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Abstract

We review old and new explanations of a case of quantum particle evolution with an
intriguing phenomenology: the formation of particle tracks in a tracking chamber. We
recall the early debate on the subject at the fifth Solvay Conference and we present the
out of the mainstream point of view assumed by Mott to examine the problem in 1929.
We then give some details on recent results clarifying, making rigorous and generalizing
Mott’s analysis. In the conclusions, we propose some new directions of research and some
open problems in the topic.



1 The Wilson cloud chamber

The cloud chamber, “the most original and wonderful instrument in scientific history” according
to Ernest Rutherford, was devised and made available by Charles Thomson Rees Wilson at the
end of the first decade of last century.
The main idea of Wilson was to make visible the “ionizing radiation” by condensing water on
the ions produced by α and β rays in air supersaturated with water-vapor. His aim was to give
a conclusive experimental verification of the particle nature of the α and β-radiations.
On one hand, some experimental problems were overwhelmingly complicate to be confronted
by. A perfect synchronization of the sudden cooling, of the illumination of the chamber and of
the photographic capture was required.
On the other end, the overall intuitive picture of what was happening in the chamber was
perfectly depicted: the α-particle, emitted by a radioactive source (in an unpredictable although
specific direction), ionizes molecules of the gas filling the chamber. In turn, ions become
condensation nuclei for water-vapor giving rise to a sequence of small drops of water along the
trajectory of the α-particle.

In the early days of quantum mechanics, it was immediately noticed that the explanation of
the phenomenon, as it was given by physicists at the time of Wilson, seemed at variance with
some of the cornerstones of the new theory.
In fact, inside the framework of the orthodox theory, a classical trajectory of a quantum particle
could only be the result of repeated ”collapses” of its wave function due to repeated measure-
ments. Pushing to the limit, each scattering event should be considered a measurement process.
On the other end, in the orthodox approach, a measurement apparatus must be considered as
a classical object whose evolution has to be described and predicted using classical kinematics
and dynamics. Classical observables like position or trajectory can only be properties emerging
as a consequence of the interaction of the microscopic system with the classical measurement
apparatus. By no means, they are properties possessed by the system before the measurement.
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It is clear that this point of view is hardly compatible with the interpretation of a simple
scattering event as a measurement process.
The apparent contradiction shows that the issue of describing what ”really” happens in a cloud
chamber highlights the most subtle problems of the Copenhagen interpretation:

• Where has to be placed the frontier between the quantum and the classical realm? In
particular,

• how large should be an array of atoms to behave as a classical system?

• When and where does the collapse process take place?

It is well known that the final formalization of quantum mechanics, given by John von Neumann
in 1932, assumes two different evolution laws for a microscopic system: the continuous unitary
evolution given by the Schrödinger equation, as long as the system remains isolated, and a
stochastic and/or non-linear sudden change driving to the collapse of the wave function, during
the measurement process. As is clear, von Neumann’s dynamical assumptions leave the issues
listed above unanswered.
In 1929, Charles Galton Darwin proposed a completely new way to look at the formation of
classical tracks in a cloud chamber. In retrospect, one can say that the following simple Darwin’s
reflection was extremely far-reaching: the Schrödinger equation describes the evolution in the
configuration space of the whole system. Taking into account the electrons of the gas atoms
together with the particle, no contradiction exists in principle with the existence of solutions
which show the α-particle moving in a small cone with apex in the radioactive source and only
atoms in the cone ionized.
In the same year, Sir Nevill Francis Mott concretized Darwin’s proposal analyzing the long
time behavior of the Schrödinger equation solutions relative to the α-particle and the electrons
of two hydrogen atoms playing the role of the gas in the cloud chamber.
Mott’s paper did not receive the attention that it would have deserved and it remained almost
unknown also during the ’60s when the interest in probing the frontier between classical and
quantum behavior had a new start.
By now, a significant amount of experimental and theoretical work in the field is available. More
and more sophisticated experiments have pushed the border quantum-classical towards larger
and larger system sizes. At the same time, new theoretical investigations analyzed the loss of
quantum coherence due to the interaction of a microscopic system with a large environment
(see, e.g., [JZKGKS], [BGJKS], [Z], [JZ], [HS], [H], [AFFT1], [AFFT2] and references therein).
Main purpose of this report is to present further attempts to investigate whether a purely
quantum mechanical treatment can justify the (experimentally verified) statement that in
in a cloud chamber filled with supersaturated gas an α-decay produces at most one sequence
of liquid droplets (track) and that this track is compatible with the trajectory of a classical
particle. In summary, we want to test the compatibility of the experimental outputs with the
following rough statement: the α-wave is turned, by the interaction with the environment, into
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an α-particle of the same energy as the initial wave and with a momentum direction having a
definite orientation.

