric open cross sections, where shear strains vanish at cross-section mid-surface, but are not met for closed46

and/or non-symmetric profiles [15]. More general assumptions are made in Benscoter’s theory, where, keeping all the47

other hypotheses valid, out-of-plane displacements are assumed as proportional to an independent kinematic warping48

parameter, which is found to be function of the cross-section torsional rotation.49

First proposals were devoted to the analysis of slender thin-walled elements [16]. Hence, by neglecting beam shear50

flexibility, warping theories were combined with Euler-Bernoulli beam formulation, to account for coupling between51

axial stresses due to bending and torsion. A comprehensive review of beam models accounting for cross-section52

warping proposed in the last decades of previous century and mainly based on aforementioned theories is reported in53

[17]. Among them, it is worth mentioning those in [18, 19], which combine Timoshenko’s and Vlasov’s theories to54

account for both torsional warping and shear flexibility, and works by Shakourzadeh et al. [20] and by Saade et al.55

[21], which present Benscoter-based models and provide detailed discussions on the applicability of Vlasov’s theory.56

In the last decades, enriched models were proposed to include also cross-section warping due to shear forces, e.g.57

[22, 23, 24, 25, 26], proving that formulations able to account for these deformation modes provide significantly more58

reliable and accurate results in the analysis of non-symmetric cross-section elements and/or buckling phenomena59

[27, 28].60

More sophisticated formulations were recently presented in [29, 30, 31, 32], where cross-section out-of-plane dis-61

placements are described through the composition of independent warping modes, evaluated by imposing equilibrium62

conditions and used as interpolation shape functions. Genoese et al. [33, 34] defined a mixed Hellinger-Reissner63
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beam model based on a stress field description that results as the sum of the exact de Saint Venant contribution and64

some further terms due to variable warping.65

This paper presents three 3D beam FE formulations developed for the analysis of thin-walled structures. Starting66

from Timoshenko beam theory and assuming small displacements and strains, enriched kinematic descriptions are67

introduced, so that beam cross-sections can undergo out-of-plane deformations, yet remaining rigid in their plane.68

Warping effects are assumed as related to both torsion and shear and linked to specific kinematic quantities that vary69

along the element axis, so that the influence of warping restraints at the element boundaries and resulting shear-lag70

phenomena are properly account for.71

First model is based on Vlasov’s theory, which is here enriched to also include shear warping. Thus, the out-of-72

plane warping displacement field is introduced in addition to those resulting from the cross-section rigid motions. This73

is defined as the linear combination of three warping functions, a priori defined over the element cross-section, and74

unknown generalized cross-section kinematic parameters. These are assumed as equal to the generalized cross-section75

torsional curvature and shear strains. A displacement-based approach is adopted to derive the element governing equa-76

tions, that is generalized cross-section displacements are interpolated along the element axis by means of shape func-77

tions. To this end, additional degrees of freedom (DOFs) are introduced at the two element end nodes, corresponding78

to torsional curvature and shear strains attained at the element end cross-sections. These are used for two purposes. On79

the one hand, the additional DOFs are used to obtain parabolic and linear interpolation along the element axis of the80

cross-section torsional curvature and shear strains, respectively, and, thus, to have similar interpolation order for the81

corresponding warping modes. On the other hand, shear strain DOFs are used to perform an enhanced interpolation of82

bending/shear quantities [35] that prevent shear-locking issues occurring in the standard two-node displacement-based83

models with linear interpolation of the cross-section transversal displacements and rotations [36, 37, 38, 39].84

Second model is based on Benscoter’s warping theory, also enriched to include shear warping. Hence, similarly85

to the first model, cross-section out-of-plane displacement field is described by the linear combination of three a86

priori defined warping functions and corresponding generalized cross-section parameters for torsion and shear, but87

these latter are assumed as independent kinematic quantities. Hence, better warping description than first model is88

considered. Warping displacement interpolation is performed by introducing three DOFs at the element end nodes and89

at a variable number of internal nodes located along the axis. Moreover, as force-based and mixed formulations are90

free from shear-locking and have higher performances than displacement-based FEs [40, 41], as opposed to the first91

model, a mixed approach is used in this case. Together with the additional warping field, generalized cross-section92

stresses are interpolated along the element axis according to equilibrium conditions. The governing equations are,93

thus, derived by imposing the stationarity of an extended four-field Hu-Washizu variational functional.94

Third model is the general extension of second formulation. This was proposed by the authors in previous works95

and applied to the analysis of damaging structures subjected to shear and torsional forces [42, 43, 44] and thin-96

walled structures under dynamic loadings [45, 46, 47]. A mixed FE approach is used to derive the element governing97

equations, but a more general and accurate warping description is considered. Indeed, a variable number of additional98
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DOFs is introduced at each controlling node and the additional warping displacement field is interpolated at two99

levels: along the beam axis and over the cross-section plane. Hence, higher order descriptions are allowed for the100

out-of-plane deformations and complete coupling of all stress components is ensured.101

To evaluate the warping functions required in the first two formulations a numerical procedure is proposed. By102

adopting the third mixed FE formulation and enforcing uniform warping conditions, linear elastic solutions are deter-103

mined for a beam subjected to uniform torsional curvature and shear strains. The corresponding cross-section warping104

profiles are, thus, computed and assumed as warping functions.105

Numerical simulations are, finally, conducted to test and compare the performances of the three proposed FE106

models. The response of four thin-walled specimens subjected to torsional and shear loads is studied, considering107

various cross-section shapes to investigate the applicability of Vlasov’s and Benscoter’s assumptions. Convergence108

studies are performed to highlight the influence on the structural response of the assumed warping interpolation order109

along the element axis and over the cross-section.110

2. General assumptions111

An enriched 3D beam formulation is considered including out-of-plane deformations for the cross-section to112

describe warping phenomena, while this remains rigid in its plane. Small displacement and strain hypothesis is113

assumed. The beam domain is composed by the 1D locus of cross-section centroids, {x ∈ [0, L]}, and the 2D domain114

of the cross-section A(x). The local intrinsic reference system (x, y, z) is formed by axis x and the two axes y and z115

lying on the cross-section plane and constituting an orthogonal triad (Fig. 1(a)).
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Figure 1: Cross-section (a) generalized displacement components and (b) out-of-plane warping displacement

116

Displacements of the beam material point m are defined as the sum of two contributions (Fig. 1(b)), as:117

um(x, y, z) = ur(x, y, z) + uw(x, y, z) , (1)118

where ur(x, y, z) =

{
ur(x, y, z) vr(x, y, z) wr(x, y, z)

}T
defines the cross-section rigid body motions, and uw(x, y, z) =119 {

uw(x, y, z) 0 0
}T

, the out-of-plane displacement due to warping. Rigid displacements are expressed in terms of120
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generalized cross-section displacements as ur(x, y, z) = ααα(y, z) us(x), where us(x) is the vector collecting the cross-121

section translations, u(x), v(x), w(x), and rotations, θx(x), θy(x), θz(x), (Fig. 1(a)), i.e.:122

us(x) =

{
u(x) θz(x) v(x) θx(x) θy(x) w(x)

}T
, (2)123

and matrix ααα(y, z) is the compatibility operator, defining the rigid motions as:124

ααα(y, z) =


1 -y 0 0 z 0

0 0 1 -z 0 0

0 0 0 y 0 1

 . (3)125

As the cross-section in-plane deformations are neglected, displacement field uw(x, y, z) is the only non-zero component126

of vector uw(x, y, z), representing the out-of-plane warping displacement of point m. This is written as the product of127

warping functions defined over the cross-section area, collected in the row vector Mη(y, z), and independent general-128

ized cross-section kinematic quantities, defined along the element axis and collected in the column vector ηηηs(x). The129

latter provides the amplitudes of the warping displacements associated to each warping function in Mη(y, z). Hence,130

it results:131

uw(x, y, z) = Mη(y, z) ηηηs(x) . (4)132

As displacements ur(x, y, z) and uw(x, y, z) are assumed to be orthogonal, the warping functions Mη(y, z) have to satisfy133

the following conditions [21, 24]:134 ∫
A(x)

Mη(y, z) dA = 0 ,
∫

A(x)
y Mη(y, z) dA = 0 ,

∫
A(x)

z Mη(y, z) dA = 0 . (5)135

These are ensured by a proper definition of the warping functions Mη(y, z), as described in the following sections.136

According to the classical de Saint-Venant’s beam theory, three non-zero strain components are considered at point137

m, that is the axial elongation εxx(x, y, z) and the two transverse shear strains between material fibers parallel to x and138

those lying in the cross-section plane, γxy(x, y, z) and γxz(x, y, z). These are collected in vector εεεm(x, y, z) and expressed139

as the sum of rigid, εεεr(x, y, z) = ααα(y, z) e(x), and warping strains, εεεw(x, y, z) =

