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A junction condition by specified homogenization
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Abstract

Given a coercive Hamiltonian which is quasi-convex with respect to the gradi-
ent variable and periodic with respect to time and space at least “far away from
the origin”, we consider the solution of the Cauchy problem of the corresponding
Hamilton-Jacobi equation posed on the real line. Compact perturbations of coercive
periodic quasi-convex Hamiltonians enter into this framework for example. We prove
that the rescaled solution converges towards the solution of the expected effective
Hamilton-Jacobi equation, but whose “flux” at the origin is “limited” in a sense
made precise by the authors in [18]. In other words, the homogenization of such a
Hamilton-Jacobi equation yields to supplement the expected homogenized Hamilton-
Jacobi equation with a junction condition at the single discontinuous point of the
effective Hamiltonian. We also illustrate possible applications of such a result by
deriving, for a traffic flow problem, the effective flux limiter generated by the pres-
ence of a finite number of traffic lights on an ideal road. We also provide meaningful
qualitative properties of the effective limiter.
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1 Introduction

1.1 Setting of the general problem

This article is concerned with the study of the limit of the solution uε(t, x) of the following
equation

uεt +H

(
t

ε
,
x

ε
, uεx

)
= 0 for (t, x) ∈ (0, T )× R (1)

submitted to the initial condition

uε(0, x) = u0(x) for x ∈ R (2)

for a Hamiltonian H satisfying the following assumptions:

(A0) (Continuity) H : R3 → R is continuous.

(A1) (Time periodicity) For all k ∈ Z and (t, x, p) ∈ R
3,

H(t+ k, x, p) = H(t, x, p).

(A2) (Uniform modulus of continuity in time) There exists a modulus of continuity ω such
that for all t, s, x, p ∈ R,

H(t, x, p)−H(s, x, p) ≤ ω(|t− s| (1 + max (H(s, x, p), 0))).

(A3) (Uniform coercivity)
lim

|q|→+∞
H(t, x, q) = +∞

uniformly with respect to (t, x).

(A4) (Quasi-convexity of H for large x’s) There exists some ρ0 > 0 such that for all
x ∈ R \ (−ρ0, ρ0), there exists a continuous map t 7→ p0(t, x) such that

{
H(t, x, ·) is non-increasing in (−∞, p0(t, x)),
H(t, x, ·) is non-decreasing in (p0(t, x),+∞).

(A5) (Left and right Hamiltonians) There exist two Hamiltonians Hα(t, x, p), α = L,R,
such that {

H(t, x+ k, p)−HL(t, x, p) → 0 as Z ∋ k → −∞
H(t, x+ k, p)−HR(t, x, p) → 0 as Z ∋ k → +∞

uniformly with respect to (t, x, p) ∈ [0, 1]2×R, and for all k, j ∈ Z, (t, x, p) ∈ R
3 and

α ∈ {L,R},
Hα(t+ k, x+ j, p) = Hα(t, x, p).

2



We have to impose some condition in order to ensure that effective Hamiltonians H̄α

are quasi-convex; indeed, we will see that the effective equation should be solved with
flux-limited solutions recently introduced by the the second and third authors [18]; such a
theory relies on the quasi-convexity of the Hamiltonians.

(B-i) (Quasi-convexity of the left and right Hamiltonians) For each α = L,R, Hα does not
depend on time and there exists p0α (independent on (t, x)) such that

{
Hα(x, ·) is non-increasing on (−∞, p0α),
Hα(x, ·) is non-decreasing on (p0α,+∞).

(B-ii) (Convexity of the left and right Hamiltonians) For each α = L,R, and for all (t, x) ∈
R× R, the map p 7→ Hα(t, x, p) is convex.

Example 1.1. A simple example of such a Hamiltonian is

H(t, x, p) = |p| − f(t, x)

with a continuous function f satisfying f(t+ 1, x) = f(t, x) and f(t, x) → 0 as |x| → +∞
uniformly with respect to t ∈ R.

1.2 Main results

Our main result is concerned with the limit of the solution uε of (1)-(2). It makes part of
the huge literature dealing with homogenization of Hamilton-Jacobi equation, starting with
the pioneering work of Lions, Papanicolaou and Varadhan [24]. In particular, we need to
use the perturbed test function introduced by Evans [9]. As pointed out to us by the referee,
there are few papers dealing with Hamiltonians that depend on time; it implies in particular
that so-called correctors also depend on time. The reader is in particular referred to [4, 6]
for the large time behaviour and to [10, 13, 11] for homogenization results. This limit
satisfies an effective Hamilton-Jacobi equation posed on the real line whose Hamiltonian is
discontinuous. More precisely, the effective Hamiltonian equals the one which is expected
(see (A5)) in (−∞; 0) and (0; +∞); in particular, it is discontinuous in the space variable
(piecewise constant in fact). In order to get a unique solution, a flux limiter should be
identified [18].

Homogenized Hamiltonians and effective flux limiter

The homogenized left and right Hamiltonians are classically determined by the study of
some “cell problems”.

Proposition 1.2 (Homogenized left and right Hamiltonians). Assume (A0)-(A5), and
either (B-i) or (B-ii). Then for every p ∈ R, and α = L,R, there exists a unique λ ∈ R

such that there exists a bounded solution vα of
{
vαt +Hα(t, x, p + vαx ) = λ in R× R,
vα is Z2-periodic.

(3)
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If H̄α(p) denotes such a λ, then the map p 7→ H̄α(p) is continuous, coercive and quasi-
convex.

Remark 1.3. We recall that a function H̄α is quasi-convex if the sets {H̄α ≤ λ} are convex
for all λ ∈ R. If H̄α is also coercive, then p̄0α denotes in proofs some p ∈ argmin H̄α.

The effective flux limiter Ā is the smallest λ ∈ R for which there exists a solution w of
the following global-in-time Hamilton-Jacobi equation

{
wt +H(t, x, wx) = λ, (t, x) ∈ R× R,
w is 1-periodic w.r.t. t.

(4)

Theorem 1.4 (Effective flux limiter). Assume (A0)-(A5) and either (B-i) or (B-ii).
The set

E = {λ ∈ R : ∃w sub-solution of (4)}
is not empty and bounded from below. Moreover, if Ā denotes the infimum of E, then

Ā ≥ A0 := max
α=L,R

(
min H̄α

)
. (5)

Remark 1.5. We will see below (Theorem 4.6) that the infimum is in fact a minimum:
there exists a global corrector which, in particular, can be rescaled properly.

We can now define the effective junction condition.

Definition 1.6 (Effective junction condition). The effective junction function FĀ is defined
by

FĀ(pL, pR) := max(Ā, H̄+
L (pL), H̄

−
R (pR))

where

H̄−
α (p) =

{
H̄α(p) if p < p̄0α,
H̄α(p̄

0
α) if p ≥ p̄0α

and H̄+
α (p) =

{
H̄α(p̄

0
α) if p ≤ p̄0α,

H̄α(p) if p > p̄0α

where p̄0α ∈ argmin H̄α.

The convergence result

Our main result is the following theorem.

Theorem 1.7 (Junction condition by homogenization). Assume (A0)-(A5) and either
(B-i) or (B-ii). Assume that the initial datum u0 is Lipschitz continuous and for ε > 0, let
uε be the solution of (1)-(2). Then uε converges locally uniformly to the unique flux-limited
solution u0 of 




u0t + H̄L(u
0
x) = 0, t > 0, x < 0,

u0t + H̄R(u
0
x) = 0, t > 0, x > 0,

u0t + FĀ(u
0
x(t, 0

−), u0x(t, 0
+)) = 0, t > 0, x = 0

(6)

submitted to the initial condition (2).
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Remark 1.8. We recall that the notion of flux-limited solution for (6) is introduced in [18].

This theorem asserts in particular that the slopes of the limit solution at the origin are
characterized by the effective flux limiter Ā. Its proof relies on the construction of a global
“corrector”, i.e. a solution of (4), which is close to an appropriate V -shaped function after
rescaling. This latter condition is necessary so that the slopes at infinity of the corrector
fit the expected slopes of the solution of the limit problem at the origin. Here is a precise
statement.

Theorem 1.9 (Existence of a global corrector for the junction). Assume (A0)-(A5) and
either (B-i) or (B-ii). There exists a solution w of (4) with λ = Ā such that, the function

wε(t, x) = εw(ε−1t, ε−1x)

converges locally uniformly (along a subsequence εn → 0) towards a function W = W (x)
which satisfies W (0) = 0 and

p̂Rx1{x>0} + p̂Lx1{x<0} ≥W (x) ≥ p̄Rx1{x>0} + p̄Lx1{x<0} (7)

where
{
p̄R = minER

p̂R = maxER

with ER :=
{
p ∈ R, H̄+

R (p) = H̄R(p) = Ā
}

(8)

{
p̄L = maxEL

p̂L = minEL

with EL :=
{
p ∈ R, H̄−

L (p) = H̄L(p) = Ā
}
. (9)

The construction of this global corrector is the reason why homogenization is referred
to as being “specified”. See also Section 1.4 about related results. As a matter of fact, we
will prove a stronger result, see Theorem 4.6.

Extension: application to traffic lights

The techniques developed to prove the Theorem 1.7 allow us to deal with a different
situation inspired from traffic flow problems. As explained in [19], such problems are
related to the study of some Hamilton-Jacobi equations. The problem that we address in
Theorem 1.12 below is motivated by its meaningful application to traffic lights. We aim
at figuring out how the fraffic flow on an ideal (infinite, straight) road is modified by the
presence of a finite number of traffic lights.

We can consider a Hamilton-Jacobi equation whose Hamiltonian does not depend on
(t, x) for x outside a (small) interval of the form Nε = (b1ε, bNε) and is piecewise constant
with respect to x in (b1ε, bNε). At space discontinuities, junction conditions are imposed
with ε-time periodic flux limiters. The limit solution satifies the equation after the “neigh-
bourhood” Nε disappeared. We will see that the equation keeps memory of what happened
there through a flux limiter at the origin x = 0.
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Let us be more precise now. For N ≥ 1, (a finite number of) junction points −∞ =
b0 < b1 < b2 < · · · < bN < bN+1 = +∞ and (a finite number of) times 0 = τ0 < τ1 < · · · <
τK < 1 = τK+1, K ∈ N are given. For N ≥ 1 and α ∈ {0, . . . , N}, ℓα denotes bα+1 − bα.
Note that ℓα = +∞ for α = 0, N .

We then consider the solution uε of (1) where the Hamiltonian H satifies the following
conditions.

(C1) The Hamiltonian is given by

H(t, x, p) =

{
H̄α(p) if bα < x < bα+1

max(H̄+
α−1(p

−), H̄−
α (p

+), aα(t)) if x = bα, α 6= 0.

(C2) The Hamiltonians H̄α, for α = 0, . . . , N , are continuous, coercive and quasi-convex.

(C3) The flux limiters aα, for α = 1, . . . , N and i = 0, . . . , K, satisfy

aα(s+ 1) = aα(s) with aα(s) = Ai
α for all s ∈ [τi, τi+1)

with (Ai
α)

i=0,...,K
α=1,...,N satisfying Ai

α ≥ maxβ=α−1,α

(
min H̄β

)
.

Remark 1.10. The Hamiltonians outside Nε are denoted by H̄α instead of Hα in order to
emphasize that they do not depend on time and space.

Remark 1.11. In view of the litterature in traffic modeling, the Hamiltonians could be
assumed to be convex. But we prefer to stick to the quasi-convex framework since it seems
to us that it is the natural one (in view of [18]).

The equation is supplemented with the following initial condition

uε(0, x) = Uε
0 (x) for x ∈ R (10)

with
Uε
0 is equi-Lipschitz continuous and Uε

0 → u0 locally uniformly. (11)

Then the following convergence result holds true.