2 The earliest theoretical investigations

In 1928 Gamow ([Ga]) and Condon and Gurney ([CG]) made the first attempt to approach the
α-decay phenomenon according to quantum mechanics. A crucial point of their analysis was
that, at the time of the emission, the α-particle state had to be a spherical wave centered in
the radioactive nucleus, with a highly isotropic average momentum. As pointed out before, it
was immediately manifest that the assumption of a spherical wave as initial state makes the
explanation of the tracks observed in a cloud chamber rather problematic.
Such a difficulty had already been mentioned by Born who, during the general discussion at the
Solvay Conference in 1927 ([BV]), noted: “Mr. Einstein has considered the following problem:
A radioactive sample emits α-particles in all directions; these are made visible by the method of
the Wilson cloud chamber. Now, if one associates a spherical wave with each emission process,
how can one understand that the track of each α-particle appears as a (very nearly) straight
line? In other words: how can the corpuscular character of the phenomenon be reconciled here
with the representation by waves?”
According to Born, the question could be answered using the notion of “reduction of the prob-
ability packet” induced by “observation” by means of light, discussed by Heisenberg in [He1].
Indeed, Born claimed: “As soon as such ionization is shown by the appearance of cloud droplets,
in order to describe what happens afterwards one must reduce the wave packet in the immediate
vicinity of the drops. One thus obtains a wave packet in the form of a ray, which corresponds
to the corpuscular character of the phenomenon”. It should be stressed that, according to this
point of view, the evolution of an α-particle in a cloud chamber can be described as the result
of the interaction of a quantum system (the α-particle) with a classical measurement apparatus
(the atoms of the vapor). Such interaction is responsible for the “reduction” of the spherical
wave to a wave packet with definite position and momentum.
As a possible alternative description of the process, Born also considered an approach where
both the α-particle and the atoms of the vapor are considered part of a unique quantum system,
described by a wave function depending on the coordinates of all the particles of the system.
In particular, he proposed a simplified one-dimensional model consisting of a test particle (the
α-particle) and two harmonic oscillators placed at fixed positions (the atoms of the vapor). At
initial time, the test particle is described by a superposition state of two wave packets with
opposite momentum and position close to the origin, while the harmonic oscillators are in their
ground states. A qualitative discussion of such a model led Born to the claim that the test
particle has a very low probability of exciting both oscillators unless they are located on the
same half-line starting from the origin (for a quantitative analysis see e.g. [DFT1], [FinT]).
The analysis of the model is then completed with a statement involving once again the re-
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duction postulate: “To the reduction of the wave packets corresponds the choice of one of the
two directions of propagations”, and the choice is done when the excitation of an oscillator is
observed. Only after the observation, the evolution of the test particle can be assimilated to
that of a classical particle propagating along a definite trajectory.
In conclusion, Born conceded that an analysis of the quantum evolution of the α-particle in
interaction with the (quantum) environment made of the vapor atoms is possible, “but this
does not lead us further as regards the fundamental questions”, in the sense that the reduction
postulate is anyway required for a complete description.
A further fundamental contribution to the theoretical analysis of the cloud chamber problem
was given by Heisenberg in his lectures at the University of Chicago in 1929, published in
[He2]. He pointed out that a quantum description of an experimental situation always requires
to fix an arbitrary border between the quantum system under consideration and the (classical)
measuring apparatus. For any fixed border one has different, but equivalent, descriptions of
the phenomenon. In the case of the cloud chamber Heisenberg considered the following two
reasonable choices: a) the quantum system consists of the α-particle alone (and then the
molecules of the vapor play the role of the measurement apparatus); b) the quantum system
consists of the α-particle and of the molecules of the vapor.
In case a) the analysis proceeds as follows. The α-particle, evolving in the chamber as a spherical
wave, collides with a molecule of the vapor which acts as a measuring device of the particle
position. Therefore, immediately after the collision, the state of the α-particle is reduced to a
narrow wave packet concentrated around the position of the molecule. Furthermore, one knows
that at time zero the α-particle starts from the position of the radioactive nucleus and that
the momentum is conserved. This implies that the wave packet has an average momentum
along the direction γ joining the radioactive nucleus and the position of the molecule (notice
that in this way Heisenberg states that the measurement actualize a posteriori the momentum
possessed by the particle before the measurement itself).
Such wave packet emerging from the molecule propagates in the chamber according to the
free Schrödinger dynamics, with an inevitable spreading in position. However, the α-particle
collides with the next molecule placed along γ and a new position measurement takes place,
determining a refocusing of the wave packet along γ. The process is repeated a large number of
times and the result is that the wave packet remains concentrated along γ, which is identified
as the observed “trajectory” of the α-particle.
In case b) the molecules of the vapor and the α-particle form a many-particle quantum system,
whose dynamics is governed by the Schrödinger equation. Heisenberg notes that in this case
the physical description “is more complicated than the preceding method, but has the advantage
that the discontinuous change of the probability function recedes one step and seems less in
conflict with intuitive ideas.”
In order to give a qualitative idea of the behavior of the whole system, Heisenberg considers a
three-particle model, made of the α-particle and two molecules with centers of mass fixed in the
positions aI , aII . At initial time the α-particle is described by a plane wave with momentum p
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and the molecules are in their ground states.
The problem is now reduced to find an approximate solution of the Schrödinger equation and to
compute the probability that both molecules are excited. The procedure is only briefly outlined
and many mathematical details are neglected, but the result, based on a deep physical intuition,
is clearly stated: the probability that both molecules are excited is significantly different from
zero only if the momentum p is parallel to the line joining aI and aII . Such a result can be
considered a satisfactory explanation of the observed trajectory of an α-particle in the chamber,
since the trajectory can only be observed through the excitations of the molecules.
However Heisenberg stresses that also in case b) the reduction postulate is used when one
“observes” the excitation of the molecules. This means that in case b) the border between
system and apparatus has only been moved to include the molecules in the system.
The conclusion is that, according to Heisenberg, the approaches in cases a) and b) are concep-
tually equivalent since in both cases the reduction postulate must be invoked for a complete
description of the physical situation.
In 1929, C.G. Darwin ([Da]) presented a different interesting inspection of the cloud chamber
problem. The approach proposed by Darwin is entirely based on the Schrd̈inger equation and
it is surprisingly close to the one of decoherence theory developed in the last decades of the last
century.
More precisely, he stresses that a satisfactory description of a quantum system S (like the α-
particle) is achieved only if one takes into account its interaction with (part of) the environment
E . As a consequence, one has to compute the evolution of a wave function ψ depending on the
coordinates of S and of E . Given such ψ, the probabilistic predictions on the system S can
be obtained by taking an average over all possible final configurations of the environment E .
Such a strategy is surely “discouragingly complicated”, but it can provide an explanation of the
particle behavior of S without any reference to the reduction postulate.
In the case of the cloud chamber, the wave function ψ is a function of the coordinates of the α-
particle and of the atoms in the chamber. At the initial time, such ψ can be reasonably assumed
to be a product of the spherical wave for the α-particle and of the ground states for the atoms.
“But the first collision changes this product into a function in which the two types of coordinates
are inextricably mixed, and every subsequent collision makes it worse.” A detailed computation
of such ψ is impossible but one can obtain for ψ an integral representation containing a phase
factor and “without in the least seeing the details, it looks quite natural to expect that this phase
factor will have some special character, such as vanishing, when the various co-ordinates satisfy
a condition of collinearity.” It should be noted that in these words it is clearly outlined the
stationary phase method as the correct technical tool to prove the emergence of the particle
behavior.
Darwin’s view can be summarized by saying that the wave function ψ is the only crucial object
of quantum theory and all the particle and the wave properties of a system can be derived from
an accurate analysis of ψ.
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3 Mott’s analysis

