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Abstract Approximate Bayesian Computation (ABC) methods are widely em-
ployed to obtain approximations of posterior distributions without having to cal-
culate likelihood functions. Nevertheless, the general impossibility to find statistics
which are sufficient across models leads to unreliability of the classical tools for
ABC model choice. To overcome this issue, a different kind of modelling is here
proposed by replacing the traditional comparison between posterior probabilities
of candidate models with posterior estimates of the weights of a mixture of these
models. A simulation study highlights several strengths of this alternative approach,
presenting it as a robust and flexible extension of the classical one.
Abstract I metodi di ABC (Approximate Bayesian Computation) sono largamente
utilizzati per ottenere approssimazioni di distribuzioni a posteriori senza dover cal-
colare funzioni di verosimiglianza. Tuttavia, in generale, non è possibile trovare
statistiche che siano sufficienti tra modelli e ciò rende poco attendibili gli strumenti
classici su cui si basa l’ABC model choice. Al fine di superare tale problema, si pro-
pone di rimpiazzare il tradizionale confronto tra probabilità a posteriori dei modelli
candidati con la stima a posteriori dei pesi di una mistura di tali modelli. Uno studio
di simulazione mette in luce diversi punti di forza di questo approccio alternativo,
presentandolo come una robusta e flessibile estensione di quello classico.
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1 Introduction

In the last decades, Approximate Bayesian Computation (ABC, henceforth) meth-
ods have become popular as a class of likelihood-free algorithms which aim to draw
samples from an approximate posterior distribution, in the cases where the likeli-
hood is unavailable or intractable, but it is still possible to generate data from the
corresponding distribution.
Suppose to observe a sample y = (y1, . . . ,yn) of realizations from iid random vari-
ables Yi, i= 1, . . . ,n, with a (complex) density p(·|θ), where θ is an unknown param-
eter of interest with prior distribution π(θ). In order to sample from an approximate
posterior distribution of θ , one can use a basic version of ABC rejection sampling
algorithm (Pritchard et al. 1999): the idea is to draw iid parameter values θ ∗1 , . . . ,θ

∗
N

from π(θ), and to use each of these values to generate a synthetic sample of iid
pseudo-observations, z, from the sampling distribution p(·|θ). If z is similar to the
observed data y, the corresponding θ ∗ is accepted as a value generated from the
posterior distribution π(θ |y).
The concept of similarity between two datasets is expressed by three tools: a vector
of statistics (or summaries), a distance and a tolerance threshold. The vector of sum-
maries η(·) =

(
η1(·), . . . ,ηk(·)

)
is used to summarise the information contained in a

dataset, so that a pair of vectors of k statistics is compared instead of a pair of vectors
of n observations (being k� n). This vector of statistics is most often not sufficient,
but the consequent loss of information is tolerated with the idea to avoid the curse of
dimensionality and to reduce the running time of the ABC algorithms. The distance
ρ(·) quantifies how much η(z) is close to η(y). The threshold ε allows to accept
all the θ ∗’s which generate datasets whose associated vector of summaries is close
enough to the observed vector of summaries. Therefore, the posterior sample is gen-
erated from π

(
θ
∣∣ρ(η(y),η(z)) < ε

)
as surrogate of π(θ |y): the more informative

the vector of statistics η(y) and the smaller ε , the better the approximation.

1.1 Classical ABC model choice and drawbacks

When M models are compared, one considers the model index M as an additional
unknown parameter, with prior distribution π(M =m), m= 1, . . . ,M (Grelaud et al.
2009). The classical ABC model choice algorithm is summarised in Algorithm 1.