Theorem 1.12 (Time homogenization of traffic lights). Assume (C1)-(C3) and (11).
Let uε be the solution of (1)-(10) for all ε > 0. Then:

i) (Homogenization) There exists some Ā ∈ R such that uε converges locally uniformly
as ε tends to zero towards the unique viscosity solution u0 of (6)-(2) with

H̄L := H̄0, H̄R := H̄N .

ii) (Qualitative properties of Ā) For α = 1, . . . , N , 〈aα〉 denotes
∫ 1

0
aα(s) ds. The effective

limiter Ā satisfies the following properties.
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• For all α, Ā is non-increasing w.r.t. ℓα.

• For N = 1,
Ā = 〈a1〉. (12)

• For N ≥ 1,
Ā ≥ max

α=1,...,N
〈aα〉. (13)

• For N ≥ 2, there exists a critical distance d0 ≥ 0 such that

Ā = max
α=1,...,N

〈aα〉 if min
α
ℓα ≥ d0; (14)

this distance d0 only depends on max
α=1,...,N

‖aα‖∞, max
α=1,...,N

〈aα〉 and the H̄α’s.

• We have
Ā→ 〈ā〉 as (ℓ1, . . . , ℓN−1) → (0, . . . , 0) (15)

where ā(τ) = maxα=1,...,N aα(τ).

Remark 1.13. Since the function a(t) is piecewise constant, the way uε satisfies (1) has
to be made precise. An L1 theory in time (following for instance the approach of [7,
8]) could probably be developed for such a problem, but we will use here a different,
elementary approach. The Cauchy problem is understood as the solution of successive
Cauchy problems. This is the reason why we will first prove a global Lipschitz bound on
the solution so that there indeed exists such a solution.

Remark 1.14. Note that the result of Theorem 1.4 still holds for equation (1) under Assump-
tions (C1)-(C3), with the set E defined for sub-solutions which are moreover assumed
to be globally Lipschitz (without fixed bound on the Lipschitz constant). The reader can
check that the proof is unchanged.

Remark 1.15. It is somewhat easy to get (12) when the Hamiltonians H̄α are convex by
using the optimal control interpretation of the problem. In the more general case of quasi-
convex Hamiltonians, the result still holds true but the proof is more involved.

Remark 1.16. We may have Ā > maxα=1,...,N〈aα〉. It is possible to deduce it from (15) in
the case N = 2 by using the traffic light interpretation of the problem. If we have two
traffic lights very close to each other (let us say that the distance in between is at most
the place for only one car), and if the common period of the traffic lights are exactly in
opposite phases (with for instance one minute for the green phase, and one minute for the
red phase), then the effect of the two traffic lights together, gives a very low flux which is
much lower than the effect of a single traffic light alone (i.e. here at most one car every
two minutes will go through the two traffic lights).
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1.3 Traffic flow interpretation of Theorem 1.12

We mentioned above that there are some connections between our problem and traffic
flows.

Inequality (13) has a natural traffic interpretation, saying that the average limitation
on the traffic flow created by several traffic lights on a single road is higher or equal to
the one created by the traffic light which creates the highest limitation. Moreover this
average limitation is smaller if the distances between traffic lights are bigger, as says the
monotonicity of Ā with respect to the distances ℓα.

Property (14) says that the minimal limitation is reached if the distances between the
traffic lights are bigger than a critical distance d0. The proof of this result is quite involved
and is reflected in the fact that the bounds that we have on d0 are not continuous on the
data ( max

α=1,...,N
‖aα‖∞, max

α=1,...,N
〈aα〉 and the H̄α’s).

Finally property (15) is very natural from the point of view of traffic, since it corresponds
to the case where all the traffic lights would be at the same position.

1.4 Related results

Achdou and Tchou [1] studied a singular perturbation problem which has the same flavor
as the one we are looking at in the present paper. More precisely, they consider the simplest
network (a so-called junction) embedded in a star-shaped domain. They prove that the
value function of an infinite horizon control problem converges, as the star-shaped domain
“shrinks” to the junction, to the value function of a control problem posed on the junction.
We borrow from them the idea of studying the cell problem on truncated domains with
state constraints. We provide a different approach, which is also in some sense more general
because it can be applied to problems outside the framework of optimal control theory.
Our approach relies in an essential way on the general theory developed in [18].

The general theme of Lions’s 2013-2014 lectures at Collège de France [23] is “Elliptic or
parabolic equations and specified homogenization”. As far as first order Hamilton-Jacobi
equations are concerned, the term “specified homogenization” refers to the problem of
constructing correctors to cell problems associated with Hamiltonians that are typically
the sum of a periodic one H and a compactly supported function f depending only on
x, say. Lions exhibits sufficient conditions on f such that the effective Hamilton-Jacobi
equation is not perturbed. In terms of flux limiters [18], it corresponds to look for sufficient
conditions such that the effective flux limiter Ā given by Theorem 1.4 is (less than or) equal
to A0 = minH .

Barles, Briani and Chasseigne [5, Theorem 6.1] considered the case

H(x, p) = ϕ
(x
ε

)
HR(p) +

(
1− ϕ

(x
ε

))
HL(p)

for some continuous increasing function ϕ : R → R such that

lim
s→−∞

ϕ(s) = 0 and lim
s→+∞

ϕ(s) = 1.

8



They prove that uε converges towards a value function denoted by U−, that they charac-
terize as the solution to a particular optimal control problem. It is proved in [18] that U−

is the solution of (6) with H̄α = Hα and Ā replaced with A+
I = max(A0, A

∗) with

A0 = max(minHR,minHL) and A∗ = max
q∈[min(p0

R
,p0

L
),max(p0

R
,p0

L
)]
(min(HR(q), HL(q))).

In [14], Giga and Hamamuki develop a theory which allows in particular to prove
existence and uniqueness for the following Hamilton-Jacobi equation (changing u in −u)
in R

d, {
∂tu+ |∇u| = 0 for x 6= 0

∂tu+ |∇u|+ c = 0 at x = 0.

The solutions of [14] are constructed as limits of the following equation

∂tu
ε + |∇uε|+ c(1− |x|/ε)+ = 0.

In the monodimensional case (d = 1), Theorem 1.7 implies that uε converges towards
{
∂tu+ |∇u| = 0 for x 6= 0

∂tu+max(A, |∇u|) = 0 at x = 0

for some A ∈ R. In view of Theorem 1.4, it is not difficult to prove that A = max(0, c).
The Hamiltonian max(c, |∇u|) is identified in [14] and is referred to as the relaxed one.

It is known that homogenization of Hamilton-Jacobi equations is closely related to
the study of the large time behaviour of solutions. In [15], the large time behaviour of
Hamilton-Jacobi equations with discontinuous source terms is discussed in two cases: for
compactly supported ones and periodic ones. Remark that in our setting, we can adress
both and even the sum of a periodic source term and of a compactly supported one. It
would be interesting to adress such a problem in the case of traffic lights. In [20], the
authors study the large time behaviour of the solutions of a Hamilton-Jacobi equations
with an x-periodic Hamiltonian and what can be interpreted as a flux-limiter depending
periodically in time.

1.5 Further extensions

It is also possible to adress the time homogenization problem of Theorem 1.12 with any
finite number of junctions (with limiter functions aα(t) piecewise constants – or continuous
– and 1-periodic), either separated with distance of order O(1) or with distance of order
O(ε), or mixing both, and even on a complicated network. See also [20] for other connex-
ions between Hamilton-Jacobi equations and traffic light problems and [2] for green waves
modelling.

Note that the method presented in this paper can be readily applied (without modifying
proofs) to the study of homogeneization on a finite number of branches and not only two
branches; the theory developed in [18] should also be used for the limit problem.

Similar questions in higher dimensions with point defects of other co-dimensions will
be addressed in future works.
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1.6 Organization of the article

Section 2 is devoted to the proof of the convergence result (Theorem 1.7). Section 3 is
devoted to the construction of correctors far from the junction point (Proposition 1.2)
while the junction case, i.e. the proof of Theorem 4.6, is addressed in Section 4. We
recall that Theorem 1.9 is a straightforward corollary of this stronger result. The proof
of Theorem 4.6 makes use of a comparison principle which is expected but not completely
standard. This is the reason why a proof is sketched in Appendix, together with two other
ones that are rather standard but included for the reader’s convenience.

Notation. A ball centered at x of radius r is denoted by Br(x). If {uε}ε is locally
bounded, the upper and lower relaxed limits are defined as




lim sup

ε

∗uε(X) = lim sup
Y→X,ε→0

uε(Y ),

lim inf
ε

∗u
ε(X) = lim inf

Y→X,ε→0
uε(Y ).

In our proofs, constants may change from line to line.

2 Proof of convergence

This section is devoted to the proof of Theorem 1.7. We first construct barriers.

Lemma 2.1 (Barriers). There exists a nonnegative constant C such that for any ε > 0

|uε(t, x)− u0(x)| ≤ Ct for (t, x) ∈ (0, T )× R . (16)

Proof. Let L0 be the Lipschitz constant of the initial datum u0. Taking

C = sup
(t,x)∈R×R

|p|≤L0

|H(t, x, p)| < +∞

owing to (A0) and (A5), the functions u±(t, x) = u0(x) ± Ct are a super- and a sub-
solution of (1)-(2) respectively and (16) follows via comparison principle.

We can now prove the convergence theorem.

Proof of Theorem 1.7. We classically consider the upper and lower relaxed semi-limits



u = lim sup

ε

∗uε,

u = lim inf
ε

∗u
ε .

Notice that these functions are well defined because of Lemma 2.1. In order to prove
convergence of uε towards u0, it is sufficient to prove that u and u are a sub- and a super-
solution of (6)-(2) respectively. The initial condition immediately follows from (16). We

10



focus our attention on the sub-solution case since the super-solution one can be handled
similarly.

We first check that

u(t, 0) = lim sup
(s,y)→(t,0),y>0

u(s, y) = lim sup
(s,y)→(t,0),y<0

u(s, y). (17)

This is a consequence of the stability of such a “weak continuity” condition, see [18].
Indeed, it is shown in [18] that classical viscosity solution can be viewed as flux-limited
one; in particular, uε solves

uεt +H−

(
t

ε
,
0

ε
, uεx(t, 0

+)

)
∨H+

(
t

ε
,
0

ε
, uεx(t, 0

−))

)
= 0 for t > 0.

Since these ε-Hamiltonians are uniformly coercive and uε is continuous, we conclude that
(17) holds true.

Let ϕ be a test function such that

(u− ϕ)(t, x) < (u− ϕ)(t, x) = 0 ∀(t, x) ∈ Br(t, x) \
{
(t, x)

}
. (18)

We argue by contradiction by assuming that

ϕt(t, x) + H̄
(
x̄, ϕx(t, x)

)
= θ > 0, (19)

where

H̄
(
x̄, ϕx(t, x)

)
:=





H̄R(ϕx(t, x)) if x > 0,
H̄L(ϕx(t, x)) if x < 0,
FĀ(ϕx(t, 0

−), ϕx(t, 0
+)) if x = 0.