Darwin’s program was concretely realized by Mott in his seminal paper [Mo]. Despite its
importance, this work of Mott’s does not seem to be sufficiently well known and therefore, in
the following, we shall describe it in some details (we also refer the reader to [Fa], [CK], [FigT1],
[FigT2] for further critical considerations on the paper).
In the introduction, Mott acknowledges having been inspired by Darwin’s paper. He admits that
the perspective outlined by Darwin seems counterintuitive at first, since “it is a little difficult to
picture how it is that an outgoing spherical wave can produce a straight track; we think intuitively
that it should ionise atoms at random throughout space”. Like Heisenberg, Mott points out that
the crucial point is to establish the border line between the system under consideration and
the measuring device. In a first possible approach (corresponding to case a) in Heisenberg’s
approach), the α-ray is the system and the gas of the chamber is the measurement device by
which we observe the particle. Here, the α-ray must be considered a particle immediately after
the disintegration process, since at that moment the gas (i.e., the device) reduces the initial
spherical wave to a narrow wave packet with a definite momentum. In the other approach
(case b) in Heisenberg), the α-particle and the gas are considered together as the system under
consideration. In this case, are the ionized atoms to be observed and the wave function ψ of the
system should provide the ionization probability. Only after the ionization has been observed
are we allowed to consider the α-ray as a particle.
According to this point of view, this mentioned intuitive difficulty can be overcome, since it
arises from our erroneous “tendency to picture the wave as existing in ordinary three dimensional
space, whereas we are really dealing with wave functions in multispace formed by the co-ordinates
both of the α-particle and of every atom in the Wilson chamber.”
In the rest of his paper, Mott discusses a simple model showing how this second approach
actually works. The model is essentially the same as the one considered by Heisenberg and it
consists of the α-particle, initially described by a spherical wave centered at the origin, and only
two hydrogen atoms. The nuclei of the atoms are supposed as at rest in the fixed positions a1,
a2, with |a1| < |a2|. It is assumed that the α-particle does not interact with the nuclei, and the
interaction between the two electrons is also neglected. Moreover, the interaction between the
α-particle and the electrons is treated as a small perturbation. The main result of the paper
can be summarized in the following statement:
the two hydrogen atoms cannot both be excited (or ionized) unless a1, a2 and the origin lie on
the same straight line.
We shall outline the way Mott derives the result under suitable assumptions, trying to follow
his original notation and line of reasoning. We suggest the reader who is not interested in
mathematical details to skip the next few pages and proceed directly to the final remarks at
the end of this section.
The main object of the investigation are periodic solutions F (R, r1, r2)eiEt/~ of the Schrödinger
equation for the three-particle system, where R, r1, r2 denote the coordinates of the α-particle
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and of the two electrons of the hydrogen atoms respectively. Such F is the solution of the
stationary Schrödinger equation

− ~2

2M
∆RF +

(
− ~2

2m
∆r1 −

e2

|r1 − a1|

)
F +

(
− ~2

2m
∆r2 −

e2

|r2 − a2|

)
F

−
( 2e2

|R− r1|
+

2e2

|R− r2|

)
F = E F (3.1)

where ∆x is the laplacian with respect to the coordinate x, M is the mass of the α-particle,
m is the mass of the electron, −e is the charge of the electron and 2e is the charge of the
α-particle.
The solution of equation (3.1) can be conveniently expanded in series of the eigenfunctions
of the two hydrogen atoms. More precisely, let ψj be the j-th eigenfunction of a hydrogen
atom centered in the origin, with ψ0 denoting the ground state. Then the corresponding
eigenfunctions of the atoms in a1, a2 are

ΨI
j (r1) = ψj(r1 − a1), ΨII

j (r2) = ψj(r2 − a2) (3.2)

Note that here it seems tacitly assumed that the index j can be an integer or a real positive
number (and, correspondingly, ψj is a proper eigenfunction or a generalized eigenfunction).
Taking advantage of completeness of the system of the eigenfunctions, we have the following
representation for F

F (R, r1, r2) =
∑
j1,j2

fj1j2(R)ΨI
j1

(r1)ΨII
j2

(r2) (3.3)

The Fourier coefficients fj1j2(R) of the expansion have a direct physical interpretation. Indeed,
using Born’s rule, the probability for finding the first atom in the state labeled by j1 and the
second atom in the state labeled by j2 is∫

dR |fj1j2(R)|2 (3.4)

According to this interpretation, one might loosely say that the “wave function” of the α-
particle is f00(R) if both atoms remain in the ground state, fj10(R), j1 6= 0, if the first atom is
in the j1-th excited (or ionized) state and the second in the ground state, fj1j2(R), j1, j2 6= 0,
if both atoms are excited (or ionized).
The analysis shows that f00(R) is a (slightly deformed) spherical wave and fj10(R), j1 6= 0,
is a wave packet emerging from a1 with a momentum along the line Oa1. This means that
the second atom can be excited by such wave packet only if a2 lies on the line Oa1. Thus the
desired result will follow, i.e. fj1j2(R), j1, j2 6= 0, is approximately zero unless the condition of
collinearity is satisfied.