{
∂uw(x, y, z)

∂x
∂uw(x, y, z)

∂y
∂uw(x, y, z)

∂z

}T

,140

as:141

εεεm(x, y, z) = εεεr(x, y, z) + εεεw(x, y, z) , (6)142

where vector e(x) contains the generalized cross-section strains, i.e. axial strain, εG(x), flexural curvatures, χz(x) and143

χy(x), torsional curvature, χx(x), and shear strains, γy(x) and γz(x), and results as:144

e(x) =



εG(x)

χz(x)

γy(x)

χx(x)

χy(x)

γz(x)


=



u ′(x)

θ ′z (x)

v ′(x) − θz(x)

θ ′x(x)

θ ′y (x)

w ′(x) + θy(x)


= D(x) us(x) . (7)145
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The apex denotes the derivative with respect to x of the variable and matrix D(x) is the compatibility differential146

operator.147

The stress components work-conjugate to εεεm(x, y, z) are collected in the stress vector σσσm(x, y, z), containing the148

axial stress, σxx(x, y, z), and the shear stresses in the plane of the cross-section, τxy(x, y, z) and τxz(x, y, z). By applying149

the virtual work principle, the standard beam internal forces, s(x), namely axial stress, N(x), bending moments, Mz(x)150

and My(x), torsional moment, Mx(x), and shear stresses, Ty(x) and Tz(x), are derived as:151

s(x) =

∫
A(x)

ααα
T (y, z) σσσm(x, y, z) dA . (8)152

Strains, εεεm(x, y, z), and stresses, σσσm(x, y, z) at material point m, are related by the material constitutive law. This is153

expressed in the general total form as [48, 43]:154

σσσm(x, y, z) = σ̃σσm (εεεm(x, y, z)) , (9)155

or, in incremental form, as:156

∆σσσm(x, y, z) = km(x, y, z) ∆εεεm(x, y, z) , (10)157

where ∆ indicates the increment of the quantity and km(x, y, z) is the material tangent stiffness matrix, defined as:158

km(x, y, z) =
∂σσσm(x, y, z)

∂εεεm
. (11)159

3. Enhanced beam FE formulations with cross-section warping160

In the following, three different beam finite element (FE) formulations for straight beams with cross-section warp-161

ing are presented. Each assumes a different representation of the warping displacement field uw(x, y, z), i.e. Eq. (4)162

is differently specified on the basis of specific kinematic assumptions. Hence, different kinematic and static quan-163

tities associated to warping are considered, as described. The three formulations are called hereafter as Enriched164

Vlasov Displacement Element (EVDE), Simplified Warping Mixed Element (SWME) and Enriched Warping Mixed165

Element (EWME), respectively. These are described referring to the element local reference system and considering166

the following common assumptions.167

A two-node 3D beam FE is formulated and, without loss of generality, the local reference system is assumed to168

coincide with the beam intrinsic orthogonal system (x, y, z), where axis x connects the element end nodes i and j. Six169

standard DOFs are considered at each end node, that is three translations, collected in vectors ui and u j, and three170

rotations contained in vectors θθθi and θθθ j, at node i and j respectively. The element nodal displacement vector is, thus,171

written as:172

u =

{
uT

i θθθ
T
i uT

j θθθ
T
j

}T
. (12)173
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Figure 2: Basic deformation displacement DOFs in the local system (i; x, y, z) assumed as standard reference configuration

According to force-based equlibrated formulations for beams [40, 41], a reference basic configuration is defined174

to remove rigid body motions and derive the element governing equations, as depicted in Fig. 2. Then, the basic175

deformation displacement vector v is introduced, resulting as:176

v =

{
u j θz i θz j θx j θy i θy j

}T
= av u , (13)177

where av is the kinematic operator removing the element rigid body motions, i.e.:178

av =



−1 0 0 0 0 0 1 0 0 0 0 0

0 1/L 0 0 0 1 0 −1/L 0 0 0 0

0 1/L 0 0 0 0 0 −1/L 0 0 0 1

0 0 0 −1 0 0 0 0 0 1 0 0

0 0 −1/L 0 1 0 0 0 1/L 0 0 0

0 0 −1/L 0 0 0 0 0 1/L 0 1 0


, (14)179

and L is the element undeformed length. The basic nodal force vector q, work-conjugate to v, results as:180

q =

{
px j mz i mz j mx j my i my j

}T
. (15)181

Moreover, all proposed FE formulations include additional DOFs properly introduced to describe cross-section182

warping, as detailed in the following.183

3.1. Enriched Vlasov Displacement Element (EVDE) formulation184

The EVDE formulation introduces three additional DOFs at each element end node, namely χx i, γy i and γz i, for185

node i, and χx j, γy j and γz j, for node j (Fig. 3). DOF χx i/ j is the torsional curvature at the element end cross-section186

and is used to describe cross-section warping due to torsion, while γy i/ j, γz i/ j are the cross-section shear strains used187

to describe warping due to shear. Hence, the nodal displacement vector results as:188

û =

{
uT ηηη

T
}T

, (16)189
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Figure 3: Standard (black) and warping (blue) nodal DOFs for the EVDE model

where:190

ηηη =

{
ηηη

T
i ηηη

T
j

}T
, (17)191

and ηηηi =

{
χx i γy i γz i

}T
, ηηη j =

{
χx j γy j γz j

}T
.

y
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Figure 4: EVDE reference configuration in the local system (i; x, y, z) with basic displacement (black) and warping (blue) DOFs

192

Considering the reference configuration where the element rigid body motions are eliminated, the deformation193

displacement and warping DOFs are collected in the extended deformation displacement vector v̂, which results as194

(Fig. 4):195

v̂ =

{
vT ηηη

T
}T

= âv û , (18)196

where matrix âv is defined as:197

âv =

av 0

0 I

 . (19)198

Matrix I extracts the warping displacements from û and reorders them according to v̂. 0 denotes null matrix with199

proper dimensions. The internal force vector q̂, work-conjugate to v̂, results as:200

q̂ =

{
qT βββ

T
}T

, (20)201
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where βββ collects the bi-moments attained at the end beam cross-sections, i.e.:202

βββ =

{
bx i bx j by i by j bz i bz j

}T
. (21)203

Vectors q̂ and v̂ are related by the element constitutive law derived in Section 3.1.3.204

3.1.1. Warping description and cross-section behavior205

The EVDE model relies on Vlasov’s description of warping displacement field uw(x, y, z) under torsion [9], en-206

riched to include cross-section warping due to shear [21, 24, 25]. Hence, Eq. (4) is written in the form:207

uw(x, y, z) = Mη x(y, z) ηx(x) + Mη y(y, z) ηy(x) + Mη z(y, z) ηz(x) , (22)208

so that Mη(y, z) =

{
Mη x(y, z) Mη y(y, z) Mη z(y, z)

}
with Mη x(y, z), Mη y(y, z) and Mη z(y, z), being the three warping209

functions associated to torsion and shear along y- and z-directions, respectively, while ηηηs(x) =

{
ηx(y, z) ηy(y, z) ηz(y, z)

}T
,210

with ηx(x), ηy(x) and ηz(x) being the associated warping parameters. According to Vlasov’s theory, these latter are211

assumed as equal to the cross-section torsional curvature, χx(x), and shear strains, γy(x) and γz(x), respectively, that212

is:213

ηx(x) = χx(x), ηy(x) = γy(x), ηz(x) = γz(x) . (23)214

This assumption derives from observing that, for very thin elements, uniform warping displacements can be con-215

sidered across the thickness of the cross-section membratures and, thus, transverse shear strains in this direction can216

be neglected [21, 20]. This is usually adequate for open cross-sections, but can lead to incorrect solutions for closed217

profiles. In the proposed formulation, Vlasov’s theory is enriched by assuming functions Mη x(y, z), Mη y(y, z) and218

Mη z(y, z) that allow non-uniform warping distribution across the member thickness, while Eq. (23) is adopted [25].219

Indeed, warping functions Mη x(y, z), Mη y(y, z) and Mη z(y, z) are determined according to the numerical procedure de-220

scribed in Section 4.1, which leads to a more general formulation suitable for both open and closed cross-sections, as221

well as symmetric and non-symmetric, thin- and thick-walled cross-sections, and ensures the orthogonality conditions222

between rigid and warping displacements, as required by Eq. (5). Some examples of warping functions are depicted223

in Fig. 5 for rectangular, I-shaped, C-shaped and boxed cross-section.224

The EVDE formulation is based on the independent interpolation of the two strain fields γy(x) and γz(x) instead225

of the rotation fields θy(x) and θz(x). Thus, the modified cross-section kinematic vector ûs(x) is introduced as:226

ûs(x) =

{
u(x) v(x) θx(x) w(x) γy(x) γz(x)

}T
. (24)227
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Figure 5: Warping function shape for typical cross-sections related to torsion, Mη x, and shear, Mη y and Mη z, states.