We only treat the case where x = 0 since the case x 6= 0 is somewhat classical. This latter
case is detailed in Appendix for the reader’s convenience. Using [18, Proposition 2.8], we
may suppose that

ϕ(t, x) = φ(t) + p̄Lx1{x<0} + p̄Rx1{x>0} (20)

where φ is a C1 function defined in (0,+∞). In this case, Eq. (19) becomes

φ′(t̄) + FĀ (p̄L, p̄R) = φ′(t̄) + Ā = θ > 0. (21)

Let us consider a solution w of the equation

wt +H(t, x, wx) = Ā (22)

provided by Theorem 1.9, which is in particular 1-periodic with respect to time. We recall
that the function W is the limit of wε = εw(·/ε) as ε → 0. We claim that, if ε > 0
is small enough, the perturbed test function ϕε(t, x) = φ(t) + wε(t, x) [9] is a viscosity
super-solution of

ϕε
t +H

(
t

ε
,
x

ε
, ϕε

x

)
=
θ

2
in Br(t, 0)

11



for some sufficiently small r > 0. In order to justify this fact, let ψ(t, x) be a test function
touching ϕε from below at (t1, x1) ∈ Br(t, 0). In this way

w

(
t1
ε
,
x1
ε

)
=

1

ε
(ψ(t1, x1)− φ(t1))

and

w (s, y) ≥ 1

ε
(ψ(εs, εy)− φ(εs))

for (s, y) in a neighborhood of
(
t1
ε
, x1

ε

)
. Hence from (21)-(22)

ψt(t1, x1) +H

(
t1
ε
,
x1
ε
, ψx(t1, x1)

)
≥ Ā+ φ′(t1)

≥ Ā+ φ′(t)− θ

2
≥ θ

2

provided r is small enough. Hence, the claim is proved.
Combining (7) from Theorem 1.9 with (18) and (20), we can fix κr > 0 and ε > 0 small

enough so that
uε + κr ≤ ϕε on ∂Br(t, 0).

By comparison principle the previous inequality holds in Br(t, 0). Passing to the limit as
ε→ 0 and (t, x) → (t̄, x̄), we get the following contradiction

u(t, 0) + κr ≤ ϕ(t, 0) = u(t, 0).

The proof of convergence is now complete.

Remark 2.2. For the super-solution property, ϕ in (20) should be replaced with

ϕ(t, x) = φ(t) + p̂Lx1{x<0} + p̂Rx1{x>0}.

3 Homogenized Hamiltonians

In order to prove Proposition 1.2, we first prove the following lemma. Even if the proof is
standard, we give it in full details since we will adapt it when constructing global correctors
for the junction.

Lemma 3.1 (Existence of a corrector). There exists λ ∈ R and a bounded (discontinuous)
viscosity solution of (3).

Remark 3.2. If Hα does not depend on t, then it is possible to construct a corrector which
does not depend on time either. We leave details to the reader.
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Proof. For any δ > 0, it is possible to construct a (possibly discontinuous) viscosity solution
vδ of {

δvδ + vδt +Hα(t, x, p+ vδx) = 0 in R× R,

vδ is Z2-periodic.

First, the comparison principle implies

|δvδ| ≤ Cα (23)

where
Cα = sup

(t,x)∈[0,1]2
|Hα(t, x, p)|.

Second, the function
mδ(x) = sup

t∈R
(vδ)∗(t, x)

is a sub-solution of
Hα(t(x), x, p+mδ

x) ≤ Cα

(for some function t(x)). Assumptions (A3) and (A5) imply in particular that there exists
C > 0 independent of δ such that

|mδ
x| ≤ C

and
vδt ≤ C.

In particular, the comparison principle implies that for all t ∈ R and x ∈ R and h ≥ 0,

vδ(t+ h, x) ≤ vδ(t, x) + Ch.

Combining this inequality with the time-periodicity of vδ yields

|vδ(t, x)−mδ(x)| ≤ C;

in particular,
|vδ(t, x)− vδ(0, 0)| ≤ C. (24)

Hence, the half relaxed limits

v̄ = lim sup
δ→0

∗(vδ − vδ(0, 0)) and v = lim inf
δ→0

∗(v
δ − vδ(0, 0))

are finite. Moreover, (23) implies that δvδ(0, 0) → −λ (at least along a subsequence).
Hence, discontinuous stability of viscosity solutions implies that v̄ is a Z

2-periodic sub-
solution of (3) and v is a Z

2-periodic super-solution of the same equation. Perron’s method
then allows us to construct a corrector between v̄ and v + C with C = sup(v̄ − v). The
proof of the lemma is now complete.

The following lemma is completely standard; the proof is given in Appendix for the
reader’s convenience.
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Lemma 3.3 (Uniqueness of λ). The real number λ given by Lemma 3.1 is unique. If H̄α(p)
denotes such a real number, the function H̄α is continuous.

Lemma 3.4 (Coercivity of H̄α). The continuous function H̄α is coercive,

lim
|p|→+∞

H̄α(p) = +∞.

Proof. In view of the uniform coercivity in p of Hα with respect to (t, x) (see (A3)), for
any R > 0 there exists a positive constant CR such that

|p| ≥ CR ⇒ ∀(t, x) ∈ R× R, Hα(t, x, p) ≥ R. (25)

Let vα be the discontinuous corrector given by Lemma 3.1 and (t̄, x̄) be point of supremum
of its upper semi-continuous envelope (vα)∗. Then we have

Hα(t̄, x̄, p) ≤ H̄α(p)

which implies
H̄α(p) ≥ R for |p| ≥ CR. (26)

The proof of the lemma is now complete.

We first prove the quasi-convexity of H̄α under assumption (B-ii). We prove in fact
more: the effective Hamiltonian is convex in this case.

Lemma 3.5 (Convexity of H̄α under (B-ii)). Assume (A0)-(A5) and (B-ii). Then the
function H̄α is convex.

Proof. For p, q ∈ R, let vp, vq be solutions of (3) with λ = H̄α(p) and H̄α(q) respectively.
We also set

up(t, x) = vp(t, x) + px− tH̄α(p)

and define similarly uq.

Step 1: up and uq are locally Lipschitz continuous. In this case, we have almost
everywhere: {

(up)t +Hα(t, x, (up)x) = 0,
(uq)t +Hα(t, x, (uq)x) = 0.

For µ ∈ [0, 1], let
ū = µup + (1− µ)uq.

By convexity, we get almost everywhere

ūt +Hα(t, x, ūx) ≤ 0. (27)

14



We claim that the convexity of Hα (in the gradient variable) implies that ū is a viscosity
sub-solution. To see it, we use an argument of [3, Proposition 5.1]. For P = (t, x), we
define a mollifier ρδ(P ) = δ−2ρ(δ−1P ) and set

ūδ = ū ⋆ ρδ

Then by convexity, we get with Q = (s, y):

(ūδ)t +Hα(P, (ūδ)x) ≤
∫
dQ {Hα(P, ūx(Q))−Hα(Q, ūx(Q)} ρδ(P −Q).

The fact that ūx is locally bounded and the fact that Hα is continuous imply that the
right hand side goes to zero as δ → 0. We deduce (by stability of viscosity sub-solutions)
that (27) holds true in the viscosity sense. Then the comparison principle implies that

µH̄α(p) + (1− µ)H̄α(q) ≥ H̄α(µp+ (1− µ)q). (28)

Step 2: up and uq are continuous. We proceed in two (sub)steps.
Step 2.1: the case of a single function u. We first want to show that if u = up
is continuous and satisfies (27) almost everywhere, then u is a viscosity sub-solution. To
this end, we will use the structural assumptions satisfied by the Hamiltonian. The ones
that were useful to prove the comparison principle will be also useful to prove the result
we want. Indeed, we will revisit the proof of the comparison principle. We also use the
fact that

u(t, x)− px+ tH̄α(p) is bounded. (29)

For ν > 0, we set

uν(t, x) = sup
s∈R

(
u(s, x)− (t− s)2

2ν

)
= u(sν, x)−

(t− sν)
2

2ν
.

As usual, we get from (29) that

|t− sν | ≤ C
√
ν with C = C(p, T ) (30)

for t ∈ (−T, T ). In particular sν → t locally uniformly. If a test function ϕ touches uν

from above at some point (t, x), then we have ϕt(t, x) = −t− sν
ν

and

ϕt(t, x) +Hα(t, x, ϕx(t, x)) ≤ Hα(t, x, ϕx(t, x))−Hα(sν , x, ϕx(t, x))

≤ ω(|t− sν | (1 + max(0, Hα(sν , x, ϕx(t, x)))))

≤ ω

(
(t− sν)

2

ν
+ |t− sν |

)
(31)

where we have used (A2) in the third line. The right hand side goes to zero as ν goes to
zero since

(t− sν)
2

ν
→ 0 locally uniformly w.r.t. (t, x)
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(recall u is continuous). Indeed, this can be checked for (t, x) replaced by (tν , xν) because
for any sequence (tν , sν , xν) → (t, t, x), we have

u(tν , xν) ≤ uν(tν , xν) = u(sν, xν)−
(tν − sν)

2

2ν

where the continuity of u implies the result. For a given ν > 0, we see that (30) and (31)
imply that

|ϕt| , |ϕx| ≤ Cν,p.

This implies in particular that uν is Lipschitz continuous, and then

uνt +H(t, x, uνx) ≤ oν(1) a.e.

where oν(1) is locally uniform with respect to (t, x).

Step 2.2: application. Applying Step 2.1, we get for z = p, q

(uνz)t +H(t, x, (uνz)x) ≤ oν(1) a.e.

where oν(1) is locally uniform with respect to (t, x). Step 1 implies that

ūν := µuνp + (1− µ)uνq

is a viscosity sub-solution of

(ūν)t +Hα(t, x, (ū
ν)x) ≤ oν(1)

where oν(1) is locally uniform with respect to (t, x). In the limit ν → 0, we recover (by
stability of sub-solutions) that ū is a viscosity sub-solution, i.e. satisfies (27) in the viscosity
sense. This gives then the same conclusion as in Step 1.

Step 3: the general case. To cover the general case, we simply replace up by ũp which
is the solution to the Cauchy problem

{
(ũp)t +Hα(t, x, (ũp)x) = 0, for (t, x) ∈ (0,+∞)× R

ũp(0, x) = px,

Then ũp is continuous and satisfies |ũp − up| ≤ C. Proceeding similarly with ũq and using
Step 2, we deduce the desired inequality (28). The proof is now complete.

We finally prove the quasi-convexity of H̄α under assumption (B-i).

Lemma 3.6 (Quasi-convexity of H̄α under (B-i)). Assume (A0)-(A5) and (B-i). Then
the function H̄α is quasi-convex.
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Proof. We reduce quasi-convexity to convexity by composing with an increasing function
γ; notice that such a reduction was already used in optimization and in partial differential
equations, see for instance [22, 21].

We first assume that Hα satisfies



Hα ∈ C2,
D2

ppHα(x, p
0
α) > 0,

DpHα(x, p) < 0 for p ∈ (−∞, p0α),
DpHα(x, p) > 0 for p ∈ (p0α,+∞),
Hα(x, p) → +∞ as |p| → +∞ uniformly w.r.t. x ∈ R.

(32)

For a function γ such that

γ is convex, γ ∈ C2(R) and γ′ ≥ δ0 > 0

we have
D2

pp(γ ◦Hα) > 0

if and only if

(ln γ′)′(λ) > −
D2

ppHα(x, p)

(DpHα(x, p))2
for p = π±

α (x, λ) and λ ≥ Hα(x, p) (33)

where π±
α (x, λ) is the only real number r such that ±r ≥ 0 and Hα(x, r) = λ. Because

D2
ppHα(x, p

0
α) > 0, we see that the right hand side is negative for λ close enough toHα(x, p

0
α)

and it is indeed possible to construct such a function γ.
In view of Remark 3.2, we can construct a solution of δvδ + γ ◦Hα(x, p+ vδx) = 0 with

−δvδ → γ ◦Hα(p) as δ → 0, and a solution of

γ ◦Hα(x, p+ vx) = γ ◦Hα(p)

This shows that
H̄α = γ−1 ◦ γ ◦Hα.