8



The computation is carried out using second order perturbation theory and treating the inter-
action of the α-particle with the two electrons as a small perturbation. Then one writes

F = F (0) + F (1) + F (2) + · · · (3.5)

and each term of the series is computed by the method of successive approximation, start-
ing from the unperturbed zero-th order term given in the form of a diverging spherical wave
multiplied the ground state of the two atoms

F (0)(R, r1, r2)= f
(0)
00 (R)ΨI

0(r1)ΨII
0 (r2) , f

(0)
00 (R) =

eik|R|

|R|
, k =

√
2M(E−2E0)

~
(3.6)

where Ej denotes the j-th eigenvalue of the hydrogen atom. We see that the context of the
stationary Schrödinger equation forces Mott to choose a solution not in L2, which, strictly
speaking, is not legitimate. In particular the probabilistic interpretation (3.4) fails for f

(0)
00 .

For the first order term

F (1)(R, r1, r2) =
∑
i1,i2

f
(1)
i1i2

(R)ΨI
i1

(r1)ΨII
i2

(r2) (3.7)

one finds

f
(1)
j1j2

(R) =
M

2π~2

∫
dR′Kj1j2(R

′)
e±ik

′|R−R′|

|R−R′|
, k′ =

√
2M(E − Ej1 − Ej2)

~
(3.8)

where
Kj1j2(R) = f

(0)
00 (R)

(
δ0j2Vj10(R− a1) + δj10V0j2(R− a2)

)
(3.9)

Vij(x) = −
∫
dy

2e2

|x− y|
ψi(y)ψj(y) (3.10)

Note that, from (3.9), one has Kj1j2(R) = 0 if both j1 and j2 are different from zero and

therefore, by (3.8), one also has f
(1)
j1j2

= 0 if both j1 and j2 are different from zero.
From these preliminary considerations a first conclusion can be drawn:
At first order in perturbation theory the probability that both atoms are excited is always zero.
The result is not surprising since, as Mott remarks, in perturbation theory the probability that
one atom is excited is a first order quantity and the probability that both atoms are excited is
a second order quantity. This explains why the second order term F (2) is required in order to
obtain an estimate of the double excitation occurrence.
The further point is to give an approximate expression for f

(1)
j10

and f
(1)
0j2

. From (3.8), and (3.9),

for f
(1)
j10

one has

f
(1)
j10

(R) =
M

2π~2

∫
dy f

(0)
00 (y + a1)Vj10(y)

eik
′|R−a1−y|

|R− a1 − y|
, j1 6= 0 (3.11)
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and analogously for f
(1)
0j2

. In order to find the required approximate expression Mott introduces
the following assumptions:
a) the “observation point” R is far away from the origin and the atom, i.e. |a1| � |R|;
b) the collision for the α-particle is almost elastic, i.e. k − k′ � k;
c) the α-particle has a high momentum k.
Using assumption a) one obtains the asymptotic formula

f
(1)
j10

(R) ' eik
′|R−a1|

|R− a1|
M

2π~2

∫
dy f

(0)
00 (y + a1)Vj10(y) e−ik

′u1(R)·y (3.12)

where

u1(R) =
R− a1

|R− a1|
(3.13)

Using the explicit expression of f
(0)
00 (see (3.6)) and assumption b) one can write

f
(1)
j10

(R) ' eik
′|R−a1|

|R− a1|
I(u1(R)) (3.14)

I(u1(R)) =
M

2π~2

∫
dy

Vj10(y)

|y + a1|
eik(|y+a1|−u1(R)·y) (3.15)

One sees that f
(1)
j10

(R) has the form of a wave diverging from a1, whose amplitude I is given
by the integral in (3.15) and it is explicitly dependent on the direction u1(R).
The crucial point is now to evaluate such amplitude. By assumptions c), the integral in (3.15)
is a highly oscillatory integral and then stationary phase arguments can be used. The leading
term of the asymptotic expansion for k → ∞ is determined by the value of the integrand at
the critical points of the phase, i.e. for points y such that

∇y

(
|y + a1| − u1(R) · y

)
=

y + a1

|y + a1|
− u1(R) = 0 (3.16)

On the other hand, the integrand in (3.15) is very small except in a neighborhood of y = 0.
Therefore one obtains the condition

u1(R) ' a1

|a1|
(3.17)

Using condition (3.17) in (3.13) one can deduce that the amplitude I is significantly different
from zero only for those R such that R − a1 is (almost) parallel to a1, i.e. the observation
point R must be (almost) aligned with the first atom and the origin.

From the above argument one concludes that f
(1)
j10

(R) is approximately given by a wave diverging
from a1 with an amplitude very small except for R given by (3.17), i.e. except in a small cone
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with vertex in a1 and pointing away from the origin. A completely analogous analysis is valid
for f

(1)
0j2

(R).
We will not give here details of Mott’s estimate of the second order term. The final result is a
straightforward consequence of the “focusing” of the first order term in the direction connecting
the origin to the first atom.
If one agrees that the (amplified) effect of the excitations of the atoms is the true observed
phenomenon in a cloud chamber then the result can be rephrased to say that one can only
observe straight tracks. In this sense, Mott provides a satisfactory explanation of the straight
tracks observed in the chamber based entirely on the Schrödinger equation.
It is worth emphasizing that the analysis Mott developed is based on a deep physical intuition.
Indeed, the three-body problem discussed in his paper is an extremely simple but non-trivial
model and it is especially well suited for highlighting the emergence of the qualitatively behavior
of the α-particle without unnecessary complications.
Even though it is not particularly stressed in Mott’s paper, another important aspect is the fact
that the result is valid under specific physical assumptions (large value of k and quasi-elastic
interaction). In other words, the observed behavior of the α-particle in a cloud chamber is far
from being universal.
In this sense, Mott’s analysis can be considered the original prototype of the modern approach to
the theory of environment-induced decoherence. In fact, the classical behavior (the trajectory)
of the system (α-particle) emerges as an effect of the interaction with the environment (vapor
atoms in the chamber) under suitable assumptions on the physical parameters of the model.
It should also be noted that there is surely a gap in the mathematical rigor of Mott’s paper. For
instance, the stationary phase theorem is used without an accurate control of the conditions of
applicability. Another unsatisfactory aspect is the use of the stationary Schrödinger equation,
which prevents a more transparent time-dependent description of the evolution of the whole
system.