Vector us(x) can be deduced from ûs(x) by means of the following operator:228

au(x) =



1 0 0 0 0 0

0
d
dx

0 0 −1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −
d
dx

0 1

0 0 0 1 0 0


. (25)229

Moreover, an extended generalized cross-section strain vector is introduced, defined as:230

ê(x) =

{
eT (x) ζx(x) ζy(x) ζz(x)

}T
= D̂(x) ûs(x) , (26)231
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where ζx(x) = χ ′x(x), ζy(x) = γ ′y (x), ζz(x) = γ ′z (x) and D̂(x) is the extended kinematic differential operator, resulting232

as:233

D̂(x) =



d
dx

0 0 0 0 0

0
d2

dx2 0 0 −
d
dx

0

0 0 0 0 1 0

0 0
d
dx

0 0 0

0 0 0 −
d2

dx2 0
d
dx

0 0 0 0 0 1

0 0
d2

dx2 0 0 0

0 0 0 0
d
dx

0

0 0 0 0 0
d
dx



. (27)234

According to (6), the material strains are determined as:235

εεεm(x, y, z) = εεεr(x, y, z) + εεεw(x, y, z) = α̂αα(y, z) ê(x) , (28)236

where α̂αα(y, z) is the cross-section compatibility operator that accounts for both rigid and warping strains, resulting as:237

α̂αα(y, z) =


1 -y 0 0 z 0 Mη x(y, z) Mη y(y, z) Mη z(y, z)

0 0 1 +
dMη y(y, z)

dy
dMη x(y, z)

dy
− z 0

dMη z(y, z)
dy

0 0 0

0 0
dMη y(y, z)

dz
dMη x(y, z)

dz
+ y 0 1 +

dMη z(y, z)
dz

0 0 0


. (29)238

The application of the virtual work principle, considering a virtual rigid strain as δεεεm(x, y, z) = α̂αα(y, z) δê(x), leads239

to the definition of the extended beam internal forces ŝ(x), as:240

ŝ(x) =

∫
A(x)

α̂αα
T (y, z) σσσm(x, y, z) dA , (30)241

with:242

ŝ(x) =

{
N(x) Mz(x) T p

y (x) Mp
x (x) My(x) T p

z (x) Bx(x) By(x) Bz(x)
}T

, (31)243

where quantities Bx(x), By(x) and Bz(x), are the additional generalized stresses work-conjugate to the generalized244

strains ζx(x), ζy(x), ζz(x) and known as bi-moments [24, 9, 33]. These are defined as:245

Bx(x) =

∫
A(x)

Mη x(y, z)σxx(x, y, z) dA , (32)246

By(x) =

∫
A(x)

Mη y(y, z)σxx(x, y, z) dA , (33)247

Bz(x) =

∫
A(x)

Mη z(y, z)σxx(x, y, z) dA , (34)248
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while quantities Mp
x (x), T p

y (x) and T p
z (x) are usually referred to as primary torsional moment and shear stresses.249

These result as the sum of two contributions: the standard torsional moment and shear stresses, Mx(x), Ty(x) and250

Tz(x), associated to the generalized strains for the rigid cross-section, and additional quantities, Ms
x(x), T s

y (x) and251

T s
z (x), associated to the warping strains, that is:252

Mp
x (x) = Mx(x) + Ms

x(x) , (35)253

T p
y (x) = Ty(x) + T s

y (x) , (36)254

T p
z (x) = Tz(x) + T s

z (x) , (37)255

where:256

Mx(x) =

∫
A(x)

[
y τxz(x, y, z) − z τxy(x, y, z)

]
dA , (38)257

Ty(x) =

∫
A(x)

τxy(x, y, z) dA , (39)258

Tz(x) =

∫
A(x)

τxz(x, y, z) dA , (40)259

and:260

Ms
x(x) =

∫
A(x)

[
dMη x(y, z)

dy
τxy(x, y, z) +

dMη x(y, z)
dz

τxz(x, y, z)
]

dA , (41)261

T s
y (x) =

∫
A(x)

[
dMη y(y, z)

dy
τxy(x, y, z) +

dMη y(y, z)
dz

τxz(x, y, z)
]

dA , (42)262

T s
z (x) =

∫
A(x)

[
dMη z(y, z)

dy
τxy(x, y, z) +

dMη z(y, z)
dz

τxz(x, y, z)
]

dA . (43)263

The latter are usually known as bi-shears or secondary torsional moment and shear stresses.264

By differentiating ŝ(x) with respect to ê(x) and considering Eqs. (30), (28) and (11), the cross-section generalized265

tangent stiffness matrix is obtained, resulting as:266

k̂s(x) =
∂ŝ(x)
∂ê

=

∫
A(x)

α̂αα
T (y, z) km(x, y, z) α̂αα(y, z) dA . (44)267

This governs the generalized cross-section constitutive relationship in incremental form, that is:268

∆ŝ(x) = k̂s(x) ∆ê(x) . (45)269

3.1.2. Cross-section displacement interpolation270

According to the displacement-based approach, the generalized cross-section displacements, ûs(x), are interpo-

lated along the element axis by means of shape functions, using Lagrange and Hermite polynomials. The axial

displacement field, u(x), and the shear strains, γy(x) and γz(x) are assumed as linear functions, while the transverse

displacements, v(x) and w(x), and the torsional rotation, θx(x), are assumed as cubic. Thus, the relationship between

vector ûs(x) and the basic displacements v̂ is expressed in compact form as:

ûs(x) = N̂(x) v̂ , (46)
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with:271

N̂(x) =



N2(x) 0 0 0 0 0 0 0 0 0 0 0

0 N4(x) N5(x) 0 0 0 0 N4(x) 0 0 N5(x) 0

0 0 0 N3(x) 0 0 N4(x) 0 0 N5(x) 0 0

0 0 0 0 −N4(x) −N5(x) 0 0 N4(x) 0 0 N5(x)

0 0 0 0 0 0 0 N1(x) 0 0 N2(x) 0

0 0 0 0 0 0 0 0 N1(x) 0 0 N2(x)


. (47)272

where:273

N1(x) = 1 − x/L , (48)274

N2(x) = x/L , (49)275

N3(x) = 3 x2/L2 − 2 x3/L3 , (50)276

N4(x) = x − 2 x2/L + x3/L2 , (51)277

N5(x) = −x2/L + x3/L2 . (52)278

To be noted is that the interpolation of the transverse displacements, bending rotations and shear strains, whose279

definition makes use of the additional shear strain DOFs, γy i/ j and γz i/ j, coincides with that proposed in [35] for a280

2D Timoshenko beam to avoid shear locking pathological problems [37]. Here, the interpolation is extended to the281

3D formulation and referred to the basic element reference configuration. Moreover, fields γy(x) and γz(x) are used to282

describe cross-section warping, together with field χx(x). The latter results from the derivative with respect to x of the283

torsional rotation θx(x), which is defined by exploiting the additional torsional strain DOFs, χx i/ j, [49].284

By introducing Eq. (46) into Eq. (26), the generalized cross-section strains is related to the nodal basic displace-285

ment vector, and results as:286

ê(x) = D̂(x) N̂(x) v̂ = â(x) v̂ , (53)287

where â(x) is the cross-section strain compatibility matrix, resulting from the application of the differential operator288

D̂(x) to the shape function matrix N̂(x).289

3.1.3. Variational formulation and element governing equations290

The element governing equations are derived by invoking the stationarity of the total potential energy, which is291

written as:292

Π̂ (ûs(x)) =

∫
V

εεε
T
m(x, y, z) σ̃σσm(x, y, z) dV − v̂T q̂ −

∫
L

ûT
s (x) q̂s(x) dx , (54)293

where V is the element volume and q̂s(x) contains the loads distributed along the element axis. Parentheses (round294

brackets) indicate variable dependency. Vector q̂s(x) consists of four non-zero components: the axial load qu(x)295
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parallel to x, the transverse loads qv(x) and qw(x) parallel to directions y and z, respectively, and the torque tx(x):296

q̂s(x) =

{
qu(x) qv(x) tx(x) qw(x) 0 0

}T
. (55)297

By introducing Eqs. (28), (46) and (53) into Eq. (54), the total potential energy is expressed in terms of v̂ as298

follows:299

Π̂(v̂) = v̂T
∫

L
âT (x)

[∫
A(x)