Thanks to Lemmas 3.4 and 3.5, we know that γ ◦Hα is coercive and convex. Hence H̄α is
quasi-convex.

If now Hα does not satisfies (32), then for all ε > 0, there exists Hε
α ∈ C2 such that





(D2
ppH

ε
α)(x, p

0
α) > 0

DpH
ε
α(x, p) < 0 for p ∈ (−∞, p0α),

DpH
ε
α(x, p) > 0 for p ∈ (p0α,+∞),

|Hε
α −Hα| < ε.

Then we can argue as in the proof of continuity of H̄α and deduce that

H̄α(p) = lim
ε→0

H̄ε
α(p).

Moreover, the previous case implies that H̄ε
α is quasi-convex. Hence, so is H̄α. The proof

of the lemma is now complete.

Proof of Proposition 1.2. Combine Lemmas 3.1, 3.3, 3.4, 3.5 and 3.6.
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4 Truncated cell problems

We consider the following problem: find λρ ∈ R and w such that





wt +H(t, x, wx) = λρ, (t, x) ∈ R× (−ρ, ρ),
wt +H−(t, x, wx) = λρ, (t, x) ∈ R× {−ρ} ,
wt +H+(t, x, wx) = λρ, (t, x) ∈ R× {ρ} ,
w is 1-periodic w.r.t. t.

(34)

Even if our approach is different, we borrow here an idea from [1] by truncating the domain
and by considering correctors in [−ρ, ρ] with ρ→ +∞.

4.1 A comparison principle

Proposition 4.1 (Comparison principle for a mixed boundary value problem). Let ρ2 >
ρ1 > ρ0 and λ ∈ R and v be a super-solution of the following boundary value problem





vt +H(t, x, vx) ≥ λ for (t, x) ∈ R× (ρ1, ρ2),
vt +H+(t, x, vx) ≥ λ for (t, x) ∈ R× {ρ2} ,
v(t, x) ≥ U0(t) for (t, x) ∈ R× {ρ1} ,
v is 1-periodic w.r.t. t

(35)

where U0 is continuous and for ε0 > 0 and u be a sub-solution of the following one




ut +H(t, x, ux) ≤ λ− ε0 for (t, x) ∈ R× (ρ1, ρ2),
ut +H+(t, x, ux) ≤ λ− ε0 for (t, x) ∈ R× {ρ2} ,
u(t, x) ≤ U0(t) for (t, x) ∈ R× {ρ1} ,
u is 1-periodic w.r.t. t.

(36)

Then u ≤ v in R× [ρ1, ρ2].

Remark 4.2. A similar result holds true if the Dirichlet condition is imposed at x = ρ2 and
junction conditions

vt +H−(t, x, vx) ≥ λ at x = ρ1

ut +H−(t, x, ux) ≤ λ− ε0 at x = ρ1

are imposed at x = ρ1.

The proof of Proposition 4.1 is very similar to (in fact simpler than) the proof of the
comparison principle for Hamilton-Jacobi equations on networks contained in [18]. The
main difference lies in the fact that in our case, u and v are global in time and the space
domain is bounded. A sketch of the proof is provided in Appendix shedding some light on
the main differences. Here the parameter ε0 > 0 in (36) is used in place of the standard
correction term −η/(T − t) for a Cauchy problem.
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4.2 Correctors on truncated domains

Proposition 4.3 (Existence and properties of a corrector on a truncated domain). There
exists a unique λρ ∈ R such that there exists a solution wρ = w of (34). Moreover, there
exists a constant C > 0 independent of ρ ∈ (ρ0,+∞) and a function mρ : [−ρ, ρ] → R such
that 




|λρ| ≤ C,
|mρ(x)−mρ(y)| ≤ C |x− y| for x, y ∈ [−ρ, ρ],
|wρ(t, x)−mρ(x)| ≤ C for (t, x) ∈ R× [−ρ, ρ].

(37)

Proof. In order to construct a corrector on the truncated domain, we proceed classically
by considering





δwδ + wδ
t +H(t, x, wδ

x) = 0, (t, x) ∈ R× (−ρ, ρ) ,
δwδ + wδ

t +H−(t, x, wδ
x) = 0, (t, x) ∈ R× {−ρ} ,

δwδ + wδ
t +H+(t, x, wδ

x) = 0, (t, x) ∈ R× {ρ} ,
wδ is 1-periodic w.r.t. t.

(38)

A discontinuous viscosity solution of (38) is constructed by Perron’s method (in the class
of 1-periodic functions with respect to time) since ±δ−1C are trivial super-/sub-solutions
if C is chosen as follows

C = sup
t∈R, x∈R

|H(t, x, 0)|.

In particular, the solution wδ satisfies by construction

|wδ| ≤ C

δ
. (39)

We next consider
mδ(x) = sup

t∈R
(wδ)∗(t, x).

We remark that the supremum is reached since wδ is periodic with respect to time; we also
remark that mδ is a viscosity sub-solution of

H(t(x), x,mδ
x) ≤ C, x ∈ (−ρ, ρ)

(for some function t(x)). In view of (A3), we conclude that mδ is globally Lipschitz
continuous and

|mδ
x| ≤ C (40)

for some constant C which still only depends on H . Assumption (A3) also implies that,

wδ
t ≤ C

(with C only depending on H). In particular, the comparison principle implies that for all
t ∈ R, x ∈ (−ρ, ρ) and h ≥ 0,

wδ(t+ h, x) ≤ wδ(t, x) + Ch.
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Combining this information with the periodicity of wδ with respect to t, we conclude that
for t ∈ R and x ∈ (−ρ, ρ),

|wδ(t, x)−mδ(x)| ≤ C.

In particular,
|wδ(t, x)− wδ(0, 0)| ≤ C.

We then consider

w = lim sup
δ

∗(wδ − wδ(0, 0)) and w = lim inf
δ

∗(w
δ − wδ(0, 0)).

We next remark that (39) and (40) imply that there exists δn → 0 such that

mδn −mδn(0) → mρ as n→ +∞
δnw

δn(0, 0) → −λρ as n→ +∞

(the first convergence being locally uniform). In particular, λ, w, w and mρ satisfies

|λρ| ≤ C

|w −mρ| ≤ C

|w −mρ| ≤ C

|mρ
x| ≤ C.

Discontinuous stability of viscosity solutions of Hamilton-Jacobi equations imply that w−
2C and w are respectively a sub-solution and a super-solution of (34) and

w − 2C ≤ w.

Perron’s method is used once again in order to construct a solution wρ of (34) which is
1-periodic with respect to time. In view of the previous estimates, λρ, m

ρ and wρ satisfy
(37). Proving the uniqueness of λρ is classical so we skip it. The proof of the proposition
is now complete.

Proposition 4.4 (First definition of the effective flux limiter). The map ρ 7→ λρ is non-
decreasing and bounded in (0,+∞). In particular,

Ā = lim
ρ→+∞

λρ

exists and Ā ≥ λρ for all ρ > 0.

Proof. For ρ′ > ρ > 0, we see that the restriction of wρ′ to [−ρ, ρ] is a sub-solution,
as a consequence of [18, Proposition 2.19]. The boundedness of the map follows from
Proposition 4.3. The proof is thus complete.

We next prove that we can control wρ from below under appropriate assumptions on
Ā.
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Proposition 4.5 (Control of slopes on a truncated domain). Assume first that Ā >
min H̄R. Then for all δ > 0, there exists ρδ > 0 and Cδ > 0 (independent on ρ) such
that for x ≥ ρδ and h ≥ 0,

wρ(t, x+ h)− wρ(t, x) ≥ (p̄R − δ)h− Cδ. (41)

If now we assume that Ā > min H̄L, then for x ≤ −ρδ and h ≥ 0,

wρ(t, x− h)− wρ(t, x) ≥ (−p̄L − δ)h− Cδ (42)

for some ρδ > 0 and Cδ > 0 as above.

Proof. We only prove (41) since the proof of (42) follows along the same lines. Let δ > 0.
In view of (A5), we know that there exists ρδ such that

|H(t, x, p)−HR(t, x, p)| ≤ δ for x ≥ ρδ. (43)

Assume that Ā > min H̄R. Then Proposition 1.2 implies that we can pick pδR such that

H̄R(p
δ
R) = H̄+

R (p
δ
R) = λρ − 2δ

for ρ ≥ ρ0 and δ ≤ δ0, by choosing ρ0 large enough and δ0 small enough.
We now fix ρ ≥ ρδ and x0 ∈ [ρδ, ρ]. In view of Proposition 1.2 applied to p = pδR, we

know that there exists a corrector vR solving (3) with α = R. Since it is Z2-periodic, it is
bounded and wR = pδRx+ vR(t, x) solves

(wR)t +HR(t, x, (wR)x) = λρ − 2δ, (t, x) ∈ R× R.

In particular, the restriction of wR to [ρδ, ρ] satisfies (see [18, Proposition 2.19]),
{

(wR)t +HR(t, x, (wR)x) ≤ λρ − 2δ for (t, x) ∈ R× (ρδ, ρ),
(wR)t +H+

R (t, x, (wR)x) ≤ λρ − 2δ for (t, x) ∈ R× {ρ} .

In view of (43), this implies
{

(wR)t +H(t, x, (wR)x) ≤ λρ − δ for (t, x) ∈ R× (ρδ, ρ),
(wR)t +H+(t, x, (wR)x) ≤ λρ − δ for (t, x) ∈ R× {ρ} .

Now we remark that v = wρ − wρ(0, x0) and u = wR − wR(0, x0)− 2C − 2‖vR‖∞ satisfies

v(t, x0) ≥ −2C ≥ u(t, x0)

where C is given by (37). Thanks to the comparison principle from Proposition 4.1, we
thus get for x ∈ [x0, ρ],

wρ(t, x)− wρ(t, x0) ≥ pδR(x− x0)− Cδ

where Cδ is a large constant which does not depend on ρ. In particular, we get (41),
reducing δ if necessary.
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4.3 Construction of global correctors

We now state and prove a result which implies Theorem 1.9 stated in the introduction.

Theorem 4.6 (Existence of a global corrector for the junction). Assume (A0)-(A5) and
either (B-i) or (B-ii).

i) (General properties) There exists a solution w of (4) with λ = Ā such that for all
(t, x) ∈ R

2,
|w(t, x)−m(x)| ≤ C (44)

for some globally Lipschitz continuous function m, and

Ā ≥ A0.

ii) (Bound from below at infinity) If Ā > maxα=L,R

(
min H̄α

)
, then there exists δ0 > 0

such that for every δ ∈ (0, δ0), there exists ρδ > ρ0 such that w satisfies

{
w(t, x+ h)− w(t, x) ≥ (p̄R − δ)h− Cδ for x ≥ ρδ and h ≥ 0,

w(t, x− h)− w(t, x) ≥ (−p̄L − δ)h− Cδ for x ≤ −ρδ and h ≥ 0.
(45)

The first line of (45) also holds if we have only Ā > min H̄R, while the second line of
(45) also holds if we have only Ā > min H̄L.

iii) (Rescaling w) For ε > 0, we set

wε(t, x) = εw(ε−1t, ε−1x).

Then (along a subsequence εn → 0), we have that wε converges locally uniformly
towards a function W = W (x) which satisfies





|W (x)−W (y)| ≤ C |x− y| for all x, y ∈ R,
H̄R(Wx) = Ā and p̂R ≥Wx ≥ p̄R for x ∈ (0,+∞),
H̄L(Wx) = Ā and p̂L ≤Wx ≤ p̄L for x ∈ (−∞, 0).