4 The role of semi-classical analysis

In the study of the classical limit of quantum mechanics, the use of stationary phase techniques
is suggested by analogy with geometrical optics since the initial wave has a very high frequency
(momentum).
In fact, from the technical point of view the situation is similar to the case of optics, since we
compare a theory based on point particles propagating along trajectories (classical mechanics
corresponding to geometrical optics) with a theory based on wave solutions of the Schrödinger
equation (quantum mechanics in analogy with “physical” optics). Instead, it at once becomes
clear that the situation is quite different from the point of view of the physical interpretation.
In quantum mechanics, the wave representing the quantum state does not describe a physical
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object distributed in ordinary space, as in optics. Rather, it is a probability amplitude in the
(classical) configuration space associated to the (whole) quantum system under consideration.
Its role is to provide the statistical distribution of the outputs of repeated experiments. More-
over, the superposition principle introduces a crucial difficulty since no definite meaning can be
given to the configuration of a quantum system in a superposition state. In other words, the
standard formulation of quantum mechanics does not provide a space-time description of the
behavior of a quantum object easily comparable with the classical one. For these reasons, the
classical limit of quantum mechanics is, both technically and conceptually, hard to ascertain.
The traditional approach is essentially based on the analysis of the solutions of the Schrödinger
equation in the limit “~ → 0” for a suitable choice of the initial state. We recall that in this
context the limit “~ → 0” simply means that the typical action of the system is large with
respect to the Planck’s constant.
Usually one considers two possible kinds of initial states, chosen by analogy with the case of
optics: WKB states and coherent states.
The former are defined by an amplitude independent of ~ and a highly oscillating phase for
~ small. In this case one can show, for ~ small and for short times, that the corresponding
solution of the Schrödinger equation has the same form, with amplitude and phase governed by
the classical transport and Hamilton-Jacobi equations respectively. This means that in the limit
the quantum state propagates like a classical fluid and in this sense the classical description is
recovered.
Coherent states are wave packets well concentrated in position and momentum around a point
(x0, p0) in classical phase space for ~ small. One can prove that the time evolution, for ~ small
and a time interval not too long, is again described by a wave packet well concentrated in
position and momentum around the classical trajectory starting from (x0, p0).
Making available precise statements and mathematical proofs to detail the above qualitative
pictures has required a great deal of technical work. Many refined and detailed results and
summaries of the theory are at one’s disposal in the literature (see, e.g. [Ro] and [?] and
references therein).
Despite their mathematical elegance, such kind of results cannot be considered conclusive for
a complete understanding of the classical limit of quantum mechanics. The reason is that the
approach is crucially based on the choice of specific, essentially classical, initial states. Given
the characteristic of the quantum system and of its environment, we expect that a classical
behavior should emerge also starting from a genuine quantum state, like a superposition state.
In such a case the usual procedure ~→ 0 turns out to be insufficient.
The idea behind this theoretical analysis is that quantum coherence between the components of
a superposition state is very fragile. Even a weak interaction of the system with the environment
can significantly reduce coherence and a classical behavior of the system can emerge.
In the case of a cloud chamber, the initial state of the α-particle is a spherical wave, i.e., a
(continuous) superposition of semi-classical states of the type mentioned above.
To explain the classical trajectories that are observed one has to analyze in detail the decoher-
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ence effect induced by the environment. The intuitive picture is clear-cut: each semi-classical
component of the α-particle initial state evolves, according to semi-classical theory, along an
almost straight line interacting in the meanwhile with a small section of the environment. The
crucial point is that different semi-classical components interact with different parts of the en-
vironment. As a consequence, the state of entire system becomes an almost incoherent sum of
states supported in distant regions of the classical configuration space.
Our attempt is to give a rigorous version of this picture. To achieve this goal we have to
quantify the response of a model quantum environment to the particle passage.
It is worth emphasizing that a modification of the environment is the only experimental output
one can observe. Contrary to what is often stated, one should not “trace out” the environment
degrees of freedom, but rather those of the particle. That is exactly what Mott did when trying
to estimate the multiple ionization probability of atoms in a cloud chamber.
The results we obtained during the last decade [DFT1], [DFT2], [FinT], [RT], [CCF] suggest
an effective strategy for dealing with the study of quantum mechanical microscopic systems in
interaction with quantum environments. It consists in building up simple models of quantum
environments and analyzing their evolution under specific hypotheses on the physical parame-
ters of the models.

