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The study of collective effects in circular accelerators can be tackled by solving numerically the Vlasov
equation or by using tracking codes. The two methods are obtained with different approaches: Vlasov
solvers consider a continuous distribution function and describe the beam with coherent oscillation modes
in frequency domain (ending up usually with an eigenvalue system to solve), while tracking codes use
macroparticles and wakefields in time domain. In this paper we present two Vlasov solvers for the study of
collective effects (from impedances/wakefields only) which evaluate the frequency shift of coherent
oscillation modes and possible mode coupling instability in the single-bunch case for both longitudinal and
transverse planes. In the longitudinal plane the Vlasov solver also takes into account the potential well
distortion due to the wakefields under some conditions. In parallel to this theoretical approach, tracking
codes, which include collective effects, have been used as benchmark. In particular, starting from their
results, we also propose a new method to study the frequency shift of coherent modes and compare it with
the output of the Vlasov solvers.
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I. INTRODUCTION

Collective effects in circular accelerators can be studied
by taking into account, in a self-consistent way and in
addition to external guiding fields, the effects of self-
induced wakefields [1–3]. One important consequence of
these fields is the generation of instabilities. Generally, for
the study of beam dynamics, it is convenient to distinguish
between the longitudinal and transverse planes. This is true
for many accelerators [4–6] except when synchrobetatron
resonances become important. Another distinction which
helps to simplify the study of collective effects is related to
single-bunch or multibunch beam dynamics generated by
short or long-range wakefields, respectively.
The theoretical approach to the instabilities due to

collective effects, whether they are single or multibunch,
considers the beam as a continuous distribution function
and expands it as a superposition of coherent oscillation
modes perturbed by the wakefields. Actually the analysis is
performed in frequency domain with the use of the concept
of coupling impedance, which represents the Fourier
transform of the wakefield (in fact of the wake function

to be more precise). One limit of this analysis is the fact that
we resort to a linear perturbation theory, which fails when
nonlinearities, e.g. for Landau damping, become important.
For the study of the beam dynamics in the presence of

collective effects, a tracking code represents nowadays a
very reliable tool. The bunch is considered as an ensemble
of macroparticles (generally around 106–107) and their
equations of motion can be easily integrated in time domain
by taking into account the wakefields [7–10]. This gen-
erally requires the necessity of quite heavy computing
resources. Of course the use of discrete macroparticles
makes simulation codes complementary to the theoretical
approach of modal expansion.
Another ingredient to take into account when dealing with

instabilities in circular accelerators is the total machine
impedance and the corresponding wakefield. Several devices
contribute to it, as, for example, resistive wall [11–14], space
charge [15–18], collimators [19,20], and so on. The imped-
ance of an accelerator is generally avery complicated function
of frequency with many peaks (due to resonant modes)
influencing the multibunch beam dynamics (as this corre-
sponds to long-range wakefields) and a smoother impedance
of broadband kind affecting the single-bunch beam dynamics
(as this corresponds to short-range wakefields) [21].
Therefore, the machine impedance, in some conditions,
can be replaced by some broadband impedancemodel, which
is characterized by a small number of parameters [22–25]
simplifying the study of single-bunch instabilities.
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In this paper, focusing on protons, we present two
Vlasov solvers which allow to obtain the frequencies of
coherent oscillation modes describing the beam motion in
the single-bunch case for the longitudinal and transverse
planes, and compare their results with a novel method
which analyzes directly the macroparticle motion obtained
as output from tracking simulation codes, and allows
determining the analogous coherent frequencies without
recurring to Vlasov solvers. Moreover, the same method
can also be used with direct beam measurements.
In the next section of this paper we discuss the machine

parameters that we have used for the study, and, in Sec. III
we describe the two Vlasov solvers, for the longitudinal and
transverse planes, comparing them to other Vlasov solvers
currently used by the community [26–28]. Then, in Sec. IV
we discuss a new method proposed to evaluate the
frequencies of coherent oscillation modes starting from
the output of macroparticle simulation codes, and, in
Sec. V, we compare these results with those of the
Vlasov analysis in both planes. In Sec. VI simple analytical
formulas for the instability thresholds are provided, which
reveal the different mitigation methods, and a final section
is dedicated to concluding remarks.

II. BEAM AND MACHINE PARAMETERS

In order to benchmark the results of the two approaches,
we used the CERN Super Proton Synchrotron (SPS)
machine parameters, but adapted to our specific context.
In particular, for the machine we considered the relativistic
mass factor γ ¼ 27.73, the relativistic mass factor at
transition γtr ¼ 22.77 (with the machine working therefore
above transition energy), the circumference C ¼ 6911 m,
the peak rf voltage Vrf ¼ 6 MV, and the harmonic number
h ¼ 462. This last value does not correspond to the actual
one used in the SPS (4620) because, for the comparisons,
we wanted to be in the linear part of the rf voltage in order
to minimize possible effects due to the nonlinearities of the
longitudinal phase space. Thus, by reducing the harmonic
number, we increased the rf bucket maintaining constant
the bunch length, which we chose with a parabolic line
density distribution for the longitudinal case with a full
length (4σ) equal to τb ¼ 2.7 ns at low intensity.
With the above machine parameters, the unperturbed

synchrotron tune is Qs0 ¼ 3.26 × 10−3. For the transverse
beam dynamics, in addition to the above parameters, we
considered a smooth lattice with a transverse low-intensity
tune of Qx0 ¼ 26.13.
For what concerns the collective effects, let us consider