(46)

In particular, we have W (0) = 0 and

p̂Rx1{x>0} + p̂Lx1{x<0} ≥W (x) ≥ p̄Rx1{x>0} + p̄Lx1{x<0}. (47)

Proof. We consider (up to some subsequence)

w = lim sup
ρ→+∞

∗(wρ−wρ(0, 0)), w = lim inf
ρ→+∞

∗(w
ρ−wρ(0, 0)) and m = lim

ρ→+∞
(mρ−mρ(0)).

We derive from (37) that w and w are finite and

m− C ≤ w ≤ w ≤ m+ C.
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Moreover, discontinuous stability of viscosity solutions imply that w − 2C and w are re-
spectively a sub-solution and a super-solution of (4) with λ = Ā (recall Proposition 4.4).
Hence, a discontinuous viscosity solution w of (4) can be constructed by Perron’s method
(in the class of functions that are 1-periodic with respect to time).

Using again (37), w and m satisfy (44). We also get (45) from Proposition 4.5 (use (37)
and pass to the limit with m instead of w if necessary).

We now study wε(t, x) = εw(ε−1t, ε−1x). Remark that (37) implies in particular that

wε(t, x) = εm(ε−1x) +O(ε).

In particular, we can find a sequence εn → 0 such that

wεn(t, x) →W (x) locally uniformly as n→ +∞,

with W (0) = 0. Arguing as in the proof of convergence away from the junction point (see
the case x̄ 6= 0 in Appendix), we deduce that W satisfies

H̄R(Wx) = Ā for x > 0,

H̄L(Wx) = Ā for x < 0.

We also deduce from (45) that for all δ > 0 and x > 0,

Wx ≥ p̄R − δ

in the case where Ā > min H̄R. Assume now that Ā = min H̄R. This implies that

p̄R ≤ Wx ≤ p̂R

and, in all cases, we thus get (47) for x > 0.
Similarly, we can prove for x < 0 that

p̂L ≤ Wx ≤ p̄L

and the proof of (46) of is achieved. This implies (47). The proof of Theorem 4.6 is now
complete.

4.4 Proof of Theorem 1.4

Proof of Theorem 1.4. Let Ā denote the limit of Aρ (see Proposition 4.4). We want to
prove that Ā = inf E where we recall that

E = {λ ∈ R : ∃w sub-solution of (4)}.

In view of (4), sub-solutions are assumed to be periodic with respect to time; we will see
that they also automatically satisfy some growth conditions at infinity, see (48) below.
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We argue by contradiction by assuming that there exist λ < Ā and a sub-solution wλ

of (4). The function
mλ(x) = sup

t∈R
(wλ)

∗(t, x)

satisfies
H(t(x), x, (mλ)x) ≤ C

(for some function t(x)). Assumption (A3) implies that mλ is globally Lipschitz continu-
ous. Moreover, since wλ is 1-periodic w.r.t. time and (wλ)t ≤ C, then

|wλ(t, x)−mλ(x)| ≤ C.

Hence
wε

λ(t, x) = εwλ(ε
−1t, ε−1x)

has a limit W λ which satisfies

H̄R(W
λ
x ) ≤ λ for x > 0.

In particular, for x > 0,

W λ
x ≤ p̂λR := max{p ∈ R : H̄R(p) = λ} < p̄R

where p̄R is defined in (8). Similarly,

W λ
x ≥ p̂λL := min{p ∈ R : H̄L(p) = λ} > p̄L

with p̄L defined in (9). Those two inequalities imply in particular that for all δ > 0, there
exists C̃δ such that

wλ(t, x) ≤
{
(p̂λR + δ)x+ C̃δ for x > 0,

(p̂λL + δ)x+ C̃δ for x < 0.
(48)

In particular,
wλ < w for |x| ≥ R

if δ is small enough and R is large enough. In particular,

wλ < w + CR for x ∈ R.

Remark finally that u(t, x) = w(t, x) + CR − Āt is a solution and uλ(t, x) = wλ(t, x) − λt
is a sub-solution of (1) with ε = 1 and uλ(0, x) ≤ u(0, x). Hence the comparison principle
implies that

wλ(t, x)− λt ≤ w(t, x)− Āt + CR.

Dividing by t and letting t go to +∞, we get the following contradiction

Ā ≤ λ.

The proof is now complete.
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5 Proof of Theorem 1.12

This section is devoted to the proof of Theorem 1.12. As pointed out in Remark 1.13
above, the notion of solutions for (1) has to be first made precise because the Hamiltonian
is discontinuous with respect to time.

Notion of solutions for (1). For ε = 1, a function u is a solution of (1) if it is globally
Lipschitz continuous (in space and time) and if it solves successively the Cauchy problems
on time intervals [τi + k, τi+1 + k) for i = 0, . . . , K and k ∈ N.

Because of this definition (approach), we have to show that if the initial datum u0 is
globally Lipschitz continuous, then the solution to the successive Cauchy problems is also
globally Lipschitz continuous (which of course insures its uniqueness from the classical
comparison principle). See Lemma 5.1 below.

Proof of Theorem 1.12 i). In view of the proof of Theorem 1.7, the reader can check that
it is enough to get a global Lipschitz bound on the solution uε and to construct a global
corrector in this new framework. The proof of these two facts is postponed, see Lemmas 5.1
and 5.2 following this proof. Notice that half-relaxed limits are not necessary anymore and
that the reasoning can be completed by considering locally converging subsequences of
{uε}ε. Notice also that the perturbed test function method of Evans [9] still works. As
usual, if the viscosity sub-solution inequality is not satisfied at the limit, this implies that
the perturbed test function is a super-solution except at times ε (Z+ {τ0, . . . , τK}). Still a
localized comparison principle in each slice of times for each Cauchy problem is sufficient
to conclude.

Lemma 5.1 (Global Lipschitz bound). The function uε is equi-Lipschitz continuous with
respect to time and space.

Proof. Remark that it is enough to get the result for ε = 1 since u(t, x) = ε−1uε(εt, εx)
satisfies the equation with ε = 1 and the initial condition

uε0(x) =
1

ε
Uε
0 (εx)

is equi-Lipschitz continuous. For the sake of clarity, we drop the ε superscript in uε0 and
simply write u0.

We first derive bounds on the time interval [τ0, τ1) = [0, τ1). In order to do so, we
assume that the initial data satisfies |(u0)x| ≤ L. Then as usual, there is a constant C > 0
such that

u±(t, x) = u0(x)± Ct

are super-/sub-solutions of (1)-(10) with H given by (C1) with for instance

C := max

(
max

α=1,...,N
‖aα‖∞, max

α=0,...,N

(
max
|p|≤L

|H̄α(p)|
))

. (49)
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Let u be the standard (continuous) viscosity solution of (1) on the time interval (0, τ1) with
initial data given by u0 (recall that ε = 1). Then for any h > 0 small enough, we have
−Ch ≤ u(h, x)− u(0, x) ≤ Ch. The comparison principle implies for t ∈ (0, τ1 − h)

−Ch ≤ u(t+ h, x)− u(t, x) ≤ Ch

which shows the Lipschitz bound in time, on the time interval [0, τ1):

|ut| ≤ C. (50)

From the Hamilton-Jacobi equation, we now deduce the following Lipschitz bound in space
on the time interval (0, τ1):

|H̄α(ux(t, ·))|L∞(bα,bα+1) ≤ C for α = 0, . . . , N. (51)

We can now derive bounds on the time interval [τ1, τ2) as follows. We deduce first that
(51) still holds true at time t = τ1. Combined with our definition (49) of the constant C,
we also deduce that

v±(t, x) = u(τ1, x)± C(t− τ1)

are sub/super-solutions of (6) for t ∈ (τ1, τ2) where H is given by (C1). Reasoning as
above, we get bounds (50) and (51) on the time interval [τ1, τ2).

Such a reasoning can be used iteratively to get the Lipschitz bounds (50) and (51) for
t ∈ [0,+∞). The proof of the lemma is now complete.

Lemma 5.2. The conclusion of Theorem 4.6 still holds true in this new framework.

Proof. The proof proceeds in several steps.

Step 1. Construction of a time periodic corrector wρ on [−ρ, ρ]. We first construct
a Lipschitz corrector on a truncated domain. In order to do so, we proceed in several steps.

Step 1.1. First Cauchy problem on (0,+∞). The method presented in the proof of
Proposition 4.3, using a term δwδ has the inconvenience that it would not clearly provide a
Lipschitz solution. In order to stick to our notion of globally Lipschitz solutions, we simply
solve the Cauchy problem for ρ > ρ0 := maxα=1,...,N |bα|:





wρ
t +H(t, x, wρ

x) = 0 on (0,+∞)× (−ρ, ρ) ,
wρ

t + H̄−
N (w

ρ
x) = 0 on (0,+∞)× {−ρ} ,

wρ
t + H̄+

0 (w
ρ
x) = 0 on (0,+∞)× {ρ} ,

wρ(0, x) = 0 for x ∈ [−ρ, ρ] .
(52)

As in the proof of the previous lemma, we get global Lipschitz bounds with a constant C
(independent on ρ > 0 and independent on the distances ℓα = bα+1 − bα):

|wρ
t |, |H̄α(w

ρ
x(t, ·))|L∞((bα,bα+1)∩(−ρ,ρ)) ≤ C, for α = 0, . . . , N. (53)
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Arguing as in [12] for instance, we deduce that there exists a real number λρ with

|λρ| ≤ C

and a constant C0 (that depends on ρ) such that we have

|wρ(t, x) + λρt| ≤ C0. (54)

Details are given in Appendix for the reader’s convenience.

Step 1.2. Getting global sub and super-solutions. Let us now define the follow-
ing function (up to some subsequence kn → +∞):

wρ
∞(t, x) = lim

kn→+∞
(wρ(t+ kn, x) + λρkn)

which still satisfies (53) and (54). Then we also define the two functions

wρ
∞(t, x) = inf

k∈Z
(wρ

∞(t + k, x) + kλρ) , wρ
∞(t, x) = sup

k∈Z
(wρ

∞(t+ k, x) + kλρ) .

They still satisfy (53) and (54) and are respectively a super- and a sub-solution of the
problem in R× [−ρ, ρ]. They satisfy moreover that wρ

∞(t, x) + λρt and w
ρ
∞(t, x) + λρt are

1-periodic in time, which implies the following bounds

|wρ
∞(t, x)− wρ

∞(0, x) + λρt| ≤ C, |wρ
∞(t, x)− wρ

∞(0, x) + λρt| ≤ C.

Step 1.3: A new Cauchy problem on (0,+∞) and construction of a time

periodic solution. We note that wρ
∞ + 2C0 ≥ wρ

∞, and we now solve the Cauchy
problem with new initial data wρ

∞(0, x) instead of the zero initial data and call w̃ρ the
solution of this new Cauchy problem. From the comparison principle, we get

wρ
∞ ≤ w̃ρ ≤ wρ

∞ + 2C0.

In particular,
w̃ρ(1, x) ≥ wρ

∞(1, x) ≥ w̃ρ(0, x)− λρ.

This implies, by comparison, that

w̃ρ(k + 1, x) ≥ w̃ρ(k, x)− λρ. (55)

Moreover w̃ρ still satisfies (53) (indeed with the same constant because, by construction,
this is also the case for wρ

∞). We now define (up to some subsequence kn → +∞):

w̃ρ
∞(t, x) = lim

kn→+∞
(w̃ρ(t+ kn, x) + λρkn)

which, because of (55) and the fact that w̃ρ(t, x) + λρt is bounded, satisfies

w̃ρ
∞(k + 1, x) + λ = w̃ρ

∞(k, x)

and then w̃ρ
∞(t, x)+λρt is 1-periodic in time. Moreover w̃ρ

∞ is still a solution of the Cauchy
problem and satisfies (53). We define

wρ := w̃ρ
∞ + λρt

which satisfies (37) and then provides the analogue of the function given in Proposition 4.3.
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Step 2. Contruction of w on R. The result of Theorem 4.6 still holds true for

w = lim
ρ→+∞

(wρ − wρ(0, 0))

which is globally Lipschitz continuous in space and time and satisfies (53) with ρ = +∞,
and

Ā = lim
ρ→+∞

λρ.