5 Mott’s analysis revisited

In [DFT2] we propose a rigorous, time-dependent version of the original Mott’s result. We
consider a three-particle quantum system consisting of the α-particle, initially described by a
spherical wave centered in the origin, and two model atoms placed at fixed positions a1 , a2 ∈
R3, with 0 < |a1| < |a2|. For the sake of simplicity, each model atom is described by a particle
subject to an attractive point interaction placed in ai, i = 1, 2. For a detailed study of an
Hamiltonian with a point interaction we refer to [AGH-KH]. Here we only recall that it is a
solvable model, i.e., spectrum and eigenfunctions can be explicitly computed. In particular the
absolutely continuous spectrum is the positive real semi-axis, the singular continuous spectrum
is empty and, in the attractive case, there is one negative, non degenerate eigenvalue. We also
recall that a Hamiltonian with a given smooth interaction potential V can be reconstructed as
the limit of Hamiltonians with many randomly distributed point interactions ([FHT]).
At initial time we assume that both atoms are in their ground state (the eigenvector corre-
sponding to the negative eigenvalue). Furthermore, we assume that the α-particle and the
atoms interact via a smooth two-body potential.
A crucial step for the analysis is a precise specification of the assumptions on the physical
parameters of the model. We assume that:
i) the wavelength associated to the α-particle at time zero is much smaller than the spatial
localization of the spherical wave (semi-classical regime);
ii) the spatial localization of the spherical wave, the “diameter” of the atoms and the effective
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range of the interaction between α-particle and atoms are much smaller than the macroscopic
distance |a1|;
iii) the ionization energy of the atoms and the strength of the interaction between α-particle and
atoms are much smaller than the initial kinetic energy of the α-particle (quasi-elastic regime).
We also introduce the time τj, j = 1, 2, as the time spent by a classical particle, starting from
the origin with velocity equal to the mean isotropic velocity of the spherical wave, to reach the
atom in aj. We remark that, under the above assumptions, it is reasonable to consider τ1 and
τ2 as the collision times of the spherical wave emerging from the origin with the first atom in
a1 and the second atom in a2.
Our aim is the consider the time evolution of the three-particle system up to second order
in perturbation theory and to compute the probability P2(t) that both atoms are ionized for
t > τ2.
The result we find is in agreement with the original Mott’s analysis and it can be roughly
summarized as follows:

P2(t) is negligible unless the positions a1, a2 of the atoms are aligned with the origin.

For a more precise formulation of the result and for the proof we refer to [DFT2], [FigT2]. Here
we only add some remarks.
- The assumptions i), ii), iii) are crucial for the validity of the result, in the sense that a
different qualitative behavior of the system must be expected if the assumptions on the physical
parameters of the model are modified.
- Since in a cloud chamber one observes the (amplified) effect of the ionization of the atoms,
the result shows that one can only observe straight trajectories.
- The method of the proof is essentially based on a representation formula for P2(t) in terms
of highly oscillatory integrals and on the asymptotic analysis of such integrals using stationary
and non-stationary phase methods.
In the rest of this section we shall give some technical details of a result obtained in [RT] (see
also [FigT2]) which, in our opinion, clarifies the dynamical mechanism that underlies Mott’s
result. Once more, the material presented in the rest of this section can be passed over by the
reader who wants to avoid mathematical details.
Let us consider a simpler model of a non relativistic quantum system made of only two spinless
particles in dimension three of masses M and m. The latter is bound by an harmonic potential
of frequency ω around the equilibrium position a. The first particle plays the role of the α-
particle while the harmonically bounded particle plays the role of an electron in a very simplified
version of model-atom with fixed nucleus. The interaction between the test particle and the
harmonic oscillator is described by a smooth two-body potential V .
Denoting by R the position coordinate of the α-particle and by r the position coordinate of
the harmonic oscillator, the Hamiltonian of the system in L2(R6) is given by

H = H0 + λV (δ−1(R− r)), λ, δ > 0 (5.1)
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where H0 is the free Hamiltonian of the system

H0 = − ~2

2M
∆R −

~2

2m
∆r +

1

2
mω2(r − a)2 (5.2)

We recall that the eigenfunctions of the harmonic oscillator are

ϕn(r) = γ−3/2φn(γ−1(r − a)), γ =

√
~
mω

, φn(x) ≡ φn1(x1)φn2(x2)φn3(x3) (5.3)

where n = (n1, n2, n3) ∈ N3 and φnk is the Hermite function of order nk. In particular the
ground state corresponds to n = 0 = (0, 0, 0).
Under the same kind of assumptions i), ii), iii) made above, we analyze the evolution of this
system when the initial state is a product state of a spherical wave for the α-particle and the
ground state for the oscillator. In order to satisfy the assumptions, it is convenient to introduce
a small parameter ε > 0 and to fix

~ = ε2 M = 1 σ = ε m = ε ω = ε−1 δ = ε λ = ε2 (5.4)

where σ is the spatial localization of the spherical wave. Under this scaling the Hamiltonian
becomes

Hε = Hε
0 + ε2 V

(
ε−1(R− r)

)
(5.5)

where

Hε
0 = −ε

4

2
∆R +

1

ε

[
−ε

4

2
∆r +

1

2
(r − a)2

]
(5.6)

The rescaled initial state takes the form

Ψε
0(R, r) = ψε(R)ϕε0(r) (5.7)

ϕεn(r) =
1

ε3/2
φn
(
ε−1(r − a)

)
n ∈ N3 (5.8)

In (5.7) the spherical wave ψε is explicitly given by

ψε(R) =
Nε

ε5/2π3/4
e−

|R|2

2ε2

∫
S2

dû e
i
ε2
v0û·R (5.9)

where v0 > 0 is the mean isotropic velocity of the spherical wave and Nε is a normalization
constant, with

lim
ε→0
Nε = N0 ≡

v0
4π

(5.10)
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Notice that the spherical wave is obtained considering a wave packet localized in momentum
around v0û, where û is a generic unit vector, and then taking an average over all possible unit
vectors of the sphere S2.
We are interested in asymptotic behavior for ε→ 0 of the solution of the Schrödinger equation
of the system

U ε(t)Ψε
0 , U ε(t) = e−i

t
ε2
Hε

(5.11)

for t > τ , where

τ =
|a|
v0

(5.12)

is the (classical) collision time of the α-particle with the oscillator.
In order to formulate the result, we fix a reference frame such that

â = (0, 0, 1), â ≡ a

|a|
(5.13)

and we introduce the following definition.