α̂αα
T (y, z) σ̃σσm(x, y, z) dA

]
dx − v̂T q̂ − v̂T

∫
L

N̂T (x) q̂s(x) dx , (56)300

Moreover, by considering Eq. (30) and imposing the stationarity of Π̂ with respect to v̂, the element equilibrium301

equation is derived, which reads:302

q̂ =

∫
L

âT (x) ŝ(x) dx −
∫

L
N̂T (x) q̂s(x) dx , (57)303

where second term on the right-hand side defines the element nodal forces due to the element loads, q̂q =
∫

L N̂T (x) q̂s(x) dx.304

By applying the virtual work principle, considering the virtual nodal basic displacements v̂ = âv û, the definition305

of the element force vector p̂ is obtained in the form:306

p̂ = âT
v q̂ + p̂rq , (58)307

This collects the standard forces and couples, pi/ j and mi/ j, work-conjugate to ui/ j and θθθi/ j, and the additional gener-308

alized forces, βββ, work-conjugate to the warping DOFs, ηηη, that is:309

p̂ =

{
pT βββ

T
}T

, (59)310

with:311

p =

{
pT

i mT
i pT

j mT
j

}T
. (60)312

Vector p̂rq =

{
pT

rq 0 0 0 0 0 0
}T

is the extended version of vector prq, containing the basic reaction forces313

due to the distributed loads, q̂s(x). For uniform loads, this results as:314

prq = −

{
qu L qv

L
2

qw
L
2

tx L 0 0 0 qv
L
2

qw
L
2

0 0 0
}T

. (61)315

The incremental form of Eq. (58) is written as:316

∆p̂ = âT
v ∆q̂ = âT

v k̂v ∆v̂ = âT
v k̂v âv ∆û = k̂ ∆û , (62)317

where k̂ = âT
v k̂v âv is the element tangent stiffness matrix, with:318

k̂v =
∂q̂
∂v̂

=

∫
L

âT (x)
∂ŝ(x)
∂ê

∂ê(x)
∂v̂

dx =

∫
L

âT (x) k̂s(x) â(x) dx . (63)319

This governs the incremental form of the element constitutive relationship expressed in the reference basic system and320

used in Eq. (62), that is:321

∆q̂ = k̂v ∆v̂ . (64)322
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3.2. Simplified Warping Mixed Element (SWME) formulation323

The SWME formulation is defined by introducing additional internal nodes, located along the element axis (Fig. 6),324

where supplementary warping DOFs are defined. In this work, without loss of generality, internal nodes are assumed325

as equally spaced along x, but any distribution can be considered. Hence, at the general node n, three DOFs are added,326

indicated as ηx n, ηy n and ηz n and collected in vector ηηηn. DOFs ηx n are used to describe cross-section warping due to327

torsion, while ηy n and ηz n are used to describe warping due to shear. The nodal displacement vector is again expressed328

by Eq. (16), where now vector ηηη lists the warping DOFs of all the nw warping nodes, that is:329

ηηη =

{
ηηη

T
1 ηηη

T
2 . . . ηηη

T
nw

}T
. (65)330

x
y

z

Internal nodes
ui u j

nwi j η 3η 2η 
1η
i jθ θ

Figure 6: Standard (black) and warping (blue) nodal DOFs for the SWME model
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Figure 7: SWME reference configuration in the local system (i; x, y, z) with basic displacement (black) and warping (blue) DOFs

With reference to the element basic configuration, the basic deformation displacement and warping DOFs are331

collected in the basic displacement vector v̂, resulting as in Eq. (19) (Fig. 7), with I and 0 having proper dimensions.332

The internal force vector q̂, work-conjugate to v̂, results as in Eq. (20). However, in this case, vector βββ lists the333

warping internal forces, βββw n, defined at all the warping element nodes, that is:334

βββ =

{
βββ

T
w 1 βββ

T
w 2 . . . βββ

T
w nw

}T
. (66)335

The element constitutive law relating q̂ and v̂ is derived in Section 3.2.3.336
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3.2.1. Warping description and cross-section behavior337

Similar to the EVDE model, the warping displacement field uw(x, y, z) is assumed as defined in Eq. (22). How-338

ever, differently from the Vlasov’s assumption in Eq. (23), here ηηηs(x) =

{
ηx(x) ηy(x) ηz(x)

}T
are considered as339

independent generalized cross-section fields, as proposed in Benscoter’s theory [10, 21].340

According to Eq. (6), the material strains εεεm(x, y, z) are determined as:341

εεεm(x, y, z) = εεεr(x, y, z) + εεε
ζ
w(x, y, z) + εεε

η
w(x, y, z) = ααα(y, z) e(x) + αααζ(y, z) ζζζs(x) + αααη(y, z) ηηηs(x) , (67)342

where two contributions are distinguished for the warping material strains, εεεw(x, y, z), that is εεε
ζ
w(x, y, z) = αααζ(y, z) ζζζs(x)343

and εεε
η
w(x, y, z) = αααη(y, z) ηηηs(x). Vector ζζζs(x) contains the derivatives of the warping displacements with respect to x,344

ζζζs(x) =
∂ηηηs(x)
∂x

, i.e. the generalized strain quantities, ζx(x), ζy(x) and ζz(x), introduced for the EVDE in Eq. (26), are345

here defined as the derivatives of the independent warping fields in ηηηs(x). The matrices αααζ(y, z) and αααη(y, z) are two346

warping compatibility operators with size 3 × 3 and defined as:347

αααζ(y, z) =


Mη(y, z)

0

0

 , αααη(y, z) =


0

∂Mη(y, z)
∂y

∂Mη(y, z)
∂z


. (68)348

In addition to the standard beam internal forces s(x) (Eq. (8)), the virtual work equivalence, enforced alternatively349

with the virtual warping strains δεεεζw(x, y, z) = αααζ(y, z) δζζζs(x) and δεεεηw(x, y, z) = αααη(y, z) δηηηs(x), leads to the definition350

of beam internal forces, bw(x) and tw(x), associated to warping and resulting as:351

bw(x) =

∫
A(x)

αααζ(y, z)T
σσσm(x, y, z) dA, tw(x) =

∫
A(x)

αααη(y, z)T
σσσm(x, y, z) dA . (69)352

These are work-conjugate to ζζζs(x) and ηηηs(x), respectively, and correspond to the quantities introduced for the EVDE353

model and called bi-moments and bi-shears.354

Warping parameters ηηηs(x) are interpolated along the element axis by exploiting warping DOFs collected in ηηη and355

by means of shape functions Nn(x), that is ηηηs(x) =
∑nw

n=1 Nn(x) ηηηn. Thus, Eq. (22) is now written as:356

uw(x, y, z) =

nw∑
n=1

Nn(x) Mη(y, z) ηηηn . (70)357

In the simplest version of the model, the additional warping nodes coincide with end nodes i and j (nw = 2) and358

functions Nn(x) result as 2-node linear Lagrange polynomials. By contrast, when internal nodes are considered (nw >359

2), functions Nn(x) result as nw-node higher order Lagrange polynomials. By introducing Eq. (70) into Eq. (67), it360

results:361

εεεm(x, y, z) = ααα(y, z) e(x) +

nw∑
n=1

[
∂Nn(x)
∂x

αααζ(y, z) + Nn(x) αααη(y, z)
]

ηηηn . (71)362
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By differentiating s(x), bw(x) and tw(x) with respect to e(x), ζζζs(x) and ηηηs(x) and considering Eqs. (8), (69), (67)363

and (11), the cross-section generalized tangent stiffness matrices are obtained, resulting as:364

ks(x) =
∂s(x)
∂e

=

∫
A(x)

ααα
T (y, z) km(x, y, z) ααα(y, z) dA , (72)365

kζsw(x) =
∂s(x)
∂ζζζs

=

∫
A(x)

ααα
T (y, z) km(x, y, z) αααζ(y, z) dA , (73)366

kηsw(x) =
∂s(x)
∂ηηηs

=

∫
A(x)

ααα
T (y, z) km(x, y, z) αααη(y, z) dA , (74)367

kζws(x) =
∂bw(x)
∂e

=

∫
A(x)

ααα
T
ζ (y, z) km(x, y, z) ααα(y, z) dA , (75)368

kζww(x) =
∂bw(x)
∂ζζζs

=

∫
A(x)

ααα
T
ζ (y, z) km(x, y, z) αααζ(y, z) dA , (76)369

kζηww(x) =
∂bw(x)
∂ηηηs

=

∫
A(x)

ααα
T
ζ (y, z) km(x, y, z) αααη(y, z) dA , (77)370

kηws(x) =
∂tw(x)
∂e

=

∫
A(x)

ααα
T
η (y, z) km(x, y, z) ααα(y, z) dA , (78)371

kηζww(x) =
∂tw(x)
∂ζζζs

=

∫
A(x)