Proof of (12) from Theorem 1.12. We recall that H̄L = H̄0 and H̄R = H̄1 and set a = a1
and (up to translation) b1 = 0.

Step 1: The convex case: identification of Ā.

Step 1.1: A convex subcase. We first work in the particular case where both H̄α for
α = L,R are convex and given by the Legendre-Fenchel transform of convex Lagrangians
Lα which satisfy for some compact interval Iα:

Lα(p) =

{
finite if q ∈ Iα,
+∞ if q 6∈ Iα.

(56)

Then it is known (see for instance the section on optimal control in [18]) that the solution
of (1) on the time interval [0, ετ1), is given by

uε(t, x) = inf
y∈R

(
inf

X∈S0,y;t,x

{
uε(0, X(0)) +

∫ t

0

Lε(s,X(s), Ẋ(s)) ds

})
(57)

with

Lε(s, x, p) =





H̄∗
L(p) if x < 0,

H̄∗
R(p) if x > 0,

min(−a(ε−1s), min
α=L,R

Lα(0)) if x = 0,

and for s < t, the following set of trajectories:

Ss,y;t,x = {X ∈ Lip((s, t);R), X(s) = y, X(t) = x} .

Combining this formula with the other one on the time interval [ετ1, ετ2), and iterating on
all necessary intervals, we get that (57) is a representation formula of the solution uε of (1)
for all t > 0. We also know (see the section on optimal control in [18]), that the optimal
trajectories from (0, y) to (t0, x0) intersect the axis x = 0 at most on a time interval [tε1, t

ε
2]

with 0 ≤ tε1 ≤ tε2 ≤ t0. If this interval is not empty, then we have tεi → t0i for i = 1, 2 and
we can easily pass to the limit in (57). In general, uε converges to u0 given by the formula

u0(t, x) = inf
y∈R

(
inf

X∈S0,y;t,x

{
u0(0, X(0)) +

∫ t

x

L0(s,X(s), Ẋ(s)) ds

})
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with

L0(s, x, p) =





H̄∗
L(p) if x < 0,

H̄∗
R(p) if x > 0,

min(−〈a〉, min
α=L,R

Lα(0)) if x = 0,

and from [18] we see that u0 is the unique solution of (6)-(2) with Ā = 〈a〉.
Step 1.2: The general convex case. The general case of convex Hamiltonians is
recovered, because for Lipschitz continuous initial data u0, we know that the solution
is globally Lipschitz continuous. Therefore, we can always modify the Hamiltonians H̄α

outside some compact intervals such that the modified Hamiltonians satisfy (56).

Step 2: General quasi-convex Hamiltonians: identification of Ā.

Step 2.1: Sub-Solution inequality. From Theorem 2.10 in [18], we know that w(t, 0),
as a function of time only, satisfies in the viscosity sense

wt(t, 0) + a(t) ≤ Ā for all t /∈
⋃

i=1,...,K+1

τi + Z.

Using the 1-periodicity in time of w, we see that the integration in time on one period
implies:

〈a〉 ≤ Ā. (58)

Step 2.2: Super-solution inequality. Recall that Ā ≥ 〈a〉 ≥ A0 := max
α=L,R

min(H̄α).

If Ā = A0, then obviously, we get Ā = 〈a〉. Hence, it remains to treat the case Ā > A0.

Step 2.3: Construction of a super-solution for x 6= 0. Recall that p̄R and p̄L are
defined in (8) and (9) and the minimum of H̄α is reached for p̄0α, α = R,L. Since Ā > A0,
there exists some δ > 0 such that

p̄L + 2δ < p̄0L and p̄0R < p̄R − 2δ. (59)

If w denotes a global corrector given by Lemma 5.2 (or Theorem 4.6), let us define

wR(t, x) = inf
h≥0

(
w(t, x+ h)− p̄0Rh

)
for x ≥ 0,

and similarly
wL(t, x) = inf

h≥0

(
w(t, x− h) + p̄0Lh

)
for x ≤ 0.

From (45) with ρδ = 0, we deduce that we have for some h̄ ≥ 0

w(t, x) ≥ wR(t, x) = w(t, x+ h̄)− p̄0Rh̄ ≥ w(t, x) + (p̄R − δ − p̄0R)h̄− Cδ.

From (59), this implies
0 ≤ h̄ ≤ Cδ/δ (60)
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and using the fact that w is globally Lipschitz continuous, we deduce that for α = R:

w ≥ wα ≥ w − C1. (61)

Moreover, by constrution (as an infimum of (globally Lipschitz continuous) super-solutions),
wR is a (globally Lipschitz continuous) super-solution of the problem in R× (0,+∞). We
also have for x = y + z with z ≥ 0:

wR(t, x)− wR(t, y) = w(t, x+ h̄)− p̄0Rh̄− wR(t, y)

≥ w(t, x+ h̄)− p̄0Rh̄−
(
w(t, y + h̄+ z)− p̄0R(h̄+ z)

)

≥ p̄0Rz = p̄0R(x− y)

which shows that
(wR)x ≥ p̄0R. (62)

Similarly (and we can also use a symmetry argument to see it), we get that wL is a (globally
Lipschitz continuous) super-solution in R× (−∞, 0), it satisfies (61) with α = L and

(wL)x ≤ p̄0L. (63)

We now define

w(t, x) =





wR(t, x) if x > 0,
wL(t, x) if x < 0,
min(wL(t, 0), wR(t, 0)) if x = 0

(64)

which by constrution is lower semi-continuous and satisfies (61), and is a super-solution
for x 6= 0.
Step 2.4: Checking the super-solution property at x = 0. Let ϕ be a test
function touching w from below at (t0, 0) with t0 /∈

⋃
i=1,...,K+1 τi + Z. We want to check

that
ϕt(t0, 0) + Fa(t0)(ϕx(t0, 0

−), ϕx(t0, 0
+)) ≥ Ā. (65)

We may assume that
w(t0, 0) = wR(t0, 0)

since the case w(t0, 0) = wL(t0, 0) is completely similar. Let h̄ ≥ 0 be such that

wR(t0, 0) = w(t0, 0 + h̄)− p̄0Rh̄.

We distinguish two cases. Assume first that h̄ > 0. Then we have for all h ≥ 0

ϕ(t, 0) ≤ w(t, 0 + h)− p̄0Rh

with equality for (t, h) = (t0, h̄). This implies the viscosity inequality

ϕt(t0, 0) + H̄R(p̄
0
R) ≥ Ā
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which implies (65), because Fa(t0)(ϕx(t0, 0
−), ϕx(t0, 0

+)) ≥ a(t0) ≥ A0 ≥ min H̄R =
H̄R(p̄

0
R).

Assume now that h̄ = 0. Then we have ϕ ≤ w ≤ w with equality at (t0, 0). This
implies immediately (65).

Step 2.5: Conclusion. We deduce that w is a super-solution on R × R. Now let us
consider a C1 function ψ(t) such that

ψ(t) ≤ w(t, 0)

with equality at t = t0. Because of (62) and (63), we see that

ϕ(t, x) = ψ(t) + p̄0Lx1{x<0} + p̄0Rx1{x>0}

satisfies
ϕ ≤ w

with equality at (t0, 0). This implies (65), and at almost every point t0 where the Lipschitz
continuous function w(t, 0) is differentiable, we have

wt(t0, 0) + a(t0) ≥ Ā.

Because w is 1-periodic in time, we get after an integration on one period,

〈a〉 ≥ Ā. (66)

Together with (58), we deduce that 〈a〉 = Ā, which is the desired result, for N = 1.

Proof of (13) in Theorem 1.12. . We simply remark, using the sub-solution viscosity in-
equality at each junction condition, that for α = 1, . . . , N ,

Ā ≥ 〈aα〉

which is the desired result. This achieves the proof of (12) and (13).

Proof of the monotonicity of Ā in Theorem 1.12. Let N ≥ 2, and for i = c, d, let us as-
sume some given bi1 < · · · < biN . and let us call wi a global corrector given by Lemma 5.2
(or Theorem 4.6) with λ = Āi and H = H i with i = c, d respectively.
We call ℓiα = biα+1 − biα > 0 and assume that

0 < ℓdα0
− ℓcα0

=: δα0 for some α0 ∈ {1, . . . , N − 1}

and
ℓdα = ℓcα for all α ∈ {1, . . . , N − 1} \ {α0} .

Calling p̄0α0
a point of global minimum of H̄α0 , we define

w̃d(t, x) =





wc(t, x− bdα0
+ bcα0

) if x ≤ bdα0
+ ℓcα0

/2 =: x−,
wc(t, x− − bdα0

+ bcα0
) + p̄0α0

(x− x−) if x− ≤ x ≤ x+,
wc(t, x− bdα0+1 + bcα0+1) + p̄0α0

(x+ − x−) if x ≥ bdα0+1 − ℓcα0
/2 =: x+.
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Recall that wi for i = c, d, are globally Lipschitz continuous in space and time. This
shows that w̃d is also Lipschitz continuous in space and time by construction, because it is
continuous at x = x−, x+. Moreover w̃d is 1-periodic in time. We now want to check that
w̃d is a sub-solution of the equation satisfied by wd with Āc on the right hand side instead
of Ād. We only have to check it for all times t̄ 6∈ {τ0, . . . , τK} and x̄ ∈ [x−, x+], i.e. we
have to show that

w̃d
t (t̄, x̄) + H̄α0(w̃

d
x(t̄, x̄)) ≤ Āc for all x̄ ∈ [x−, x+]. (67)

Assume that ϕ is a test function touching w̃d from above at such a point (t̄, x̄) with
x̄ ∈ [x−, x+]. Then this implies in particular that ψ(t, x) = ϕ(t, x) − p̄0α0

(x − x−) touches
w̃d(·, x−) = wc(·, x0) from above at time t̄ with x0 = bcα0

+ ℓcα0
/2. Recall that wc is solution

of
wc

t + H̄α0(w
c
x) = Āc on (bcα0

, bcα0+1).

From the characterization of sub-solutions (see Theorem 2.10 in [18]), we then deduce that

ψt(t̄) + H̄α0(p̄
0
α0
) ≤ Āc.

If x̄ ∈ (x−, x+), then we have ϕx(t̄, x̄) = p̄0α0 . This means in particular

ϕt + H̄α0(ϕx) ≤ Āc at (t̄, x̄) if x̄ ∈ (x−, x+). (68)

Using now (68), and still from Theorem 2.10 in [18], we deduce that we have in the viscosity
sense

w̃d
t (t̄, x̄) + max

(
H̄−

α0
(w̃d

x(t̄, x̄
+)), H̄+

α0
(w̃d

x(t̄, x̄
−))

)
≤ Āc for x̄ = x±. (69)

Therefore (68) and (69) imply (67).
Let us now call Hd the Hamiltonian in assumption (C1) constructed with the points

{bdα}α=1,...,N . Then we have

w̃d
t +Hd(t, x, w̃d

x) ≤ Āc for all t 6∈ {τ0, . . . τK} .

Note that the proof of Theorem 1.4 is unchanged for the present problem, and then The-
orem 1.4 still holds true. This shows that

Ād ≤ Āc (70)

which shows the expected monotonicity. The proof is now complete.