Let P ε = P ε(R, r) be the function

P ε(R, r) =
∑
n

P ε
n(R)ϕεn(r) (5.14)

where P ε
n is the wave packet for the α-particle given by

P ε
n(R) ≡ P ε

n(R1, R2, R3) =
Cε
n

ε3/2
Fn
(
R1

ε
,
R2

ε
, 0

)
e−

1
2ε2

(R3−Zεn)
2
+ i
ε2
vεnR3 (5.15)

Cε
n =

2π5/4

i|a|2
e
i
ε
|n|τ+i |n|

2τ

2v20 (5.16)

Fn(y) ≡ Fn(y1, y2, y3) = e−i
|y|2
2τ

(
φ̃nφ0 ·Ṽ

)(
−y1
τ
,−y2

τ
,−y3

τ
− |n|
v0

)
(5.17)

Zεn =
|n|τ
v0

ε (5.18)

vεn = v0 −
|n|
v0
ε (5.19)

In (5.17) we have used the notation f̃ for the Fourier transform of a function f .
Let us briefly comment on the above definition. The function P ε is an infinite linear combination
of product states, made of stationary states of the harmonic oscillator and wave packets P ε

n of
the α-particle. Each P ε

n is well concentrated, for ε small, in position around

R(0) = (0, 0,Zεn) ≡ Zεn â (5.20)
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and in momentum around
P (0) = (0, 0, vεn) ≡ vεn â (5.21)

The free evolution at time t of P ε
n, for ε small, is again a wave packet well concentrated in

position around
R(t) = Zεn â + vεn â t (5.22)

and in momentum around P (0) (the momentum is conserved). In particular, at time t = τ the
wave packet is well localized in position around

R(τ) = Zεn â + vεn â τ = a (5.23)

i.e., around the position of the oscillator.
The wave packets P ε

n play a crucial role in the asymptotic expression of the wave function of
the system for ε small. More precisely, the following result holds.

Theorem. Let us fix t > τ . Then there exists C(t) > 0, independent of ε, such that

U ε(t)Ψε
0 = U ε0(t)Ψε

0 + ε2 U ε0(t)P ε + Eε(t) (5.24)

where
U ε0(t) = e−i

t
ε2
Hε

0 (5.25)

and
‖Eε(t)‖ ≤ C(t) ε3 (5.26)

For the proof (in the more general case of N ≥ 1 harmonic oscillators) we refer to [RT]. Here
we only comment on the result.
Using the expressions for the free propagator U ε0(t), the initial state Ψε

0 and the function P ε,
from (5.24) one has

(U ε(t)Ψε
0) (R, r) ' e−i

t
ε2
Eε0

[(
e−i

t
ε2
hε0ψε

)
(R) + ε2

(
e−i

t
ε2
hε0P ε

0

)
(R)

]
ϕε0(r)

+ ε2
∑
n6=0

e−i
t
ε2
Eεn
(
e−i

t
ε2
hε0P ε

n

)
(R)ϕεn(r) (5.27)

where Eε
n denotes the energy level of the oscillator

Eε
n = ε

(
|n|+ 3

2

)
, |n| = n1 + n2 + n3 (5.28)

and hε0 is the free Hamiltonian for the α-particle

hε0 = −ε
4

2
∆R (5.29)
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In (5.27) the approximate wave function for t > τ has been written as the sum of two terms,
distinguished for the different behavior of the oscillator (unperturbed or excited). In the first
one, the oscillator remains in its ground state and the α-particle evolves according to(

e−i
t
ε2
hε0ψε

)
(R) + ε2

(
e−i

t
ε2
hε0P ε

0

)
(R) (5.30)

i.e., the free evolution of the initial spherical wave slightly deformed by the free evolution of the
small wave packet P ε

0 , emerging from the oscillator. The second term is a sum over all possible
excited states of the oscillator. In each term of the sum, the evolution of the α-particle is given
by ε2 times (

e−i
t
ε2
hε0P ε

n

)
(R) (5.31)

i.e., the free evolution of the wave packet P ε
n, n 6= 0. As we already remarked, each wave

packet emerges at t = τ from the excited oscillator with momentum vεn â and, for t > τ , it will
be concentrated around the uniform classical motion (5.22), which can be more conveniently
rewritten as

R(t) = a +

(
v0 −

|n|
v0
ε

)
(t− τ) â (5.32)

We emphasize that the result expressed in the theorem provides a physical explanation of Mott’s
result in the three-particle model (α-particle plus two atoms in a1, a2). In fact, if the collision
with the first atom in a1 produces excitation of the atom then, according to the above result,
the α-particle is described by a localized wave packet emerging from a1, with momentum along
the direction â1. As a consequence, the requirement that also the second atom in a2 is excited
can be satisfied only if such atom is hit by the wave packet, and this happens only if a2 lies on
the direction â1.
This explains why excitation of both atoms can occur only if their positions are aligned with
the origin.

6 Different approaches and open problems

The simple models we analyzed should be considered as first steps in a branch of research that
we consider relevant and promising. In our opinion, there are different strategies that might be
exploited and open problems that would be well worth the study.
As we mentioned above the initial spherical wave packet can be seen as a continuous super-
position of coherent states pointing toward all possible radial directions. In fact, (5.9) is the
rigorous formulation of this claim.
The partition (slicing) of the incoming α-wave in fuzzy coherent slices that move as semiclassical
waves (keeping their coherence until one of them interacts with a real atom) can be deemed to
be artificial. But the wave itself is a probability wave and therefore has no objective reality.
We are slicing something that does not exist!
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Indeed we are manipulating mathematical objects that enter into the mathematical framework
by which quantum mechanics describes outcomes of experimental observations; only part of
this mathematical framework is given a direct physical correspondence with experiments. The
remaining part is there in order to give a meaningful dynamics (meaningful = as close as possible
to the dynamics of material bodies). What counts is that the mathematical description we give
be consistent and our results indicate that the family of coherent states we suggest as a ”basis”
in order to analyze the initial state of the α-particle is in fact the right ”pointer basis” for the
problem under investigation.
In our opinion, this qualitative description can be turned into an effective technical tool to
examine details of the asymptotic evolution of the α-particle and of the environment in models
of cloud chamber.
We recall that semiclassical waves propagate, under the Schrödinger equation, keeping their
barycenter on a classical path. Their shape changes slightly and their dispersion is of order

√
~.