ααα
T
η (y, z) km(x, y, z) αααζ(y, z) dA , (79)372

kηww(x) =
∂tw(x)
∂ηηηs

=

∫
A(x)

ααα
T
η (y, z) km(x, y, z) αααη(y, z) dA . (80)373

These govern the generalized cross-section constitutive relationships in incremental form that are derived by consid-374

ering the incremental form Eq. (70), resulting as:375

∆s(x) = ks(x) ∆e(x) +

nw∑
n=1

[
∂Nn(x)
∂x

kζsw(x) + Nn(x) kηsw(x)
]

∆ηηηn , (81)376

∆bw(x) = kζws(x) ∆e(x) +

nw∑
n=1

[
∂Nn(x)
∂x

kζww(x) + Nn(x) kζηww(x)
]

∆ηηηn , (82)377

∆tw(x) = kηws(x) ∆e(x) +

nw∑
n=1

[
∂Nn(x)
∂x

kηζww(x) + Nn(x) kηww(x)
]

∆ηηηn . (83)378

3.2.2. Cross-section stress interpolation379

As opposed to the EVDE formulation, where only standard and warping displacements are interpolated along the380

element axis, according to the mixed formulation [40, 41, 50], the SWME adopts independent interpolations for the381

generalized cross-section stresses along x, together with fields ηηηs(x) (Eq. (70)). Hence, in line with the equilibrated382

beam formulation, the generalized cross-section stress vector s(x), i.e. the beam internal force vector, is related to the383

element basic forces q by the equilibrium conditions enforced in strong form, and results as:384

s(x) = b(x) q + sq(x) , (84)385
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where b(x) is the equilibrium matrix [45], defined as:386

b(x) =



1 0 0 0 0 0

0
x
L
− 1

x
L

0 0 0

0 −
1
L

−
1
L

0 0 0

0 0 0 1 0 0

0 0 0 0
x
L
− 1

x
L

0 0 0 0
1
L

1
L


, (85)387

and sq(x) contains the generalized section stresses due to distributed loads qs(x), arranged as:388

qs(x) =

{
qu(x) 0 qv(x) tx(x) 0 qw(x)

}T
. (86)389

In case of uniformly distributed loadings, sq(x) results as:390

sq(x) =

{
[L − x] qu

x
2

[x − L] qv

[L
2
− x

]
qv [L − x] tx

x
2

[L − x] qw

[L
2
− x

]
qw

}T
. (87)391

Eq. (84) is obtained as solution of the standard differential equilibrium equations of a straight Timoshenko beam392

[51] written in compact form as:393

D∗(x) s(x) + qs(x) = 0 , (88)394

being D∗(x) the equilibrium operator, self-adjoint to D(x) (Eq. (7)). Generalization to curved beams were proposed395

resulting in very efficient formulations [43] with respect to the classical displacement-based approach.396

3.2.3. Variational formulation and element governing equations397

The element governing equations are derived by invoking the stationarity of a modified four-field Hu–Washizu398

variational functional [52, 53]. This is defined by assuming ur(x, y, z), εεεm(x, y, z), σσσm(x, y, z) and uw(x, y, z) as indepen-399

dent fields and is written as:400

Π (ur, εεεm,σσσm, uw) =

∫
V

εεε
T
m(x, y, z) σ̃σσm(x, y, z) dV +

∫
V

σσσ
T
m(x, y, z) {εεεm (um(x, y, z)) − εεεm(x, y, z)} dV

− uT p − ηηη
T

βββ −

∫
L

uT
s (x) qs(x) dx .

(89)401

Parentheses (round brackets) indicate variable dependency.402

The introduction of ur(x, y, z) = ααα(y, z) us(x) and Eqs. (8), (70) and (71) into Eq. (89), permits to express the403

functional in terms of fields us(x), e(x), s(x) and ηηη, that is:404

Π (us, e, s,ηηη) =

∫
V

εεε
T
m (e(x), uw(ηηη), x, y, z) σ̃σσm(εεεm(x, y, z)) dV +

∫
L

sT (x) [e (us(x)) − e(x)] dx

− uT p − ηηη
T

βββ −

∫
L

uT
s (x) qs(x) dx ,

(90)405

By enforcing the stationarity of Π with respect to the four independent fields us(x), e(x), s(x), ηηη, the element406

governing equations are derived as follows:407
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• Considering Eqs. (8) and (67), it results as [52, 45]:408

∂Π (us, e, s,ηηη)
∂e

=
∂

∂e

{∫
V

eT (x) ααα
T (y, z) σ̃σσm(εεεm(x, y, z)) dV −

∫
L

eT (x)
[ ∫

A(x)
ααα

T (y, z)σσσm(x, y, z) dA
]

dx
}

=

∫
V

ααα
T (y, z)

[
σ̃σσm(εεεm(x, y, z)) − σσσm(x, y, z)

]
dV = 0 .

(91)409

This is satisfied if the material constitutive law in Eq. (9) holds, as the term in braces vanish in this case.410

• Considering the equilibrium condition expressed by Eq. (84), it results as:411

∂Π (us, e, s,ηηη)
∂s

=
∂

∂q

{
qT

∫
L

bT (x) [e(us(x)) − e(x)] dx
}

=

∫
L

bT (x) e(us(x)) −
∫

L
bT (x) e(x) dx = 0 . (92)412

After introducing Eq. (7), the first integral is integrated by parts and only boundary quantities result as non-zero413

terms. These correspond to the element deformation displacements v. Hence, the standard element compatibil-414

ity condition, enforced in the weak form, is obtained, i.e:415

v =

∫
L

bT (x)e(x) dx . (93)416

•

∂Π (us, e, s,ηηη)
∂us

=
∂

∂us

{∫
L

eT (us(x)) s(x) dx − uT p −
∫

L
uT

s (x) qs(x) dx
}

= 0 . (94)417

As for Eq. (92), after introducing Eq. (7), the first integral is integrated by parts and, by introducing Eq. (88)418

to manipulate the resulting derivatives of internal forces s(x), the integrals are eliminated. The stationarity419

condition enforced for the remaining boundary terms is re-written as:420

∂Π (us, e, s,ηηη)
∂us

=
∂

∂us

{[
uT

s (x) s(x)
]L

0
− uT p

}
=

∂

∂u
{
uT

[
aT

v q − prp

]
− uT p

}
= 0 (95)421

and gives the element equilibrium conditions expressed in weak form, i.e.:422

p = aT
v q + prp . (96)423

•

∂Π (us, e, s,ηηη)
∂ηηη

=

∫
V

εεε
T
m (e(x), uw(ηηη), x, y, z)

∂ηηη
σ̃σσm(εεεm(x, y, z)) dV − βββ = 0 . (97)424

Considering Eq. (9) and introducing Eqs. (69) and (71), the integral is expressed in terms of warping beam425

internal forces and the cross-section equilibrium conditions related to the warping are obtained, i.e.:426

βββ =

∫
L


∂N1(x)
∂x
. . .

∂Nnw (x)
∂x

 bw(x) dx +

∫
L


N1(x)

. . .

Nnw (x)

 tw(x) dx . (98)427
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3.3. Enriched Warping Mixed Element (EWME) formulation428

The EWME formulation presented in [43, 45] can be seen as the generalized version of the SWME, enriched by429

introducing additional warping DOFs at the element warping nodes located both at the ends and along the element axis.430

In this case, an arbitrary number, mw, of DOFs are considered at each node and collected in vector ηηηn (Fig. 6). These431

are located at uniformly distributed points over the cross-section (Fig. 8) and represent their out-of-plane warping432

displacement, namely uw nm. Hence, the nodal displacement vector result as in Eq. (16), with ηηη arranged according to433

Eq. (65).434

Warping

DOFs

y

z

y

z

y

z

Rectangular L-shaped S-shaped

Figure 8: Examples of EWME warping DOFs for typical cross-sections

Warping DOFs are used to interpolate warping displacement field uw(x, y, z) in the element volume. As opposed435

to the SWME, where cross-section warping profiles Mη(y, z) are assigned and only the interpolation along the element436

axis is performed, in this case, the interpolation considers both the variation along x and that over the cross-section.437