the RLC impedance model that, in the longitudinal plane,
can be written as

ZkðfÞ ¼
Rk;s

1þ jQðfrf − f
fr
Þ : ð1Þ

A special case of the RLC model is the broadband
resonator (BBR) that has typically the quality factorQ ¼ 1,
and that we have used through all of this paper. For the
other parameters, we considered the following values:
resonant frequency fr ¼ 1 GHz, such that frτb ¼ 2.7,
and shunt impedance Rk;s ¼ 2 × 105 Ω. The chosen bunch
length gives a cutoff frequency quite below the BBR
resonant frequency so that we have a bunch interacting
principally with the imaginary part of the low frequency
impedance as shown in Fig. 1 where we have reported the
real and absolute imaginary part of the BBR impedance
(blue and orange curves) evaluated at f ¼ pf0, with p an
integer number and f0 the revolution frequency, and
divided by p together with the bunch power spectrum
(green curve in arbitrary units) which is such that [29]

jSðfÞj2 ∝ J3=2ðfπτbÞ
ðfπτbÞ3=2

; ð2Þ

with JðxÞ the ordinary Bessel function of the first kind.
As can be seen from the figure, the imaginary part

of ZkðpÞ=p is almost constant in all the frequency range
of interest. This low frequency imaginary impedance is
equal to

ZkðpÞ
p

����
p→0

≃ −j
Rk;sf0
Qfr

¼ −j8.67 Ω: ð3Þ

Since the interaction of the BBR impedance with the
bunch is essentially inductive, then the main effect on the
longitudinal beam dynamics is an increase of the bunch
length (we are above transition) due to the potential well
distortion (PWD), but the shape of the bunch remains
almost symmetric. There is, however, a small real part of
the impedance interacting with the bunch spectrum which
does not perturb too much the distribution but which is

FIG. 1. Real and absolute imaginary part of ZkðpÞ=p for the
BBR impedance as a function of frequency. In the same plot also
the bunch spectrum of a parabolic line density distribution with
total bunch length of 2.7 ns is represented in arbitrary units.
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responsible of the instability as we will see later in the
paper.
In addition to the BBR impedance, we have also

evaluated the single-bunch longitudinal behavior in the
presence of a pure inductive impedance. This corresponds
to the case when the resonant frequency of the BBR
impedance fr tends to infinity. It is also important to
underline that the wakefield of a pure imaginary impedance
is proportional to the derivative of the Dirac delta function,
and some simulation codes cannot be run with this kind of
impedance.
For the transverse plane we have used a longitudinal

bunch shape having a water-bag distribution [29] with the
same total bunch length of τb ¼ 2.7 ns, and a transverse
BBR impedance of the kind

Z⊥ðfÞ ¼
fr
f

R⊥;s

1þ jQðfrf − f
fr
Þ ; ð4Þ

with R⊥;s ¼ 1 MΩ=m. The quality factor and the resonant
frequency are the same as in the longitudinal case.

III. GALACTIC AND GALACLIC

GALACTIC stands for Garnier-Laclare coherent transverse
instabilities code, while GALACLIC stands for Garnier-
Laclare coherent longitudinal instabilities code [30]. The
approaches used by the two codes are very similar, solving
the linearized Vlasov equation as discussed in [29,31]. In
Ref. [29], Laclare presented a very nice formalism with a
clear procedure to treat both longitudinal and transverse
planes, first for the low-intensity case (i.e., when the modes
can be treated independently) and then for the general high-
intensity case (when the modes cannot be treated inde-
pendently). One starts with the single-particle motion,
which is approximated by the one of a harmonic oscillator
with the corresponding beam-induced electromagnetic
forces in the longitudinal and transverse planes. Then,
one looks at the spectrum of the single-particle signal,
which is a line spectrum (around every harmonic of the
revolution frequency, there is an infinite number of syn-
chrotron satellites m) centered at 0 for the longitudinal
plane and at the chromatic frequency for the transverse
plane. A distribution of particles (particle density in phase
space) is then considered and expressed as a sum of a
stationary distribution and a perturbation. The beam-
induced electromagnetic force can be expressed through
the impedance, which is a complex function of frequency,
for both longitudinal and transverse planes. In this respect,
the case of the longitudinal plane is a bit more involved as
one has first to study the effect of the impedance on the
stationary distribution (i.e., the PWD): a new fixed point is
then obtained, with a dependency of the synchronous
phase, the incoherent frequency, the effective (total) voltage
and the bunch length on the bunch intensity. Around the

new fixed point, one writes the perturbation, which is
coherent with respect to the satellite number m. Applying
the Vlasov equation to first order, one ends up with an
eigenvalue system to solve. The result is an infinite number
of modes of oscillation mq (as there are 2 degrees of
freedom, the longitudinal amplitude and phase), withm the
azimuthal mode number and q the radial one. The latter is
defined as q ¼ jmj þ 2k (with k an integer between 0 and
infinity): with this definition, q represents the number of
nodes of the superimposed low-intensity standing-wave
patterns, which is a usual observable in particle acceler-
ators. Finally, for the general high-intensity cases (both in
longitudinal and transverse), the final eigenvalue systems
are obtained by summing over all the modes m. Therefore,
the general case is obtained very elegantly by Laclare,
leading to eigenvalue systems to solve, but the problem is
that the unknown frequency is inside the matrices to be
diagonalized. Laclare proposed a procedure to solve them
but it seems that only the real part of the mode-frequency
shifts can be obtained. The drawbacks of this method are on
one hand that it does not allow to follow the individual
modes, and on the other hand it does not provide (at least
not straightforwardly) the imaginary part of the mode-
frequency shifts (which is proportional to the instability
growth rate). The latter is very important to check whether
the beam is unstable or not. This is why Garnier and
Laclare [31] proposed to use a decomposition on the low-
intensity eigenvectors to obtain an eigenvalue system with
the unknown frequency outside the matrix to be diagon-
alized. The final result is described by the following two
equations [31]:

σðlÞ ¼
X∞

i;j¼−∞
aijσijðlÞ; ð5Þ

ωc

ωs
akl ¼ Haij; ð6Þ

where the (general, high-intensity) eigenvector σ is decom-
posed on the low-intensity eigenvectors σij (solutions of the
low-intensity eigenvalue problem with pure inductive
impedance, which requires two indices as discussed above
due to the 2 degrees of freedom, see below), with the
coefficients aij, which can be identified by finding the
eigenvectors of the eigenvalue system below, l is an integer,
ωc the (complex) angular frequency (with respect to the
angular betatron frequency in transverse), ωs the angular
synchrotron frequency and H is the matrix to be diagon-
alized. In the case of the transverse plane, the matrix is
given by (presenting the results slightly differently com-
pared to Garnier [31])

H⊥
kl;ij ¼ kδkiδlj þ Δωckl

X∞
p¼−∞

Z⊥ðpÞ
Z⊥ð0Þ

σ�klðpÞσijðpÞ; ð7Þ
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while for the longitudinal plane it is given by

Hk
kl;ij ¼ kδkiδlj þ Δωckl

X∞
p¼−∞

ZkðpÞ=p
ZkðpÞ=pjp→0

σ�klðpÞσijðpÞ;

ð8Þ
where δ is the Kronecker delta, and * stands for the
complex conjugate. For both longitudinal and transverse
cases, the Δωckl and the σkl are the low-intensity eigen-
values and eigenvectors of the following low-intensity
eigenvalue problem to be solved, with pure inductive
impedance and for the azimuthal mode m (as discussed
above, because of the 2 degrees of freedom, the solutions
need to be written with two indexes, which above were
called k and l), given by

ΔωcmσmðlÞ ¼
X∞
p¼−∞

Km
lpσmðpÞ; ð9Þ

with, for the transverse plane,

Km
lp ¼ jeIbZ⊥ðpÞ

2γm0cQx0

Z
∞

τ̂¼0

Jmðl; τ̂ÞJmðp; τ̂Þg0ðτ̂Þτ̂dτ̂; ð10Þ

and, for the longitudinal plane,

Km
lp ¼ −

2πIbmωs

Ω2
0V̂Th cosϕs

jZkðpÞ
p

×
Z

∞

τ̂¼0

JmðlΩ0τ̂ÞJmðpΩ0τ̂Þ
dg0
dτ̂

dτ̂; ð11Þ

with

Jmðp; τ̂Þ ¼ Jmf½ðpþQx0ÞΩ0 − ωξ�τ̂g; ð12Þ

ωξ ¼ Qx0Ω0

ξ

η
; ð13Þ

where j is the imaginary unit (not to be confused with the
index j also used in the matrix coefficient), e the absolute
value of the elementary charge, Ib ¼ Nbef0 the bunch
current (with Nb the number of charges and f0 ¼ Ω0=2π
the revolution frequency), m0 the particle rest mass, c the
speed of light, Jm the Bessel function of mth order, g0 the
distribution function of the longitudinal synchrotron ampli-
tudes τ̂, ξ the (relative) chromaticity, η the slippage factor,
V̂T the total voltage (sum of the rf and the wakefield
induced voltage), and ϕs the rf phase of the synchronous
particle (cosϕs < 0 above transition).
The eigenvalues of the H-matrices describe the mode-

frequency shifts while the eigenvectors can be used to
describe the intrabunch motion [32]. In the case of a BBR
impedance, the results can be written in terms of a
normalized parameter x which is given by

x ¼ 4Ib
π2B3V̂Th cosϕs

Im½ZkðpÞ�
p

����
p→0

; ð14Þ

for the longitudinal plane, while for the transverse one

x ¼ Im½Z⊥ð0Þ�eIb
4πγm0cQx0Bωs

; ð15Þ

with B ¼ f0τb the bunching factor. It is important to stress
that B, V̂T and ϕs depend on the bunch intensity due to
the PWD.
It is worth mentioning that in GALACTIC the effect of a

transverse damper (which is not discussed in the present
paper) was also added [33], as it was already the case with
two other transverse Vlasov solvers widely used by the
community, NHTVS [27] and DELPHI [28]. These three
Vlasov solvers are similar (with some pros and cons) as
concerns the subject of this paper as they are solving the
same equation but using different formalisms, and it was
checked in the past that on few benchmark cases the same
results were obtained [33]. It is also worth mentioning that
DELPHI uses the same approach as the famous MOSES code
which has been used for several decades (since 1988),
where the Sacherer integral equation is solved using a
decomposition over Laguerre polynomials of the radial
functions [26]. Furthermore, the MOSES code had been
already successfully benchmarked against the HEADTAIL

macroparticle code in [34]. Other approaches to solve the
Vlasov equation in the longitudinal plane, valid in particu-
lar for electron machines, can be found in [35–37].
Some benchmarks between Laclare’s approach [29] and

the GALACTIC and GALACLIC Vlasov solvers described
above are shown in Figs. 2–4, where in the ordinate axis
we have used the tune Q, or the corresponding tune shift
ΔQ with respect to Qx0, which represents the coherent
frequency divided by the revolution frequency. For the
longitudinal plane, both cases without PWD and with PWD
are discussed, to clearly reveal the effect of the PWD. For
the case without PWD, the eigensystem is solved and the
results are plotted using Qs, i.e. the intensity-dependent
synchrotron tune, whereas for the case with PWD, the
results are plotted using Qs0, i.e., the low-intensity syn-
chrotron tune (see Fig. 5) using the following expression:

Q
Qs0

¼ Q
Qs

FPWD; ð16Þ

where

FPWD ¼ Qs

Qs0
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x
π

q ð17Þ

for the case of a parabolic amplitude density (PAD)
longitudinal distribution or
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FPWD ¼ Qs

Qs0
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3x
4

q ð18Þ

for the case of a parabolic line density longitudinal
distribution.

It should be stressed that the case of a bunch in the “long-
bunch” regime (where 2frτb ≫ 1) is considered here, assum-
ing the simplified case where the shape of the distribution is
preserved, i.e. neglecting the effect of the synchronous phase
shift. It is worth noticing that the same intensity threshold
xth ≈ −0.75 is obtained for both caseswithout andwithPWD.