Remark 5.3. Note that, in the previous proof, it would also be possible to compare the sub-
solution given by the restriction of w̃d on some interval [−ρ, ρ] with ρ > 0 large enough (see
[18, Proposition 2.19]), with the approximation wd,ρ of wd on [−ρ, ρ] with Ād ≥ Ād

ρ → Ād

as ρ → +∞. The comparison for large times would imply Ād
ρ ≤ Āc. As ρ → +∞, this

would give the same conclusion (70).
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Proof of (14) in Theorem 1.12. Let w be a global corrector associated to Ā.
Recall that

Ā ≥ Ā0 := max
α=1,...,N

〈aα〉 ≥ A0 := max
α=1,...,N

Aα
0 with Aα

0 = max
β=α−1,α

(min H̄β). (71)

Our goal is to prove that Ā = Ā0 when all the distances ℓα are large enough, i.e. (14). Let
us assume that

Ā > Ā0.

Step 1: Considering another corrector with the same 〈âα〉 = Ā0. Let µα ≥ 0
such that

âα = µα + aα with 〈âα〉 = Ā0 for all α = 1, . . . , N.

Let us call ŵ the corresponding corrector with associated constant Â. Then Theorem 1.4
(still valid here) implies that

Â ≥ Ā > Ā0.

We also split the set {1, . . . , N} into two disjoint sets

I0 =
{
α ∈ {1, . . . , N} , Ā0 = Aα

0

}

and
I1 =

{
α ∈ {1, . . . , N} , Ā0 > Aα

0

}
.

Note that by (71), if α ∈ I0, then 〈aα〉 = Aα
0 , and then by (C3), we have aα(t) = const =

Aα
0 for all time t ∈ R. For later use, we then claim that ŵ satisfies

ŵt(t, x) + max(H̄−
α (ŵx(t, x

+)), H̄+
α−1(ŵx(t, x

−))) = Â for all (t, x) ∈ R× {bα} (72)

and not only for t ∈ R\ (Z+ {τ0, . . . , τK}). Let us show it for sub-solutions (the proof
being similar for super-solutions). Let ϕ be a test function touching ŵ from above at some
point (t̄, x̄) = (j + τk, bα) for some j ∈ Z, k ∈ {0, . . . , K}. Assume also that the contact
between ϕ and ŵ only holds at that point (t̄, x̄). The proof is a variant of a standard
argument. For η > 0, let us consider the test function

ϕη(t, x) = ϕ(t, x) +
η

t̄− t
for t ∈ (−∞, t̄).

Then for r > 0 fixed, we have

inf
(t,x)∈Br(t̄,x̄), t<t̄

(ϕη − ŵ)(t, x) = (ϕη − ŵ)(tη, xη)

with {
Pη = (tη, xη) → (t̄, x̄) = P̄ as η → 0,

ϕt(P̄ ) ≤ lim supη→0(ϕη)t(Pη).
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This implies that ŵ is a relaxed viscosity sub-solution at (t̄, x̄) in the sense of Definition 2.2
in [18]. By [18, Proposition 2.6], we deduce that ŵ is also a standard (i.e. not relaxed)
viscosity sub-solution at (t̄, x̄). Finally we get (72).

Step 2: Defining a space super-solution. Let us define the function

M(x) = inf
t∈R

ŵ(t, x).

Because ŵ is globally Lispschitz continuous, we deduce that M is also globally Lipschitz
continuous. Moreover we have the following viscosity super-solution inequality

H̄α(Mx(x)) ≥ Â > Ā0 for all x ∈ (bα, bα+1), for all α = 0, . . . , N.

Let us call for α = 0, . . . , N :

p̄α,R = minEα,R with Eα,R =
{
p ∈ R, H̄+

α (p) = H̄α(p) = Ā0

}
,

p̄α,L = maxEα,L with Eα,L =
{
p ∈ R, H̄−

α (p) = H̄α(p) = Ā0

}
.

Let us now consider α = 0, . . . , N and two points x− < x+ with x± ∈ (bα, bα+1). Let us
assume that there is a test function ϕ± touching M from below at x±. Then we have

H̄α(ϕ
±
x (x±)) ≥ Â > Ā0

with
ϕ±
x (x±) ≥ p̄α,R or ϕ±

x (x±) ≤ p̄α,L.

Moreover, if Ā0 > min H̄α, then we have

p̄α,L < p̄0α < p̄α,R

for any p̄0α which is a point of global minimum of H̄α.

Step 3: A property of the space super-solution. We now claim that the following
case is impossible:

p− := ϕ−
x (x−) < ϕ+

x (x+) =: p+ and inf
[p−,p+]

H̄α < Â.

If it is the case, then let p̄ ∈ (p−, p+) such that H̄α(p̄) < Â. Therefore the geometry of the
graph of the function M implies that

inf
x∈[x−,x+]

(M(x)− xp̄) =M(x̄)− x̄p̄ for some x̄ ∈ (x−, x+)

and then we have the viscosity super-solution inequality at x̄:

H̄α(p̄) ≥ Â
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which leads to a contradiction. Therefore (in all cases Ā0 > min H̄α or Ā0 = min H̄α), it
is possible to check that there is a point x̄α ∈ [bα, bα+1] such that the Lipschitz continuous
function M satisfies in the viscosity sense

{
Mx ≥ p̄α,R in (bα, x̄α),
−Mx ≥ −p̄α,L in (x̄α, bα+1).

Moreover from Theorem 4.6 ii) (see Lemma 5.2), we deduce from Â > max(minHN ,minH0)
that

x̄N = +∞ and x̄0 = −∞.

In particular, we deduce that there exists at least one α0 ∈ {1, . . . , N} such that

x̄α0 − bα0 ≥ ℓα0/2 and bα0 − x̄α0−1 ≥ ℓα0−1/2. (73)

Step 4: The case α0 ∈ I0. In this case, we see that there exists a time t̄ such that the
test function

ϕ(t, x) =

{
p̄α0,R(x− bα0) for x ≥ bα0 ,
p̄α0−1,L(x− bα0) for x ≤ bα0

is a test function touching (up to some additive constant) ŵ from below at (t̄, bα0). By
(72), this implies

Ā0 = max(H̄α0(p̄α0,R), H̄α0−1(p̄α0−1,L)) ≥ Â ≥ Ā.

Contradiction.

Step 5: Consequences on ŵ. From the fact that ŵ is 1-periodic in time and C-Lipschitz
continuous in time (with a constant C depending only on max

α=1,...,N
‖âα‖∞ and the H̄α’s, see

(49)), we deduce that we have
{
ŵ(t, x+ h)− ŵ(t, x) ≥ p̄α,Rh− 2C for x, x+ h ∈ (bα, x̄α),
ŵ(t, x− h)− ŵ(t, x) ≥ −p̄α,Rh− 2C for x, x+ h ∈ (x̄α, bα+1).

(74)

Step 6: The case α0 ∈ I1: definition of a space-time super-solution. Proceed-
ing similarly to Step 3 of the proof of (12), we define

ŵα0,R
(t, x) = inf

ℓα0
4

≥h≥0

(
ŵ(t, x+ h)− p̄0α0

h
)

for bα0 ≤ x ≤ bα0 +
ℓα0

4

and

ŵ(α0−1),L(t, x) = inf
ℓ(α0−1)

4
≥h≥0

(
ŵ(t, x− h) + p̄0α0−1h

)
for bα0 −

ℓα0−1

4
≤ x ≤ bα0 .

From (74), we deduce that we have for some h̄ ∈ [0,
ℓα0

4
]

ŵ(t, x) ≥ ŵα0,R
(t, x) = ŵ(t, x+ h̄)− p̄0α0

h̄ ≥ ŵ(t, x) + (p̄α0,R − p̄0α0
)h̄− 2C
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which implies

0 ≤ h̄ ≤ 2C

p̄α0,R − p̄0α0

.

As in Step 3 of the proof of (12), if

ℓα0

4
>

2C

p̄α0,R − p̄0α0

(75)

this implies that ŵα0,R
is a super-solution for x ∈ (bα0 , bα0 +

ℓα0

4
). Similarly, if

ℓα0−1

4
>

2C

p̄0α0−1 − p̄α0−1,L

(76)

then ŵα0−1,L is a super-solution for x ∈ (bα0 −
ℓα0−1

4
, bα0). We now define

ŵ(t, x) =





ŵα0,R
(t, x) if x ∈ (bα0 , bα0 +

ℓα0

4
),

ŵα0−1,L(t, x) if x ∈ (bα0 −
ℓα0−1

4
, bα0),

min(ŵα0−1,L(t, bα0), ŵα0,R
(t, bα0)) if x = bα0 .

Then as in Steps 4 and 5 of the proof (12), we deduce that ŵ is a super-solution up to the
junction point x = bα0 and that

Ā0 = 〈âα0〉 ≥ Â ≥ Ā.

Contradiction.

Step 7: Conclusion. If (75) and (76) hold true for any α0 ∈ I1, then we deduce that
Ā ≤ Ā0, which implies Ā = Ā0. This ends the proof of (14) in Theorem 1.12.

Proof of (15) in Theorem 1.12. Let us consider

ā(t) = max
α=1,...,N

aα(t),

and (w, ¯̄A) a solution (given by Theorem 4.6 (see also Lemma 5.2)) of





wt + H̄0(wx) =
¯̄A if x < 0,

wt + H̄N(wx) =
¯̄A if x > 0,

wt(t, 0) + max(ā(t), H̄−
N(wx(t, 0

+)), H̄+
0 (wx(t, 0

−))) = ¯̄A if x = 0,

w is 1-periodic with respect to t.

From Theorem 1.12, we also know that

¯̄A = 〈ā〉.
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For N ≥ 2, we set ℓ = (ℓ1, . . . , ℓN−1) ∈ (0,+∞)N−1 and consider b0 = −∞ < b1 < · · · <
bN < bN+1 = +∞ with

ℓα = bα+1 − bα for α = 1, . . . N − 1.

We now call (wℓ, Āℓ) a global corrector given by Theorem 4.6 (see also Lemma 5.2). The
remaining of the proof is divided into several steps.

Step 1: Bound from above on Āℓ. We define

w̃(t, x) =





w(t, x− b1) if x ≤ b1,

w(t, 0) + p̄0α(x− bα) +
∑

β=1,...,α−1

p̄0β(bβ+1 − bβ) if

{
bα ≤ x ≤ bα+1,
α ∈ {1, . . . , N − 1} ,

w(t, x− bN ) +
∑

β=1,...,N−1

p̄0β(bβ+1 − bβ) if x ≥ bN .

Proceeding as in Step 1 of the proof of Theorem 1.12 ii), it is then easy to check that w̃ is
a sub-solution of the equation satisfied by wℓ with ¯̄A on the right hand side instead of Āℓ.
Then Theorem 1.4 implies that

Āℓ ≤ ¯̄A = 〈ā〉. (77)

Step 2: Bound from below on Āℓ. From Theorem 2.10 in [18], we deduce that we
have in the viscosity sense (in time only)

wℓ
t(t, bα) + aα(t) ≤ Āℓ for all t /∈ ∪K

k=0{τk + Z}.

Let us call
A = lim inf

ℓ→0
Āℓ.

We also know that wℓ is 1-periodic and globally Lipschitz continuous with a constant which
is independent on ℓ. Therefore there exists a 1-periodic and Lipschitz continuous function
g = g(t) such that

wℓ(t, bα) → g(t) for all α = 1, . . . , N, as ℓ→ 0.

The stability of viscosity solutions implies in the viscosity sense

g′(t) + aα(t) ≤ A, for all α = 1, . . . , N, for all t /∈ ∪K
k=0{τk + Z}.

Because g is Lipschitz continuous, this inequality also holds for almost every t ∈ R. This
implies

g′(t) + ā(t) ≤ A for a.e. t ∈ R.