Algorithm 1 classical ABC model choice (ABC-mc)
for i = 1 to N do

repeat
Generate m∗ from the prior π(M = m)
Generate θ ∗m∗ from the prior πm∗ (·)
Generate z from the sampling distribution pm∗

(
·
∣∣∣θ ∗m∗)

until ρ
(
η(z),η(y)

)
< ε

Set m(i) = m∗ and θi = θ ∗

end for
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The posterior probability of model m can be estimated with the frequency of
acceptances from model m, namely π̂ε(M = m|y) = 1

N ∑
N
i=1 I(m(i) = m) , while

B̂12,ε(y) = π(M=2)
π(M=1)

∑
N
i=1 I(m

(i)=1)

∑
N
i=1 I(m(i)=2)

can be used to approximate the Bayes Factor (BF),

B12(y) =
∫

Θ1

p1(y|θ1)π1(θ1)dθ1

/∫
Θ2

p2(y|θ2)π2(θ2)dθ2 , (1)

where pm(y|θ) is the likelihood function associated with the m-th model, m = 1,2.
These approximations are valid as long as identical summaries, distance and toler-
ance threshold are used over both models.
Robert et al. (2011) thoroughly investigate the drawbacks of model choice in ABC.
First of all, they show that the approximated BF, B̂12(y), converges to the BF based
on the vector of observed statistics, η(y),

Bη

12(y) =
∫

π1(θ1)pη

1

(
η(y)|θ1

)
dθ1

/∫
π2(θ2)pη

2

(
η(y)|θ2

)
dθ2 , (2)

as ε goes to zero. This quantity is only based on the observed vector of statistics and,
therefore, insufficient statistics yield a BF which converges to a quantity different
from (1). Even in the favourable case where η(y) is sufficient for both models,
sufficiency across models can be hardly obtained and this leads to a discrepancy
between (2) and (1) which cannot be computed. Insufficiency of the statistics for
models or across models is thus the main source of unreliability of the ABC model
choice based on the estimated BF.

2 ABC model choice via mixture weight estimation

The lack of confidence on the classical ABC model choice may be solved by in-
troducing a different kind of modelling: the idea is to replace the inference on the
posterior probabilities of the models with the posterior estimate of the weights of a
mixture of the candidate models. This approach is an extension to the ABC realm of
the inferential procedure proposed by Kamary et al. (2014). Here one considers the
case of two candidate models (i.e. M = 2) sharing an unknown parameter of interest
θ which has a common meaning for both models.
One considers the data y as produced by a mixture of M1 and M2, namely

Mw : y∼ w p1(y|θ)+(1−w) p2(y|θ), 0≤ w≤ 1 , (3)

with θ following a prior distribution π(θ) and associated to the sampling distri-
bution pw(·|θ). The parameters w and θ will be considered independent a priori.
Notice that this mixture model is an encompassing model since it contains both
models as special cases: for w = 1 it is equivalent to M1, while for w = 0 it is equiv-
alent to M2. The weight w represents the probability that an observation is sampled
from p1, so that it may be interpreted as the proportion of data which support M1.
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A posterior inference on w may then offer interesting information about which one
of the two models is the most suitable according to the observed data as well as the
degree of support of one model against the other.
Algorithm 2 shows the way the ABC rejection sampling algorithm is applied on
this mixture model in order to estimate θ and w.

Algorithm 2 ABC model choice via mixture weight estimation (ABC-mix)
for i = 1 to N do

repeat
Generate θ ∗ and w∗ from their respective prior distributions
Generate z from the sampling distribution pw∗ (·|θ ∗) of the model Mw∗

until ρ
(
η(z),η(y)

)
< ε

set wi = w∗ and θi = θ ∗

end for

This kind of modelling has several advantages. First of all, a whole posterior dis-
tribution on w allows, inter alia, for posterior point estimates, region of credibility,
quantification of the uncertainty on the results and sensitivity analysis. On the other
hand, the BF offers poor information since it is merely a scalar which suggests which
model is more adequate and the relative degree of evidence of models. In addition,
in the case where a same scalar value provided by the BF may seek either a mis-
specification of both models or a general acceptance of both - perhaps suggesting
a more cautious approach via model averaging -, this new model choice approach
may allow to conclude that both models or none could be acceptable, in the sense
that a mixture of them may be a better choice. In particular, Kamary et al. (2014)
show that this approach leads to a consistent testing procedure, not only when one of
the two models is the true one, but also when neither are correct, since the posterior
on w tends to concentrate around the value which minimizes the Kullback-Leibler
divergence from the true distribution. A further attractive feature of this approach is
the fact that it allows for improper priors on θ , where the BF totally prohibits this
kind of assumption.
A standard prior for w is a symmetric Beta(a0,a0), with a0 ∈ R+ representing the
degree of uncertainty a priori about the fact that one of the two candidate models
is indeed the true one. A small a0 may offer a regularization tool, being most of the
density placed around the boundary values 0 and 1. For a0 ↓ 0, the proposed values
from the prior distribution of w tends to be only 0’s and 1’s, so that the ABC-mix
behaves like the ABC-mc with symmetric prior probabilities on the models. In this
sense, the ABC-mc may be substantially seen as a limiting case of the ABC-mix.