FIG. 2. Comparison between GALACTIC (in red) and Laclare [29] (in black) of the normalized mode-frequency shifts, in the case of a
pure inductive impedance and for a water-bag (WB) longitudinal distribution [29]: (left) real part and (right) imaginary part (from
GALACTIC only).

FIG. 3. Comparison between GALACTIC (in red) and Laclare [29] (in black) of the normalized mode-frequency shifts, in the case of a
broadband resonator impedance (with a quality factor of 1 and a resonance frequency fr such that frτb ¼ 2.8) and for a WB longitudinal
distribution [29]: (left) real part and (right) imaginary part (from GALACTIC only).

FIG. 4. Comparison between GALACLIC (in red) and Laclare [29] (in black) of the normalized mode-frequency shifts, in the case of a
broadband resonator impedance (with a quality factor of 1 and a resonance frequency fr such that frτb ¼ 2.8), above transition, without
taking into account the PWD and for a parabolic amplitude density (PAD) longitudinal distribution [29]: (left) real part and (right)
imaginary part (from GALACLIC only).
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IV. TRACKING CODES AND
MODAL ANALYSIS

In this section we describe the analysis that can be done
starting from the output of a simulation code, which allows
one to obtain the frequencies of the coherent oscillation
modes to be compared with those of the Vlasov solvers.
The method follows closely the theory used to solve the
Vlasov equation in both longitudinal and transverse planes.
Let us start with the longitudinal beam dynamics that can

be described with the quantities z and ε, which represent the
distance and the relative energy variation of a generic
particle from the synchronous one. To solve the Vlasov
equation by using a linear perturbation technique, as
discussed in the previous section, we write the phase space
distribution Ψðz; ε; tÞ as a sum of a stationary solution
independent on time and a perturbation such that

Ψkðz; ε; tÞ ¼ Ψ0;kðz; εÞ þΨ1;kðz; ε; tÞ: ð19Þ

The perturbation Ψ1;kðz; ε; tÞ, which is responsible of the
instability, is expanded in terms of coherent oscillation
modes of the bunch. In order to do that, it is convenient to
introduce the pair of longitudinal action-angle coordinates
ðJk;ϕkÞ. Observing that the perturbed distribution function
is periodic in ϕk with a period of 2π, it can be expanded so
that

Ψ1;kðJk;ϕk; tÞ ¼
X∞

m¼−∞
ejΔωcmtRm;kðJkÞe−jmϕk ; ð20Þ

withm the index defining themth azimuthal mode number,
Δωcm its corresponding coherent angular frequency, and
Rm;kðJkÞ an unknown function of the action variable. In the
previous section we have seen how to obtain the coherent
angular frequencies in order to determine when the per-
turbation is unstable (imaginary part of Δωcm negative) by
solving an eigenvalue system. In this section we are not
interested to solve numerically the Vlasov equation, but to
find a quantity that can be evaluated from the results of a

simulation code giving information on possible coherent
oscillation modes. In order to do that, we first observe that
the longitudinal distribution function λðz; tÞ is the projec-
tion on the z axis of the phase space distribution Ψkðz; ε; tÞ,
so that we can also expand this quantity into a stationary
solution, determined by the PWD, and a perturbation of
the kind

λðz; tÞ ¼ λ0ðzÞ þ λ1ðz; tÞ; ð21Þ

where λ0ðzÞ is normalized to 1, and, from Eq. (20), we
can write

λ1ðz; tÞ ¼
Z

∞

−∞
Ψ1;kðJk;ϕk; tÞdε

¼
X∞

m¼−∞
ejΔωcmt

Z
∞

−∞
Rm;kðJkÞe−jmϕkdε: ð22Þ

Let us now consider the following integral:

Mn;k ¼
Z

∞

−∞
znλðz; tÞdz

¼
Z

∞

−∞
znλ0ðzÞdzþ

Z
∞

−∞
znλ1ðz; tÞdz: ð23Þ

For n ¼ 0 this integral is equal to 1, while, for n > 1, it
coincides with the nth moment of the distribution in case of
symmetric stable bunch, such as the one given by a pure
imaginary impedance in the PWD regime. The integral of
Eq. (23) can be easily obtained from the results of any
simulation code at each integration step (or each turn).
Moreover we also observe that, in a real machine, if we are
able to measure, turn by turn, the longitudinal distribution
function, for example with a tomoscope as done at the
CERN proton synchrotron [38], a postprocessing analysis
with a fit over the longitudinal distribution allows to obtain
the same quantity also directly from measurements.
The first integral in the right-hand side depends only on

the stationary distribution, and we call itK0n;k. If we further

FIG. 5. Normalized (to the low-intensity synchrotron tune) mode-frequency shifts from GALACLIC in the case of a broadband resonator
impedance (with a quality factor of 1 and a resonance frequency fr such that frτb ¼ 2.8), above transition, taking into account the PWD
and for a PAD longitudinal distribution: (left) real part and (right) imaginary part.
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suppose, as generally done to solve the Vlasov equation,
that the particles execute linear synchrotron oscillations,
even if it changes with the bunch population, we observe
that it does not depend on time. For the second integral,
which is related to the perturbation, we have

Z
∞

−∞
znλ1ðz; tÞdz

¼
X∞

m¼−∞
ejΔωcmt

Z
∞

−∞

Z
∞

−∞
Rm;kðJkÞe−jmϕkzndzdε: ð24Þ

The elementary area in the phase space can be written in
terms of the action-angle variables, such that