Hence, Eq. (4) is written as:438

uw(x, y, z) =

nw∑
n=1

Nn(x)

 mw∑
m=1

Mm(y, z) uw nm

 =

nw∑
n=1

Nn(x) M(y, z) ηηηn , (99)439

where M(y, z) is a row vector containing 2D Lagrange polynomials Mm(y, z) used to interpolate uw(x, y, z) over the440

cross-section plane. In a proposed modified version of the model [54], the adoption of Hermite polynomials is also441

explored for shape functions Mm(y, z), defined by introducing the derivatives of uw(x, y, z) along y and z as supplemen-442

tary warping DOFs. Although this approach significantly reduces the number of DOFs involved in the interpolation,443

it is not applicable to very thin-walled geometries [53] and, thus, only the case of Lagrange polynomials is considered444

in this work.445

The material strains, εεεm(x, y, z), are derived according to Eq. (71) where matrices αααζ(y, z) and αααη(y, z) have, here,446

size 3 × mw and are defined as:447

αααζ(y, z) =


M(y, z)

0

0

 , αααη(y, z) =


0

∂M(y, z)
∂y

∂M(y, z)
∂z

 . (100)448

Hence, by manipulating the cross-section and material quantities, as done for the SWME (Section 3.2.2), the general-449

ized cross-section stresses, bw(x) and tw(x), associated to warping are derived as in Eq. (69). These play the same role450

as the bi-moments and bi-shears introduced for the SWME and EVDE.451
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The other fundamental relationships and the element governing equations are obtained through similar derivations452

performed for the SWME and are not reported here for brevity. The element governing equations coincide with those453

standard for a force-based variational formulation, i.e. the element nodal equilibrium (Eq. (96)), the constitutive454

material law ( Eq. (9)) and the element compatibility relation in weak form (Eq. (93)). In addition, the fourth equation455

enforcing the cross-section equilibrium for the warping forces is obtained, which reads as Eq. (98). However, in this456

case, βββ (Eq. (66)) collects all the warping forces, pw nm, work-conjugate to the warping DOFs, uw nm. Complete details457

of the element formulation are described in [43, 45, 53].458

4. Numerical applications459

To test the performances of the proposed models, the mechanical response of thin-walled beams with open and460

closed, as well as symmetric and non-symmetric, cross-sections is numerically reproduced, under the assumption461

of linear elastic constitutive behavior and small displacements and strains. After presenting the method used to462

evaluate warping functions Mη x(y, z), Mη y(y, z) and Mη z(y, z) (Eq. (22)), numerical tests of three cantilever beams and463

a L frame are presented under pure torsional or coupled torsional and shear/bending actions. Results are compared464

with analytical solutions obtained with simplified and higher order models and the influence of the different warping465

descriptions adopted in the proposed beam formulations is discussed.466

A fiber discretization is adopted to evaluate the cross-section response [43, 55], that is to solve all integrals defined467

over the cross-section plane. As linear elastic material response is assumed, cross-section fibers are defined according468

to the Gauss-Legendre 2D quadrature rule, so that exact solution of the integral is obtained [53]. Similarly, Gauss-469

Lobatto 1D quadrature rule is used to solve the integrals defined along the element axis, so that two of the quadrature470

points are located at the element end nodes permitting to directly control the response of the end cross-sections.471

4.1. Numerical evaluation of the warping functions472

A numerical procedure is adopted to evaluate functions Mη x(y, z), Mη y(y, z) and Mη z(y, z) describing the warping473

displacement variation over the beam cross-section (Eq. (22)) for EVDE and SWME models. This relies on the linear474

elastic solution obtained by means of the EWME model for a unit length beam, adopting same cross-section geometry475

and constitutive behavior of the element to be analyzed. The beam is modeled adopting one FE, under the assumption476

of uniform warping along the element axis, i.e. by placing additional warping DOFs only at one element node, i.e.477

nw = 1, where warping displacements are assumed as free. Then, unit torsional curvature, χx, and unit shear strains, γy478

and γz, are alternatively imposed along the beam. To do so, unit torsional rotation, θx j, and transverse displacements,479

v j and w j, are alternatively imposed at node j, while assuming all other rigid cross-section displacements and rotations480

as prevented at both element ends (Fig. 9). The corresponding warping DOFs, ηηη1, are computed and, by applying481

Eq. (99), warping profiles of displacement uw(x, y, z) are determined over the beam cross-section and expressed by482

means of selected analytical shape functions. These warping profiles correspond to functions Mη x(y, z), Mη y(y, z)483
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and Mη z(y, z), respectively. Their derivatives and integrals required in EVDE and SWME governing equations are484

computed by differentiation and integration of the 2D Lagrange polynomials Mm(y, z) used in Eq. (99).
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Figure 9: Numerical modeling scheme to evaluate warping functions Mη x(y, z), Mη y(y, z) and Mη z(y, z)

485

Examples of warping functions determined for typical cross-section geometries are shown in Fig. 5. These are486

obtained by assuming the warping DOF scheme over the cross-section (Fig. 9) such that the interpolation of uw(x, y, z)487

results as cubic along both in-plane directions for the rectangular cross-section and cubic along webs and flanges for488

other geometries. For the latter, quadratic interpolation is assumed across the membrature thickness.489

These interpolation schemes are adopted to determine the warping functions in all numerical tests performed in490

this work. However, lower or higher order interpolations can be, in general, used according to desired accuracy of the491

numerical results [43, 53].492

4.2. Twist of a long I-shape cantilever493

The first test analyzes the response of the I-shaped cantilever depicted in Fig. 10, which was studied in the works494

by Tralli [12], Kim & Kim [15] and Back & Will [19]. Warping is assumed as fully restrained at the fixed end and495

a torsional couple, Mx = 25 kNm, is applied at the free end. Young’s modulus E = 200000 MPa and Poisson ratio496

ν = 0.3 are assumed for the material elastic constitutive law.

0.3125

Mx

FE discretization
0.625

1.250

5.0

(a)

z

y

0.275

0.150

0.025

0.025

(b)

Figure 10: I-shaped cantilever: (a) static scheme with FE element mesh description and (b) cross-section geometry (all dimensions in meters)

497

As usual for doubly-symmetric cross-sections, torsional and shear/bending behavior are uncoupled and, thus, null498

shear forces are expected along the beam.499

22



The specimen is first modeled by discretizing the beam with equal length FEs (uniform mesh), based on the500

proposed enhanced formulations. As the thickness of the membrature is significant compared to the cross-section501

size, for the EWME the warping interpolation scheme over the cross-section assumes quadratic variation across web502

and flange thickness, while cubic interpolation is assumed in the other directions. Hence, the interpolation scheme503

coincides with that adopted to compute the warping function Mη x(y, z), Mη y(y, z) and Mη z(y, z) to be introduced in the504

EVDE and SWME. The total number of warping DOFs used at each cross-section is mw = 60. For both the SWME505

and EWME, two schemes are considered for the warping interpolation along the element axis, i.e. nw = 3 and nw = 4,506

corresponding to quadratic and cubic variation, respectively. To be noted is that the EVDE considers cubic variation507

of the torsional rotation along the FE axis and, thus, according to Eqs. (22) and (23), quadratic variation of the warping508

displacement in this direction.509

Fig. 11 shows the convergence of the solution in terms of torsional rotation at the free end, θx(L), as the number510

of FEs along the beam axis is increased, and compares the results with those reported in [12, 15, 19]. Green curve
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Figure 11: I-shaped cantilever: convergence of the solution for the uniform mesh in terms of torsional rotation at the free end, θx(L)

511

with circles represents the solution obtained with EVDE, red curves with squares and triangles correspond to the512

solutions obtained with SWME, for nw = 3 and nw = 4, respectively, and blue curves with circles and crosses denote513

the solutions obtained with EWME, for nw = 3 and nw = 4, respectively. As expected, all these converge to similar514

results. Indeed, for doubly-symmetric open cross-sections, warping interpolation provided by Eqs. (22) and (23)515

suffices to describe the cross-section out-of-plane deformations and enhanced theories are not required. However,516

models assuming cubic warping variation along the element axis (SWME and EWME with nw = 4) exhibit higher517

performances than those considering quadratic interpolation of uw(x, y, z) (SWME and EWME with nw = 3 and518

EVDE).519
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Similar trends are observed for models in [12, 15, 19]. Their solutions are in good agreement with those obtained520

with the proposed models. Black curve with crosses represents the solution reported in [12], while blue curves with521

triangles and squares correspond to the solutions reported in [15] and obtained with an exact analytical and a numerical522

approach, respectively. The latter relies on a 2-node isoparametric beam formulation, with linear warping variation523

along the element axis. Magenta curves with circles and asterisks represent the solutions reported in [19] and obtained524

with a beam formulation that assumes quadratic and cubic warping variation along the element axis, respectively.525

For comparison, Fig. 11 also shows the result obtained with a shell FE model (dashed black horizontal line), which526

provides a solution almost coinciding with those obtained with the proposed models. The shell model adopts 4-nodes527