3 Simulation study

One considers the case of comparison between two models, that is, the α-stable
distribution (Borak, Härdle, and Weron 2005) and the skew-Normal distribution
(Azzalini 2013), where the common unknown parameter is the location one. A
reparametrisation of the location parameter of the skew-Normal distribution is con-
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sidered, so that θ corresponds to the first moment of the two families of distribu-
tions. One considers the case where both models are wrong, since the data are iid
simulations from a skew-t distribution (Azzalini 2013) with expected value equal
to 0. The likelihood of the α-stable model is not available in closed form but it is
possible to simulate from this model: the inference on the unknown parameter θ

and the model choice are thus carried out through ABC-mc and ABC-mix. Fig. 1
shows that the approximated posterior density of θ provided by ABC-mc is vague
and tends to recover the corresponding prior, while ABC-mix produces posterior
density estimates which put their masses around 0, in most of the cases.

Fig. 1: Density estimate of the posterior distributions of θ computed via ABC-mc (left panel)
and ABC-mix (right panel) over 20 different datasets of n = 2000 iid samples from a skew-t
with mean θ = 0. Both algorithms are based on 105 simulations from θ ∼ Uni f [−10,10]. The
prior probabilities of the models are 0.5 (for ABC-mc) and w ∼ Beta(0.5,0.5) (for ABC-mix).
The tolerance corresponds to an acceptance rate of 0.01. The distance used to measure the dis-
crepancy between the observed and the j-th simulated vector of summaries ( j = 1, . . . ,N) is
ρ(η(y),η(z j)) =∑

k
i=1
|ηi(z j)−ηi(y)|
madN

j=1ηi(z j)
, where the denominator is the median absolute deviation (mad)

of the i-th summary statistic over all the N simulations: this avoids a distance dominated by the
variable with the greatest magnitude. The two summaries (i.e. k = 2) are the mad, which is a good
option for ABC model choice (Marin et al. 2014), and the median.

The difficulty for ABC-mc to provide reasonable posterior density estimates for θ

can be understood by analysing the asymptotic behaviour of the posterior proba-
bility of the first model (i.g. the α-stable). In fact, Fig. 2 shows that the posterior
probability of the first model seems to converge to 0, by always supporting the sec-
ond model. On the other hand, the weight of the first component of the mixture of
the models, w, does not concentrate near one of the boundary values as the sam-
ple size increases. In particular, as n increases, the posterior medians of w tends to
concentrate around 0.2, regardless of the prior specifications.

4 Conclusions

ABC-mix has shown better performances than ABC-mc when both models are mis-
specified, which is the most likely situation in real applications. ABC-mix behaves
as a flexible extension of ABC-mc, since a tuning of the hyperparameter a0 of the
prior of the weight w offers a further dimension to the prior specification of the
model. This allows to specify the degree of prior uncertainty about the true model
and this may be useful as regularization tool or for carrying out sensitivity analysis.
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A whole posterior on a mixture weight offers richer information than the one pro-
vided by the posterior probability of a model, it allows for measure of uncertainty
on the estimates and it may lead to propose a mixture of the candidate models as
better choice. Finally, it may be a valid solution to overcome the problem of insuf-
ficiency of the summary statistics for models and - above all - across models which
dramatically affects the classical ABC model choice based on the BF.

Fig. 2: Boxplot of the posterior medians of w for different values of a0 (wheat) - where a0 is the
hyperparameter of the prior Beta(a0,a0) of w - and of the posterior probabilities (grey) of the
α-stable model computed over 20 iid datasets from a skew-t with mean θ = 0 for different sample
sizes (n = 50,100,500,2000). The posterior of w and the posterior probability of the first model
have been estimated via ABC-mix and ABC-mc (respectively), both based on 105 simulations and
an acceptance rate set to 0.01.
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