Z
∞

−∞
znλ1ðz; tÞdz ∝

X∞
m¼−∞

ejΔωcmt

Z
∞

0

Rm;kðJkÞdJk

×
Z

2π

0

e−jmϕkzndϕk: ð25Þ

Due to the hypothesis of linear oscillations, the longi-
tudinal position z varies sinusoidally with time and it has a
dependency on the action-angle variables of the kind
z ∝

ffiffiffiffiffi
Jk

p
ejϕk . From Eq. (25) we can then write

Z
∞

−∞
znλ1ðz; tÞdz ∝

X∞
m¼−∞

ejΔωcmt

Z
∞

0

Rm;kðJkÞJn=2k dJk

×
Z

2π

0

e−jðm−nÞϕkdϕk: ð26Þ

We are not interested in the proportionality constant. We
further observe that the last integral is always zero except
when n ¼ m. In that case it is 2π, the sum over m
disappears, and we remain with

Z
∞

−∞
znλ1ðz; tÞdz ¼ K1n;kejΔωcnt; ð27Þ

where in K1n;k we have included all the quantities inde-
pendent on time but dependent on the nth mode, such as the
integral over the unknown Rn;kðJkÞ function. Finally we
can write

Mn;k ¼
Z

∞

−∞
znλðz; tÞdz ¼ K0n;k þ K1n;kejΔωcnt: ð28Þ

We are not interested in the two constants K0n;k and
K1n;k, but we observe that Eq. (28) oscillates at the
frequency Δωcn of the coherent nth mode, and this
frequency is the one that we want to determine.
In order to compare quantities having the same dimen-

sions, we consider the nth root of the absolute value ofMn;k
with its sign, which we call Sn;k, of the kind

Sn;k ¼ �
����
Z

∞

−∞
znλðz; tÞdz

����
1=n

¼ �jK0n;kj1=n
����1þ ejΔωcnt

K1n;k
K0n;k

����
1=n

≃�jK0n;kj1=n
����1þ ejΔωcnt

K1n;k
nK0n;k

����; ð29Þ

where the sign plus or minus depends on the sign of Mn;k,
and we have used the assumption that the effect of the
perturbation is small compared to that of the stationary
distribution and have expanded the nth root to first order.
We observe that Sn;k has a constant term plus a quantity that
oscillates at the coherent frequency Δωcn. If we evaluate
Sn;k turn after turn for several synchrotron oscillations, and
subtract its mean value hSn;ki, we remove the constant
component and remain only with the oscillating part.
Therefore, the Fourier transform of this quantity is a
spectrum with peaks at the frequencies of the azimuthal
coherent mode n. This procedure is performed as a function
of the bunch intensity so that we can obtain Δωcn at
different values of the bunch population. Since the ampli-
tude of the peaks depends on the mode number n, for the
calculations we normalize each spectrum of Sn;k to its
maximum value and then sum a given number of modes for
each intensity. An example of the results by using a pure
inductive impedance is shown in the left-hand side of
Fig. 6, where we have represented the real part of the
coherent frequency Δωcn of the first ten modes divided by
Ω0Qs0 as a function of the bunch population. The values of
Mn;k have been obtained by using the SBSC simulation code
[6,7] by using 106 macroparticles.
At low intensity we observe coherent frequencies at

multiples of the unperturbed synchrotron frequency as in
the previous section. When the intensity increases, there is a
moving down of these frequencies, more accentuated for
higher modes. Moreover, at higher intensities, several lines
start to appear for each azimuthal mode, which we interpret
as produced by different radial modes of the same azimu-
thal family. As a comparison, in the right-hand side of the
figure we show the frequency spectrum obtained by
considering only the Fourier transform of S2;k, correspond-
ing to the rms bunch length. The bunch and machine
parameters are the same as those discussed in Sec. II. No
instability is observed in this case up to a bunch population
larger than Nb ¼ 2.0 × 1011.
If the impedance has a real part, the mode coupling

instability takes place. Indeed, by using the BBR imped-
ance of Sec. II instead of a pure inductive one, from the
simulations we obtain a microwave instability threshold of
about Nb ¼ 1.2 × 1011 particles per bunch, as we show in
the next section. If we use the above described method to
obtain the frequencies of the coherent modes, we have the
results of the left-hand side of Fig. 7. We still observe a
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coherent frequency shift of some modes with low azimuthal
number, but we cannot highlight those with high number.
This is due to the fact that, at the microwave threshold, for
the nonlinear character of the instability, we obtain a
spectrum with a very high level of noise, represented in
red in the figure at intensities close to Nb ¼ 1.2 × 1011.
This noise hides the frequencies of coherent modes with
high number.
This is better highlighted in the right-hand side of the

figure, where we have represented two spectra correspond-
ing to Nb ¼ 1.1 × 1011 and Nb ¼ 1.2 × 1011 particles per
bunch, which is just below and above the microwave
instability threshold. While at 1.1 × 1011 the lines of the
different modes are well distinguishable up to about
the tenth mode, as can be seen in the top plot, when the
instability occurs at Nb ¼ 1.2 × 1011, the background due

to the noise increases, in particular for high modes, to a
level higher than the peaks of high modes of lower
intensities. In this way those peaks cannot be distinguished
in the 2D plot of the left-hand side.
In order to overcome this problem and to show also the

coherent frequencies of these high-order modes, we can use
a filter to the Fourier transform. For this purpose we have
used the Hanning (or Hann) function, one of the different
functions used in statistics for smoothing (see, e.g. [39]).
This function is of the kind

wðnÞ ¼ sin2
�
πn
M

�
; ð30Þ

withM the total number of points for the Fourier transform.
It is used in particular for smoothing discontinuities at the

FIG. 6. Real part of normalized mode-frequency shift obtained with the results of SBSC with a pure inductive impedance above
transition. The left-hand side has been obtained by summing the first ten modes, the right-hand side has been obtained by using only the
rms bunch length.