Mindlin shell FEs [56], properly formulated to avoid shear-locking problems. These have size equal to 0.00625 m528

along the cross-section mid-line and 0.025 m along the cantilever axis direction. Moreover, to satisfy the in-plane529

rigid cross-section assumption, also adopted for the beam models, the rigid diaphragm constraint is used in the cross-530

section plane. Couple Mx is introduced by applying two opposite forces at the end cross-section, acting in the plane531

of the flanges, and the cross-section rotation is determined as the average value obtained by dividing the transverse532

displacements of the web nodes by their distance from the cross-section centroid [57].533

To show the influence of the warping interpolation assumed over the beam cross-section, the solution obtained534

with the EWME for nw = 3 but assuming linear warping interpolation across the membrature thickness is plotted535

(blu stars). Cubic variation is still considered along web and flanges. As cross-section thickness is almost 1/3 of536

cross-section width, warping variation across the thickness is important for this specimen and the linear interpolation537

assumption leads to stiffer solutions than those obtained with quadratic shape functions. To be noted is also that, if538

linear interpolation were used to evaluate warping functions Mη x(y, z), Mη y(y, z) and Mη z(y, z) for EVDE and SWME,539

these would give similar results as those obtained with this latter EWME model, that is the curves for the free end540

rotation would converge to the same value, as occurs for the plotted quadratic interpolation cases.541

Following the studies reported in [12], similar analyses are conducted, yet adopting a non-uniform FE mesh542

discretization for the cantilever, as depicted in Fig. 10(a). This considers short, regular and long FEs, with length543

equal to 0.3125 m, 0.625 m and 1.250 m, respectively, to better capture variation of the warping displacement near544

the fixed end and that of the axial stress due to shear-lag effect. Figs. 12(a) and 12(b) show the variation along the545

cantilever axis of the torsional rotation, θx, and maximum axial stress, σmax
xx , obtained with the proposed models (solid546

curves with symbols) and compares these with the solution obtained in [12] adopting the same mesh (black crosses)547

and the shell model (dashed black curves). As indicated in Fig. 12(b), σmax
xx occurs at the flange tips, where higher548

values of axial strain are induced due to the warping restraints placed at the fixed end, and vanishes moving toward549

the free end of the cantilever. These variation clearly describes the influence of warping restraints placed at the fixed550

end. These strongly affect the element response, by increasing the torsional stiffness of the cantilever. This behavior551

is perfectly described by the proposed beam formulations that highly agree with the shell model.552
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Figure 12: I-shaped cantilever (non-uniform mesh): axial variation of (a) torsional rotation, θx, and (b) maximum axial stress, σmax
xx , evaluated at

the tip of the flanges due to shear-lag effect

4.3. Twist of a short C-shape cantilever553

The second test analyzes the behavior of a cantilever beam with C-shaped cross-section subjected to a concentrated554

torsional couple at the free end, equal to Mx = 1000 kNm, and with warping restrained at the fixed end. Specimen555

geometry is depicted in Fig. 13 and material behavior is defined by assuming Young’s modulus E = 30 MPa and556

Poisson ratio ν = 0.154. In this test, torsional and bending/shear effects are coupled [12, 15, 19, 33] and secondary557

shear stresses are expected to play an important role in the beam response.

Mx

18
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0.2

0.2
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Figure 13: C-shaped cantilever: static scheme and specimen geometry (all dimensions in meters)

558

The beam is modeled by adopting a uniform mesh made of six FEs based on the proposed formulations. For559

the SWME and EWME models, parabolic warping interpolation is assumed along the element axis, i.e. nw = 3.560

To be noted is that same order of interpolation is considered by the EVDE model for torsional warping, but linear561

interpolation is considered for shear warping (see Eqs. (22), (23) and (46)). For the EWME, warping interpolation is562
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assumed as cubic along web and flanges and parabolic across the membrature thickness for a total number of warping563

DOFs at each cross-section equal to mw = 42.564

Fig. 14(a) shows the variations along the element axis of the torsional rotation, θx, (green curve with circles for565

the EVDE, red curve with squares for the SWME and blue curve with dots for the EWME) and compares these with566

the analytical solution reported in [15] (black crosses) that includes the effects of the secondary shear stresses. A567

very small difference is observed between the proposed model results, that is the EVDE and SWME provide slightly568

stiffer solutions than the EMWE. However, this latter perfectly agrees with the reference analytical approach, as the569

EWME is based on a richer description of the warping displacements over the element cross-section than the other570

two formulations. Same behavior is shown in Fig. 14(b), where the convergence of the solution is plotted in terms571

of free end torsional rotation, θx(L), for increasing number of FEs. As expected, EVDE (green curve with circles),572

considering lower order interpolation for shear warping, exhibits worse performances than SWME (red curve with573

squares) and EWME (blue curve with dots). For this latter, one FE suffices to model beam. Moreover, as expected,574

due the coarser warping description, EVDE results converge to a value that is close to Vlasov’s analytical solution,575

indicated by the black solid line, while higher free end rotation is provided by SWME and EWME at convergence.
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Figure 14: C-shaped cantilever: (a) axial variation of torsional rotation, θx, and (b) convergence of the solution in terms of free end torsional

rotation, θx(L), for the proposed models

576

Figs. 15(a) and 15(b) plot the distributions of the axial and tangential stresses, σxx and τxz, respectively, evaluated577

with the three proposed models at 4.5 m from the fixed end, being z the direction parallel to the cross-sections web. As578

shown, all formulations well reproduce the distribution of the axial stress σxx with no remarkable difference in values579

among the models. This is due only to shear-lag effect, that is to the warping restraints applied at the fixed end that580

produce relevant strains in the axial direction. Only EWME correctly describes the trend of the tangential stress τxz,581

and, thus, the influence of secondary shear stresses, as can be observed by comparing the results with those reported582

in [33]. Due to warping variation across the membrature thickness, τxz attains maximum values at the external edges583
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Figure 15: C-shaped cantilever: distribution of (a) axial and (b) tangential stresses, σxx and τxz, over the cross-section at 4.5 m from the fixed end,

obtained with the EWME, SWME and EVDE (units MPa)

of the flanges and null values at the internal edges.584

4.4. Short boxed cantilever under distributed torsional load585

The third test concerns the numerical study of the closed boxed thin-walled cantilever depicted in Fig. 16. Warping586

is assumed as fully restrained at the fixed end and uniformly distributed torsional couples tx = 1000 kNm/m are applied587

along the beam axis. The elastic material properties are defined by assuming Young’s modulus, E = 200000 MPa,588

and Poisson ratio, ν = 0.3.
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0.4015

0.203

0.003

0.003

Figure 16: Boxed cantilever: static scheme and specimen geometry (all dimensions in meters)

589
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The beam is modeled by adopting a uniform mesh made of twelve FEs based on the proposed formulations. Test590

results are compared with those reported in [20], obtained by using two different FE approaches based on Vlasov’s591

and Benscoter’s theory [9, 10], respectively. For the SWME and EWME models, parabolic warping interpolation is592

assumed along the element axis, i.e. nw = 3. For the EWME, warping interpolation is assumed as cubic along web593

and flanges and quadratic across the membrature thickness, for a total number of warping DOFs at each cross-section594

equal to mw = 62.595

Fig. 17 shows the variations along the element axis of the torsional rotation, θx. As expected, EVDE (green curve596

with circles) and EWME (blue curve with dots) results perfectly agree with Vlasov’s (dashed curve with crosses) and597

Benscoter’s (dashed curve with square) solution, while intermediate results are given by the SWME model (red line598

with squares).
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Figure 17: Boxed cantilever: axial variation of torsional rotation θx

599

Similar trend is observed in Fig. 18, where the variation along the beam axis of (a) the warping parameter ηx and600

(b) bimoment Bx is reported (same curve styles of Fig. 17 are adopted). ηx is null at the fixed end, where warping is601

restrained, and rapidly increases moving toward the free end. Opposite trend is observed for Bx, as warping restraints602

at the fixed end induce shear-lag effect that increases axial stresses, σxx, in this zone (see Eq. (32)). For the EWME,603

generalized warping quantities at the cross-section level are not available as well, as a detailed description of the604

warping is employed in this model at each integration point of the cross-section, according to the mw warping DOF605

scheme.606

Finally, Figs. 19(a) and 19(b) plot the distributions of the axial and tangential stresses, σxx and τxz, respectively,607

evaluated with the three proposed models at 0.1 m from the fixed end, being z the direction parallel to the flanges. As608

shown, EVDE provides distribution of the axial stress σxx due to shear-lag effect that attains considerably lower values609

than those given by the EWME and SWME. However, no remarkable differences are observed for the τxz distribution.610