An integration on one period gives
〈ā〉 ≤ A. (78)

Step 3: Conclusion. Combining (77) with (78) finally yields that Āℓ → 〈ā〉 as ℓ → 0.
The proof of (15) in Theorem 1.12 is now complete.
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A Proofs of some technical results

A.1 The case x̄ 6= 0 in the proof of convergence

The case x̄ 6= 0 in the proof of Theorem 1.7. We only deal with the subcase x̄ > 0 since
the subcase x̄ < 0 is treated in the same way. Reducing r if necessary, we may assume
that Br(t, x) is compactly embedded in the set {(t, x) ∈ (0,+∞)× (0,+∞) : x > 0}: there
exists a positive constant cr such that

(t, x) ∈ Br(t, x) ⇒ x > cr . (79)

Let p = ϕx(t, x) and let vR = vR(t, x) be a solution of the cell problem

vRt +HR

(
t, x, p + vRx

)
= H̄R(p) in R× R . (80)

We claim that if ε > 0 is small enough, the perturbed test function [9]

ϕε(t, x) = ϕ(t, x) + εvR
(
t

ε
,
x

ε

)

satisfies, in the viscosity sense, the inequality

ϕε
t +H

(
t

ε
,
x

ε
, ϕε

x

)
≥ θ

2
in Br(t, x) (81)

for sufficiently small r > 0. To see this let ψ be a test function touching ϕε from below at
(t1, x1) ∈ Br(t, x) ⊆ Br(t, x). In this way the function

η(s, y) =
1

ε
(ψ(εs, εy)− ϕ(εs, εy))

touches vR from below at (s1, y1) =
(
t1
ε
, x1

ε

)
and (80) yields

ψt(t1, x1)− ϕt(t1, x1) +HR

(
t1
ε
,
x1
ε
, p+ ψx(t1, x1)− ϕx(t1, x1)

)
≥ H̄R(p). (82)

Since (79) implies that x
ε
→ +∞, as ε→ 0, uniformly with respect to (t, x) ∈ Br(t, x), we

can find, owing to (A5), an ε0 > 0 independent of ψ and (t1, x1) such that the inequality

H

(
t1
ε
,
x1
ε
, ψx(t1, x1)

)
≥ HR

(
t1
ε
,
x1
ε
, ψx(t1, x1)

)
− θ

4
(83)
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holds true for ε < ε0. Combining (19)-(82)-(83) and using the continuity of ϕx and ϕt we
have

ψt(t1, x1) +H

(
t1
ε
,
x1
ε
, ψx(t1, x1)

)

≥ ψt(t1, x1) +HR

(
t1
ε
,
x1
ε
, p+ ψx(t1, x1)− ϕx(t1, x1)

)
+

HR

(
t1
ε
,
x1
ε
, ψx(t1, x1)

)
−HR

(
t1
ε
,
x1
ε
, ϕx(t̄, x̄) + ψx(t1, x1)− ϕx(t1, x1)

)
− θ

4

≥ θ

2

if r is sufficiently close to 0. The claim (81) is proved.
Since ϕ is strictly above u, if ε and r are small enough

uε + κr ≤ ϕε on ∂Br(t, x)

for a suitable positive constant κr. By comparison principle we deduce

uε + κr ≤ ϕε in Br(t, x)

and passing to the limit as ε→ 0 and (t, x) → (t̄, x̄) on both sides of the previous inequality,
we produce the contradiction

u(t, x) < u(t, x) + κr ≤ ϕ(t, x) = u(t, x) .

A.2 Proof of Lemma 3.3

Proof of Lemma 3.3. We first adress uniqueness. Let us assume that we have two solutions
(vi, λi) for i = 1, 2 of (3). Let

ui(t, x) = vi(t, x) + px− λit

Then ui solves
uit +Hα(t, x, u

i
x) = 0

with
u1(0, x) ≤ u2(0, x) + C

The comparison principle implies

u1 ≤ u2 + C for all t > 0

and then λ1 ≥ λ2. Similarly we get the reverse inequality and then λ1 = λ2.
We now turn to the continuity of the map p 7→ H̄α(p). It follows from the stability of

viscosity sub- and super-solutions, from the fact that the constant C in (24) is bounded for
bounded p’s and from the comparison principle. This achieves the proof of the lemma.
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A.3 Sketch of the proof of Proposition 4.1

Sketch of the proof of Proposition 4.1. Consider

Mν = sup
x∈[ρ1,ρ2],s,t∈R

{
u(t, x)− v(s, x)− (t− s)2

2ν

}
.

We want to prove that
M = lim

ν→0
Mν ≤ 0.

We argue by contradiction by assuming that M > 0. The supremum defining Mν is
reached, let sν , tν , xν denote a maximizer. Choose ν small enough so that Mν ≥ M

2
> 0.

We classically get,
|tν − sν | ≤ C

√
ν.

If there exists νn → 0 such that xνn = ρ1 for all n ∈ N, then

M

2
≤Mνn ≤ U0(tνn)− U0(sνn) ≤ ω0(tνn − sνn) ≤ ω0(C

√
νn)

where ω0 denotes the modulus of continuity of U0. The contradiction M ≤ 0 is obtained
by letting n go to +∞.

Hence, we can assume that for ν small enough, xν > ρ1. Reasoning as in [18, The-
orem 7.8], we can easily reduce to the case where H(tν , xν , ·) reaches its minimum for
p = p0 = 0. We can also consider the vertex test function Gγ associated with the single
Hamiltonian H (using notation of [18], it corresponds to the case N = 1) and the free

parameter γ. If xν < ρ2, then G
γ(x, y) reduces to the standard test function (x−y)2

2
.

We next consider

Mν,ε = sup
x,y∈[ρ1,ρ2]∩Br(xν)

s,t∈R

{
u(t, x)− v(s, y)− (t− s)2

2ν
− εGγ(ε−1x, ε−1y)− ϕν(t, s, x)

}

where r = rν is chosen so that ρ1 /∈ Br(xν) and the localization function

ϕν(t, s, x) =
1

2
((t− tν)

2 + (s− sν)
2 + (x− xν)

2).

The supremum defining Mν,ε is reached and if (t, s, x, y) denotes a maximizer, then

(t, s, x, y) → (tν , sν , xν , xν) as (ε, γ) → 0.

In particular, x, y ∈ Br(xν) for ε and γ small enough. The remaining of the proof is
completely analogous (in fact much simpler).
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A.4 Construction of λρ in the proof of Lemma 5.2

In order to get λρ, it is enough to apply the following lemma.

Lemma A.1. Let u be the solution of a Hamilton-Jacobi equation of evolution-type sub-
mitted to the initial condition: u(0, x) = 0 and posed on a compact set K. Assume that

• the comparison principle holds true;

• u is L-globally Lipschitz continuous in time and space;

• u(k + ·, ·) + C is a solution for all k ∈ N and C ∈ R.

There then exists λ ∈ R such that

|u(t, x)− λt| ≤ C0

and
|λ| ≤ L

where C0 = L(2 + 3ρ) if ρ denotes the diameter of K.

Proof. Define

λ+(T ) = sup
τ≥0

u(τ + T, 0)− u(τ, 0)

T
and λ−(T ) = inf

τ≥0

u(τ + T, 0)− u(τ, 0)

T
.

Remark that T 7→ ±Tλ±(T ) is sub-additive. Remark that the fact that u is L-Lipschitz
continuous with respect to time implies that λ±(T ) are both finite:

|λ±(T )| ≤ L.

the ergodic theorem implies that λ±(T ) converges towards λ± and

λ+ = inf
T>0

λ+(T ) and λ− = sup
T>0

λ−(T ).

If moreover

|λ+(T )− λ−(T )| ≤ C

T
, (84)

then the proof of the lemma is complete. Indeed, (84) implies in particular that λ+ = λ−

and

−C
T

≤ λ−(T )− λ ≤ λ+(T )− λ ≤ C

T
.

This implies that
|u(t, 0)− λt| ≤ C.

Finally, we get
|u(t, x)− λt| ≤ C + Lρ.
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It remains to prove (84). There exists k ∈ Z and β ∈ [0, 1) such that τ+ = k + τ− + β.
Moreover,

u(τ+, x) ≤ u(τ− + β, x) + u(τ+, 0)− u(τ− + β, 0) + 2Lρ

where ρ = diam K. Now remark that u(τ− + β + t, x) +D is a solution in [τ+,+∞) for
all constant D. Hence, we get by comparison that for all t > 0 and x ∈ K,

u(τ+ + t, x) ≤ u(τ− + β + t, x) + u(τ+, 0)− u(τ− + β, 0) + 2Lρ.

In particular,

u(τ+ + T, 0)− u(τ+, 0) ≤ u(τ− + β + T, 0)− u(τ− + β, 0) + 2Lρ

≤ u(τ− + T, 0)− u(τ−, 0) + 2L(1 + ρ).

Finally, we get (after letting ε → 0),

λ+(T ) ≤ λ−(T ) +
2L(1 + ρ)

T
.

Similarly, we can get

λ+(T ) ≥ λ−(T )− 2L(1 + ρ)

T
.

This implies (84) with C = 2L(1 + ρ). The proof of the lemma is now complete.
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Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone
and Pierpaolo Soravia.

[4] G. Barles and Panagiotis E. Souganidis. On the large time behavior of solutions of
Hamilton-Jacobi equations. SIAM J. Math. Anal., 31(4):925–939 (electronic), 2000.

[5] Guy Barles, Ariela Briani, and Emmanuel Chasseigne. A Bellman approach for
two-domains optimal control problems in R

N . ESAIM Control Optim. Calc. Var.,
19(3):710–739, 2013.

42



[6] Patrick Bernard and Jean-Michel Roquejoffre. Convergence to time-periodic solutions
in time-periodic Hamilton-Jacobi equations on the circle. Comm. Partial Differential
Equations, 29(3-4):457–469, 2004.

[7] Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equa-
tions with L1 dependence in time and Neumann boundary conditions. Disc. cont. dyn.
syst., 21(3):763–800, 2008.

[8] Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equa-
tions with L1 dependence in time and Neumann boundary conditions. Existence and
applications to the level-set approach. Disc. cont. dyn. syst., 21(4):1047–1069, 2008.

[9] Lawrence C. Evans. The perturbed test function method for viscosity solutions of
nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A, 111(3-4):359–375, 1989.

[10] N. Forcadel, C. Imbert, and R. Monneau. Homogenization of fully overdamped
Frenkel-Kontorova models. J. Differential Equations, 246(3):1057–1097, 2009.

[11] N. Forcadel, C. Imbert, and R. Monneau. Homogenization of accelerated Frenkel-
Kontorova models with n types of particles. Trans. Amer. Math. Soc., 364(12):6187–
6227, 2012.

[12] Nicolas Forcadel, Cyril Imbert, and Régis Monneau. Homogenization of fully over-
damped Frenkel-Kontorova models. Journal of Differential Equations, 246(3):1057–
1097, 2009.

[13] Nicolas Forcadel, Cyril Imbert, and Régis Monneau. Homogenization of some particle
systems with two-body interactions and of the dislocation dynamics. Discrete Contin.
Dyn. Syst., 23(3):785–826, 2009.

[14] Yoshikazu Giga and Nao Hamamuki. Hamilton-Jacobi equations with discontinuous
source terms. Comm. Partial Differential Equations, 38(2):199–243, 2013.

[15] Nao Hamamuki. On large time behavior of Hamilton-Jacobi equations with discon-
tinuous source terms. In Nonlinear analysis in interdisciplinary sciences—modellings,
theory and simulations, volume 36 of GAKUTO Internat. Ser. Math. Sci. Appl., pages
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