FIG. 7. Left: Real part of normalized mode-frequency shift of the first ten azimuthal coherent oscillation modes obtained with of the
results of SBSC with a BBR impedance. In the right-hand side two normalized spectra just below and above the microwave instability
threshold are shown.
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beginning and end of the sampled signal. In our case, when
an instability occurs, the signal is cut when oscillations
have the highest amplitude and we need to taper this
behavior. By multiplying the previous spectra with the
Hanning window, we obtain the plot shown in the left-hand
side of Fig. 8. In this way we can observe the coherent
frequencies of the modes even to intensities higher than the
microwave instability threshold, which corresponds to
the vertical blue line in the figure. As a comparison, in
the right-hand side of the same figure we show the results
obtained by considering only the spectrum of S2;k, which is
the rms bunch length, and we can see that only the first few
modes are visible.
For the transverse plane we follow a similar procedure,

but the quantity to analyze in frequency domain is different.
Let us consider the 4D phase space distribution as the sum
of a stationary distribution and a perturbation,

Ψðz; ε; y; px; tÞ ¼ Ψ0ðz; ε; x; pxÞ þΨ1ðz; ε; x; px; tÞ; ð31Þ

with x and px the transverse position (vertical or horizontal)
and its momentum. Also in this case we can expand the
perturbation as a sum of coherent oscillation modes of the
kind [1]

Ψ1ðz;ε;x;px;tÞ

¼ej
ξω0Qx0z

vη

X∞
m¼−∞

ejΔωcmtRm;kðJkÞe−jmϕkR⊥ðJ⊥Þe−jϕ⊥ ; ð32Þ

with v the longitudinal charge velocity. We have introduced
here the transverse action-angle variables ðJ⊥;ϕ⊥Þ and
another unknown function R⊥ðJ⊥Þ. This expansion is in
analogy to Eq. (20), except for the difference that, due to
the chromaticity, we now have an additional head-tail phase
factor [3].

The distribution in the physical space ðz; xÞ is

ρðz; x; tÞ ¼
Z

∞

−∞
dε

Z
∞

−∞
dpxΨðz; ε; x; px; tÞ

¼
Z

∞

−∞

Z
∞

−∞
Ψ0ðz; ε; x; pxÞdεdpx

þ
Z

∞

−∞

Z
∞

−∞
Ψ1ðz; ε; x; px; tÞdεdpx: ð33Þ

Let us consider in the transverse plane the quantity

Mn;⊥ ¼
Z

∞

−∞
dx

Z
∞

−∞
dzxρðz; x; tÞzn

¼
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞
xΨ0ðz; ε; x; pxÞzndzdεdxdpx

þ
X∞

m¼−∞
ejΔωcmt

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞
Rm;kðJkÞ

× ej
ξωβ0z

cη e−jmϕkznxR⊥ðJ⊥Þe−jϕ⊥dzdεdxdpx: ð34Þ

We observe here that Mn;⊥ can be obtained from
simulation codes at each integration step. Moreover, if it
is possible to reconstruct, turn after turn, the physical
distribution in ðz; xÞ in a real machine, the analysis can also
be performed from measurements. It is also important to
highlight that for n ¼ 0, M0;⊥ represents the transverse
displacement of the bunch centroid.
Let us use the action-angle variables such that

the elementary phase space volume is given by
dϕkdJkdϕ⊥dJ⊥. Moreover, the hypothesis of the linear
approximation for the longitudinal motion is still valid so
that z ∝

ffiffiffiffiffi
Jk

p
ejϕk . The first term in the right-hand side of

Eq. (34) is constant with time, and we call it K0n;⊥, while
the second one is

FIG. 8. Real part of normalized mode-frequency shift obtained with the results of SBSC with a BBR impedance. A Hanning window
has been used for the Fourier transform. The left-hand side has been obtained by summing the first ten modes, the right-hand side has
been obtained by using only the rms bunch length. The vertical blue line corresponds to the intensity threshold of the microwave
instability.
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∝
X∞

m¼−∞
ejΔωcmt

Z
∞

0

Rm;kðJkÞJn=2k dJk

×
Z

2π

0

ej
ξωβ0z

cη e−jðm−nÞϕkdϕk

×
Z

∞

0

Z
2π

0

xR⊥ðJ⊥Þe−jϕ⊥dϕ⊥dJ⊥: ð35Þ

The last double integral is the dipole displacement of the
transverse distribution [1]. The integral in ϕk is now
different from that of Eq. (26) due to the presence of an
additional exponential having a dependence on z. However,
since z is proportional to ejϕk , then that integral reduces to

Z
2π

0

ejAe
jϕke−jðm−nÞϕkdϕk; ð36Þ

with A an arbitrary real value. This integral, as for the
longitudinal case, is different from zero only if n ¼ m, and in
that case it is equal to 2π. Therefore, we finally obtain that

Mn;⊥ ¼
Z

∞

−∞
dx

Z
∞

−∞
dzxρðz; x; tÞzn

¼ K0n;⊥ þ K1n;⊥ejΔωcnt; ð37Þ

where in K1n;⊥ we have included all the quantities
independent on time but dependent on the nth mode.
We observe that Eq. (37) has the same form as Eq. (28).
Therefore, also in the transverse plane we can do consid-
erations similar to the ones that we did for the longitudinal
plane. In particular, the (nþ 1)th root of Mn;⊥, which we
call Sn;⊥, at the first order expansion oscillates with the
coherent frequency Δωcn. If we then evaluate Mn;⊥ turn
after turn, consider its (nþ 1)th root, subtract its mean
value, perform the Fourier transform, normalize the

spectrum to its maximum value and finally sum over some
modes for each intensity, we obtain spectra similar to those
of the longitudinal plane but for the coherent frequencies of
the transverse modes. It is worth mentioning that in this
case no Hanning window has been used.
Simulations in the transverse plane to obtain Mn;⊥ have