Indeed, as usual for closed profiles [21], shear stress exhibits a constant positive or negative flow through the thickness611
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Figure 18: Boxed cantilever: axial variation of (a) warping parameter, ηx, and (b) bimoment, Bx
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Figure 19: Boxed cantilever: distribution of (a) axial and (b) tangential stresses, σxx and τxz, over the cross-section at 0.1 m from the fixed end,

obtained with the EWME, SWME and EVDE (units MPa)

of the membratures, that is shear stresses assume a regular variation in this direction that is well captured by all the612

proposed formulations, regardless of the assumed cross-section warping description.613

4.5. L frame with I-shaped members614

The fourth test is conducted to investigate the performances of the proposed formulations in analyzing a more615

complex structure composed by multiple members and study the interaction of warping deformation at the connection616

between beams and columns of a frame. Specimen geometry is depicted in Fig. 20(a). Rigid cross-section and617

warping displacements at the end of the beam (point A) and at the base of the column (point D) are prevented, as618

well as the transverse displacement along z direction of the beam-column connection joint (point B). A concentrated619

torsional couple is applied at the column mid-height (point C), equal to Mx = 1.0 kNm. Two stiffener configurations620

are considered for the joint. These are depicted in Fig. 20(b) and indicated as diagonal and box/diagonal stiffened621

joint. Material behavior is defined by assuming Young’s modulus, E = 205000 MPa and Poisson ratio ν = 0.3.622
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Figure 20: L frame: (a) static scheme and specimen geometry (all dimensions in meters) and (b) stiffener configurations at the joint

The frame is modeled by using the proposed beam formulations and adopting a uniform mesh made of eight623

FEs, for both beam and column. For the SWME and EWME models, parabolic warping interpolation is assumed624

along the element axis, i.e. nw = 3. For EWME model, parabolic and cubic warping interpolation is considered625

along web and flanges, respectively, and linear interpolation across the membrature thickness. The total number of626

warping DOFs over each cross-section is mw = 28. Warping boundary conditions at the joint are ensured by adopting627

the same modeling strategies adopted in [45], where similar frame is tested under dynamic loading conditions. For628

the box/diagonal stiffened joint, it is assumed that vertical and horizontal cross-sections, where the stiffeners are629

located, can not warp [6, 58]. Hence, warping DOFs placed at these positions are restrained. For the EVDE, this630

is accomplished by restraining χx, γy and γz. Joint is modeled through rigid links that connect the beam to the631

column (blue lines in Fig. 20(b)), with a node of the mesh located at the link intersection, corresponding to point632

B. By contrast, for the diagonal stiffened joint, it is assumed that the end cross-sections of the members undergo633

equal warping profile. Hence, rigid links are not used and element axes meet at node B. In this case, for all models,634

mesh connectivity ensures that warping profile of the two cross-sections be the same, as both beam and column FEs635

connected at the joint share the same warping DOFs located at node B.636

Fig. 21 shows the solution obtained for both diagonal and box/diagonal joint configurations in terms of torsional637

rotation θx of (a) beam and (b) column, referred to the element local axes x. The green circles, red squares and blue dots638

represent the results obtained with the EVDE, SWME and EWME models, respectively. These are compared with639

those obtained with the enhanced beam (solid black curves) and the shell (black triangles) model reported in [33].640

Shell model is also used in [59] to test same specimen, providing similar results. Values of the rotation are reported641

assuming as positive direction for the element local axes that going from A to B for the beam and from D to B for the642

column. Torsion of the column mainly produces bending of the beam. However, for the diagonal stiffened joint, as643

warping of the column due to torsion induces warping in the beam, both elements undergo torsional deformations. By644

contrast, as warping transmission is prevented for the box/diagonal stiffened joint, in this case, cross-section torsional645
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rotations are zero in the beam. As observed for the I-shaped cantilever in Section 4.2, all the proposed formulations646

give the same response that perfectly matches the beam solution in [33], for both joint configurations. As expected,647

the richer shell model provides slightly more flexible rotations, mostly at the member mid-spans.648
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Figure 21: L frame: axial variation of torsional rotation, θx, along local x-axis for (a) beam and (b) column

Fig. 22 shows the variation along the element local axis of the axial stress at the tip of the flanges for (a) beam649

and (b) column. The exact position of the monitored point P is indicated by the sketches in the figure and the stresses650

is referred to as σ P
xx. All proposed models provide same solution, reported with blue solid curves for the EWME, red651

dashed curves with stars for the SWME and green dashed curves for the EVDE. Comparison with shell model or other652

beam formulation is not reported in this case, as these data are not available in the reference papers.653

In the column, axial stresses are mainly produced by shear-lag effect due to torsion and warping restraints at654

boundaries. By contrast, bending actions prevail in the beam. When the box/diagonal joint is considered, as torsional655

strains are zero in the beam, σ P
xx linearly varies along this element, while significant additional contribution associated656

to torsion arises in case of diagonal joint.657

5. Conclusions658

Three beam FE formulations for thin-walled structures were presented, based on the enrichment of the element659

kinematics description to include cross-section warping and correctly describe coupling between axial/bending and660

shear/torsional stress components. As opposed to the EWME model which introduces a detailed description of the661

warping displacement field at each point of the beam cross-section and was considered as the most sophisticated662

reference model, the EVDE and SWME formulations adopted a coarser approach based on a priori defined warping663

profiles. To be noted is that all the presented models were enriched to properly account for both the torsional and664

shear warping effects. In this perspective, the EVDE model can be considered as an enhancement of the classical665

Vlasov’s formulation. At the same time, the SWME represents a simplified version of the more accurate EWME. The666
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Figure 22: L frame: axial variation of axial stress, σ P
xx, arising at the tip of the flanges for (a) beam and (b) column

investigation conducted on simple thin-walled structural elements showed that, as expected, EWME approach gives667

the most detailed results, in perfect agreement with the reference analytical/numerical solutions. However, this is668

the most computationally demanding, as it usually involves more additional warping DOFs than other formulations.669

On the other hand, the numerical examples proved that the other two EVDE and SWME models can be satisfactorily670

employed in various cases, mainly when the structural response does not involve complex warping deformation mech-671

anisms. Indeed, the adoption of warping functions a priori defined over the element cross-sections limits the warping672

description provided by EVDE and SWME models, that, in some cases, result less accurate than EWME.673

By adopting the EWME model, a numerical procedure was proposed to evaluate the warping profiles over the674

cross-sections, required for the EVDE and SWME. This is easily applicable to any cross-section geometry and proved675

to be a very efficient and extremely flexible technique, as it permits to choose the desired level of accuracy for the676

warping interpolation, similarly to the more sophisticated EWME model.677

The response of four thin-walled specimens subjected to torsional loads was numerically reproduced, i.e. three678

cantilevers, with I-shaped, C-shaped and boxed cross-section, and a L frame with I-shaped members. The tests679

performed on the cantilever beams highlighted the performances of each proposed model in reproducing the response680

of symmetric, non-symmetric, opened and closed thin-walled profiles. These show that all formulations equally681

capture the behavior of thin-walled elements with opened doubly symmetric cross-sections. In fact, the influence of682

secondary shear stresses is negligible in this case and, thus, the coarser warping description adopted for the EVDE683

suffices to represent the element behavior. However, richer approaches are required for non-symmetric and/or closed684

profiles. The analyses on the C-shaped and boxed cantilever showed that, although the global response of the beam685

was obtained by all the proposed models with sufficient accuracy, local variation of strains and stresses over the beam686

cross-sections and along the element axis was correctly capture only by more general formulations with independent687
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warping parameters, as for SWME and EWME, which permit better estimation of the structural response. SWME688

model resulted a good compromise between the more complex and computational demanding EWME and the simpler,689

but less onerous, EVDE.690

Convergence studies were also presented for the I-shaped and C-shaped cantilevers, to investigate the perfor-691

mances of the proposed formulations when different warping interpolation schemes are assumed along the element692

axis and over the cross-sections. As expected, the solution sensitivity to warping interpolation over the cross-section693

was observed only for thicker beams. By contrast, the shape function order assumed to describe warping variation694

along the element axis resulted crucial to improve the convergence speed and reduce the computational burden of the695

model.696

The test performed on the L frame showed that the proposed beam formulations are also applicable for the analysis697

of full structures composed by multiple elements. Particular attention must be paid in the definition of the boundary698

conditions at the connection between beams and column. However, simple modeling strategies can be used to correctly699

reproduce the warping interaction occurring at element joints.700

Lastly, from a computaional point of view, SWME and EWME approaches resulted both more performing than the701

EVDE, as these rely on more efficient FE mixed formulations, while the latter is based on the classical displacement702

approach. In fact, SWME and EWME models, based on mixed formulations, always showed faster convergence than703

EVDE. Hence, in spite of the lower computational cost requested by the single EVDE FE, finer mesh discretizations704

are usually required when this formulation is adopted.705
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