As soon as we write the initial state as a superposition of such states, the problem is reduced to
the interaction of a semiclassical wave with an atom, leading to ionization. It should be noted
that the semiclassical wave packet remains such after the interaction with an atom only if the
momentum transfer within the process is a little percentage of the initial momentum (almost
zero-angle scattering). In the physical problem we are considering, this implies that after the
interaction either the atom is in an excited state or the atom is ionized and low energy electrons
are emitted. In the real Wilson chamber, this last condition is needed in order that the ionized
atoms, acting as condensation seeds, may cause the formation of liquid droplets (once more we
stress that all we see and measure is the formation of tracks of droplets in the cloud chamber).
It is therefore reasonable to restrict attention to the case in which the semiclassical wave packet
retains its identity during interaction, changing perhaps slightly its shape.
While the evolution of a semiclassical wave packet interacting with an external potential has
been extensively investigated ([Hep1], [Y], [Ro], [HJ]), semiclassical inelastic scattering has not
received, at the best of our knowledge, comparable attention and any result in this direction
would be welcome. We are planning to examine this approach to the Mott’s problem in further
work. Here, we want to focus briefly on the connection of the strategy outlined above with the
analysis of Michel Bauer and Denis Bernard on the wave function collapse in repeated quantum
non demolition measurements ([BB]). In the paper the authors investigate the evolution of a
microscopic system together with a probe. The latter is meant to perform a sequence of
”nondemolition” measurements on the system.
The nondemolition character of the measurement is turned into the main assumption of authors’
analysis: let H ≡ HS ⊗ HP (S standing for system and P for probe) be the Hilbert space of
the states of the whole system. The assumption reads: there exist an orthonormal basis φn in
HS and unitary operators Un in the Hilbert space of the probe HP such that the evolution of
the whole system, starting from an initial state φn⊗Ψ, is given by the unitary operator I⊗Un.
In short, each state in the chosen basis of the microscopic system evolves unaltered, whereas
the state of the probe evolves according to a Schrödinger dynamics whose generator depends
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on the microscopic system state.
From the assumption stated above, the authors proceed to prove a list of interesting results
making use only of classical probability tools. In summary, after a large number of repeated
measurements processes, obeying at each time the main assumption,

• the state of the system tends to one of the states φn with probability |(φn, φ)|2 if φ is the
initial state of the system.

• A limit probability measure on the states of the probe is uniquely associated to each state
φn of the system.

The authors give also results on the rate of convergence of the sequences to the final states.
Let us associate the chosen basis with a ”suitable slicing” of the radial initial condition in
a cloud chamber model and each Un with the response of a model atom in the chamber to
each scattering event with a particle initially in the state φn. It is reasonable to predict (and it
should be feasible to prove) that, in the limit of quasi-elastic, small angle scattering, the system
α-particle plus model-atoms fulfill the assumption of Bauer and Bernard. In this scenario, the
α-particle is submitted to a sequence of non demolition measurement by the atoms of the gas in
the chamber. The coherent states in which the initial state is analyzed are the ”pointer basis”
of the alpha particle, whereas the tracks are the pointer states of the probe.

For a given model of environment, it would be interesting to extend the results to more general
initial conditions of the microscopic system and to cases in which external fields act on the
microscopic system.
Another crucial step ahead would be to consider more realistic models of quantum environments.
As was already pointed out by K. Hepp in [Hep2], complete decoherence requires an infinite
time in models where a quantum particle evolves in an environment made up of non-interacting
quantum subsystems. An alternative way to reach complete decoherence would be to consider
an ever larger number of environment constituents in a finite region.
This idea brought us to consider models of environment made up of multi-channel point in-
teractions (one can think either of point atoms with a finite number of energetic levels or of
localized spins). There are many advantages in working with such kind of solvable models. To
mention the most important, a non-perturbative theory is practicable (the environment is not
an unmanageable multi-particle system) and it is possible to investigate the asymptotic limit
of infinitely many scattering centers in a finite volume. A quite detailed introduction to these
models is given in chapter 3 of the book [FigT2].
A more realistic choice would be to model the environment with self-interacting fields (e.g.,
spins ferromagnetically interacting among them), initially in a genuine meta-stable state. The
non-linear self-interaction would enhance the response of the environment, which might show
macroscopic modifications in finite time.
In conclusion a complete description of the mechanism of production of the tracks in a cloud
chamber still escapes us, but we have outlined the role of quantum mechanics, of semi-classical

20



analysis and of stationary phase techniques within the time-dependent Schrödinger equation in
shedding some light on the investigation of the classical-quantum border.
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[Fa] Falkenburg B., The analysis of particle tracks: a case for trust in the unity of Physics.
Stud. Hist. Phil. Mod. Phys., 27, no. 3, 337-371, 1996.

[FHT] Figari R, Holden H, Teta A., A Law of Large Numbers and a Central Limit Theorem for
the Schrödinger Operator with Zero-Range Potentials. J. Stat. Phys., 51, 205-214, 1988.

[FigT1] Figari R., Teta A., Emergence of classical trajectories in quantum systems: the cloud
chamber problem in the analysis of Mott (1929). Arch. Hist. Ex. Sci., 67, no. 2, 215-234,
2013.

[FigT2] Figari R., Teta A., Quantum Dynamics of a Particle in a Tracking Chamber, Springer-
Briefs in Physics, Springer Berlin Heidelberg, 2014.

[FinT] Finco D., Teta A., Asymptotic expansion for the wave function in a one-dimensional
model of inelastic interaction. J. Math. Phys., 52, n. 2, 022103, 2011.

[Ga] Gamow G., Quantum Theory of Atomic Nucleus. Z. Phys., 51, 204, 1928.

[HJ] Hagedorn G.A., Joye A., Exponentially accurate semiclassical dynamics: propagation,
localization, Ehrenfest times, scattering, and more general states. Ann. H. Poincaré, 1,
837-883, 2000.
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