been performed with the tracking code PyHEADTAIL [40]
and with the parameters of Sec. II. The results of the
frequency analysis are shown in the left-hand side of Fig. 9.
In the vertical axis ΔQ is the difference between the tunes
obtained from the Fourier transform and Qx0. For the plot
we have summed the first ten modes. We can see a shift of
the mode n ¼ 0 which couples the mode n ¼ −1 at an
intensity of aboutNb ¼ 3.7 × 1011 particles per bunch. The
bunch becomes stable at Nb ¼ 4 × 1011 and unstable again
right after. Then the coupled modes become stable at Nb ¼
5.1 × 1011 and a new instability of the modes −1 and −2
takes place at Nb ¼ 6 × 1011.
If we consider only the analysis performed with the

mode n ¼ 0, that is M0;⊥, which corresponds to the
betatron oscillations of the centre of mass, the Fourier
transform gives the results of the right-hand side of the
figure. We can see that in this case it is still possible to
recognize the coupling of the lower modes and the
instability thresholds, however the coherent frequencies
of the modes with higher index cannot be highlighted. The
Fourier analysis of the betatron center of mass has been
indeed used in the past to determine the transverse mode
coupling threshold for the CERN SPS [34]. The study
performed there gave a bit higher number of visible modes
with respect to those shown in the right-hand side of
Fig. 9 thanks to the use of SUSSIX [41], a dedicated software
for the Fourier transforms. In our case, only the classical
FFT algorithm was needed to obtain the left-hand side
figure.

FIG. 9. Real part of normalized mode-frequency shift obtained with the results of PyHEADTAIL with a transverse BBR impedance. The
left-hand side has been obtained by summing the first ten modes, the right-hand side has been obtained by using only M0;⊥.
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V. COMPARISONS AND RESULTS

In this section we compare the results of GALACLIC and
GALACTIC with those of the simulation codes. Let us start
with the longitudinal plane where two impedance models
have been used, as discussed in Sec. II.
Simulations have been performed with the code SBSC,

but comparisons with MuSiC [7] and BLoND [42] were
performed as a cross-check. SBSC and BLoND are written in
different languages (Fortran the first and C++ and PYTHON

the second one), but they evaluate the wakefield effects
with the same technique of slicing the bunch distribution,
and they can also consider a pure inductive impedance
(which has, as wakefield, a function proportional to the
derivative of the Dirac delta function), while MuSiC has a
totally different approach which uses a matrix formalism
for the wakefield evolution fitting the generic machine
impedance with the sum of resonators. In all cases, they are
based on the same principles of the original work of
Siemann [43]. In Fig. 10 we show the values of bunch
length, the energy spread and the emittance averaged over
all the simulation turns, as a function of bunch intensity
obtained with the above codes for both the BBR and pure
inductive impedances (for this last case MuSiC is not
suited and only the other two codes were used). Error
bars for the curves have been obtained performing the
standard deviation of the same quantities, which are larger
for unstable beams. Observe that all the curves are

superimposed up to about Nb ¼ 1.2 × 1011 particles per
bunch, showing a very good agreement between the codes.
Above this intensity, for the case with the BBR impedance
model, an anomalous increase of all the quantities takes
place. This represents the threshold of the microwave
instability regime. On the other hand, as we have already
observed, there is no sign of instability for the pure
inductive impedance case up to an intensity larger than
Nb ¼ 2.0 × 1011.
These results allow to better interpret Fig. 6, where we do

not observe any mode coupling but only a frequency shift
of the coherent oscillation modes, and Fig. 8, where a
coupling of higher modes seems to occur around the
microwave instability threshold. A confirmation of this
behavior is given by GALACLIC, as can be seen in Figs. 11
and 12, where the results of the Vlasov solver and of the
SBSC simulation code are shown for both impedances. To
make the comparison easier and follow the frequency shifts
of the modes given by the two codes, we have shown here
again the left-hand side of Figs. 6 and 8.
We can see that the method described in Sec. IV

represents very well the frequency shift of the coherent
oscillation modes. In fact a very good agreement is
obtained for the pure inductive impedance case, shown
in Fig. 11, while a slight disagreement on the threshold can
be observed for the BBR case of Fig. 12. Indeed, for a
BBR, GALACLIC foresees an instability threshold a bit

FIG. 10. Bunch length (left), energy spread (right) and emittance (bottom), normalized to their zero-intensity values, as a function of
the bunch population for the BBR and pure inductive impedance obtained with different simulation codes.
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above Nb ¼ 1.3 × 1011 particles per bunch, a value slightly
higher than that obtained with the simulation code. We
suppose that this small discrepancy at higher intensities
depends on the PWD due to the real part of the impedance
which, in addition to an increase of the bunch length,
included in GALACLIC, also distorts a bit the bunch shape, as
shown in Fig. 13. From the figure we can see that at Nb ¼
1.5 × 1011 particles per bunch there is a small asymmetry of
the bunch shape with respect to the unperturbed distribution
in the BBR impedance case (right-hand side of the figure)
with respect to the pure inductive one. The comparison in
the right-hand side of Fig. 12 shows also that the instability
threshold, in this case, is determined by the coupling of
higher order modes (in particular 6 and 7).
For the transverse plane [44,45], we can do a similar

analysis, but we cannot use the same codes which have
been developed only for the longitudinal plane. As a
consequence we have used PyHEADTAIL. In this case it is

also possible to determine the instability growth rate by
evaluating the exponential increase of the center of mass
oscillations. An example is given in Fig. 14, where the
transverse center of mass of a bunch with 6.8 × 1011

particles per bunch is shown as a function of the number
of turns together with the exponential fit. Therefore, in the
transverse plane, we can evaluate both the coherent
frequencies of the oscillation modes and the corresponding
growth rates.
The results, compared with those of GALACTIC, are

shown in Figs. 15 and 16 where we can observe an
excellent agreement. In Fig. 15 we have the frequencies
of the coherent modes and, in Fig. 16, the growth rates of
the instability as a function of the bunch intensity. Of
course, with the simulation code, we can only determine the
growth rates of the most unstable mode, while GALACTIC

gives the growth rates of several unstable modes. This
explains the multiple curves (black dots) of Fig. 16.

FIG. 11. Comparisons of the real part of the normalized mode-frequency shift between SBSC code and GALACLIC (black dots in the
right-hand side) with the pure inductive impedance.

FIG. 12. Comparisons of the real part of the normalized mode-frequency shift between SBSC code and GALACLIC (black dots in the
right-hand side) with the BBR impedance.
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VI. SIMPLE FORMULAS AND POSSIBLE
MITIGATION METHODS

In the “long-bunch” regime (where 2frτb ≫ 1), simple
analytical formulas can be obtained in both longitudinal
and transverse planes, which correspond to the coasting-
beam formulas with peak values [29], with no dependence
anymore on the synchrotron tune.
In the longitudinal plane, the stability criterion corre-

sponds to the Keil-Schnell-Boussard criterion (i.e. the Keil-
Schnell criterion for coasting beams applied with peak
values for bunched beams as proposed by Boussard),
whose scaling is given by [29]

Nk
b;th ∝

jηjϵk Δp
p0

j ZkðpÞ
p j

; ð38Þ

FIG. 13. Bunch shape due to the potential well distortion at zero current and at Nb ¼ 1.5 × 1011 particles per bunch for the pure
inductive impedance (left) and BBR (right).

FIG. 14. Center of mass oscillations as a function of number of
turns for an intensity of 6.8 × 1011 particles per bunch with the
corresponding exponential fit (red curve).

FIG. 15. Comparison of the real part of the normalized mode-frequency shift between PyHEADTAIL and GALACTIC (black dots in the
right-hand side) with the transverse BBR impedance.
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where ϵk is the longitudinal emittance and Δp=p0 the
longitudinal momentum spread. Therefore, to increase the
longitudinal intensity threshold one needs to reduce the
impedance and/or increase the slippage factor (i.e. move
further away from transition) and/or increase the longi-
tudinal emittance and/or increase the momentum spread.
Note that, as it is the product between the longitudinal
emittance and the momentum spread which matters (and as
protons are considered in this paper), it is more effective
to increase the momentum spread than increasing the
bunch length. Indeed, increasing for instance the rf voltage,
and assuming that the longitudinal emittance is preserved,
the momentum spread increases and therefore the longi-
tudinal intensity threshold as well. It is worth mentioning
that, as this instability is taking place between high-order
modes, a bunch-by-bunch longitudinal damper is not
helpful.
In the transverse plane, a similar criterion can be

obtained, whose scaling is given by [46]

N⊥
b;th ∝

jηjϵkQx0fr
jZ⊥j

: ð39Þ

Therefore, to increase the transverse intensity threshold,
one needs to reduce the impedance (and/or increase the
resonance frequency) and/or increase the slip factor (i.e.
move further away from transition) and/or increase the
longitudinal emittance and/or increase the transverse tune.
The latter equation was successfully used in the past to
significantly increase the intensity threshold at the CERN
SPS (such that it is not a performance limitation anymore),
even if the role of space charge still needs to be fully
understood [47]. It is worth mentioning also that another
mitigation method consists in increasing the chromaticity
[46], as it was in fact initially done at the CERN SPS [47],

but it is usually better to try and reduce the chromaticity for
beam lifetime considerations. Finally, it is also worth
mentioning that a bunch-by-bunch transverse damper,
which is usually present in machines operating with many
bunches, can be ineffective, detrimental or beneficial for the
transverse mode coupling instability depending on the
parameters [33,48] (in the long-bunch regime, it is inef-
fective as the main instability takes place between high-
order modes) and that the detuning impedance, present in
axially asymmetric chambers, can also modify the intensity
threshold (in the long-bunch case discussed in [49], the
intensity thresholds in both transverse planes could be
mainly explained by the change of the driving impedances,
with a slight detrimental effect from the detuning imped-
ance). As in the case of axially asymmetric structures, the
intensity thresholds are different in the horizontal and
vertical planes, linear coupling between the two transverse
planes can be used to significantly raise the lowest intensity
threshold [50].

VII. CONCLUSIONS

In this paper we have presented two Vlasov solvers,
GALACLIC and GALACTIC, to study the single-bunch longi-
tudinal and transverse mode coupling instability for a
proton machine. We have also discussed a novel method
to obtain the frequencies of the coherent oscillation modes
of a bunch from the results of simulation codes. For the
longitudinal plane, a good agreement has been reached
between GALACLIC and SBSC for the two cases of pure
inductive and BBR impedances above transition, taking
into account, in the Vlasov solver, the simplest model of
potential well distortion (where, for the BBR case, the shift
of the synchronous phase is neglected). With a small real
part of the impedance different from zero, the longitudinal
microwave instability observed in Fig. 10 as an anomalous
increase of bunch length, energy spread and emittance, has
been explained as a longitudinal mode coupling instability
(see Fig. 12 right-hand side). The intensity threshold is very
close to the Keil-Schnell-Boussard criterion of Eq. (38).
This equation can be also useful to determine the important
parameters which can be used to increase the longitudinal
intensity threshold.
An excellent agreement has also been obtained between

GALACTIC and PyHEADTAIL for the case of a BBR imped-
ance model for both the frequency shifts of the coherent
modes of oscillation and the growth rates of the instability.
In this case, the scaling of the intensity threshold, shown in
Eq. (39), reveals how to increase the transverse intensity
threshold.
Finally, the method described to obtain the frequencies

of the coherent modes of oscillation from the results
of longitudinal and transverse simulation codes can
also be applied to data measurements if the bunch dis-
tribution in the physical space can be reconstructed turn
by turn.

FIG. 16. Growth rates of the transverse mode coupling insta-
bility as a function of the bunch intensity given by PyHEADTAIL
and GALACTIC (black dots). Observe that GALACTIC gives the
growth rates of several unstable modes.
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